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PREDICTION OF STATIONARY MAX-STABLE PROCESSES

BY RICHARD A. Davis! AND SIDNEY I. RESNICK ?
Colorado State University and Cornell University

We consider prediction of stationary max-stable processes. The usual
metric between max-stable variables can be defined in terms of the L,
distance between spectral functions and in terms of this metric a kind of
projection can be defined. It is convenient to project onto max-stable
spaces; that is, spaces of extreme value distributed random variables that
are closed under scalar multiplication and the taking of finite maxima.
Some explicit calculations of max-stable spaces generated by processes of
interest are given. The concepts of deterministic and purely nondetermin-
istic stationary max-stable processes are defined and illustrated. Differ-
ences between linear and nonlinear prediction are highlighted and some
characterizations of max-moving averages and max-permutation processes
are given.

1. Introduction. Recent studies of telecommunications traffic (for exam-
ple, Meier-Hellstern, Wirth, Yan and Hoeflin (1991)) reinforce the need for
infinite variance models. Attempts to extend classical time series models to
the infinite variance case have centered around autoregressive moving aver-
age (ARMA) models with infinite variance noise Varlables Such processes
have the form

14 q
= Z d’j Z n —Jj?
Jj=1

j=0

where 1 — ¢,z — - —¢,2P # 0 for all 2| <1, 6, =1, and {Z,} are iid ran-
dom variables having either stable, Pareto or regularly varying tails. Progress
has been made with such models [Davis-and Resnick (1985a,b), (1986); Cline
and Brockwell (1985); Knight (1991); Davis, Knight and Liu (1992)], but the
distribution theory is frequently very difficult. For instance, limit distribu-
tions for sample correlation functions or coefficient estimators involve ratios
of stable random variables and sometimes the random variables comprising
the numerator and denominator are dependent.
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498 R. A. DAVIS AND S. I. RESNICK

An alternative class of infinite variance models consists of max-autoregres-
sive moving averages (MARMA) processes of the form

b q
Xn= V d’an—j V V ojzn—j’
Jj=1 Jj=0

where p >0,¢ >0, ¢; >0, 6§, >0, 6, = 1 and {Z,} are iid random variables
with Z, > 0 and having the heavy-tailed extreme value distribution

P[Z, <x] =exp{-x7%}, x>0, a>0

(a < 2 for infinite variance). Such processes were explored in Davis and
Resnick (1989) where it was shown that they have a relatively easy distribu-
tional structure and a coherent prediction theory. Furthermore, we discussed
how such prediction parallels classical L, prediction and how it differs from
it.

In thinking about the applicability of MARMA, it is important to realize
that the sample paths of a MARMA are very similar to the sample paths of
an ARMA of the same order which use the same heavy-tailed noise sequence
and have the same coefficients. This is illustrated by the graphs in Davis and
Resnick (1989), which compare 250 realizations from the stationary AR(1)
model with 250 realizations of the MAR(1) with same coefficients and noise
variables and also similarly compare MA(1) versus MMA(1) (max-moving
average). Comparable graphs are almost identical. Given the similarities of
the sample paths in the two figures, one wonders if a goodness-of-fit statisti-
cal test could be devised to distinguish ARMA from MARMA. To add to the
difficulty of distinguishing between ARMA and MARMA with identical
heavy-tailed noise variables, we note that both models have identical asymp-
totic point processes of exceedances of high levels [Davis and Resnick (1985a);
Hsing (1986)]. In continuous time, furthermore, upcrossing rates of high
levels for stable and max-stable processes seem to be the same [Davis and
Resnick (1992)].

In fitting a MARMA model to data one may imagine the following proce-
dure: An estimate of the shape parameter a in the formula P[Z, < x] =
exp{—x"*} (or P[ X, <x] = exp{—cx™?}, ¢ > 0, x > 0) is made and the data
are transformed by a power transformation x — x*. The process {Y,} = {X*}
is still MARMA, but the shape parameter is 1: P[Y; < x] = exp{—c'x"1}.
Thus, without loss of generality, we may suppose henceforth that o = 1; we
refer to this as the standard case.

MARMA processes are a subclass of the class of stationary max-stable
processes, and a primary aim of this paper is to consider the problem of
prediction for stationary max-stable processes. A standard max-stable pro-
cess is a stochastic process {X,, —© < ¢ < ®} whose finite-dimensional distri-
‘butions are of the form (£ > 1, x;, >0,i =1,...,k)

\kf@-ds

[011;=1 %;

ki

P[X, <xy,...,X, <x,] = exp {—
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where f; € L, ([0, 1]). The functions {f,} are called spectral functions. Such a
stochastic process can be realized by construction from a Poisson process as
follows: Let ¥, &y, r,) be a Poisson random measure (PRM) on the state
space [0, 1] X [0, ) with mean measure 1[0’1](u) du X dx. [For background on
point processes and their applications to extreme value theory, see Resnick
(1987).] Then as pointed out in de Haan (1984) we have

U,
() = |V B,
. k k

A condition for stationarity of max-stable sequences is provided by de
Haan and Pickands (1986): First, there must exist an L, ([0, 1] isometry
v = (r, H), called a piston, such that H is a bijection of [0, 1]) and for f €
L, (o, 1D,

vf(s) =r(s)f(H(s)),

and
jm] yf(s)ds = fm’l]f(s) ds.

Second, there must exist a nonnegative function f, € L, ([0, 1]) such that
f n = 7nf 0

In order to discuss prediction of a max-stable process, one needs to define a
distance between max-stable variables. If (X, Y') are jointly max-stable with
spectral functions (f, g), a distance between X and Y can be defined by the
L, distance between spectral functions:

(1.1) d(X,Y) = [ If(s) —g(s)lds.
[0,1]

The distance measure d(X, Y) is well defined despite the fact that the joint
distribution of X, Y does not uniquely determine the spectral functions
[Davis and Resnick (1989)]. This distance measure can be used to define a
notion of prediction for jointly max-stable random variables: The best predic-
tor of Y based on a collection of random variables .# is the element of .#
closest to Y. This was used for MARMA processes in Davis and Resnick
(1989). As discussed in Theorem 3.1 of Davis and Resnick (1989), such a
predictor has the optimal property of minimizing the probability of large
deviations from Y among elements in .#. We continue to explore this notion
of prediction for general stationary max-stable processes in this paper in
order to see what parallels and contrasts exist between classical prediction
theory and prediction of max-stable processes. As will become clearer in later
sections, the prediction theory for max-stable processes is distribution-based
_rather than moment-based as in classical Hilbert space oriented techniques.
Whereas classical theory allows linear combinations to be undone (subtrac-
tion is the inverse of addition), in the current theory, there is no inverse
operation to the operation of taking maxima. This is what produces devia-
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tions between the classical theory and the prediction theory of stationary
max-stable processes.

In Section 2 we discuss a convenient context for prediction, namely, the
max-stable space. This is defined as follows:

DEFINITION 1.1. A collection .# of random variables defined on a common
probability space is a standard max-stable space if:

(i) For each X €.#, there exists o > 0 such that
P[X<x]=®,,(x) =exp{-0ox"'}, x20.

(ii) If X €, then for ¢ > 0 we have cX €.#.
(ii) If X, Y €#,then X VY €.

In this paper we will only consider max-stable spaces that are standard
and thus the modifier standard will be dropped throughout. As will be
apparent, it is possible to construct max-stable spaces in which the extreme
value distribution @, ; is replaced by a different extreme value distribution.
We may define the closed max-span of a collection of max-stable random
variables as the smallest closed max-stable space containing the collection,
where closed means with respect to the metric d given in (1.1). For a
max-stable process {X,,}, the best predictor of X, ,, based on information up
to time n will be the element of the closed max-span of {X i J < n}, which is
closest to X, ,. In Section 2 we make some explicit computations of max-
spans. Of special interest is the max-span of max-moving average processes
and the max-span of a class of processes we call permutation processes. For a
general max-stable process, it is impossible to explicitly compute closed
max-spans. We give the list of processes where explicit computations are
known.

Section 3 considers max-stable prediction. We note the phenomenon, al-
ready seen in Davis and Resnick (1989), of the nonuniqueness of predictors.
We define the concepts of a deterministic and purely nondeterministic sta-
tionary max-stable process and give some examples of each type. We show
that the Wold decomposition of a stationary max-stable process into compo-
nents consisting of a max-moving average and a deterministic max-stable
process does not, in general, exist. Some aspects of our theory are in marked
contrast to classical L, theory. Section 4 briefly remarks on prediction based
on richer information and shows that by increasing the information base of a
predictor, one may recover aspects of classical Wold decomposition theory.

Section 5 introduces a class of processes called permutation processes,
which contain as a proper subclass the infinite order max-moving averages.
We present some spectral characterizations of such processes and collect
some results about their predictors.

2. Max-stable spaces. Max-stable spaces, as defined in Definition 1.1,
provide a natural setting for prediction. We begin by presenting some simple
properties and constructions of max-stable spaces.
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A quick corollary of the Definition 1.1 is that the joint distribution of any
X,,..., Xy € is max-stable with one-dimensional marginals of type @, ;. To
check this fact note that for any positive constants c,,...,c,; we have that
V&, ¢;X; has distribution ®, , for some o > 0, so by a theorem of de Haan
(1978) we get that X,,..., X, are jointly max-stable. Also, if .# is a max-
stable space and .#; C.# are max-stable (i = 1, 2), then
is also a max-stable space.

To fix ideas, here are some easy examples of max-stable spaces:

1. Suppose {Z,, n > 1} are iid with common distribution ®,;. Then the
collection

M= {V ¢;Z;:ic;>20,0< Y ci<00}
i=1 i=1

is a max-stable space. The condition ¥; ¢; < « ensures that V,; ¢;Z; <
a.s.

2. Suppose ¥, gy 1, is a Poisson random measure (PRM) on [0, 1] X [0, «)
with mean measure

For f € L, == L,[0, 1], define
f(U)

i i
Then
/%={Xf:f€L1,f20}

is a max-stable space. We note that
: 1
X;~®,, where o= fo f(s) ds,

CXf=ch,
X, VX, =X;\,
for f, g €L,.

IfX = {X,, A € A} is a max-stable process, recall that the max-span of X is
the smallest closed max-stable space containing all the variables X,, A € A.
Closure is with respect to the L;-metric d given in (1.1). We will indicate the
max-span by

V-sp {X,,r € A}.

Note that a nonempty intersection of closed max-stable spaces yields a closed
max-stable space, so to verify that V-sp {X,, A € A} exists, it suffices to
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establish the existence of one closed max-stable space containing {X,, A € A}.
To do this let

My = {V a,X,:a,=>0,A" CAA ﬁnite} .
A
Then {X,, A € A} C.#, and one readily checks that .#; is a max-stable space.
Using Lemma 2 of de Haan [(1984), page 1200], one can establish that the
closure of a max-stable space is max-stable. Thus the closure of .#; is the
required max-stable space. (See also Proposition 2.2.)

If '

My = V-sp {X,,A €A}

is a closed subspace of the max-stable space .#, then for Y €.# we define
P, (Y) to be the set of all ¢ €#x that achieve

inf{d(Y,n):n €.4y).

We think of P, (Y) as the predictor of Y based on knowing .#y. When we
have a stationary max-stable stochastic sequence {X,, —® < n < =}, our
standard notation will be to set

M, = V-sp {X;,j <n}.

n

Then a one-step predictor is denoted by

A

Xn+ 1= P/,,Xn+1‘
For the following examples and later work it is convenient to be able to

reference the following lemma. The easy proof, based on Proposition 4.1 of
Davis and Resnick (1989) is omitted. Define

l]_ = {X= (x]_, xz,...)eRm: lell < 00} .

LEMMA 2.1. Suppose {Z,, n > 0} are iid with common distribution @, ;.
Define for 1 <m < o,

gm = ‘VO C§M)Zj’
Jj=

where
™ >0, Z ™ < o,
Jj
Then
d( gm b goo) - 0
iff, as m — o,
N f47.720) = e, 0
inly.
Furthermore, {¢,) converges in the d-metric iff {{c}’"), j=0}, m > 1} con-
verges in I, to some {c{?, j = 0} in which case the limit of {£,} is V5_, ¢{7Z;.
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Here are some explicit calculations of max-spans. These will be used in
Section 3 where prediction is more fully discussed.

EXAMPLE 2.1. Let Y be a random variable with distribution ®, ;. Then
Vesp {Y} ={cY:c>0}.
The right-hand side is a stable space. To see that it is closed, observe that
d(cY,c'Y) =lc —c'|

[from Proposition 4,1 in Davis and Resnick (1989)]. Therefore, if ¢,Y con-
verges we have lim, ., ¢, = ¢, exists and d(¢,Y, c.Y) — 0.

ExampLE 2.2. Suppose {Z,, n > 0} are iid with common distribution @, ,.
Then

(2.1) V-sp {Z,,n >0} = {\/ ciZi:ciZO,Zci<°0}.

i=0 i
As observed in the beginning of this section, the right-hand side of (2.1), call
it r.h.s., is a max-stable space. Also, r.h.s. is closed by Lemma 2.1. So r.h.s. is
a closed stable space containing {Z,, n > 0} and therefore r.h.s.> V-sp {Z,,
n > 0}. For a reverse inclusion note that if V ; ¢;Z; € r.h.s., then

o n
lim d( V ciZi, V ciZi) = 0
i=0

—> 0 .
n i=0

and because V!_;c¢,Z, € V-sp {Z;, j =1}, wegetrhs.c V-sp {Z,,n>
0}.

The next example is a prototype for more complicated examples.

ExampLE 2.3. Let (X,..., X,) be a max-stable random vector with spec-
tral functions (f3, ..., f,) such that

o= N\ o = /\folfi(s)ds>0.
i=1 i=1

(Usually in our applications, Xj,..., X,, are identically distributed and then
o, > 0is obvious except in degenerate cases.) Then

—_— n N n
(2.2) %1’n= V'Sp {Xl""’Xn} = {V lel: /\ UlZO}’
i=1 i=1
_ One readily checks that the r.h.s. of (2.2) is a max-stable space and, as in
the previous example, the main task is to show that r.h.s. is closed. Suppose
& = VI, uPX, € rhs. and there exists & such that d(¢,, &) — 0. Sup-
pose the spectral function of &, is f,. We must show & = V [_; vy, X; for some
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choice of {v;}. Observe forall 1 <i <n and k& > 1,
0 = o [ i) da < it 1V () ds,
and because d(¢,, &) — 0, we get, as & — o, J
j(')lj\:/() vMfi(s) ds - folfw(s) ds < »,

Thus {V 7 ,v®} is bounded. Choose a subsequence {£’} such that (v*?,
1 <i <n} converges to some limit (v;, 1 <i <n). Then VI, v*f, the
spectral function of ¢,., converges pomtmse to VI ,vf;, and because d(¢,,

£.) — 0, we have
n

V u®f; >y, f,

i=1
and, therefore, f, = V_, v;f; a.e. Thus we conclude

n
d(gk,, V viXi) -0

i=1
as desired.

From this example emerges the following simple criterion.

PROPOSITION 2.2. Suppose {X;, X,,...} is a max-stable sequence with
spectral functions (f;, i > 1) with o, = [§ f(s)ds > 0, i > 1. Then
V-sp {X;,j>1}
= closure{ V yX;: A v,>0,Ac{0,1,...},A ﬁnite}
ieA ieA

=closure( U V-sp {X,...,X,}]
n=1

Before the next set of examples, we recall the following result.

LeEMMA 2.3. Let {X,, n > 1} be a max-stable sequence with spectral func-
tions {f,}. Suppose ¢; > 0 for i > 1. Then

VeX <o as.iff V ef €L0,1].
i i

This follows because, from the form of the joint dlstrlbutlon of X;,..., X,
we have

P[Vc,.x,.Sx] 11mP[\1; X,.sx]

i Now 1

1

<8

= exp{ -t c;f:(s) ds}

0

1
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EXAMPLE 2.4. MMA(»): Let {X,, —% < n < ©} be a MMA(x) process of the
form

(23) \io/ z n i

where ¢; > 0, L, ¢; < ®»and {Z,, —© < n < «} is iid with common distribution
®, ;. Then

M,= V-sp {X;,j<n}

n

(2.4) o o
={VuX,_VuyX,_, <o as, A vy 20}.
i=0 i=0 i
Note that V7_o v, X, ; <®as. iff T7_, ; < », where ¢, = V/_gvc;_; [cf.

Davis and Resnick (1989)].

In verifying (2.4), we follow the pattern of the verifications of Examples 2.2
and 2.3. The main task is to show that r.h.s. is closed as it is clear that r.h.s.
is a max-stable space. So let £, € r.h.s. and assume

o

gk = V vi(k)Xn—i - f

i=0
in the d-metric. We need to show that ¢ € r.h.s. We have that

-2}

& = V vi(k)Xn, i = V (V k)ci—l)Zn—i = V ‘lfi(k)Zn—i-
i=0 i=0

i=0 =0

From Lemma 2.1 there exists {¢;} € I; such that in 7, we have {¢*} > {i;}
as k — o. This shows that

But as in Example 2.3, we have {V 7_, v{®), £ > 1} bounded. So we may find a
convergent subsequence {k'} such that for all i, v*” - v;,. Then y*” — y; =
V*_ovic;_; and, therefore,
l//Z n—i V Z
i=0

(VCL —j“n— z)z V 1"’j}(n—‘]
Jj=0

The previous example may be extended to the two-sided moving average case
where

||<g

,f:

=0

(4 v o

Il
L<8

J

fe] o
Xn = V thn i = V cn—iZi’
= —oo = —o
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and ¢; > 0,0 < X7_ __c; <. In this case

M, = V-sp {X;,j<n}
(2.5) { o0

V uX, . Au20V ux,, <oo}.
i=0 i i=0

Only minor modifications of the previous argument are required.

REMARK. For arbitrary max-stable processes, the representation (2.4) of
the max-span will not be valid. To see this, let {Y, Z,, n > 1} be iid D,
random variables and define for n > 1,

X,=nYVZ,.
Then
d(X,/n,Y)=d(YVZ,/n,Y)=1/n -0,

so Ye V-sp {X,, n > 1}. However, Y cannot be represented in the form
V.1 v, X; because

d(Y, ,-\Z u,.X,.) =ll - Viy,

for any choice of {v,}.

We close this section with a calculation that is needed in Examples 3.1 and
3.2.

ExaMPLE 2.5. Suppose {X,} is a max-stable process and suppose
My= V-sp {X,,—©<n <x»}

i i i
Assume {X,} and Y both belong to the same max-stable space and that Y is
independent of {X,}. Then

V-sp {X,VY, - <n <x}
- {V wW(XVY): A 520, V (X, VY) <oo}.

i

(2.6)

If we let the spectral functions of X, be f, and the spectral function of Y
be fy, we may arrange things so that the support of f; is disjoint from S, the
union of the supports of the f,s. As in the previous examples, we must show
" the right side of (2.6) is closed. Suppose

&=V (X, VY) - ¢

i
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in the d-metric. As before we have {V ; v*)} is bounded, so extract a conver-
gent subsequence {v{*?, —o < i < ©} > {y;, —» < i < ©}. Then

= kl,iglwfol‘(\l/ vi‘k’)fi(s)) \ (V vf’”fy(s)) —fi(s)|ds
> tim [ |V h0) ~fulo)| s
k'>x/g i

and we conclude
V v*Of, -, fels.
i
Therefore, V ;u*’X; converges in the d-metric and because of the hypothe-
sized form of the max-span, we get
V X, > V yX,
and thus l l
V v*X, V( V vi(k')Y) -V yX, V( V viY)
i i i i

in the d-metric.

3. Prediction. Suppose .# is a max-stable space and .#; C.# is a closed
max-stable space and that Y €.#. Then the best predictor of Y based on .#;
is P, Y, defined as any variable ¢ €4 that achieves

inf{d(n,Y):n €.4,).

As remarked in the introduction, one does not expect as complete a
prediction theory in the max-stable case as in the classical second order
theory. The max-stable predictor is not necessarily unique. In Davis and
Resnick (1989) it was shown that prediction for MAR( p) processes yields a
unique predictor, but that for MMA(q) processes this is no longer the case.
The following example simply illustrates this nonuniqueness.

ExaMpLE 3.1. Suppose {Y, Z,, —© < n < o} is iid with common distribu-
tion @, ; and define the stationary max-stable process

Xn=ZnVY, —o < n <o,

The explicit representation for .#, = V-sp {Xl’ J < n} can be determined
from Examples 2.2 and 2.5. Thus to determine X, ; we compute

d| X1, V Uan+1—j) =d(Zn+1VY, \ yY VvV \ Yy,
Jj=1 . Jj=1 Jj=1

-2}

'/j=1

=1+

1- ij
j=1
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where Proposition 4.1 of Davis and Resnick (1989) makes the calculation
easy. If any v; > 1, we have

d(Xn+1’ \ van+1—j) =V vy—1+1+ ) Y
J=1 Jj=1 Jj=1
=Vuv+ )Y v > 2
Jj=1 Jj=1

whereas, if V ;v; < 1,

d(Xn+1’ V 1-{j}{n+1—j) =1- V l{j+ 1+ E Y

j=1 j=1
=2+Y'v=>2,

where ¥’ stands for the sum with the maximum summand removed. Pick any
J=1and any v € (0, 1) and set v; = v, v, = 0, k # j. For this choice

(X +1’UXn+1—j) =2,

n

the lowest bound possible.

Call a max-stable process {X,,, —© < n < «} deterministic if for each n we
have .#, =#_, = N__,.#; [cf. Brockwell and Davis (1987), page 180]. In
this case prediction can be done without error. The process is purely nonde-
terministic if .#_,, = {0}. In this case prediction error is nonzero. A max-mov-
ing average MMA(x) process is purely nondeterministic as the next result
shows [cf. Doob (1953), page 578].

PROPOSITION 3.1. Suppose we have the max-stable, stationary MMA(x)
process

X, = V ¢;Z,_;, —o<pn <o,

i=0
where ¢; > 0, ¥, ¢; < © and {Z,} is iid with P[Z, < x] = exp{—x"1}, x > 0.
Then

A= (4= (0),

Jj=—

so the MMA(x) is purely nondeterministic.

ProoF. To check this, suppose that £ €#__, so that for all n we have
¢ e, and from Example 2.4 we have for each n the representation

foe] foe]

=<}
&= V Uj(n)Xn—j = V U}n) V ciZn—j—i
j=0 - j=0 i=0

=V (V UJ(n)ck—j)Zn—k =V a"Z,_,.

E=0\j=0
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Applying a variant of Lemma 2.1 applicable to doubly infinite sequences, we
find that

© n

¢=lim V oz, ,= lim V a2,

n-o -, _q no -,

iff
{afP, —0 <k <} > {...,0,...}

in /7>, where the limit sequence contains only zeros as entries. Thus ¢ = 0
and .Z_, ={0}. O

Proposition 3.1 parallels classical second order theory. However, the fol-
lowing type of example stands in sharp contrast to classical theory.

ExampLE 3.2. Let {X,} be the process defined in Example 3.1. If ¢ e#_,
then from Example 2.4, for every n there exist nonnegative {v}")} such that

© ©

€=V "X, ;= VoYV V oz,
j=0

Jj=0 Jj=0

Letting n - —o and using Lemma 2.1 as in the proof of Proposition 3.1
yields that ¢ is of the form (const)Y. However, for ¢ + 0 we have

+ T o,
Jj=0

©

c— V o™

dlcy, V vMY V \Y vj(")Zn_j) =
Jj=0 Jj=0

Jj=0

which cannot be made to converge to 0 as n —» —. Thus we conclude
A _., = {0}. Contrast this with Example 5.7.1 of Brockwell and Davis [(1987),
page 183], where the analogous process X, =Y + Z, (where {Z,} is white
noise) is in Wold decomposition form with both deterministic and nondeter-
ministic components present.

To get an example of a deterministic process, we could of course take
X, =Y. Here is a somewhat less trivial example.

EXAMPLE 3.3. As a particular case of the permutation processes discussed
in more detail in Section 5, consider a process of the form

m
{X,,—®<n<w}= {V ConiyZiy —® <n < 00} ,
i=1
where {Z,,...,Z,)} are iid and 7 is a permutation of {1,...,m}. If v is the
least common multiple of the cycle lengths of o, then we have for any n,
d>0,

X +dv = X

n n?

which implies {X,} is deterministic.
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REMARK. Example 3.2 easily can be extended to cover processes of the
form

= (\/ ciZn_i)VVn,
i=0

where {Z,} are iid ®;; random variables independent of the stationary
max-stable deterministic process {V,}. The conclusion of Example 3.2, .#_,, =
{0}, still holds.

Suppose we have a process of the form

(8.1) X,=UVV, -—o<n<o,

where {U,} is a stationary, max-stable, purely nondeterministic process and
{V,} is an independent, stationary, max-stable, deterministic process. Exam-
ple 3.2 and the remarks following it suggest that possibly .#_,, = {0}. This is
unresolved. All we have succeeded in proving is that

(3.2) MH_(X)CM_[ V),
where .#,(X) is the closed max-stable space generated by {X;, j < n}, etc.
To prove (3.2) we need the following lemma.

LEMMA 3.2. Suppose # is a closed max-stable space.
(a) If {¢,) c# with spectral functions {f,} and f, = [ in L,, then there

exists ¢ € V-sp (&) such that d(&,, £€) — 0.
(b) Suppose {£,} and {n,} are independent processes in .# with spectral
functions {f,} and {g,}, respectively such that for some L €4,

(3.3) d(¢,Vn,,L) >0
as n — «. Then there exist &, €4 and 1, €4 such that

d(¢,,¢.) 20, d(m,,m.) 20

asn — o,

ProOF. (a) First note that {¢£,} =, {an}, where X, is constructed from a
Poisson process at the beginning of Section 2. By de Haan [(1984), Lemma 2,
page 1200], Xf converges in probability to X,. It follows that {&,), being
fundamental in probability, also converges in probability to some limit ¢&. It is
easy to check that {¢&, ¢, n > 1} is a max-stable sequence with spectral
function sequence {f, f,, n > 1} and hence d(§&,, £) > Oand ¢ € V-sp {£}.

(b) Without loss of generality we may suppose there exist subsets A and B
of [0, 1] such that ANB =&, AU B = [0, 1] and for any n the support of f,
is in A and the support of g, is contained in B. Let f; be a spectral function
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corresponding to L. Then (3.3) implies

0= lim [*[£,(s)V ga(s) = fu(s)|ds

i ([ 1£,(5) = (o) ds + [ g,(5) = F5)] ds

i ([111,(9) = () 1ao) ds + [ lgu(s) = Fu()1a(s)]ds

and hence
fa L, f1la = fo 8n L, filg = 8-

The result then follows from (a). O
Now we consider (3.2).

PROPOSITION 3.3. Suppose {X,} is a stationary max-stable process with
decomposition (3.1). Then

(X)) ca_ (V).

ProoF. Suppose ¢ €.#_(X). Then from Proposition 2.2 there exist inte-
gers k, — © as n - — and nonnegative constants v{®) such that

n— —ow

" )
lim d( \Y vi(”)Xi,f):O.
i=n—k,

Because

n n n

Y, v;n>Xi=( Vv v;mu,-)v( Vv v;“w),
k, i=

i=n-—~k, i=n-— i=n—Fk,
we get from Lemma 3.2 that there exist U_,, and V__ such that

n n
al v v;wtfi,u_w)ao, d( \ v;”v,-,v_w)ao,

i=n—k, i=n—k,

and since U_, e#_(U) = {0}, we get ¢ =V__, €#_J(V) as required. O

The Wold decomposition for a stationary max-stable process does not exist.
For example, suppose {X,} is a stationary max-stable process with Wold
decomposition

X, =U\VV,

where {U,} and {V,} are independent stationary max-stable processes, {U,} is
purely nondeterministic, {V,} is deterministic, U, €.#,(X) [cf. Brockwell and
Davis (1987), page 180]. Because U, €.#,(X), there exist sequences {v}"’)}
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such that as m — o,

m m
V ymx, ;= .VO Y (Ui VV,y) » U,
jm

j=0
in the d-metric. The independence of {U,} and {V,} implies

m m
d( \Y v;'n>(Un_jvvn_j),Un) = d( Y, vj(’”)Un_j,Un)

Jj=0 Jj=0
m
+ d( .VO v;m)Vn_j,o) - 0.
=

Clearly d(v{™V,, 0) <d(V 7 ,v™V,_;, 0) > 0 so that v{™ — 0. It follows
that

m
d( V um™u,_, Un) -0
j=1
and therefore U, € V-sp {U,_,,U,_,,...}. Thus{U,} is deterministic, which
is a contradiction.

4. Prediction based on more information. Some of the properties
discussed in the previous section, which deviate markedly from classical
theory, change when one bases prediction on larger max-stable spaces con-
taining M,. The present short section presents contrasts with prediction
based on max-spans.

Let .#* be the max-stable space generated by the Poisson process dis-
cussed in the beginning of Section 2: Start with T, £u,r,» PRM on
[0, 1] X [0, ») with mean measure 1, ,,(u) du 1, ,(s) ds, and for nonnegative
f €L, = L0, 1], du) define

f(Uy)
SRR

and the max-stable space
#* ={X;:feL,,f>0}.
Suppose we have a process {X,} c.#* with spectral functions {f,}. Define for
—o < n < « the closed max-stable spaces
sf=(Xew*:Xeo(X,, X, q,...))
and
VARE N AW AN
n

ExAamMPLE 4.1. Consider again the process of Example 3.1:
(4.1) X,=YVZ,
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where Y, Z,, —© <n <=, are iid ®,, random variables. The spectral
functions are fY and f;, and without loss of generality we may assume that
the supports are all d1s301nt As usual, let f, be the spectral function of X, so
that

fo=FfyViz, =fr+1z
and

= A fn=fY‘

But Y= A;X,_; for any n so thét Y e.#*,. Recall that in Example 3.2,

Yenz_., = {0}
In order to obtain a Wold decomposition, consider the space of functions

L = L1(0'(fj,j < n)) n feL,:f>=0,supp fC closure( LnJ supp f,)}

j=—oo

where supp f is the support of f and L(o(f;, j < n)) are the L, functions
measurable with respect to {f;, j < n}. Define for — <n < the closed
max-stable spaces

#, = {X;: f e LY}
and

7. = nz;.

Prediction based on 7, yields different results than prediction based on .#,
or 4. For example, let f,,, be a function in L{" that minimizes the
distance from LM to f,,; that is,

”fn+1 _fn+1“L1 = inf ”f_fn+1”Ll-
feLy

Then the best predictor of X, ; in %Z, is X’n +1 =Xy because
inf d(X,, X,,,)= inf —fn .
X.eF ( f +1) fe L ”f f, +1”L1

~%n

For the process of Example 4.1, we have

=/\fn

and because the f,’s have disjoint support, fy € L(") for each n. This implies
that Y €.#_, and because

fn _fY=fZ,,
and fz, € L{, we have ‘
sz =Zn E%.

This gives a Wold-type decomposition for {X,}: X, has a component Y in.Z_,,
and a component Z, in %,.
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Before discussing prediction in this framework, we record the following
simple result:

PROPOSITION 4.1. Let #', # be closed max-stable spaces with #' CA.
Suppose X €e# and X =Y V Z, where Y €#' and Z is independent of every

element in #'. Then
YeP, X.

ProoF. For any &£ €4’ we have
d(¢,X) =d(£§,YVZ)=d(§,Y) +d(¢,2)
because the support of f, can be taken disjoint from supp f; Usupp fy. Thus
d(¢, X) = d(¢,Y) and thus the minimum distance can be achieved by taking
E=Y. 0O

Continuing with the prediction problem for this example, we know from
the previous proposition that a best predictor of X,,, ; based on either .£ or
%, is Y, because Z, _ ; is independent of .#; and 7.

These results parallel the classical theory rather well, at the expense of a
more artificial notion of prediction. The examples can be extended easily to
cover processes where Z, in (4.1) is replaced by a max-moving average
process.

A bizarre aspect of prediction based on %, is that it is dependent on the
choice of spectral functions. For example, if we choose fy(s) = ¢l ,\(s) in
Example 4.1, then f € N, L{Y implies that supp f C supp fy and that fisa
function of fy, f;, fz,_,,--- - Because fy and the fzj are assumed to have
disjoint supports, it follows that f must be a function of f} only and hence

f(s) = (const)fy(s). From this we conclude that #_, = V-sp {Y}. On the
other hand, if we choose fy(s) = csly ,(s), then #_ ., = (X, e*: f € o (fy),

supp f C supp fy}and V-sp {Y}#7Z_,.

5. Permutation processes. We now discuss a class of stationary max-
stable processes, called permutation processes, that is broader than the class
of max-moving averages. A simple example and application of a permutation
process was given in Example 3.3. It will be convenient to work with a
two-sided permutation process {X,}, which has the form

(5.1) Xn = v cﬂn(l)zl, —oo < n < 00,

i=—o
where 7 is a bijection of {..., —1, 0, 1,...}, {Z;} are iid ®,; random
variables and ¢; > 0, T, ¢; < ». A simple argument shows that {X,} is station-

' ary.

THEOREM 5.1. The following are equivalent.
(a) The stationary max-stable process {X,} is a permutation process with

form (5.1).
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(b) {X,} is distributionally equivalent to the following process: There exist
an atomic probability measure u on (0, 1),

(52) m= Z pisai,

= —

with atoms {a;} and weights {p;} (p; > 0 for all i) and a piston ¥y satisfying
for some permutation m and all f € L,(p),

(53) ¥f(s) = F()I(H(s)), [ H($)u(ds) = [ F(s)n(ds)

with

(5.4) ﬁ(ai) = Ar3y» F(a;) = Pagy/Pi-
The quantities f, and {c;} are related by

(5.5) ﬁ)(ai) =¢;/Pi»

and then

{Xn}=d{§/f )}

where f, = ¥"f, and
0
Z Ew,.Ty)
k=1
is Poisson random measure on (0, 1) X [0, ©) with mean measure du X dx.

(c) There exist a decomposition of (0, 1) into disjoint intervals (0, 1) =
Yo _. I, where I, = (a;, b;], and a piston y = (r, H) satisfying [f € L,(dx)]

(56)  vf(s) =r(s)f(H(s)), f(o V() ds = f(o ) ds,

such that for some permutation w the map H: I, — I, is defined by

> ‘Tr ll
(5.7) H(s)= ¥ (a,,(i) + (s ap)! i )1,,(s)
and
s |I1ri| \
(5.8) r(s) = ,-;_w( uﬁf )1zi(s).

The quantities f, and {c;} are related by the fact that for each n, the spectral
functions {f,} of {X,} are constant on every I, and

o]

59 o= T (5)u.

[=—0o
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Then

_ v fn(ek)
{Xn} —d {k\=/1 Fk } ’

where f, = y"f, and
0
Z &(65.T%)
k=1

is a homogeneous Poisson random measure on (0, 1) X [0, ) with mean
measure du X dx.

PRrROOF. (a) = (b): Choose probabilities { p;} and atoms {a,} and define u by
(6.2) and H, 7, ¥, f, by (56.4), (5.3), and (5.5). The definition of H, 7, f, off
{a;} is immaterial. ¥ is a piston because

| #f(s)u(ds) = L #f(a;)p,
= Z%f(ﬁ(ai))lh
= qur(i)f(aﬂ(i)) = Zpif(ai)

= [fdp.
Check that for any n,

7 — nf _ Gro
fu(a;) = ¥"fo(a;) = P

i

If

©

Z Erp, 1=0,+1,...,
k=1

are independent homogeneous Poisson processes in [0, «), then
1
Z,= NV TGO
¢ TP

If{UM, k>1,i=0, +1,...) are iid random variables with distribution u,
then

N, = Z 8(Uéi)’r£i)/pl)({ai}n . X'), i1=0,+1,...,
k=1

are independent PRMs with mean measure

g,(dx) X p;ds = (piaai(dx)) X ds
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and therefore ¥; N; is PRM with mean measure
(Zpiaai(dx)) x ds = p(dx) X ds.
i

Letting
N = ZNz = Z EwW,.T,)?
i k=1

{. V car"(i)Zi}
1= — 0
V eV i)

i=—

|3
[y Ll

ik Flgl)/pi

{V f'n(Uk)}’

k Fk

we see that

{X.} =

as required.
(a) = (c): Suppose {X,} has form (5.1) and define v, H, r, f, by (5.6)-(5.9).
Then v is a piston because, for f € L,(dx),

Jop, Y5 ds = £ [ r(s) F(H(s)) ds

_ (i) L i
_Xi': |I|ff( Apy T (8 = )|I~| )ds

and changing variables via y = a,,, + (s — a;) |1 ;)|/|1; yields

e )
R i S )II(,)I

i

=L fndy=][ () dy,

l ‘rr(t)

from which it follows that y is a piston. Next one must check that

(5.10) u(s) = B 1()

" for any integer n. Let {0”, k> 1, i =0, +1,...} be iid random variables
uniformly distributed on I, and independent of {F,g‘)} [defined in (b)] so that

N =X Eo,T /1L
k
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is PRM on I; X [0, ) with mean measure
du
15l
Therefore, N = X; N; is homogeneous PRM on (0, 1) X [0, ) with mean
measure du X dx and we can represent N as

N=Y €(6,,Ty)?
k

where {6,} are iid random variables that are uniformly distributed on (0, 1)
and independent of {I',}. To conclude the proof note that

{X.) = { Y c,,n(,-)Z,-}

ij=—o

B Caniiy
= {V P }

ik
(o )
- |y &)
_ fn(ek)
Mt

as desired. The implications (b) = (a) and (c) = (a) are readily checked. O

1;(u) dxlL| = 1;(u) dudx.

Note the flexibility in the choice of atoms {a,} in part (b) and the choice of
intervals in part (c). If in part (b) of the theorem, we define p; =c;/¥L;c;
whenever c; > 0, we see by (5.5) that

o = [Z e o),

where A ={a;:¢; > 0}). In particular if ¢; > 0 for all i, then fy(s) =Z,c;.
Similarly, in part (c) of the theorem, one may choose I; to have length
¢;/¥X;c; whenever c; > 0 to get

() = [Ze i, 1= T 1),
J {ze;> 0}
By relabeling the I; if necessary, we may always take A = (0, a] for some
a € (0, 1). This last statement is really a special case of the remark, stated
without proof, in de Haan and Pickands [(1986), page 486]. Because under-
standing this remark is important for Proposition 5.3, we supply a proof that
for any stationary max-stable process, f, may be chosen as cl ,,.

PROPOSITION 5.2. Let f € L,(dx) be a nonnegative function.
(a) If f(s) > 0 a.e., then there exists a piston vy = (r, H) such that

r(s)f(H(s)) =clg(s) a.e.
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®) If fo.1)1f5 o(s)ds € (0, 1), then for every a € (0, 1) there exists a piston
v=(r, H) such that

F(8)F(H(s)) = cloa(s) a.e.

() It is always possible to choose a sequence of spectral functions {f,} for a
stationary max-stable process {X,} such that

fo(8) = clig 4)(5)
for some a € (0, 1].

PROOF. (a) Without loss of generality assume [, f(s)ds = 1; otherwise
divide f by its integral and absorb this constant into c. Set I(x) = [§ f(s)ds
and put

H(s) = I“l(s),
1
"9 = FH(s))

Then y = (r, H) is a piston because, for g € L,(dx), we have by the change of
variables s = H 1(u),

1
f,, T ()8(H(s) ds = f(o’l)mg(H(s)) ds = [ g(w)du.

(b) Assume once again that f has integral 1. With I as previously defined,
I™! maps [0, 1] onto the support of the probability measure corresponding to
I. Because (supp(I))° and (a, 1) are open, we can express both as disjoint
unions of intervals, say

(suppI)° = U (a;.b/]
Jj=1
and

(a,1) = CJ (cj,dj].

Define

s
I’l(—), fors <a,
a

H(s) =1 (p —q.
(ﬁ)(s —¢) ta;, ifse(ed],

[af(H(s))] ™', ifs<aand f(H(s)) >0,
1, if s <aand f(H(s)) =0,
b, —a;

b
d; — ¢

r(s) =

if s E(cj,dj] ,
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so that

H:(a,1) ~ (supp(I)) = Ql(aj’bj]-

The pair (r, H) is a piston because, for g € L,(dx), we have by change of
variables,

[(0 r(s)g(H(s)) ds

f«, a]af(H(s)) — oy £(H(s)) ds + Z[ r(s)g(H(s))ds

=f g(u)du + Zf g(u)du

supp(I)

= du.
(O’I)g(u) u

Moreover, for s < a,

1
r(s)f(H(s)) = —1q, a(s),
and for s > a,
r(s)f(H(s)) =r(s)f(H(3)) L eeuwpuyy = 0 ae.,

because
j;o’l)r(S)f(H(s))l(H(s)E(supp(I»c) ds = '/(‘O’l)f(u)l(supp(,»c (v)du=0

This completes the proof of (b).

(©) If fo(s) # ¢l 4(s), then consider the equivalent sequence of spectral
functions {g,(s) == r(s)f,(H(s))}, where (r, H) is the piston in either (a) or
(b). [As pointed out in de Haan and Pickands (1986), these two sequences of
spectral functions are equivalent because

f(S) g(s)
'/;o D f(o i) \J/

J J

for all sequences of nonnegative numbers {x;}. This ensures that the joint
distributions of {X,} can be specified with either sequence of spectral func-
tions.] O

We now particularize our characterizations to max-moving averages. The
two-sided max-moving average process

o]

(511) Xn= V czZn+t= V ci+nZn,

ij=—o = —
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where ¢; > 0 and I7__.c; < », is a special case of a permutation process
with

m(i) =i+ 1.

(For compatibility with the notation of permutation process, the subscripts of
the Z’s differ from what was used in Proposition 3.1.)

Given a sequence of spectral functions {g,} from a stationary process, how
can we determine whether or not the associated stationary process {X,} is a
max-moving average? Because any piston transform of the sequence {g,},
that is, {f, == vg,}, produces the same joint distributions as the g,, we can
expect a wide range of behavior of such spectral functions. However, as long
as we start with g,(s) = c (assuming that c; > 0 for all j), which we may do
by Proposition 5.2, the piston (r, H) that generates the spectral functions
must be piecewise linear in the sense that r(s) is piecewise constant on a
partition of (0, 1).

PROPOSITION 5.3.  Suppose {X,} is a max-moving average as given in (5.11)
with c; > 0 for every j and suppose without loss of generality that the spectral
functlons {g,} are chosen so that g, = c. Then there exists a partition {A;} of
0, 1) and a piston y = (r, H) such that H(A;) = A;,, and for every i, r is
constant on A,;. '

ProoF. Let {X,} be the max-moving average in (5.11) with ¢; > 0 for all j
and let {g,} be a sequence of spectral functions for {X,} w1th go(s) =c,
¢ = L,c,. Suppose {f,} is the sequence of spectral functions specified in part
(o) of Theorem 5.1 (see 5.10); that is,

©

fuls) = T T Lis),

i=—0o i

constructed so that f,(s) = go(s); this can be arranged by picking I; to have
length c;/c. Then by Theorem 4.2 in de Haan and Pickands (1986) there
exists a plston % = (7, H) such that

~

&n = Vfn

for all n. In particular,

¢ =go(s) = F(s)fo(H(s)) = F(s)c
so that 7(s) = 1. It now follows with A; = I-I"I(Ij) that

o]

gu(s) = L T L(A()

j=—oo ]

o] c .
- ¥ |nI+|J 1,(s).

j=-— J
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If y = (r, H) denotes the piston that generates the g, sequence (i.e., g, =
Y"8¢); then we conclude from the preceding equations that H: A; - A;,
with

z+ 1|

r(s)— A fors € A,.

Note that |A;| is the Lebesgue measure of A; and that |A;| = |I,|, because for
f=1;, we have

JF(H(s)) ds = [F(s) ds. 0

If one or more of the ¢;’s is zero, this result breaks down in two respects.
First, we no longer can assume that g, = ¢, because if c¢; = 0, then Z; is
independent of X, and hence the spectral functions of Z; and X, must have
disjoint supports a.e., a contradiction. Second, even 1f we take g, to be
piecewise constant, for example,

8o(s) = — 1Ly, ai(s)

for some a € (0, 1), it is still not necessary for H(s) in the generating piston
v=(r, H) to have the properties discussed in Proposition 5.3. This is
illustrated in the following example.

ExAmMPLE 5.1. For a fixed constant a € (0, 1), choose ¢; > 0, j =0, —1,
—2,..., such that a = % __¢;. Let {L} be a part1t10n of (0 1) as described

in the statement of Theorem 5. 1(c) Wlth Il =¢;, j <0, and
0
(0,0] = Y I.
j= — o

Let y = (r, H) be the piston defined by

0 bii1— a4
H(s) = ¥ |aw1+ (s —a)=—p——— |La, sa(s)
0o b
+ ) ai+1+(3_ai)2(_l‘+l_l+l) ., 5,1(8)
i=1 (bi_ai)

and

0 b1~ ;1
r(s) - . Z (;b—#)l(ai, bi](s)
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[cf. (5.7) and (5.8)]. It follows that the sequence of spectral functions defined
by
0 1
go(8) = L 31w, 1(5) = Lo, a(s)

Jj=—o Tj i
and
g.(s) = v"8o(s)
can be expressed as
0

gn(s) = Z cjfn—j’
Jj=—
where f,(s) = y"((1/(b, — ag)1,, 5,(s)). Because the f, have disjoint sup-
port, we conclude that {g,} is a spectral function sequence for the MMA()
process

even though r is not piecewise constant.

The permutation process is a generalization of the moving average pro-
cesses considered in Examples 2.4 and 2.5. Based on our experience with the
examples of Section 2, it is natural to speculate that for a permutation
process,

o0 n ©
VuvX,_i: A v=20,VuX, < 00}.
' i=0

i=0 i=—x

V-sp {X;,j<n}= {

However, carefully checking the derivations of Section 2 shows that in order
for an explicit representation of the max-span to be possible, one needs some
condition on the permutation 7 such as

(5.12) lim #™(i) = o, Vix1,

m-— —

in order to ensure that {v}k')} — {y;} as k' — o« implies that
n n
% .
V s = V oven,

j=—oo Jj=—®

In contrast to the simplicity of Example 3.3, a permutation process gener-
ated by an infinite number of atoms can be difficult to analyze. When (5.12) is
satisfied, we show the process is purely nondeterministic.

PROPOSITION 5.4.  Suppose we have the permutation process
Xn = V cﬂ'"(i)Zi
i=0

generated by an infinite number of atoms. If (5.12) is satisfied, then {X,} is
purely nondeterministic.
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ProoF. Condition (5.12) guarantees that
J— n n
j=- Jj j=—
If ¢ e.#_,, we have for every n a representation
n n [« oo n
é= V yX,= V vV cupZi=V ( \% ”j(n)cvrf(i))zi'
j=-w j=—o i=0 i=0 \j=-o

So taking limits as n » — and using Lemma 2.1 yields the existence of
constants

n
Y= lim V' v,
J= — 00
where the limit is in /; and thus
é=V 4z,
i=0

It remains to show ¢; = 0. As in the discussions of Example 2.3 we get that
{v; vj(")} is bounded in n and the conclusion ¢; = 0 follows from condition
(5.12). O
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