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A NOTE ON SOME RATES OF CONVERGENCE IN
FIRST-PASSAGE PERCOLATION!

By KENNETH S. ALEXANDER

University of Southern California

A variation is given of the van den Berg—Kesten inequality on the
probability of disjoint occurrence of events enabling it to apply to random
variables, rather than just to events, associated with various subsets of an
index set. This is used to establish superadditivity of a certain family of
generating functions associated with first-passage percolation. This leads to
improved estimates for the rates of convergence of the expected values of
certain passage times.

1. Introduction. One of the leading groups of open questions in the
subject of first-passage percolation involves the rate of convergence to the time
constant for various normalized passage times. Such questions have two parts:
How spread out is the normalized passage time around its expected value, and
how close is the expected value to its limiting value (the time constant)?
Recently Kesten (1993) was able to dramatically improve on the best previous
results, which can be found in Kesten (1986). In this work we will show how
Kesten’s results on the spread of certain normalized passage times around
their expected values, together with a new superadditivity relation, can be used
to improve Kesten’s rates of convergence of the expected normalized passage
times to the time constant. For a,, the passage time from the origin to
(n,0,...,0) and for u the time constant, we will show that

nu < Ea,, <np + O(n'?logn).

Our superadditivity relation is derived from a variant of the van den
Berg-Kesten inequality on the disjoint occurrence of events, which may be of
independent interest. Specifically, if S is a finite index set, {2, is a finite set of
nonnegative integers for each b € S, Q =I1,.5Q,, © € Q is a configuration
on S,C c Qisanevent and A C S, we say that C occurs on A in o if every o
which agrees with w on A is in C. In this way one obtains a two-valued
random variable

0, if C occurson A in w,
(1.1 fo( A, 0) = {00, otherwise,

which associates a value to each set A and configuration w. One can define the
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event of disjoint occurrence, for C, D c Q:
COD:={weQ:Coccurson A and D occurs on B
for some A, B c S with AN B = ¢}.

The van den Berg-Kesten inequality (1985) is the statement that for increas-
ing events C, D, under any product measure on (,

(1.2) P(C 0 D) < P(C)P(D).

This can be reformulated as follows. Let @ and o' be independent configura-
tions under some product measure on (2, let C and D be increasing events,
and define random variables

X == min{f-(A,w) + fp(B,w): A, BC S with AN B = ¢},
X* =min{f,(A,w) + fp(B,w'): A, B c S with AN B = ¢},
Y = min{f.(A,»): Ac S},
Z = min{fp(B,'): BCS}.
Inequality (1.2) then states that

(1.3) P(X=0)<P(Y=Z=0).
Since P(Y = Z = 0) = P(Y + Z = 0), this is equivalent to
(1.4) X is stochastically larger than Y + Z.

The proof in van den Berg and Fiebig (1987) actually shows the stronger fact
that

(1.5) X is stochastically larger than X*;

clearly X* > Y + Z.

Inequality (1.2) is extremely useful in studying percolation; usually S is a
set of bonds or sites and Q, = {0, 1} corresponding to {vacant, occupied}. The
formulations (1.4) and (1.5) extend naturally to first-passage percolation,
where one deals implicitly with functions f(A, ) which may take arbitrary
values from R, in contrast to the indicator function in (1.1). For example, if A
is a lattice path, f(A, w) could be the passage time along A. Our extension of
(1.5) will require only minimal modification of the proof in van den Berg and
Fiebig (1987) of a different extension of (1.2).

2. Definitions and statement of results. Let us first define the pas-
sage times of interest, with notation mostly as in Kesten (1986) and Smythe
and Wieman (1978). Let there be a bond between each nearest-neighbor pair of
sites in Z%; let & denote the set of all such bonds. Attached to each bond is a
random passage time w, > 0; the passage times {w,: b € %} are iid with d.f. F.
Let w denote the configuration {w,: b € #}. For a given lattice path y, the
passage time T(y) is the sum of the passage times of the bonds comprising y.
(When we say ‘‘lattice path” we always implicitly mean a self-avoiding one.) If
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A and B are subsets of, or points of Z%, and C is a subset of R, then
T(A, B) = inf{T(y): y alattice path from A to B}
and, letting vy, denote y with its endpoints deleted,
T(A, B;C) = inf{T(y): v alattice path from A to B, y, c C}.

We denote points of Z¢ as (n, j) with n € Z and j € 7%, and similarly for
R9. Define hyperplanes

H,:={(n,j):j<€ 2
and slabs .
Qnn = {(x,y) €R¥:m <x <n}.
The passage times of interest are
@y = T((m,0),(n,0)),
bn = T((m,O), Hn)

Note b,,, <a,,,. To ensure finite means for the passage times [see Kesten

(1986)] we assume throughout that letting b(1),..., 5(2d) denote the bonds
with an endpoint at 0,

E min( o), . - ., 0pea)) < *.

Now [see Smythe and Wierman (1978) for definitions and proofs]

(2.1) {@,.n, 0 <m < n} is a subadditive process
and {Ea,,, n > 0} is subadditive, that is,
(2.2) Ea, ,m < Eay,, + Ea,,.

These relations are useful in establishing [see Smythe and Wierman (1978)]
that there is a time constant u = uw(F) > 0 such that

0o,/n = u as.andin L' for § = a or b.

For 6 = a this is an example of Kingman’s (1968) theorem, by (2.1). We will
use the convention throughout that 6 stands for either one of the passage
times a or b. Kesten (1986) showed that

w(F) =0 ifand onlyif F(0) > p,(Z9),

where p(Z?) denotes the critical probability for Bernoulli bond percolation on
7. Tt follows by standard subadditivity arguments from (2.2) that

(2.3) Eay, > nu.
In fact, Kesten (1986) proved that if

(2.4) F(0) < p,(Z¢)
and '

(2.5) fe)‘x dF(x) < for some A > 0,
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then for some constants C,(F, d),

(2.6) nu < Ea,, < np + O(n*5(log n)'?),

(2.7) Eb,, < np + 0(n%%(log n)"?),

(2.8) P[|90n - Eb,,| = xnl/z] < Ce™%* forx < Cyn,for 6 = a or b.

[Inequality (2.6) is actually only stated, but a similar fact is proved.] Note the
order-n'/2 bound on the spread around the expectation is much smaller than
the bound on the difference E6,, — nu. Simulations [see Kesten (1993) for
references] suggest that the spread around the expectation may actually be of
order n'/3. Here we will improve the upper bounds in (2.6) and (2.7) as follows.

THEOREM 2.1. Under the hypotheses (2.4) and (2.5),
(2.9) Eb,, <nu + O(n'/?logn) for @ =aorb.

The proof will involve the generating functions

(210) gn(B) = —log Z Ee BT0,0),(n, /) , B> 0.

j = Zd~ 1
Heuristically one expects g,(8) to behave like —log Ee #%0-; in fact
(2.11) gn(B) < —log EeFbon < BED,,, .

It is easily checked that for fixed B, g,(B) is positive for sufficiently large n;
see the proof of Lemma 3.1. The key property of g,(B) is the following, which
should be contrasted with (2.2) and which will follow from an extension of
(1.5).

ProposiTION 2.2. g,(B) is superadditive, that is,
(2.12) g, m(B) =28.(B) +&n(B) forallm,n >0andall B> 0.
Consequently, for some constants vy < ,

(2.13) limg,(B)/n = supg,(B)/n = Bvg foreach g > 0.

The most important consequence of Proposition 2.2 is that g,(8)/B < npu,
in contrast to (2.3); this is valid even if we choose 8 depending on n. We now
have a deterministic quantity g,(B)/B closely related to b,, which [cf. (2.6)] is
on the opposite site of nu from the expected value of at least one of the
passage times of interest. Roughly speaking, this and (2.8) prevent b,, from
~ straying too far above nu with any significant probability, much as (2.3) and
(2.8) prevent a, from significant straying below nu.

" Since P[T((0,0),(n,0)) = 0] > F(0)", we have v, < —log F(0)/B. Thus v,
can be strictly less than u.
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A subset C of a partially ordered set () is called increasing if x € C and
x <y imply y € C, and decreasing if its complement is increasing. A probabil-
ity measure @ on () is said to have positive correlations if Q(C N D) >
Q(CHQ(D) for all increasing C, D. Every probability measure on a totally
ordered set has positive correlations, and Harris (1960) proved that every
product measure on {0, 1}"* has positive correlations.

We turn now to the extension of (1.5). The particular special case we need,
(8.2), is contained in (4.13) of Kesten (1986), but to bring out the key ideas we
present here an abstract formulation. The method in Kesten (1986) extends
readily to handle this formulation, but we will give a short direct proof along
the lines of van der Berg and Fiebig (1987).

Let .#(S) denote the collection of all finite subsets of a countable set S.

THEOREM 2.3. Let S be a countable set, let Q, be a partially ordered set for
each b € S, with o-algebra induced by the ordering, and let @, be a probabil-
ity measure on Q, which has positive correlations. Let Q = [1,. s, be the
configuration space, and let @ =11,.5Q,. Let f,g: F(S) X Q - R U {x}
with f(A, - ) and g(B, - ) increasing for every A, B € F(S). Assume f(A, 0)
and g(B, w) are determined by the restrictions of o to A and to B, respectively.
Let /c #(S) x F(8S) with AN B = ¢ for each (A, B) € .7, let v and o'
be two independent configurations with distribution @, and define

X =inf{ f(A,w) + g(B,w): (A, B) € ./},
X* = inf{ f(A,w) + g(B,o'): (A, B) € /}.
Then X is stochastically larger than X*.

For our purposes we only need the case (), = R for all b; we have given a
general formulation to emphasize that only the positive-correlations property
of every probability measure on R is used.

One can replace R U {} with R U {—} in Theorem 2.3; it is only necessary
to avoid indeterminate expressions ® + (—) in the definition of X and X*.
One can also replace ‘“‘increasing’ with ‘‘decreasing’’ and extend to more than
two functions in an obvious way.

3. Proofs. To motivate the formulation of Theorem 2.3 we will begin with
the proof of Proposition 2.2 from it.

ProOF oF ProposITION 2.2. For m,n > 0and j, k € 2%, let 7(m,n, j, k)
denote the shortest passage time among all paths from (0,0) to (m + n, k)
which first meet H,, at (m, j). Then ‘

(3.1) Ee FTOO.men k) o Y e Brimn, ik,
’ jezdé-1

Let ®(m, j) denote the set of all lattice paths from (0, 0) to (m, j) which first
meet H, at (m,j), and let ¥((m, j),(m + n, k)) denote the set of all lattice
paths from (m, j) to (m + n, k). For A € %(S) and w any configuration,
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define
oy - (T4 EAE 00
oo, otherwise
and
g(A, 0) = T(A), fAe .‘If((m,j),(m +n,k)),
00, otherwise.

Now inf{f(A,- ): A € F(S)} is stochastically larger than T'((0, 0), (m, j)), and
inf{g(B, - ): B € #(S)} has the distribution of T'((0,0),(n, k —j)), so Theo-
rem 2.3 [or (4.13) of Kesten (1986)] says that

T(m,n, j, k) is stochastically larger than
T((0,0),(m,j)) + T((0,0),(n,k —j)),

where the prime denotes that this is a copy of T'((0,0),(n, k — j)) which is
independent of T'((0, 0),(m, j)). Therefore using (3.1) and (3.2),

Z EeBT0,0),(m+n, k))
kezd-!

(3.2)

IA

Y Y Ee AT 0,(minEe =BT, 0 (n k=)
kezd1 jezd-!

Y Ee—BT((O,O),(m,j)))( Y Ee FTQ@.0.mi) |

jez? jez?

which becomes (2.12) when negative logs are taken. Equation (2.13) follows
from standard subadditivity arguments. The inequality v; < u follows from
(2.11). O

Proor oF THEOREM 2.3. As mentioned above, this is quite similar to the
“bond-splitting” proof in van den Berg and Fiebig (1987) which yields a
different extension of (1.2). Because limits can be taken, we may assume S is
finite.

Let w and o' be two independent configurations. For each G c S define a
new configuration v by

w,, ifbe&Qaq,
W, ifbeg.

0f =

Then define
X = min{f(A,w) + g(B,0%): (A, B) € #}.
We wish to show that
X, is stochastically larger than X.
It is sufficient to show that for every G € S and a ¢ G,
(3.3) X is stochastically larger than X; -
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Fix G c S and a ¢ G, and for s € Q, define a configuration v ** by

Gas s, if b =a,
W © S = .
b g, ifb+a.

Let & denote the restriction of w to S\ {a}. For s € Q, define
U(é,d,s) =min{f(A, o) +g(B,0%**): (A,B) € ./, b € B}
V(&,&,s) = min{f(A, 0***) + g(B,»%): (A, B) € #, b € A}

W(é,d') = min{f(A, o) + g(B,w%):(A,B) € ./, b& AU B}.

We may think of U as the best that can be achieved when g uses bond a and
s is the value of bond a, V the similar best with f using bond a, and W the
best with neither f nor g using bond a. Fix configurations @ and &', and
x € R. If W(&,®') < x, then

P[X;> %16, ] = P[Xgyq > xlé, &] = 0.
If W(o, &) > x, then
(34) Xg>=x ifandonlyif U(é,d', w,) > x and V(é, &', 0,) > x,
while
(8.5) Xgyu >« ifandonlyif U(é,d,0,) > x and V(, &', w,) > x.
Now the subsets
Ji={s€Q,:U(&,d,s)>x} and K:={se€Q,.:V(a,&,s)>x)

are increasing subsets of (., and @, has positive correlations, so by (3.4)
and (3.5),

P[Xg>xld, @] = QI NK) = Qy(J)Qy(K) = P[ Xg 1 > xld, @]
Since @, @ and x are arbitrary, (3.3) follows. O

Lemma 3.1. vz > nas B — 0.

Proor. Fix 0 <& < u. Let us use C,, i > 4, to denote various constants
which may depend on ¢, F and d. From Theorem 5.20 of Kesten (1986),

(3.6) P[bg, <k(pn —¢€)] <Ce™%* forall k > 1.
If Bu < Cj, then :

Ee Pbor < C,e~Csk + ¢ PR =0) < Cie PR~ forall k > 1.
' Therefore for n sufficiently large (depending on B, ¢, F and d),

¥ Y Ee BTO0.)) < O pd~1Ee Pbon < g=Brn=2) /9
0<k<n j: max|j|=k
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and

(3.7 X Y Ee FTOO.0L0) < Y O k4 2EeFbor < ¢mBrn=20) /9
k>n j: max|jl=Fk k>n

Thus

&n.(B) = Bn(p — 2¢)

and the lemma follows from (2.13), since ¢ is arbitrary. O

ProoF or THEOREM 2.1. Again we use C;, i > 8, to denote various con-
stants which may depend on F and d. Fix n > 1 and for C, as in (2.8), set
B, = Cyn~ /2 We want to show that the large values of j contribute negligi-
bly to the sum in (2.10), which is e é+#»), In fact, provided n is sufficiently
large as in (3.7), we obtain using (2.8):

y Y Ee AT < Y Cukd-2EePnbor

k>8n j: max|jl=k k>8n
(3.8) Y, Cgk? 2(e Pnbe/2 4 Plby, < ku/2])
. k>8n

< ¥ Cok? % Pukn/?
k>8n

IA

< e‘zﬁn"‘l-'-'

Also, from integration by parts and (2.8),
Ee~Prbor < f B,e P~*P[b,, <x]dx
0

Eb,,

< e PnEbon 4 B,e P*C, exp(—Cyn~'*(Eb,, — x)) dx
(3.9 0

0
= (1 + C,B, Eb,,)e PrFbor
< C,one PrEbon,

Note that our choice of B, makes the second integrand in (3.9) a constant.
From (3.9),

. Z Z Ee BrT(0,0),(n, /) < Cund-lEe-BnbOn
0<k<8n j: maxl|j =k

< C yne PrEbon,
Combining with (3.8),
(3.10) e &nPr) < = 2Bnnkt 4 C  nde~PrEbon,
If n is large, then from (2.13) and Lemma 3.1,
e Bnnr < o~ E&n(Bn) < 1/2,
so that (3.10) yields
e~8nB) < C zndePrEbon,



RATES IN FIRST-PASSAGE PERCOLATION 89

Using (2.13) and Lemma 3.1 again, then
n/J‘Bn = gn(Bn) = BnEbOn - Cl4 log n

and (2.9) follows for 6 = b.
Turning to 6 = a, from (2.8) we obtain for some C,;,

1/2 < P[b,, < Eb,, + C;5n'/?]
(3.11) < ¥ P[T((0,0),(n,/);@_..,) < Eb,, + Cy5n*?].

jezd1

For j with max|j;,| = £ > 2n we have, using Theorem 5.20 of Kesten (1986)
[cf. (3.6)]:

P[T((0,0),(n,));Q_..,) < Eby, + C;5n'/?| < P[by, < 3ku/4] < Cyge Cirt
so that for large n,
Y. P[T((0,0),(n,j);Q_..,) < Eby, + C;sn*?| < 1/4.

J:max|j,|>2n

Hence the sum over the (4n + 1)?~! values j with max|j;| < 2n in (3.11)
must exceed 1/4, which means there exists a j with

(4(4n + 1)) < P[T((0,0), (1, )); @) < Ebg, + Cysn'?].

Since every path from (0, 0) to (n, j) in @ _,, , can be reflected through H, to
obtain a path from (n, j) to (2n, 0), this implies

(4(4n + 1)471) 7
< P[T((0,0),(2n,0) < 2(Eb,, + C,5n"/?)].
But for some C,q, by (2.8),

(3.12)

P[T((0,0),(2n,0) < Eay,,, — Cian'2log n] < (4(4n + 1)?°1) 7,
which with (3.12) yields
Ea, 5, < 2Eb;, + O(n'/%logn),
which proves (2.9) for § = a. O

It follows from this proof that if one could replace 1/2 with a smaller
exponent in (2.8), the same exponent would be valid in (2.9).
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