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RATES OF POISSON APPROXIMATION TO FINITE RANGE
RANDOM FIELDS!

By A. D. BARBOUR AND P. E. GREENWOOD

Universitit Ziirich and University of British Columbia

The Stein-Chen approach is used to obtain bounds on the Poisson
approximation of a random field, in both a random variable and a stochastic
process sense. The hypotheses are Dobrushin’s condition or, alternatively,
positive dependence combined with a bound on decay of correlations. Rates
of convergence are derived which supplement the limit theorems of Berman.
The results have application to certain Gibbs states at both high and low
temperature.

1. Introduction. Suppose {I;, 8 € Z™} is a field of indicator random
variables over Z™, with the properties that the probabilities 7, = P[I; = 1]
are small, and that there is not too much dependence between the I,’s. Let
W = Lz 1, be the partial sum over the m-cube of side n,

J=d(n) ={(jir-rJm), 0 <jp<n,1<k<m}

Then it is reasonable to expect the distribution of W to be roughly Poisson.
The I, might, for instance, indicate the places where the values of an
underlying random field exceed a high level. In this context, Berman (1987)
showed convergence in distribution of W to a Poisson random variable as
n becomes large, assuming the underlying random field to be homogeneous
and Markov over Z™ and to satisfy Dobrushin’s condition D(a), stated in
Section 2.

Our aim is to complement Berman’s results with rate-of-convergence esti-
mates. We use the Stein—Chen approach, which reduces the proofs to compu-
tation of quantities ©,0; and Yzn, defined by (2.2) and (2.1) in Section 2.
These sums measure short-range and long-range dependence among the Ij’s.
Their prototypes can be discerned in Berman’s Theorems 3.1 and 5.1. Our
method is quite different from that of Berman, who used a blocking argument
similar to one often used in extreme value theory. Blocking can, for some
purposes, be advantageously combined with the Stein-Chen method, as in
Smith (1988), but it can also lead to a loss of precision. Here we bound the ©®’s
and 7n’s directly, using results from Dobrushin (1968) and estimation tech-
niques from Berman (1987).
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There are a number of additional advantages in the method employed. The
quantities ¥;,0, and X, are relatively easy to work with, making it no great
problem to drop the assumption of homogeneity of the field or to replace
Markov with r-Markov for some r > 1. We do not require such stringent
asymptotic conditions on the mean A of W or on the conditional probabilities
of I, given the rest of the field, as those of Berman. Explicit estimates of the
accuracy of approximation are arrived at for each fixed n. For simplicity, the
theorems are stated assuming some homogeneity, but more general estimates
appear in the proofs.

Berman considers the conditional distribution of W given an arbitrary
configuration outside o/, and compares it with the Poisson distribution with
the unconditional mean A; our Theorem 2 gives corresponding error estimates.
It turns out, however, to be more natural as well as more accurate to compare
the conditional distribution of W with the Poisson distribution whose mean A
is the conditional expectation of W. The error estimate obtained for this
approximation in Theorem 1 is improved, under Berman’s assumptions, by a
factor of (n~!log n)™ ! relative to that of Theorem 2. The improved error
estimate is also obtained, in Theorem 3, for the approximation of the uncondi-
tional distribution of W by the Poisson, Po(A). This can be interpreted as
saying that the typical discrepancy between A and A is much smaller than the
largest positive value of |A — A| which could be attained by specifying the
configuration outside /.

A further advantage in using the Stein—Chen method is that the quantities
Y30, and Y7, can be combined to give upper bounds for the accuracy of the
approximation of the distribution of the field {I;, 8 € J}, considered as a point
process over ¢, by the law of a Poisson process. These bounds depend on the
metric chosen to measure the distance between two process distributions. If
total variation is used, the bound is essentially larger than that for the
distance between the law of W and Po(A), as was observed by Arratia,
Goldstein and Gordon (1989). However, by using a different metric, bounds
very close to those for the distributions of the random variables can be
obtained. The metrics and corresponding approximation theorems are de-
scribed at the beginning of Section 2.

In Section 2, Dobrushin’s condition is used only for deriving inequalities
which compare the conditional probabilities of having I = 1, given different
information about the configuration off 8. In Section 3 we assume instead that
a simpler rate-of-decay-of-correlations estimate holds, but require in addition
that the measure P satisfy the FKG inequality. The resulting Theorem 4,
which bounds the accuracy of Poisson approximation, can be applied, for
example, to either of the two pure phases in the m-dimensional Ising model,
m > 2, at very low temperatures, a case in which Dobrushin’s condition does
not hold.

2. Poisson approximation under Dobrushin’s condition. The Pois-
son approximations of Theorems 1-3 are obtained using the Stein—Chen
method, introduced by Chen (1975) for random variables and developed in
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the direction of process approximation by Barbour (1988) and by Arratia,
Goldstein and Gordon (1989). We describe Chen’s approach to Poisson approx-
imation, which is analogous to that of Stein (1972) for normal approximation.
Suppose that o is a finite set of indices and that (I;, B8 € J) are zero—one
random variables. Chen constructed a measure of the effects of short- and
long-range dependence at each site 8 € ¢J, choosing a neighborhood M, C J
with 8 € M, to represent the sites ““close” to 8. The measure, 7,, of long-range
dependence he then defined by

(2.1) g = EIE{I| Fys} — 4,

where m; = El;, and F/‘Mﬁ = o{l,, y € J — Mp}. The quantity n, expresses the
average influence on I, of the configuration far from B. As a measure of
short-range dependence Chen defined

(2.2) ®p = m} + myEZy + EL,Z,,

where Z; = ¥ . M- g1, is the number of 1’s occurring close to but not at g.
Using these measures he derived a bound on the total variation distance
between the distribution (W) of W =X, ;I; and the Poisson distribution

Po(A) with mean A = EW, of the form
diy(Z(W),Po(A)) <ci(LAATV2) Y +cp(LAATY) YO,
B B

Here, dpy denotes the total variation between probability measures on a
measure space (2, %),
drv(P,Q) = sup [P(A) — Q(A)l
AeF
and c,, ¢, are universal constants. See Proposition 2.1().

An estimate of similar appearance was given by Arratia, Goldstein and
Gordon (1989), but now for total variation approximation of the distribution of
the whole point process B = X, ;I;8, to the Poisson process distribution,
Po(wr), m = (my, B € J), where 3, denotes a point mass at 8. See Proposition
2.1(i). Although this result shows the probabilities of many more events being
well-approximated by their corresponding Poisson probabilities, the bounds
are not as small as Chen’s when A is large, since the factors A~1/2 and A !
preceding X ;m,; and L0, respectively, are no longer present. The example of
independent I;’s shows this to be an essential restriction. Similar factors can,
however, be recovered if another choice of metric on the space of point
processes is used. Proposition 2.1(iii) is such a result.

To define the distance d, which is used in Proposition 2.1(iii) we proceed as
follows. Let d, be a metric on some set S, satisfying d(s;,s,) <1 for all
S1, 89 € S. Let K be the collection of Lipschitz functions k: S — R such that

" s4(K), defined by

si(k) = sup |k(B) — k(a)l/do(B,a),

B#acS
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is finite. For finite measures p, o on S define
1, - if p(8S) #a(8S),

d = .
1P @) =4 -1 qup (I[kd(p —)l/sy(k), ifa(S)=p(S)=q>0.
keK
Note that d, is a metric on the set y of configurations, or point measures,
§=2Ygcsx0; on S, where §; is a point mass at 8 and x5 € Z". Next, let #
be the collection of functions f: y — R such that s,(f), defined by
so(f) = sup |f(fl) = f(&)l/d (€1, €5),

§1#&2€x

is finite, and let
4@ R) = sup |[7d(@ ~ R) /sa( 1)
feH

Then d, defines a distance between probability measures over y. For the
purposes of Proposition 2.1(iii) we construct d, taking S = J and taking d,
to be the discrete metric. Note, however, that by choosing S to be a Euclidean
space containing <J, d,-metrics can be constructed which are appropriate for
comparing Z(E) with Po(p) for a suitable continuous intensity p over S.

The following proposition, which summarizes the various estimates, appears
as Theorems I.A, X.A and X.F in Barbour, Holst and Janson (1992).

ProposiTiON 2.1. With the above definitions,
(i) drv(L(W),Po())) 3011()‘)2773 + Cp(1) X 0y,
B B

(ii) dry(L(E),Po(m)) < Cyy(X) mp + Cos(A) 1 6y,
B B

(iii) dz(L(E),PO(“!)) < Cyy(2) Z"’h; + Ca(A) X 0,
B B

where the C;; = C,; (1) may be taken as
C;; = min(1,A7 %), Cp, =min(1,A7Y), Cy =Cy =1,

2 A
Ca = min(1,1.65A /%), Cyy = min(l’ [x(l " 21°g+5)])'

In applying Proposition 2.1, all that has to be done is to bound the ©, and
mg for one’s choice of neighbourhoods M. ‘

The Manhattan metric d = d(B,y), 8 and y in Z™, is the length of the
shortest path from B to y, stepping between adjacent lattice points by chang-
ing one coordinate at a time. In the problems discussed in this paper, J Cc Z™
is a cube of side n and My = N; N J, where N, = {y: d(B,y} <1} is a ball
with center B and radius /, with respect to the Manhattan metric. One then
chooses [, to be sufficiently large that conditioning on events outside N; has
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little effect on I,, keeping Y37, small, while not so large that the contribution
from ignoring the sum of covariances of I, and Z;, subsumed in X,;0,,
becomes important. The estimation of @, and 1, depends on being able to
evaluate and compare certain conditional probabilities. In order to accomplish
this we rely heavily on results of Dobrushin (1968).

Let P be a measure over {0, 1}*". Let S be a finite subset of Z™ and let U
be a subset of Z™ — S. The conditional distribution under P of the configura-
tion on S, given that on U, is denoted by g5 x, or P, that is,

s, xw2(S)} = Pxn[ X(S) = x(S)]
- P[X(s) = x(s), s € SIX(¢),t € U].

These conditional distributions are assumed to be of finite range r, in the
sense that

(2.3) as, xsXep - %0} = A vesol Feps -5 %, )

whenever X(¢) = Y(¢) for all ¢ € S¢ such that d(¢, S) < r.
For s # u € Z™, let

ps,u = supdTV(qx,X’ QS,Y)’
X, Y

where the supremum ranges over all X,Y such that X(#) = Y(¢) for ¢ + s, u.
Clearly, p, , = 0 whenever d(s, u) > r, so that the set s = {u: u # s, p, , > 0}
is finite for each s € Z™, and q, x@zn_(s) = 4, x(25)- Thus, also,

Z ps,u < .

u#s

Dobrushin’s condition is the much stronger requirement

D(a): X pou= X pgu<a<l,

u+s u€Edis

uniformly in s € Z™.

Dobrushin proves that his condition D(a) is sufficient to ensure that P is
the only measure over {0,1}?" with the given conditional distributions. How-
ever, its importance for this paper is in controlling the decay of dependence
with distance in the random field. To make this precise, we need one further
piece of notation. For U, S ¢ Z™ with U N S = &, define I'(k, U, S) to be the
set of all paths {u = t,,¢;,...,%, = s} of length £ with u € U, s € S and
t;¢ U, j=1 We follow Dobrushin’s notation, although a appears in a
different sense above, and set

a(UaS) = Z Z Pty toPtyty 5 Pty ity
k=1T(k,U,S)

+ Next we restate Lemma 3 of Dobrushin (1968).

PrROPOSITION 2.2. Let P, P? be distributions which have the same condi-
tional distributions on a set T € Z™ and which satisfy Dobrushin’s condition
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D(a). Then for any set S c T,

REMARK 2.3. From Dobrushin’s uniqueness theorem, mentioned above, if
p! and P? are distinct, their conditional distributions must differ somewhere
off T.

REMARK 2.4. Dobrushin observes in the proof [paragraph following (5.5)]
that one can take P! and P2 to have prescribed values on Z™ — T. He
observes, in addition, here and following (5.18) in the proof of his Theorem 5,
that P and the conditional distribution P, 5, given any prescribed values x(B)
on a set B CZ™ — T, have the same conditional distributions over 7. Fur-
thermore, if P satlsﬁes condition D(a), so does P, 5, a fact used implicitly in
Dobrushin’s argument.

Lemma 25, [E{L|Fgn_y, 05 — Bl Fpn_ s} < o707 /(1 — ),
where Ny = {n: d(B,n) < I}.

Proor. Suppose, first, that N, C J. We apply Proposition 2.2 with S = {8},
T=N,, P'=P,zn_; and P2 Px(zm _n,- The laws P! and P? are condi-
tional on the same set of x values on Z" J, as the notation, defined in
Remark 2.4, implies. This yields the inequality

dr (P, P}) < a(Z™ — N, B).

Now each path in U, ,I'(k,Z™ — N, B) which gives nonzero contribution to
a(Z™ — Ng, B) must contain at least [(I — 1)/r] + 1 steps, where [-] denotes
integer part, because pg , =0 when d(B,y) > r. Thus, using Dobrushin’s
(5.16), we obtain

a(Z™ = Ny, B) < al¢= /711 /(1 = ),

as required.

Now we suppose that N, —J # &. Take P'=P,yn ; and P%=
P,z N,y Note that P! and P? have the same conditional distributions
on Nj, though they no longer coincide with those of P, because particular
values have been specified on N; — J. However Dobrushin’s condition D(a) is
still satisfied (see Remark 2.4). The proof now proceeds exactly as before. O

We now turn to the proofs of the theorems. Since the proofs consist solely of
estimating the quantities X,0, and X;n,; of Proposition 2.1, we state the
theorems only in their one-dimensional forms (i); the process versions (ii) and
(iii) are then immediate. We use the notation

kg = sgp (E{IBIx(aﬁ)}/WB),

noting that kg > 1 for all B: k; measures the maximum possible relative
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increase in the chance of having I, = 1 attainable by judicious choice of the
values {1, y € dB}. The first theorem concerns the Poisson approximation of
W = Yz 1, when the underlying distribution is given by P=P @m—Jy for
any prescribed choice of x outside J. We use the obvious notation E, 7 and so
on. In particular, we let A denote Ew.

THEOREM 1. If kymy < p for all B, then

dry(L(W),Po(1)) < Ki{p(logn)" + n™™}

for some K, = K.(m,r, a).

REMARK 2.6. If, as in Berman (1987), n —» « and A and % remain fixed,

p ~n ™, meaning that the ratio is bounded away from 0 and «, and hence
d wy(L(W),Po(1)) = O(n~" log n}™).

Proor. From Proposition 2.1 we have
doy(L(W),Po(X)) < Cia(X) T (72 + 7,82, + BI,Z,) + Cia(X) L,
B B
where Z; = X Ny glg. The notation means that g’ = g is not in the sum.
From Lemma 2.5, where [ may depend on S,
fig = EIE{IBL%—NB} — frgl < alds= /111 /(1 — ).
We now use the finite range r [see (2.3)] to obtain, for / > r,
EL,Z,=E ¥ E{LILI|% .
ﬁ’eNB—B
=E Y LE{IIF) <7 L kymy
B'eN,—B B'eN;—B

from the definition of k,. Similarly,

g < kﬁﬂﬁ
and
B Zy <dy Y kymy
B EN;—B
Hence
dTV(IL(W),Po(X)) < Clz(X){ZﬁB(kﬂwﬁ) +2 Y k rn'B}
(2.4) P CBENh

+ Cp(A) X a1 /(1 - a).
pBed

In particular, if & g < p for all g and if [ Ly is chosen to have the same value !/
for each B, since Lgc 75 = A and C,{(X) < min(1, A7), it follows that the
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first term in the estimate is bounded above by (1 + v»,,l™)p, where v,, comes
from counting the points in the Manhattan ball in Z™ of radius /. Thus, by
picking I = 2 + [2mr log(n + 1) /log(1/a)], we obtain from (2.4) that

dry(L(W),Po(1)) < Ki{p(logn)" + n™™}
for some constant K, = K,(m, r, @) as required. O

REMARK 2.7. Berman (1987) uses a conditional measure slightly
different from P, since he conditions on the values of random Variables
{X;, B € Z™ — J}, which generate the I;’s through the prescription I,

I [X > M] for some M € R. It would not be difficult to extend our results to
thls setting.

For a homogeneous field, letting % denote the common value of the k,’s, we
have p = k= Ak(n + 1)~™. Thus the bound given in Theorem 1 is typically
of order Ak(n ! log n)™. Hence, for faithful Poisson approximation as n — o,
A, and &, need not be held constant as in Berman (1987); it is enough to
suppose that A, %k, (n"!log n)™ = o(1).

However, Theorem 1 does not strictly correspond to Berman’s Theorem 5.1,
since Berman considers convergence to Po(A) and not Po(A). The necessary
correction is the subject of the next theorem.

THEOREM 2. If A > 1 and kgmy < p for all B, then d oy (L(W), Po())) <
min(K,A "% pn™ ! log n}, 1), for some constant K,(m,r, a).

Proor. Since A > 1 and k; > 1 for all B,
pz(n+1) "A=(n+1) ",

so that the estimate of Theorem 1 is of order p(log n)™, which is of smaller
order than pA~12n™"1log n for all m > 3, because A cannot exceed (n + 1)™.
By the same token, if m = 2, then

“2(n + Dlogn = p(n + Dlogn/(n + 1)p*? = p'/?logn,

so the statement of Theorem 2 is only of interest when p(log n)? < 1. This, in
turn, implies that

Mlog n)’(n + 1) 7% <
and hence that
“Y2(pn + 1)log n > p(n + 1)logn - log n(n +1) " = p(log n)?,

so that the estimate of Theorem 1 is of at least as small an order as that of
- Theorem 2. Hence, in view of Theorem 1, it is sufficient to show that
d ry(Po(A), Po())) is sufficiently small.

The Stein-Chen method directly yields a bound of C;;(A)IX — Al for this
total variation distance [Barbour, Holst and Janson (1992), Theorem I.C.()], so
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that it is enough to estimate |[A — A|. Again, as in the proof of Theorem 1,
B < kgms. Moreover, using Proposition 2.2 with T =J and S = {B}, taking
pl = P zm gy and P2 P and arguing as for Lemma 2.5, we also have

Iﬁ'ﬁ - 7Tﬁ| < a[(d(B)—l)/r]+1,

where d(B) is the Manhattan distance between B and Z™ — J. Hence,

(2.5) A -l < ZJmin{ g (1 — @) @~ 1)/r]+1}
Be

If, in particular, kgm; < p for all B, (2.3) implies that, for any [ > 1,
A=Al <2m(n+1)" 'r{lp + (1 - a) e}
Suitable choice of [ now gives
A — Al < Ky{pn™ logn + n™"}

for some K, = Ky(m, r, @), and the theorem follows. O

ReEMARK 2.8. Under Berman’s (1987) conditions, when A and % are held
constant as n — o, the rate obtained from Theorem 2 is n~'log n. This is
slower than the rate (n~! log n)™ obtained in Theorem 1, where we approxi-
mate by Po(A) instead of Po(1), and the extra error arises solely because of the
“bad’’ choice of mean for the approximating Poisson distribution. Note that
the upper bound for d y(Po(1), Po(1)) used in the proof is actually of the same
order as the true distance. Although the estimate of |A — Al is apparently
rather crude, it is frequently possible to inflate X in comparison to A by an
amount of order pn™ ™1, by choosing the conditions outside J to maximize the
probability of having a 1 at each boundary point of J, so that the estimate
given in Theorem 2 is unlikely to be far from the truth.

If the measure P is homogeneous, we can rewrite the bound in Theorem 2
as min(K,kA/2n """ log n, 1), where k is the common value of the k,’s. Thus,
in order to obtain faithful Poisson approximation as n — «, neither &, nor A,
needs to be held constant so long as k,A}/?n "' log n = o(1).

Approximation by Po(A) is the natural goal if, instead of working with P, we
consider the distribution under P. Making the necessary adjustments to the
proof of Theorem 1, we obtain the next theorem.

THEOREM 3. If kymy < p for all B, then
doy(L(W),Po(1)) < Ki[p(log n)™ + n™"],

. where K, = K\(m, r,a) is as in Theorem 1. If logl/p <logn and my < 7*
for all B, the estimate may be replaced by

dry(L(W),Po(1)) < Ky|p(log1/p)" + w*(logn)™ + n™™].
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Proor. To estimate 7, apply Proposition 2.2 with T = N, S = {g}, P! =

P, _n, and P? =P, and argue as in Lemma 2.5, obtaining

x

alis=D/r1+1

1
IE{Ly| F5_n,} = 7ol < 77

On the other hand, as in the proof of Theorem 1,
(2.6) E(L,L) = E{L,E(L|% )} < mh,m,.

Hence, from Proposition 2.1,

dr(L(W),Po() = Co(W) Empfmy+ T m+ T k)
pBed

(2.7) ‘YGNB_B yENB_B
+ Cll()t)(]. — a)_l Z alds=D/r1+1
Bed

The remainder of the proof of the first part, when kg, < p for all B, is as for
Theorem 1; recall also that &k, > 1 for all B, so that the same choice of
K(m,r, a) can be used here as was used for Theorem 1. In both cases, because
of the geometric estimate for 7, the upper bound 1 for Cy, is good enough.
For the second statement, we note that (2.6) can also be replaced by

E(,L) < [ELIL — mym | + mym, = mo{E(L ) — | + 7}

< Wﬁ{ﬂ.y + 1o aa[<d<3,v>—1>/r1+1},

and we use this estimate when bounding =, . 5 _zE(I;L) for y such that
d(B,y) = clog(1/p), where ¢ = c¢(m,r,a) is sui€ably chosen. Thus, for the
unconditional distribution of W, the approximation by Po(A) is as good as that

of the conditional distribution L(W) by Po(A). O

ReEMARK 2.9. Under conditions such as in Berman (1987), Theorem 6.2,
where p > 0 and n™7* ~A ~ 1, the rate of approximation is of order
p(log1/p)™, from Theorem 3. This is because p > 7* ~ n~™ follows from the
fact that kg > 1 for all B, and hence, since x(log(1/x))™ is an increasing
function of x near 0, w*(log n)™ = O(p(log 1/p)™). A rate for his Theorem 6.1
can also be derived: if [E(I;.%55) — w4l < em, for all B, take all N = {B}
to deduce a bound of A ~'L; . ;75 + A'/%s. Note that the latter result makes no
reference to Dobrushin’s condition.

3. Poisson approximation using the FKG inequality. If Dobrushin’s
condition D(«) is abandoned, the arguments of the previous section could still
. be carried through, provided that mixing conditions similar to those in Lemma
2.5 and in the proof of Theorem 3 could be established. In general, if P is not
an extreme point of the family of measures with conditional distributions g,
correlations are not short range [Israel (1979), Lemma IV, 3.9] so that no
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inequality of the form
B{I,| F5_y,} — sl < ®(1),

where N is the ball of center B and radius /, in which ®() —» 0 as [ - », can
hold. However, if P is an extreme point, it is reasonable to hope that in some
interesting models an inequality of the form

(3.1) [E(I,I,) — mpm,| < ®(d(B,7v))

with ®(I) > 0 as I — =, could be established. An example is discussed in the
context of the two-dimensional Ising model in Ellis [(1985), page 94], where ®
is an exponential function even for pure phases below the critical temperature.
Exponential decay of correlations at low temperatures in extremal states of the
m-dimensional Ising model, m > 3, is Theorem 10(b) of Lebowitz (1975). The
Ising model gives rise to measures P which satisfy the FKG inequality, in the
sense that, for any increasing functions f and g,

E{f(I;,B€d)g(Is,BEJ)) 2 Ef(I;,B eJ)Eg(I;,BEJ).

Furthermore, as observed by Barbour, Holst and Janson (1988), if P satisfies
the FKG inequality, an upper bound for the error of Poisson approximation to
L(W) is given by

(3.2) doy(L(W),Po(1)) < Clz()\){varW— A+ 22773},
B

where C,,(A) = min(1, A~1). Process versions analogous to Proposition 2.1(ii)
and (iii) are also available. Thus, when the FKG inequality and a correlation
inequality of the form (3.1) hold, a version of Theorem 3 can be formulated, as
follows.

THEOREM 4. Suppose that the FKG inequality and (3.1) hold, that p > kg,
for all B and that p > )\'IZBEJWE. Let w = (n + 1)™™A. Then

day(L(W),Po(A)) < Cmin |17 + =" L r™~'®(r)

r>lI

for some constant C = C(m).

REMARK 3.1. The estimate is of no use unless X, ;7" '®(r) <« and
¥, r™ '®(r) decays sufficiently fast as ! increases. For example, if p ~ 7
and ®(r) ~ r~*, the optimal order of the estimate is 7*~2™/* which is small
for small 7 only if 2 > 2m. However, an exponential mixing rate still leads to
estimates of order p(log n)™, as in Theorem 3.

Proor. Apply (3.2). Direct computation gives

(33) varW+2Y mi=r+ Y owZ+ ¥ (E(LL) - mym,).
Bed Ted B#y
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The inequality
(3.4) [E(I L) — mem,| < kym,mg < prg

follows from the argument used for (2.3). To estimate the sum on 8 # v, for
each pair 3,7y, (3.4) is used if d(B,y) <! and (3.1) is used if d(B,y) > 1. O

In the case of the Ising model, one or the other spin must be heavily
preponderant if 7 is to be small enough to make Poisson approximation
sensible. This is the case for either of the pure phases near zero temperature,
and the above result can be applied. On the other hand, if there is a strong
external field which dominates the' interaction, it is possible to have good
Poisson approximation with Dobrushin’s condition satisfied.
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