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ON THE SPEED OF CONVERGENCE IN FIRST-PASSAGE
PERCOLATION!

By HARRY KESTEN

Cornell University

We consider the standard first-passage percolation problem on Z¢:
{t(e): e an edge of Z¢} is an i.i.d. family of random variables with common
distribution F, a, , = inf{z¥¢(e;): (ey,...,¢,) a path on Z¢ from 0 to
né,), where £, is the first coordinate vector. We show that o 2(a, ,) < Cyn
and that P{la, , — Eaq ,| = x/n} < C, exp(~Cyx) for x < Cyn and for
some constants 0 < C; < «. It is known that x = lim(1/n)Ea, , exists.
We show also that Csn™! < Eag , — nu < Cgn®/%(log n)'/3. There are
corresponding statements for the roughness of the boundary of the set
B(#) = {v: v a vertex of Z¢ that can be reached from the origin by a path
(eq,...,e,) with Zt(e;) < t}.

1. Introduction. First-passage percolation was introduced in Hammers-
ley and Welsh (1965); see Smythe and Wierman (1978), Kesten (1986) and
Kesten (1987) for later surveys of the subject. The simplest setup (and this is
the only one we shall discuss here) is as follows: To each edge e of Z¢ we
attach a positive random variable ¢(e). The basic assumption is that the
random variables {t(e): e € Z%} are i.i.d. We denote the common distribution
by F' and assume throughout that

(1.1) F@O-)=0, » )xF(dx) < o, F is not concentrated on one point.
t(e) is interpreted as the passage time of e; that is, the time it takes for a
particle to traverse e (in either direction). The basic question is to find
asymptotic properties of the set B(¢) of vertices which a particle can reach by
time ¢, when it starts at the origin at time 0. More formally, if r is a path on
Z¢ that successively traverses the edges e,,...,e,, then we define the
passage time of r as

k
T(r)= ;t(ei)'

r itself will often be denoted as (e;, ..., e;) when r traverses successively the
edges e;,...,e,. For any two sets A and B of vertices of Z¢ we define the
passage time from A to B as

T(A, B) = inf{T(r): r a path from some vertex in Ato some vertex in B},
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FIRST-PASSAGE PERCOLATION 297
and with 0 = the origin,
B(t) = {v:T(0,v) <t}.

We shall write £ for the ith coordinate vector. The passage time from 0 to
n¢, is denoted by

ao’n = T(O, ngl).

One of the principal results in the subjects is the following consequence of
Kingman’s subadditive ergodic theorem [see Smythe and Wierman (1978),
Theorem 5.1].

THEOREM A. If (1.1) holds, then

. Qo,n .
(1.2) lim—— = pw.p.1 andin [}
n

for some constant u = u(F,d).

w is called the time constant, and it is known that
(1.3) 0<u< fxdF(x)

when F satisfies (1.1) [cf. Hammersley and Welsh (1965), Theorem 4.1.9].
u = 0 is possible. In fact one has [Kesten (1986), Theorem 6.1]

(1.4) w = 0if and only if F(0) > p.(Z?),

where p, is the critical probability of bond percolation on Z_d.
The next fundamental result is the shape theorem for B(t), or rather for
the following “fattened up” version of B(¢):

B(t) = {v+x:ve§(t), x € [—%,%]d}

[ B(¢) puts a unit cube around each vertex in B(¢) and is therefore no longer
made up of isolated points.] The first version of the shape theorem is due to
Richardson (1973) and the following version is essentially due to Cox and
Durrett (1981) [see also Kesten (1986), Section 3, and for related models,
Schiirger (1981), Section 3].

THEOREM B. Assume that
(1.5) E min{t{,... g} < o,

where t,, ..., ty, are independent random variables, each with distribution F.
Then there exists a nonrandom convex set B, C R? with nonempty interior,
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that is either compact or equals all of R? and has the following property:
If B, is compact, then for all £ > 0,

(1.6) 1
(1-¢)B, c YB(t) c(1+ &)B, eventuallyw.p.1;
IfB, = R?, then forall £ > 0,

(1.7)

{x:1xl < &71} c eventually w.p.1.

If (1.5) fails, then
1

lim sup ™
v

lu|>

T(0,v) =~ w.p.l.

[Here v runs through the vertices of Z%; |x|=max,_;_4|xQ) if x=

(xQ1),..., x(d)).]

B, is compact if and only if u > 0 or F(0) < p, and B, = R? if F(0) > p,
[compare Kesten (1986), page 219]. In the former case (1.6) tells us that
(1/t)B(¢) looks asymptotically like the nonrandom set B, with merely some
roughness at the boundary. But B(¢) does not have holes or long arms with
size of order ¢£. A natural question, which appears in a slightly different form
already in Smythe and Wierman [(1978), Section 10.2], is “how fast is the
convergence in (1.2)”, or “how rough is the boundary of the set B(¢)”?
Because of the equivalence of one version of the Eden growth model [see Eden
(1961)] and first-passage percolation when F is the exponential distribution
[ef. Richardson (1973)] this problem has also received much attention from
statistical physicists [see Krug and Spohn (1990), Sections 4.1 and 7.1, and
Family and Vicsek (1991)]. Simulations [see Zabolitzky and Stauffer (1986);
Wolf and Kertész (1987)] and some scaling theory [e.g., Kardar, Parisi and
Zhang (1986); Krug and Spohn (1990), Sections 3.1, 3.2 and 7.1] indicate that
in two dimensions the roughness of the boundary of B(¢) should only be of
order t'/3. Thus, for large x, the probability !

(1.8) P{(t — xt'/3)B, c B(t) C (¢ + xt'/3) B}

should be close to 1 for all £ > 1, at least when F is the exponential
distribution. [Perhaps ¢B, should be replaced here by some other nonrandom
set that plays the role of the “expectation of B(¢)” and that may differ from
tB, by something that is large with respect to ¢'/3. This corresponds to the
fact that the difference between Ea, , and nu in Theorem 1 may dominate
" the fluctuations in a, , — Ea, ,.] Because

{ao,, <t} = {n& € B(¢)},

we can also conjecture on the basis of the simulations mentioned previously
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that, in two dimensions, for some constants 0 < C; < o,
(1.9) Cin%?® < o%(a, ,) < Cyn??

[02(X) denotes the variance of the random variable X]. (1.9) should be
contrasted with classical “diffusive behavior” that would give o%(a, ,) of
order n. Indeed, if r,, is the path from 0 to n¢, along the first coordinate axis
that consists of the edges {j¢;,(j + D&}, 0 <j <n — 1, then

(1.10) T(r,) = Z’;t({J’él,(j +1)&))

is the sum of n i.i.d. random variables so that
T(r,) — nfxdF
Vn

in distribution, where o ? is the variance of F. However, a, , is the infimum
of passage times over many paths, and it is intuitively plaus1ble that its
variance would be of smaller order than o 2(T(r,)). So far we can only prove

o%(ay,,) = O(n), though. On the other side, we only obtain a lower bound of
order 1 for o2(a, ,). These results for 0'2(a0 ) lead to tail estimates for the
distribution of the deviations a, , — Ea, , and ay,, — np, as well as for the
deviations of ¢ 'B(¢) from B,.

We now state our principal results. Throughout C; denotes a constant with
0 < C; < » whose precise value is of no importance; its value may change
from appearance to appearance. (But C; will always be independent of n and
¢; it may depend on F' and d, though.)

- N(0,0%)

THEOREM 1. If (1.1) holds and

(1.11) F(0) < p.(Z%)

and

(1.12) [*2F(dx) <=,

then

(1.13) C, < o%(a,,) <Cin.

If (1.12) is strengthened to

(1.14) fe”F(dx) < o forsomey> 0,

then

ao,, — Ea, , _Cyx

(1.15) p — >x) < Cge”“* forx < Cyn,
. 1

(1.16) Csn %< —Ea, , — < Cyn 5(log n)'?,

n o,

(1.17) Play,, —np < —x/n} < Cye %"
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and

(118)  Play , — np > 2C,n%%(log n)l/s} < C; exp(—Cqg(n log n)1/3).
For the set B(¢) one obtains the following result.

THEOREM 2. If (1.1), (1.11) and (1.14) hold, then for t > 1,

(1.19) P{—Q c (1 + i)}30} >1-Cyt2% C* ifx <t

vt
and
B(t
P{(l — Cyt /@2 9(log )V 2B ¢ B@) )}
(1.20) t
> 1 — Cyt? exp(—Cyt @+ D/ @+ 0 (Jog £)V/ @+ ),
Moreover,
B(t
P{(l — 2C,¢~ @4+ (log )/ P)B, ¢ —(t—)
(1.21)

log ¢
c |1+ CG_\/tT B, foralllarget;, = 1.

REMARK 1. Theorem 1 considerably improves the estimates in Kesten
[(1986), Section 5]. After completion of the present paper, Alexander (1991)
showed that one can improve the right-hand side of (1.16) to C,n~'/2(log n).
Consequently (1.18) can be improved to

P{a,,, — np = C;n*%(log n) + xn'/?}
< C4e %* for x < Cyn.

The next problem one should attack now is to show that a,, behaves
“subdiffusively”; that is, that o?(a,,) < n'"* for some &> 0. The place
where one might hope to gain some power of n is in the last inequality of
(2.18).

REMARK 2. Other passage times b, ,, s, ,, ¢, , have been considered in
the literature. For example, if H, is the hyperplane {x = (x(1)),..., 2(d)):
x(1) = n}, then b, , = T(0, H,). t, , and s, , are the analogues of a, , and
by, ., respectively, ‘when one only allows * cyhnder paths” from 0 to n¢, or to
H,; that is, paths that lie between the hyperplanes H, and H, [see Smythe
and Wierman (1978) or Kesten (1986) for more details]. All the bounds in
Theorem 1 remain valid when a, , is replaced by s, , or ¢, ,. When a, , is
replaced by b, ,, then (1.13), (1. 15) and (1.18) remain valid.
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We also note that analogues of (1.13) and (1.15) hold for moving in
directions other than along a coordinate axis. That is, one has estimates for
the tails of T'(0, n¢) for any unit vector ¢; see (2.49).

REMARK 3. Theorems 1 and 2 deal with the “subcritical case” when
F(0) < p,. In the “supercritical case” when F(0) > p,, then a , is of order 1
in probability. That is,

(1.22) Pla,; ,>=x} > 0 as x — o, uniformlyin n.

Indeed, there now exists an infinite connected set # of edges ¢ with ¢(e) = 0

Travel along edges from % costs no time. The travel time from 0 to n¢, is
therefore at most the travel time from 0 to # plus the travel time from n¢,;
to # [see Zhang and Zhang (1984) for details in case d = 2]. The so-called
critical case when F(0) = p, is more complicated. The known results here all
assume that F has bounded support. For d = 2, Chayes, Chayes and Durrett
(1986) prove that a, , = O(log n) in probability, whereas for d > 2, Chayes
(1991) shows that a, , = O(n?) in probability, for every fixed € > 0. His proof
can be sharpened somewhat to give for some constant C,

(1.23) P{a, , < exp(Cylog n) for all large n} = 1.

This is probably not optimal. For the Bethe tree, which is usually regarded as
the analogue of Z¢ for d = «, Bramson (1978) shows that an analogue of bo, »
is only O(loglog n).

Finally, we note that the exclusion of one point distributions for F is
harmless, because if t(e) = ¢ with probability 1, then also a, , = nc and
B(T) = {v: vl < n/c} with probability 1.

Our proofs of (1.13) and (1.15) (which are the basic new estimates) are
based on the “method of bounded differences.” This method has been success-
fully used in a variety of combinatorial problems in the last few years [see
McDiarmid (1989) for a surveyl. Basically this method represents a, , — Ea, ,
as a sum of martingale differences and, after estimating (the sum of squares
of) these differences, applies standard exponential bounds for martingales
with bounded differences. What is remarkable is that the martingale used to
represent a, , — Ea, , ignores the entire geometrical structure of our prob-
lem; it is a counterintuitive representation. [In another context, essentially
the same martingale representation has been used in Aizenman and Wehr
(1990).] We formulate here the abstract martingale estimate to which we
reduce our problem. We believe that it is of independent interest. Its proof is
given in the last section.

THEOREM 3. Let (%}, ., .y be an incredsing family of o-fields of measur-
able sets and let {U,}, ., . n be a family of positive random variables that are
Fn-measurable. (We do not assume that U, is #,-measurable.) Let {M,},_, . n
be a martingale with respect to {%,}o ., < ny. (We allow N = «, in which case
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Fn = V% and we merely assume that (M}, _, <. is a martingale.) Assume
that the increments A, == M, — M, _, satisfy

(1.24) |A,l < ¢ for some constant ¢
and
(1.25) E(A3)F, 1) < E{U7, ).
Assume further that for some constants 0 < C,C, < © and x, with
(1.26) xo > e?c?
we have
N
(1.27) P {Z U, > x} < Cie %* whenx > x,.
1

Then, in the case where N = o, My = lim, ., M, exists w.p.1 Moreover,
irrespective of the value of N, there exist universal constants 0 < C3,C, < ®
that do not depend on N, Cy, C,, c and x,, nor on the distribution of {M,} and
{U,}, such that

C.
P{My — M, > x) 503(1+Cl+ G ;0)
2

(1.28)

x
><exp(—C4x(1)/2 INRVERYE )

In particular, for x < Cyx3/?,

C, C,x
Notational conventions. t,,t,,... will be independent random variables,
each with the distribution F.
For a vertex or vector v= (v(1),...,v(d)) we shall use both the [, and the
!, norm. These are denoted by

d 1/2
(1.30) lvl = max |v(i)| and vl = {2 (v(i))z} ,
1<i<d i=1
respectively.
For a random variable X, o(X) denotes its standard deviation.
la] is the largest integer < a, a A b = min(a, ), a V b = max(a, b).
a | b means b = ka for some k € Z (i.e., a divides b).

" 2. Centering at Ea, ,. We begin with the proof of (1.13).
PrROOF OF (1.13). Since we will have to consider several configurations of

passage times at the same time, we need to introduce explicit notation for our
probability space and its points. Order the edges of Z¢ in some arbitrary way,
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e;, ey,... . This ordering will remain fixed throughout. Our probability space
is

Q= ]._.[R+’ R,= [O’OO)’
1

and a generic point of () is denoted by w = (w,, w,,...). In the configuration
w, the passage time of e; is

t(e;) = t_(e,-, w) = ;.
When it is necessary to indicate the dependence on o we write a; (o)

instead of a, ,, T(r, ®) instead of T(r), etc. We shall use the following
o-fields of subsets of ():

F, = the trivial o-field = {J, Q},
%, = o-field generated by w,, ..., @, k>1.
The promised martingale representation of a, , — Ea, , is
(2.1) ao,n — Eao,n = X (Elao, 1%} - E{ag, ,|%; -1})-
k=1

This representation is valid because M, = 0 and

!
(2.2) M, = ’EII(E{%,J%} — E{a,, |%-1})

= E{aO,nI'%} - EaO,n’ l> 1’
defines an {%}-martingale that converges w.p.1 to a, , — Ea, , [cf. Doob

(1953), Corollary VII4.1). It will be seen later that this convergence also takes
place in L?. The increments of {M,} are denoted by

(23) Ak = Ak,n(w) =E{a0,n|‘7k} _E{aO,nI‘%e—l}'
The principal step is to estimate
(24) E(8315;_4).

To this end we write

ag, () = f(t(er, ®),t(ey, w),...) = f(wy, wy,...)

for some Borel function f: Q — R,. Also, the following notation is useful. If
o = (0, wy,...) and o = (0, 0y,...) are points of (), then

(2.5) [w,0]r = (@1, s 04, Ohy1s---)

is the point that agrees with @ and o on the first £ coordinates and the
coordinates after %, respectively. v,,; will be the product measure

[ee]
Vpy1 = k]._.[lFt
+
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on the obvious o-field in
Qpir = l_[ R,
kE+1

when each R; = R, and F, = F. We can think of Q as R; X -* X R}, X ;4
and if g is a function from Q — R, then if we fix oy,...,0,, g(o) can be
viewed as a function of oy, q,04,5,...; that is, as a function on Q,, ;.
Correspondingly,

fﬂ 1”k+1(d0')g(0') = fkl:l;F(dai)g(o'l"'"o'k’o'k+1"")

k+
is the integral over all coordinates o;, with i > E+ 1, and is a function of
Ty vy O
By the independence of the t(e;, w) = w;, i > 1, we have, in the above
notation,

(2.6) Elao, % }(0) = [ via(do) f([@, o 1a).

k+

This is a function of t(e;, ») = w;, 1 < i <k, only. It also equals
(2.7) [ w(da)f([o, ols),
Q

because [w, o], does not involve o, and the integration over o, has no
effect. Using (2.7) for E{a, ,|#;} and (2.6) with & replaced by (& — 1) for
Ela,, ,|%, -1}, we find

(2.8) Ay = [ mdo){f([o, o 1) = f(l@, o Te-1))-
Our task now is to estimate

(2.9) gr(w,0) :=|f([w’o']k) _f([w’a]k—l)l'

Note that

t(e,[w,0]x) =t(e;,[w,0]4-1)
(2.10) t(e;,w), ifi<k-1,
t(e;,o0), ifi>k+1.
Only for i = k do we obtain different values for the bassage time of e; in the
two configurations [w, o], and [w, o], _;:
(2.'11) t(ek’[w’ o']k) = t(ek’ w), t(ek’[w’ o']k—l) = t(e, 0')'
We claim that this implies
(2.12) gr(w,0) SIt(ek"‘)) _t(ek’a')l'
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Indeed, for any path r,
IT(r,[w,O']k)—T("»[w»o']k—l)l
< Y lt(e,[w,a]r) —t(e,[o,0]r-1)l

e an edge
of r

<lt(e, w) — t(ey, o)l

(2.13)

Therefore, the same estimate holds for
laO,n([ w, o']k) - aO,;L([ w, U]k—l)l
=|infT(r, [w,0]:) — infT(r,[w,0]-1) I
r r
This proves (2.12). We can say more, though. Write m,(w) for the optimal

path from 0 to n¢; in the configuration w; that is, m,(w) is a path from 0 to
né, with
(2.14) ay ,(0) =T(m(w), w).
It is known that such a path exists when (1.11) holds and hence u > 0 [cf.
Kesten (1986), Section (9.23)]. There could be several paths with this prop-
erty. To define 7,( ) uniquely in case of ties, we order all paths from 0 to n¢;
in some arbitrary way, and take for 7,(w) the first path in this ordering that
satisfies (2.14). We write e € 7 to denote that e is an edge in the path 7.
Then, if
(2.15) e, € m([w,0]r),
(2.10) and (2.13) show that
T(Wn([ w, o-]k)’ [ w, U]k) = T(ﬂ-n([ w, a']k)’ [ w, U]k—l)'
Thus, under (2.15),
ao o([®,0]4-1) =inf{T(r,[ @, 0 ]4_1): r a path from 0 to n¢,}

= T(Wn([ w, O']k)’ [ w, U]k—l)

= T(Wn([ w, U]k’ [ w, o-]k))

= aO,n([ w, O-]k)‘
Similarly, if
(2.16) e, € m([w,0]-1),
then \

aO,n([ w, U]k) < aO,n([ w, U]k—l)'
It follows that g,(w, o) = 0 if (2.15) and (2.16) both hold, and by virtue of
(2.12),
gi(w,0) <|t(ey, w) —t(ey, )|

(2.17) xI[e, € m([w,0]4-1) or e, € m,([ o, alr)]
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This is our basic estimate for g,. Write I,(w, o) for the indicator function
in the right-hand side of (2.17). Then by (2.8) and Schwarz’s inequality,

)

vp(do)|t(ey, ®) — t(ey, 0')|Ik(w»0'))

E(M|# 1} <E

SE{

( A kvk(do)gk(w,o>)2

,

k

(2.18) sE{fﬂ v (do)|t(ey, w) — t(ey, o) I(w, o)
xfnkvk(do)lk(w,o) ze}
= E{/;) vi(do)|t(ey, ©) — t(es, o) ' L(w, 0) yk—1} .

Now
[ m(do)lt(e, ) = t(es, @) [ Ty(w, 0)

is a function of wy,..., w, only; the o-variables all have been integrated out.
Analogously to (2.6) we have

E{fn n(do)|t(e,, @) —t(ek,a)|2lk(w,a)9,;-1}

= [F(day) [ wn(do)lt(er, @) = t(er, o)

(2.19) L(o,0)

= [F(doy) [F(day) [ viar(do)|t(es, @) = t(es, o)

XIk(w, 0').

In the last step we used the fact that v, can be written as the product
measure F X v,,; on R, X Q,,; = R, X Q, ;. Let us write

Jy(0) = I[e, € m(o)].
'Then )
L(w,0)=J([w,0]i-1) V([w,a]r)
(2.20) = (@10 Op_ 1,04, 0% 15---)

ka(wl,...,wk_l, C()k,(Tk+1,...).
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Recall that t(e,, ) = w,, t(e,, o) = 03, so that
2
It(ek’ w) — t(ey, O')I Li(w,0)
2
< 'C()k - O'kl {Jk(wl,..., wk_l,a'k,ok+1,...)

ka(wl,..., Wy _1, W, Uk‘f’l"")}'

Clearly the right-hand side is symmetric in o, and o, for fixed
W1y eey Wp_1,0k41, Opigs--- (@s a matter of fact, this is true also for the
left-hand side). It is also clear that on {0, < w,} or on {t(e,, o) < t(e,, w)} we
have

(2.21) [t(ey, ) —t(ey, )| <t(e,, ),

(2 22)Jk(wl,...,wk_1, [ Uk+l"") VJk(wl,...,C()k_l, wk,o'k+1,...)
=Jy (@1, 041,04, Opins---) = ([0, 0 ]4-1).

(2.22) simply says that if e, belongs to the optimal path in configuration
[w, 0],_; or in configuration [ w, o ],, then it will belong to the optimal path
in the configuration that gives the lower value to t(e,). Substituting
(2.19)-(2.22) into (2.18) we find

E{A}|F -1}

<2[  w(do) [[  F(dey)F(doy)t*(es, 0)Ti([w, o la-1)

(2.23) <2[F(dwy)t*(er, 0) [F(doy) [ wirs(do)i([@,01i-1)
[because J,([ @, o ];-1) is independent of w,]
= 2fx2 dF(x)P{e, € m,(w)|F_,} [asin (2.6)].

The right-hand inequality in (1.13) now follows easily from (2.23). Indeed
w 2
Uz(ao,n) = E{ZAk}

1

< Y EA? (Fatou’s lemma and the martingale property)

1
(2.24) < 2'/‘x2 dF(x) %E{P{ek € m(w)lF_1}}
— 2 x? dF(x)E{ZI[ek < Wn(w)]}
k

= 2fx2 dF(x) E|m,( w)l,
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where |7| denotes the number of edges in 7. So far we have not used (1.11).
This is only needed to conclude that

(2.25) Elm| < Cyn,

which, together with (2.24), will of course imply the right-hand inequality in
(1.13). (2.25) itself is immediate from Kesten [(1986), Proposition 5.8]. In fact,
for any a > 0, y > 0,

P{|m,| > yn} < P{a,, , > ayn}
(2.26) + P{3 self-avoiding path r starting at 0 of at least
yn steps but with T'(r) < ayn}.

With r, as in the lines following (1.9), we have

n
(2.27) P{a, , > ayn} < P{T(r,) > ayn} < P{Zti > ayn} .

1
Proposition 5.8 of Kesten (1986) shows that for suitable @ > 0 the second
term in the right-hand side of (2.26) is at most C, exp(—C;yn) for some
C; > 0. Therefore,

El|m,| = nj;) P{|m,| > yn} dy

Il
I
S|
—_——
M=
oy
~
+
o
w
A
0
S

Thus (2.25) and, hence, the right-hand inequality of (1.13) hold. The left-hand
inequality in (1.13) will be postponed until Section 4. O

ProoF OF (1.15). We have set up matters such that (1.15) follows fairly
easily from Theorem 3 after a simple truncation argument, which is given in
the next lemma. Let n be fixed. Define

R 4d
(2.28) t(e;) =t(e;)) N —logn
Y
with y as in (1.14). Passage times and related quantities, when defined in

terms of the 7 instead of the ¢, will be denoted by the old symbols decorated
-with a caret. For example, if r = (e;,..., e;), then

k
T(r) = ;f(ei);

dy , = inf{f’(r): r a path from 0 to nfl},
#, = optimal path for 4, , [compare (2.14)].
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LemMa 1. If (1.11) and (1.14) hold, then there exist constants 0 < C; < ©
such that

(2.29) P{frn is not contained in [—Cln,Cln]d} < 8e Can,
(2.30) Pllay , — Go ol = x} < 8eC2" + Cye~ /D% x>0,
and

(2.31) |Ea,, , — Ed, ,| < C,.

PROOF. The probability in the left-hand side of (2.29) is bounded by
P{#,| > Cyn} < P{&,,, > aCyn}
+ P{ 3 self-avoiding path r starting at 0 of at least
(2.32) C,n steps, but with T'(r) < aCln}

n
< P{Zti > aCln} + Cze Con,
1

exactly as in (2.26), (2.27) and succeeding lines. Note that the last inequality
is true for some Cj,Cy independent of n, even though the distribution of #
does depend on n. This is so because for any constant C, t(e) = t(e) A C for
large enough n. Thus also T'(¢) > X, ,{t(e) A C}, and it suffices to apply
Proposition 5.8 of Kesten (1986) when X(e) there is replaced by t(e) A C for
C =1, say. Now we use (1.14) for the following standard large deviation
estimate:

n
(2.33) P {Zti > aCln} < e~ 7%Cin( Eevh)"
1
n
= [e‘“"’clfe”‘F(dx)] .
If we choose C, so that the expression in square brackets is less than e !,
then we find that the probability in (2.29) is bounded by exp(—n) +

C; exp(—Cgn). This proves (2.29).
To prove (2.30) and (2.31) note that

0< Qo,n — &O,n =< T(ﬁ-n) - T(%n)

4d
= Y {t(e) —E(e)} < X t(e)I[t(e) > 710g n]

eedr, eedr,

(2.34)

[The second inequality holds because 4, , = T(#,) and a, , < T(r) for any
* path r from 0in né&,.] If #, € [=C,n,C;n]?, then the last member of (2.34) is
at most

Y t(e)I[t(e) > %log n]

ec[—C;n,Cin]?



310 H. KESTEN

Consequently,

Pla,,, — 6o, ,l = x} < P{%n is not contained in [ -C;n, Cln]d}

2.35
(2:39) +P{§til
1

4d
t, > —log n] zx} ,
Y

where
(2.36) M = number of edges in [ —C;n, Cln]d ~ d(2C1n)d.
Therefore

M
P{Z)t,.l
1

4d
t; > —log n] > x}
Y

M
<e (/2= (e(v/z)y - l)F(dy)]

1+ f
y>4(d/y)log n

(2.37) "
< e_(7/2)"[1 + e 2dlog ”feVyF(dy)]

< exp{— %x + Mn'zdfe”F(dy)}

(2.30) follows from (2.35), (2.29) and (2.37).
(2.31) follows from (2.30) plus the additional estimates [see the lines
following (1.9) for r,]
0<dy,<aq,=<T(r,)
and [cf. (2.27)]

P{la, , — G, ,| = yn} < P{T(r,) = yn}
. =P > <e V| [e"*F(dx
(2.38) {;tl>yn} <e [fe ( )]

< e—(‘y/Z)yn
for y > some y,. O

Now we can prove (1.15). By Lemma 1 we have for xVn > 2C,,
P{|a0’n - an’n' 2 x‘/z

X
SP{'ao’n - do’n' > Z\/;}

X
+ P{|do,,, — Ed, | = Z‘/;} .
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The first term in the last member is at most 3 exp(—(C,/Cjy)x) for x < Csn.
(1.15) will therefore follow as soon as we prove

x
2.39) Plla, , — Ed, | = —Vn} < C,exp(—Cgx) for x < Cysn.
o,n 0,n 4 7 8 5

The remaining part of the proof deduces (2.39) from Theorem 3.
As in (2.1)—(2.3),

[o2]
Qo,n — an,n = ZAk
1
with

Ak = E{do,n|'7k} - E{&O,nl‘%z—l}'

Moreover,

defines a martingale. We shall now verify the hypotheses of Theorem 3 for
the martingale. .

Note that replacing ¢(e,),a,, and A, by i(e;), 4, , and A, merely
amounts to changing the distribution F to

A 4d
F(x) =F(x) vl[x > TIOgn].

Therefore, by (2.12), (2.8) and the definition (2.28) of £,

" N 8d
|A,l < 2 max(supp F') < —log n.
Y

This is (1.24) for
8d
¢c=—logn.
Y

Furthermore, by (2.23),

E{&1%, 1} < 2 [x*F(dx) Ple, € #,( )| 1)

< 2 [x?F(dx)Ple, € #,(0)IF_1).
Thus (1.25) holds with
’ Uk = Djk,

where

D =2[x*F(dx), Jy(0)=1I[e, € 7(v)].
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We next take C > 0 as in Proposition 5.8 of Kesten (1986) and
2D -
(2.40) Xy = n—ﬁlog{fe F(du)} .
Clearly this satisfies (1.26) for large n. Finally, we verify (1.27). We have
LU, =D} I[e, € ()]
1 1

= D|#,(w)| = D X length of 7,( ).
Moreover, as in (2.32) and (2.33),

(2.41)

P{#, ()l =y} < P{iti > Cy}
1

+ P{EI self-avoiding path r starting at 0 of at least

(2.42) N
y edges, but with T'(r) < Cy}

< e_ycy[fe“F(du)] + Cqye™ Cuo¥

[by Proposition 5.8 of Kesten (1986)]. For y > x,/D and x, as in (2.40), the
right-hand side of (2.42) is at most

e (7/2Cy Cge—cloy'
Therefore, (1.27) holds with C; = (1 + C,) and
yC Cyo
=— A —.
2D D
Thus, by (1.29) (applied to &, , and to —d, ,),

C,

. R 1 C, «x
P{'ao’n _an’nlzx}3203(1+cl) 1+ 6‘2‘ eXp e

X

for

n > some n, and x < C;3n%2.

This is just a reformulation of (2.39) and therefore proves (1.15) for n > n,,.
For any fixed n < n, and all x < Cyn,, we can still obtain (1.15) by raising
C;. O

We now prove (1.17) and (1.19), basically by using subadditivity properties.
First we note that from

Eag pim < Eay , + Eag )
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it follows that Ea, , > nu [cf. Hammersley and Welsh (1965), (4.3.5)]. There-
fore, by (1.15),
P{ao’n S nI.L - x\/—n_} S P{ao’n - anyn S _x\/-n'_} S Cge_c4x

for x < Csn. This restriction on x may be dropped because a, , > 0. Thus
(1.17) holds.

Next we turn to (1.19). For a general unit vector ¢ [i.e., a vector with
€]l = 1; see (1.30) for || £]]] we pick for each n a lattice point v = v(n, ¢) such
that [with |w| = ||lw|l.; see (1.30)]

(2.43) lu(n, £) — né| = min{lv — nél:ve 29} < 1,

and define

(2‘44) an,n+m(§) =T(v(n’§)’v(n+m, g))

Then again

(245) aO,n+m(§) Sao,n(f) +an,n+m(§)

and [cf. Cox and Durrett (1981), page 592; Kesten (1986), pages 158—160]
aO,n( f) . 1 . .

(2.46) — . convergesa.e. and in L' to a limit, u( ¢) say.

Because v(m, £) may differ from v(n + m, &) — v(n, £), it is not necessarily
true that a, ,,,(¢) has the same distribution as a, ,,(¢). However, as one
easily sees from (2.43), we do have

lv(n + m, &) —v(n, &) —v(m, £)| <3,
and therefore, a, . ,(£) is stochastically smaller than

o, m(€) + L ™t(e),

where =™ is the sum over all edges of Z? within distance 3 from v(m, &).
Combined with (2.45), this gives for some constant C,,

EaO,n+m( £€) < an,n( &) + Ean,n+m( £€)
<Ea, ,(£¢) + Ea, ,(¢) + Cy.

Thus Ea, ,(¢) + C, is a subadditive sequence and

(2.48) Bay,,(£) + Cy > nu(£).

The proof of (1.15) did not rely on any special properties for the directions
along the coordinate axes. We therefore obtain for any unit vector ¢ the
analogue of (1.15):

(2.47)

P{IaO,n( ¢€) — Eay (€)= x\/;}

< CzeC* for x < Cyn,
with C; — C; independent of ¢. Hence, we also have, analogously to (1.17),
Plag,,(£) —np(€) < —=x/n}

(2.49)

(2.50) 2
< Cye~Ci*/2 for ——= < x < Cyn.
n
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By raising C, we may ignore the restriction x > 2C,/ Vn .
Next note that

{ag, (&) <t} ={T(0,v(n, ¢)) <t}
= {v(n, &) € B(%)}.
This combined with (2.46) and Theorem B shows that

(2.51)

(2.52) BOO{A§:A20}={A§:OsAs ! }
. w(€)

Moreover, for each fixed direction &,

Pl oe) <)

(2.53) = P{aO,t(1+e)/p.(§)( §) < t}

- _d+e) t
< {ao,t(1+e)/;4(§)(§) T ou(é) u(g) —e } ’

where for brevity v(A, ¢) and a, ,(¢) have been written for v(lA], £) and
a1, (£), respectively. (2.53), together with (2.50), gives

P{ ( MGLRL g)eB(t)}

2.54
(2.54) c, w(e) |V
< Cyexp —?8t t(l_'i‘&‘)—
for
t(1+ )| *?
S Cg{——— .
et < 5{ M(f) }

Basically this shows that for each fixed direction &, B(t) N {A&: A > 0}
behaves as stated by (1.19) [take & = x¢~1/2 and use (2.52)]. To obtain the
estimate (1.19), simultaneously in all directions, we introduce the following
set of vertices “near the boundary” of (¢ + xv¢)B,:

A(t,x) = {ve Zd:inf{lv—ylz y € (t +xVt)aB,} < 1}

where o7B0 is the topological boundary of B,. Any path on Z¢ that starts at
the origin and leaves (¢ + xV# ) B, must contain a vertex in A(¢, x). Therefore,
if B(t) is not contained in (¢ + xV¢ t)B,, then B(¢) must contain at least one
, vertex in A(¢, x). Note that the number of vertices in A(t, x) is at most C,,¢¢
for x < V¢. For the remainder of this proof we fix a vertex v in A(¢, x) and
estimate P{v € B(¢)}.

Fix v e A(¢, x) and set £ = v/||v|| [|[v]l stands for [lvl2; see (1.30)]. Because
v € A(t, x), there exists a y € (¢ + xVt) 9B, with |[v—y| <1 and hence
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lv — yll < d'/2. Set further n = y/||yll. Then, (2.52) implies
(2.55) Iyll = (¢ + /) —
. y = + X —_—
m(m)
We claim that for some C,; < », independent of £, ¢, this implies
(2.56) loll - (¢ + 2¢)——| < ©
. vl — (L +xvt ) ——| < .
n(§) '
To see (2.56) we need a continuity property of u(-), which is essentially given
in Kesten [(1986), page 159]. To start with, note that
(2.57) T(0,v(n,¢)) <T(0,v(n,n)) + T(v(n,n),v(n,£))
and, by (2.43),
l(v(n, &) —v(n,m))| <|v(n, &= )|+ 3 <nl¢—nl+ 4.

Therefore,

ET(v(n,n),v(n,£)) =ET(0,v(n,¢) —v(n,n))
d(nl¢é—nl+4)

1

By virtue of (2.46) and (2.57) we therefore have

M(g) < /J*(n) + Clslf_ nl.
By interchanging the role of n and ¢ we obtain

(2.58) | u(€) — w(n)| < Ciel€ — nl.
Note also that for some C;; > 0,
lImll=1

this follows from convexity of B, as in the lines following (6.10) in Kesten
(1986) or by (3.16) in that reference. Also by (2.58) or (3.12) in Kesten (1986),

(2.60) IISllllp m(m) < Cus.
nll=1
Finally, [v — y| < 1, |lv — 5|l < d¥/2, (2.55) and (2.58)-(2.60) imply
1 w(m)
[lvll (&) ’” = llyll——— w(2)
Iyl
<dV? + -
< (§)|M(§) {L(n)|

v y
<d? + Cygllylll€ =l = d'? + Cw"y”’m ) m‘

Y e ” o | 121w =) + (vl = il

< Cy;.
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This completes the proof of (2.56).

Now take
(2.61) n= lt(l + i)ij
Vvt ) u(€)
By (2.56),

[n —lvll| < Cys + 1
and therefore
lv—v(n, £) < lv—nél +|né— v(n, £)|
<llv—nél+1<(Cy + 2).

In particular, there exists a path 7 = @w(v) of at most Cy, := (C,5 + 2) edges
that connects v to v(n, £). This implies that

|T(0,v) — T(0,v(n, £))|
< Y t(e)

e T
< Cy, max({t(e): e within distance (Cy; + 3) from (¢ + xvt)dB,}.

Again the max in the right-hand side is over at most C,,¢¢ edges, so that

P{IT(O,v) —T(0,u(n, £))| = %ﬁ}

x
d
(2.62) < Cyyt P{tl = 3Cy ‘/Z}
d _ Y YuR
< Cyt exp( 3020x\/t_)fe (du).

Finally, if v € B(¢) and |T(0,v) — T(0, v(n, £))| < (x/3Wt, then T(0,v) < ¢
and (by the choice of n)

aO,n(f) = T(o’v(n’ f)) <t+ g‘/t_

(2.63) <nu(€) +p(é) —23—x\/?

<np(¢) - g‘/'?

provided xv# > 6Cyq [cf. (2.60)].
Finally, we obtain from (2.63), (2.50) and (2.62) for x < ¢t'/2,

P{ve B(t)) < P{IT(O,‘v) —T(0,v(n, £))| > gﬁ}

+ P{ag,o(€) < nu() - 3E)

< Cyyt? exp(—CyyxVt ) + Cgexp( —Ca3x).
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Because there are only C,,t? vertices v in A(¢, x) and, as we saw before,

{B(¢t) ¢ (t+xvt)Bs)c U {veB()},

veA(t, x)
this implies (1.19).

3. Centering at nu. We already proved the one-sided bound (1.17) for
deviations from nu. The bound (1.18) for deviations in the other direction
will follow immediately from (1.15) and

3.1 Ea, , — np < C,n%%(log n)"?,
0,n 7

which is the right-hand inequality in (1.16). We do not prove (3.1), but
instead concentrate on its analogue for arbitrary directions ¢, to wit

(3.2) Ea, (&) —nu(£) < Con' /@4 9(log n)t/ @+

[cf. (2.44) and (2.46) for notation]. An improved version of (3.1) is given in
Alexander (1991). Once we have (3.2), (1.20) can be deduced from the same
“duality relation” (2.51) that was used in the last section to prove (1.19) from
(2.50).

PROOF OF (3.2). This proof is very similar to the proof of Lemma (5.68)
and (5.18) in Kesten (1986). However, the argument on pages 212-214 of this
reference uses special symmetry properties with respect to the coordinate
axes. We therefore must modify (in the following Step 2) the argument for
Lemma (5.68) of Kesten (1986). Analogously to pages 210 and 211, the idea of
the proof is to show that if for some fixed n and unit vector &, Ea, ,(§) —
nu(€) = A for a certain (comparatively) large A, then Pla, ;,(¢) < Inu(¢) +
IA/4} decreases exponentially fast in I. This contradicts (in) 'a, ;, = u(§)
and will allow us to conclude Ea, ,(£) < nu(§) + A.

We break the proof into three steps. Throughout, ¢ will be a fixed unit
vector, but the estimates will be uniform in &.

STEP 1. For some integer M, let U, ..., U, be all the vectors with integer
components and |U| = M. For n > M define

(3.3) A(M, n) = min{ip(k)ET(o, Uk)} ~nu((£),
1

where the minimum is over all choices of p(k) € Z,={0,1,...} such that

(3.4) Y p(k)U, —né| <M.
1.
In this step we show that for / = 1,2,... and some constant C; (which is

independent of M, n, I and ¢),
(3.5) A(M,In) =IA(M,n) — C MY 4p@-V/d forn > M > pl/@+1),
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To prove (3.5) we also introduce a subset V;,...,V,_ of the U’s, such that
for each U, there exists a j(i) with

(3.6) ] |Uz J(L)I < M(d+1)/d —1/d
For instance we can take for the V’s the vectors V = (V(1),...,V(d)) with

[V(r)l=M forsomer,
[V(s)l<M and |M@*tV/dp-1/d||V(s) fors#r

(note that for our choice of n and M, M(@*V/4p=1/d > 1), Thus, the number
of V’s that we need satisfies

M d-1 n \(d-1/d
(3.7) O'SC2 W) =C2(M) .

Now let p(k,1) € Z* be such that A(M,n) is achieved with these coeffi-
cients; that is,

(3.8) A(M,In) = ¥ p(k,1)E(T(0,U,)} — Inu(£),
k=1
while
(3.9) Y p(k, 1)U, —Iné| <M.
E=1
First we derive the rather crude bound
v In

(3.10) Y p(k,1) <Cy—

E=1 M

for some constant C; < « that depends on F and d only. To see (3.10), let
£(7) be the ith component of ¢ (this should be distinguished from the ith
coordinate vector, £;) and consider the sum

In| (i)l

(3.11) Z l J( gn( (i) M)¢;.

Because
|(sen(() M) ¢ | =M

sgn(£(i))M¢; is one of the U’s and the sum in (8.11) is therefore of the form
Zlq(z) iy for some a(i) and q(z) = |In| £(i)l/M ]. These satisfy

<M.

(3.12) i)U,, — Iné
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Therefore,

d
A(M,In) < ¥q(i)ET(0,Ua(i)) —Inu(¢)
d
(3.13) < §q(i)ET(0, U.)

d
< Y.q(i) dMEt, < Cyln.
1

In the third inequality we used that 7'(0, U, ;) is smaller than 7'(r) for any
path r from 0 to U, of L¢_,|U, (/)| steps; in particular, T(0,U,) is
stochastically smaller than T,

On the other hand, there exists a constant C5 > 0 such that for M > 1,

(3.14) ET(0,U,) > C;M foralli.

To see this, note that if, for instance, the first coordinate of U, equals M, then
[v(1) is the first coordinate of v]

(3.15) T(0,U,) > by, 5 = inf(T(0,v): v(1) = M}.

But it is well known [cf. Smythe and Wierman (1978), Section 5.3, or Cox and
Durrett (1981), Theorem 6, or Kesten (1986), pages 166, 167] that

(3.16) - u ae.

M

Thus (3.14) holds for large M. However, for any fixed M, (3.14) is clear, so
that we can obtain (3.14) for all M > 1 by lowering C;.
It follows from (3.13), (3.8) and (3.14) that

Cyn>A(M,ln) > Y. p(k,1)CsM — Inpu(€)
k=1
and hence

n 1 In
Y p(k,1) < 5 (Co+ sup u(n)|37,
ho1 Cs \"* " et M

which is (3.10) [recall (2.60)].

Now that (3.10) is established, we replace Lp(k,)U, by Lp(k, )V,
Then, by (8.6) and (3.10),

| o0k, 00, = Tp(kDViw |

(3.17) l
n
< C _M(d+1)/d —1/d.
3M n
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Moreover,
\gp(kJ)ET(o, Uo) = Tp(k, O ET(0, Vi)
In
<Cyys m]?xlET(O, U,) — ET(0,V,y)|-
As in (2.57),

|ET(0,U,) — ET(0,V,))| < ET(Uy, Vi)

In addition, there exists a path of at most d|U, — Vj,,)| < dM@*D/dp=1/¢
edges from U, to Vj,,, so that

(3.18) ET(U,, Vi) < dM @+ D/ dp=1/dEg,
Thus
2 p(k,1)ET(0,U,) — X p(k,1)ET(0,V,))
(3.19) k k
< CglMV/dp@d-b/d,
Now set
r(j’l)= Z p(k,l)
k with j(k)=j
and
r(j,l
(3.20) s(j)=l (Jl )|
Then
(3.21) Zp(k DV = L r(i,D)V;
Jj=1
and
. 1 1 .
|Zs()V; = né| < T Tlis() = rG DIV + 7| Er (DY, = tng
J J
]_ o
<7 LM + 7| Dotk Vs, - Toth, 00|

+7‘§p(k,l)Uk - ln§|

. M
<Moo+ CaMYdp@d-b/d 4 7 [by (8.17) and (3.9)]

< C,MYn@=-b/d [py (3.7)].
These estimates quickly imply (3.5). Indeed, as in (3.11) and (3.12) we can
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now find some #(i) € Z* with

* d
(3.22) Y t(i) < CgM~(@-D/dp@d-1yd,
1

<M.

J

d
;t(i)Ua(i) - (ZS(J)VJ - nf)

Then

J

Ts(i)V; = Lt(i) Uy - nf’ <M.

Thus Ls(j)V; — Zt()U,;, is a sum of the form ¥ p(k)U,, which satisfies (3.4).
We may even take the p(%) positive because — U, equals U, for some /. Thus,
by definition

A(M,n) < 3.s(J)ET(0,V;) — Lt(i)ET(0,U, ;) — np(€)
(3.23)
< Y t(i) MEt, + %{Zr(j,l)ET(O,Vj) — Inp(¢))

[cf. the third inequality in (3.13) and (8.20)]. Furthermore, as in (3.21),
Y r(J,1)ET(0,V)) = Y p(k,1)ET(0,V;y4)
k

J

< Y p(k,1)ET(0,U,) + CsiMY nd-1/d [by (3.19)]
k
=A(M,In) +Inu( &) + CglMY dnd-V/2 by (8.8)].
Therefore, by (3.22) and (3.23),
A(M,n) < C,MYVdpd-b/d 4 ;A(M, In).
This proves (3.5).
STEP 2. Here we prove that for suitable constants 0 < C; < © (indepen-

dent of n, M, I and £) we have for all large M and n*/“@*D <M < n and
=2,

l
P{ao’ln(f) <lnp(¢) + EA(M,n)}
< Cyexp(—In)

3.24 _n ‘
(3.24) + Cy exp {Cloﬁlog M + CpyIM@-d/@dDpd-1/d

IN*(M,n)
11 an/Z
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The proof of (3.24) is a minor modification of pages 210 and 211 in Kesten
(1986). An attempt has been made to keep the notation the same as in this
reference. [The proof here corresponds to taking N = 1 in Kesten (1986); the
contribution of the form

NQ(d_l)P{tl + - +tQ[dN/2] Zy}

can be dropped in this situation and will therefore not appear in the argu-
ment that follows.] Let r = (v, = 0, v,,...,v, = v(in, §)) be any self-avoiding
path from 0 to v(ln, ¢) with passage time T'(r) <Ilnu(€&) + (I/2)A(M, n).
Then we successively define the indices

7= 0, TL-+1=min{t>'ri:|vt—le|=M}
(if such a ¢t exists; if no such ¢ exists, 7,,; = ©). We define
Q = max{i: 7, < ©}

and

Then by definition of @,
Ivj—vTQI<M forryg <j<p

and, in particular,

(3.25) |UTQ —Iné| < |U1Q —v(ln, &)+ v(ln, &) —Inél <M.
Moreover,

(3.26) la; —a;, 4l =y, —v, _|=M

so that

a; — a;_, = one of the U, of Step 1.
First we take care of the paths with
In
(3.27) Q= C12M

for a suitably chosen (large) constant C,,. To do this, note that by (3.26), r
must have at least M edges between a,_; and qa,. Thus, if (3.27) holds, then r
has at least C;,In edges. On the other hand, by (3.13) with / = 1 and by
(2.60),

l
Inu(€) + EA(M,n) < Cyln.

But, by Proposition 5.8 of Kesten (1986), we know that we can choose C;, so
large that
P{El self-avoiding path r of at least C,,In edges but with T'(r) < C,3in}

< Cge™'m.
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Thus the contribution to (3.24) from all paths satisfying (3.27) is at most
C, exp(—In) and these paths can be ignored from now on.

For the time being we now fix @ < Cy,In/M and ay,...,a, such that

(3.25) and (3.26) are satisfied. Later on we shall sum over all possible values

of @, a,,...,aqy. We denote the number of i € [1, @] with a; —a;_; = U, by
p(k). The p(k) are therefore also fixed at the moment. Then we have

P {there exists a self-avoiding path r with v, = a;, 1<:1<Q,

' l
(3.28) and satisfying (3.25) and T'(r) < Inu(¢) + EA(M’ n)}

Q l
sP{ZT(ai_l,ai) <lnp(€) + EA(M,n)} .
1

By Theorem 4.8 in Kesten (1986) and the illustration following it, the last
probability is at most

Q l
(3.29) P{ZT'(ai_l,ai) <lnp(€) + EA(M’ n)} )
1
where the T'(a,_;, a;) are mutually independent copies of the T'(a;_,, a;). In

particular, if a; — a;_; = U, then T'(a;_,, a;) has the same distribution as
T(0,U,). Therefore, for any & > 0, (3.29) is at most

6l Q
exp(&lnu( &) + ——2—A(M, n)) []Ee 37 @ad
(3.30) 1

6l
= exp(Slnu(f) + —2—A(M, n))l;[[Ee_‘sT(o’Uk)]p(k).

In addition (3.25) says

(3.31)

Q
Y(v, —v, ) —ing
1

-|Zp(k)U, ~ ing| < 1,
k

so that by definition of A,
¥ p(k)ET(0,Uy) > A(M, In) + Inu(£)
> IA(M,n) +Inu( &) — C{IMY 4n@-b/2 [by (3.5)].
Substitution of this estimate into (8.30) shows that the right-hand side of
(8.28) is bounded by

8l ’
. exp| — — A(M,n) + 8C,IMY/ dpd-b/d
(3.32)
X l;[ [E exp(—8{T(0,U,) — ET(0,U,)})] .



324 H. KESTEN

It remains to estimate the product in (3.32). Nete that X p(k) = @, the
number of a; — a;_, appearing above. We now write

Eexp(-5{T(0,U,) — ET(0,U,)})

Y,
(3.33) = eXP(Cu’Q—A(M ) n)) + exp(8ET(0,U,))

X P {T(O, U;) - ET(0,U,) < - %“-ZA(M, n)} .

€, will be chosen such that for large enough M, n > M and [ > 2 we have

Cu

Q

Such a Cy, > 0 exists, because by (3.13) (with [ = 1), IA(M, n) < C,In, while
by (3.31),

1 1
(3.34) lA(M, n) < EMEtl and Cl4 S Z.

Q
QM = Zlvfl — v,,L_ll >In—-M,
1

whence, for n > M and [ > 2,

3.35 In 1 In
(3.35) Qz—ﬁz— >S5

We now estimate the last probability in (3.33) by means of (2.49) with ¢
replaced by ¢ := U, /|lU,|l and n by 7 ==\lIIUkIIJ € [M, dM]. Note that a, ,(£)
= T(0,v(7, £)) and that

(7, €) — Uyl < (7, &) — RE| + IRE - U, E| < 2.

Therefore, U, and v(7, &) can be connected by a path of at most 2d edges and
T(0,v(7w, £)) — T(0,U,) is stochastically smaller than ¢, + ::- +#,,. In partic-
ular,

P{T(0,v(7, §)) — ET(0,v(7, &)) — T(0,U,) + ET(0,U,)| = 5)
2d
(3.36) <P {E (t; + Et;) = y}
} 1

2d
< e VYeldvEh {feV“F( du)} .
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We thus obtain from (2.49) that the last probability in (3.33) is at most
=z - Ciy
P{IT(O,v(n, £)) - ET(0,v(7, £))| = 20 MM, n)}

C
+ (l.h.s. of (3.36) with y = 2—3IA(M, n))

(3.37)
<C LGy M,n)|+cC L™
= Lz exp 2Q—1/2 ( n) 15 €Xp 2Q
Cis
<2Cjzexp T QM —=IA(M,n)|,
provided
IA(M,n)
W <C;M.

This proviso holds automatically for large M, n > M and [ > 2, by virtue of
(3.34).
We now use (3.37) to obtain that the right-hand side of (3.33) is at most

8l
exp(Cl4§A(M,n)) + 2C, exp(8 dMEt, — ——5IA(M, n))

QMI/Z

[compare the third inequality in (3.13) for the estimate of ET(0, U, )]. Finally,
we choose 8 such that the two exponents here become equal; that is,

Cie Cy,
5= aagiEl MM, n)[dMEtl - —Q—ZA(M n)]

< QM1/2 ——IA(M,n)[ MEt;]™" [by (3.34)]
c, o
< 22 [by (3.35) and (3.13) with = 1].

Using that
8l 8l pekY
exp( = A | - IE[GXP(‘%MM’”))] |
we conclude that (3.32), and hence (3.28), is bounded by

1)\l ®
eXp(CIC”lM(Z_d)/(zd)n(d_1)/d) 1;[ 1+ 203)exp((C14 -3 )—Q—A(M, n) )]

12A’2(M, n)
—i

< exp(C,Cy, IM @~/ CDp@-D/d)(1 + 2C,)? eXP(_Cls

(recall that C,, < 1/4).
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Finally, to estimate (3.24) we have to sum our estimate for (3.28) over all
possible values of @ and a,,...,a,. Because we already estimated the
contribution to (3.24) from all paths satisfying (3.27) we may restrict our-
selves to @ < Cy,in/M. For given a;, a;,,; must satisfy |a,,; — a;/ = M, so
that there are at most C;o M“~! choices for a;,; when q; is given. Hence, for
given @, there are at most

(CroM?1)*
choices for a,, ..., ay. It follows that the left-hand side of (3.24) is at most

Coexp(—in) + ¥ [CiuoMi~1(1 +2Cy)]°
QR=<Cypin/M

12A2(M, n)
X exp {CIC”lM(Z‘dV(Zd)n(d‘1)/d - ClS W}

in
< Cyexp(—In) + Cyexp {Cloﬁlog M + C IM@-/@dpd-1y/d
Cis IN2(M,n)
C,, nMY?
This proves (3.24) with C; = C5/C,.

STEP 3. It is now easy to complete the proof of (3.2). If n/@*D < M < n
and

A?’(M,n) nlog M
WM172 10 ( i
then (3.24) shows that

(3.38) Cu + M@-d)/@d)yyd-1)yd )

l
P{aoyln(g) <lnp(€) + EA(M,n)} —>0asl — o,

This contradicts (In) 'a, ;,(£) - u(£) w.p.1. Therefore, (3.38) fails for large
M, which gives

1/2 1/2 1/(2d
(3.39) A(M,n)s(cm) n{(ng]‘f)__Jr(M)/ }

For given n, we may take any M in [n/¢*D n]. We more or less minimize
the right-hand side of (3.39) by taking

) (3.40) M= lnz/(d”)(log n)2d/(d+2)l'
With this M we find
(3.41) A(M, n) < Cyyn@d+3/@d+4(Jog )t/ @+,
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The remainder is just the subadditivity relation
(3.42) ET(u,w) <ET(u,v) + ET(v,w)

for any u,v,w € Z% By (3.41) and the definition of A(M,n) there exist
p(k) = 0 that satisfy (3.4) and for which

£ p(k)ET(0,0}) < np(£) + Cygn®* /@4 9(log m) /4",
1
Now let uy, us, ..., uy 1) be the vertices defined by u; — u,_, = U, for
kgp(n <is Zi:p(l).
Thus exactly p(k) of the differences u; — u;_; equal U,. Then (3.42) gives
Y
Ea, ,(¢) < ZI:ET(ui_l, u;) + ET(uy,v(n, §)),
where
v= o(h)
Thus
vy = Lo(k)T,

and by (3.4) and (2.43) [compare (3.18)],
ET(u,,v(n,£)) <dlv(n,¢) —u,lEt, <d(M + 1) Et,,

while
;ET(ui—l’ui) = Zp(k)ET(O,Uk)

<nu(€) + Cyntdtd/@d+9(Jog n)l/(d+2).

For the choice (3.40) of M, (3.2) follows. O

(1.18) is immediate from the right-hand inequality in (1.16) and (1.15).
Also, from (3.2) and (2.49) we conclude that
(5az) T{80n(6) 2 nu(£) + Con=V/E4log m) VT + i)
‘ < Cge™%* for x < Cyn.
As remarked before, (1.20) can now be obtained from (3.43) via the relation
"' (2.51). We merely have to estimate
Y P{T(0,v) > t}.

ve (t— Cgt@d+3/@d+4)(1og )1/ (+MYB
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For |v| small with respect to ¢, use [as in (3.18)]
dhl
P{T(0,v) >t} < P{Zti > t}
1

and the standard large deviation bound (2.33). For the other v, write again
&= v/|lvll, n = lllvlll and use that as in (3.36),

P{IT(0,v) —ao ,(€)| 2y} < P{t; + - +t30 2 5}
< e_”{fe”F(du)} Zd.

This, together with (3.43), will give a good upper bound for P{T(0, v) > ¢} for
all

ve (t _ C3t(2d+3)/(2d+4)(log t)l/(d+2))B0,

when Cj is large enough. We skip further details.

Finally, to prove (1.21), it suffices to restrict ¢ to the integers, because B(¢)
is increasing in ¢. But when ¢ is restricted to the integers, then (1.21) is
obvious from (1.19), (1.20) and the Borel-Cantelli lemma.

4. A lower bound for Ea, , — nu. In this section we give the proof of
the left-hand inequalities in (1.13) and (1.16), which are the last remaining
inequalities. For (1.16) the idea is to construct many paths from 0 to kn¢;
and to show that with high probability at least one of these has a passage
time not exceeding kEa, , — k% (a, ,). This will lead to an inequality of
the form

(4.1) nku < Eag 4, < kEa, , — k%0 (ay ,),

which quickly leads to the left-hand inequality in (1.16). Actually, we shall
replace a, , by the more restricted passage time

ag , = inf{T(r): r is a path from 0 to n¢; inside ( —2n,2n)d}.

For some % to be chosen later [see (4.10)] we now consider the minimal
passage time, T'(j), of all paths r from 4jné, to kné, + 4jné, that lie
entirely in the “tube” (—2n,(k + 2)n) X (4 — 2)n, (4 + 2)n) X
(—2n,2n)?2. One way to construct such a path r is to connect successively
Ing +4jng, to (I + Dné; + 4jné, inside the cube

((1 = 2)n,(I + 2)n) X ((4f — 2)n,(4j + 2)n) A>< (-2n,2n)%"%,

+for [ =0,...,k — 1. Denote the minimal passage time of all such connections
for a given j and [ by 7(I) = 7(l, j). Then 7(I) has the same distribution as
aj, ,- Even though, for fixed j, 7(0, j),...,7(k — 1, j) are not independent, the
variables 7(i + 41,j), { =0,1,... are independent because they depend on
pairwise disjoint sets of edges. Therefore, by the Berry—Esseen theorem [cf.
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Feller (1971), Theorem XVI.5.1] there exist two constants C;,C,; > 0 such
that

kEl|a} , — Ea} ,I°
k¥ %0 %(af )
implies that for fixed i = 0,1,2,3 and &,
p{ Y [r(i + 41,)) — Eat ] < k" (a} ,,)} >, > 0.
0<l<(k-1-i)/4

By the Harris-FKG inequality [cf. Durrett (1988), page 130] we then also
have

(4.2) <C

P{ Y [r(i+4,)) - Eal ]
(4:3) O<l<(k—-1-i)/4

k%0 (a}, )fori=0,1,2,3} > C;.

If the event in braces in (4.3) occurs, then

T(j)= Y 7(,j) <kEa},— 4kY%0(a} ,).
0<l<k-1
Thus (4.2) implies
(4.4) P(T(j) < kEa},, — 4k %0 (a§ ,)} = C3.

Next we shall prove the very crude lower bound (4.7) for o (af ,). Despite
the fact that we believe this bound to be very poor, we have been unable to
improve (4.7).

Note added in proof: C. Newman and M. S. T. Piza, as well as R. Pemantle
and Y. Peres, have now shown that o2(a,,) > C; log n.

LEMMA 2. Let X, X,,..., X, be i.i.d. random variables whose distribu-
tion is not concentrated on one point. Then

(4.5) inf 0'2{ min (X +c)} > 0.

C1,...,Ca4 l<i<2d

Proor. Without loss of generality we restrict ourselves to — <c¢; <
Cy <+ < ¢yq < . Now find an x, such that

(4.6) P{X <x4} >0, P{X>x,} >0 and o?(X|X <x4)>0.

Here o2(X|A) denotes the conditional variance of X, given that A occurs.
There exists an x, that satisfies (4.6), because the distribution of X is not a
one-point distribution. Now let E be the event

E={X, <xy, Xy >%0,..., X34 =%}
Then P{E} > 0 and because the c; are increasing,

min (X;+¢;)=X;+c; onkE.
1<i<2d
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Finally, by the independence of the X;,
o?(min(X, + ¢;)) = P{E}o? (min (X, + c,)|E)
l L

= P{E}o*{(X, + ¢,)|E}
= P{E}o*{X,|X, <x,} > 0. m]

We now show that this lemma implies for some C; > 0,
(4.7 o?(a} ,) = Cs.

The same argument gives a proof of the left-hand inequality of (1.13), but we
leave this to the reader. To see (4.7) we condition on all the ¢(e) with e not
incident to the origin. For X; we take the passage time of the edge from 0 to
¢ if i < d and of the edge from 0 to —¢,_,; if d <i < 2d. Also, for i < d (for
d <i < 2d), we take for ¢; the infimum of T'(r) over all self-avoiding paths
from ¢, (from — ¢, respectively) to n&; inside (—2n,2n)¢ and not passing
through any of the 2d edges incident to the origin. Then
. .
ag, n lgg;d{Xi +e},

because any self-avoiding path from 0 to n¢; has to go first from 0 to some
+¢; and to continue from there to n¢; without using any edge incident to 0
(otherwise it is not self-avoiding). If all edges not incident to 0 are fixed, then
the c; are also fixed, and the X are still i.i.d. Thus, by Lemma 2,

o2(a},,) = E{c?(a} ,|all ¢(e) for e not incident to 0)} > Cs,

as claimed.
Next we derive the upper bound

(4.8) Ela} , — Ea} ,I> < Cyno?(af,,).

This is easy, because [with r, the path along the first coordinate axis from 0
to n¢; as in the lines below (1.9)] for C5 > Et,, we have af , < T(r,),
Eaf , < ET(r,) < Cyn and

Ela,, — Ea} ,|° < CsnEla} , — Ea} ,|°
+ E{[T(r,) + ET(r,)]; la},, — Ea}, | = Csn)
< Cyno?(ay,) +8E{[T(r,)]’ + [ET(r,)]*; T(r,) = Csn}.

(4.8) for a suitable C, now follows from the fact that the last term decreases
exponentially in n for C; > Et, and from (4.7).
From (4.8) we see that (4.2), and hence (4.4) hold as soon as

C, 2 p?
(4.9) k> (—)

Cl Uz(ag,n) .
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After these preparations we are already to construct a path from 0 to kn ¢,
with a “small” passage time. Take

n?
o?(a,.)
for a C4 > (C,/C;)? to be chosen below [see (4.15)] and define

J = min{j > 0: T'(j) < kEa} , — 4k %0 (a} ,)}.

(4.10) k= [Ce +1

Then T'(J) is the passage time of some path, r(J) say, from 4Jné, to
kné&, + 4Jné, inside

(—2n,(k + 2)n) X ((4J — 2)n,(4d + 2)n) X (—2n,2n)%"2
We make this into a path from 0 to kn¢; by adding paths 7' and =" from 0
to 4Jn¢, and from kn¢; + 4Jné, to kng,, respectively. 7' is the path from
0 to 4Jn¢, along the second coordinate axis, and 7" is a path, similarly
chosen parallel to the second coordinate axis in the obvious way. Then
a§ o, <T(m") +T(J) +T(7")

<T(w') + T(w") + kEa} , — 4k %0 (a} ).

Now let s; be the path from 0 to 4jn ¢, along the second coordinate axis. Then
7' =s; and

(4.11)

T(w') < 8(Et,)Jn + [T(w') — 8(Et,)JIn]”

< 8(Et;)dJdn + fj [T(s;) — 8(Et,)jn] T
Jj=0

Because T'(s;) has the distribution of £}/"¢;, we obtain

[« 4_]n +
(4.12) ET(n') < 8n(Et))EJ + L E| Y ¢, - 8(Et1)jn] .
j=0 1

The T(j), j =0,1,..., are independent, because they depend on disjoint sets
of edges. Therefore by (4.4),

P(J=m} <(1-C§)"

and
(4.18) EJ < C;* < oo,

In addition, for any 6 > 0,
4jn It o  [4in
E[Zti —8(Et1)jn] =jnf P{Zti > (8(Et,) + x)jn) dx
1 0 1

Sjnfw[e—5x/4E{eSt1—26Ezl}]4jn .
0
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If we choose & > 0 so small that

E{eatl—sttl} <1-— C7
for some C; > 0, then we obtain

o 4jn +
E[ Yt - 8(Et1)jn]
j=0 |1

(4.14)

IA

Z Jn(]. - 'C7)4jnfwe_5jnx dx
j=0 0
-1
[6{1- 1 -cp*™)] .
Combining (4.12)-(4.14) yields
ET(n') < Cyn.

Of course, by translation invariance, ET(w") = ET(7’) and taking expecta-
tions in (4.11) finally gives

Ea} ;, < 2Cgn + kEa} , — 4k %0 (a} ,).
By definition, af ,, > a, ,, and by subadditivity,

aO,m

Eag ., = knp = kninfE
’ m m

Thus

n

Eaf , > nu+ 4k~ V% (af ) — 2Csz.
Note that Cg; depends only on C, and C,, but not on Cy [as long as
C¢ > (C,/C,)?]. Thus, with % as in (4.10) with C; so large that
(4.15) Cy/'? > Cg,
we find that for large n,

Ea} , —nu =2k Y% (a} )

4.16 20 %
(4.16) 206_1/20 (ab ) Zgg'
n n
Last, we show that

(4.17) Ea§ , — Ea,, < Ciyexp(—Cyn).

Clearly (4.16) and (4.17) will imply the left-hand inequality of (1.16). To
obtain (4.17) we note that

0< az,n —Qq,, < T(rn)I[aO,n < az,n]'
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Therefore,

Eag,n - EaO,n = (E{Tz(rn)}P{aO,n < ‘zg,rz})l/2

Ny 2\1/2
(4.18) = (E{Zt,.}
1

Pl/z{aO,n < az,n}
< CynPV*a, , <af ,}.

Moreover, if 7, is the optimal path for a, ,, as in (2.14), then
{ap, <aj,} C {wn is not contained in ( —2n,2n)d}
C {ao,n > gnu}

(4.19)
U {EI path v from 0 to n¢; thatis not

contained in (—2n,2n)? but has T(r) < 3nu}.

If there exists a path r such that the second event in the right-hand side of
(4.19) occurs, then its piece from 0 to the boundary of (—2n,2n)¢ or its piece
from n¢; to the boundary of (—2n,2n)¢ has passage time at most 3nu. Thus

(4.20) Play,, <a§ .} <Plag,, > 3nu} + 4dP{by , < inu},
where
by, = inf{T'(r): r a path from 0 to H,}
and H, is the hyperplane {x = (x(1),..., x(d)): x(1) = n}. (4.17) now follows
from (4.18), (4.20) and the exponential bounds for the right-hand side of

(4.20) in Grimmett and Kesten [(1984), Theorems 3.1 and 3.2] or Kesten
[(1986), Theorems 5.2 and 5.9].

5. Some martingale estimates. In this section we prove Theorem 3.
The proof will be broken down into several steps again. Most of these steps
have been used repeatedly in the martingale literature.

STEP 1. In this step we appeal to exponential bounds to martingales with
bounded increments. Let

N
(5.1) A= YE(M7,_,).
1

For the time being, assume that M, exists in the case N = . This will be
proven to be the case in Steps 2 and 3, which do not depend on this step.
Then, by Neveu [(1972), pages 154 and 155], for x, y > O,

X X
P{My — M, >x} <P{A >y} +P/{MN_M0> 5 + 5A}

xA
<P{A >y} + exp(—;),
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where A is the solution of

(A e —1—-ch x
(5.2) (1) = . =
A cA 2y
In our application we will choose
Vo
(5.3) yz —_—x
For this y we have [by (1.26)]
(5.4) T <1
. — <1,
y
and therefore the solution A of (5.2) satisfies
1 N e*—1—-—cr xc 1
—eA —mM— = — < —,
20T e 2y = 2

But for cA < 1 we also have

Consequently, under (5.4),

xc . x
cle > — orequivalently A > —
y e

and

(5.5) P{My — M, > x} <P{A >y} +exp(—%).

STEP 2. In order to apply (5.5) we need an estimate for P{A > y}. We
shall derive such an estimate by bounding the moments of a truncated
version of A. The argument is reminiscent of Dellacherie and Meyer [(1980),
Chapter VI.105].

Set

N
Z,= Y E{UIl#}, O0<I<N,
k=l+1

and for some z > 0, set

v=inf{l: Z, > z} (v = wif no such [ exists).
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We shall later take z = 2x,, but for the time being the value of z is not
important. Finally define

. vAN N
= L E{NIF 1} = LLE{MIF 1},
1 1

where
I, =I[v=Ek]
Clearly
(5.6) P{A >y} <P{v <N} + P{A >y}

In this step we estimate the second term on the right-hand side:
E{A"} = E[ZIkE{A%el‘?k—l}}
1

(5.7) < ) {FI [ 1, E{ Uk,l%e,-l}]}
1<k, k.<N

i=1

......

<! Z <k,<N {z— [Ik Uk’l%'_l}]}.

1<k;<k,<

Introduce the abbreviation

L= L E{i]:I[Ik Ukly_l}]}

Then

I,= > E {"1_11 [Ik,E{Ukil‘%m—l}]

1<k;< - <k,_,<N |i=1

xE{ Y LE{U % )%, 1_1}}

erkr 1

< r {L_ |1, E{U, |5, - 1} 24, - 1}

1<k;< - <k,_1<N

(In the last step we estimated I, by 1 and used a standard property of
repeated conditional expectations.) Now observe that I, =1 implies that
Z,_, <z, so that

1,Z, ,<I,z.
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Applying this for & = k,_, (in case r > 2), we obtain

I, < > _ISNE{r—l_Ill [IkiE{Uk,lgl.e,-—l}]z}

1<k;< - <k, i=

=zrr_1 Sz2rr_2 < e Szr_ll-‘l
N w [N
Sz’_lE{ZUk} =z"1f P{ZUk >x} dx
1 0 1

<zt {xo + lewe'cﬂ dx} [by (1.27)]

%o
<z Yxy+C,/Cy).
Substituting the last estimate into (5.7) gives
E{AT} <rlz" Y (x, + C,/Cy)
and, by taking r = |y/z] for y > 2,

P4 > y) < —E{47)

yr
xy + Cy/C Sz
- o[BG 22 o
z z y
C\1 y
< Cq x0+62-)-z—exp(—z), y=>z.

SteP 3. Here we prove the following estimate for »:
(5.9) P{v <N} < (1 + Cy)exp(5Cy(x, —2)).
To see (5.9) we note first that v < N means

N
Y E{U,|#} >z forsomel <N,

1+1
and hence
N
(5.10) Y E{U,l%} >z forsome0 <!<N.
1
Thus

P{v < N} < P{(5.10) occurs}:

. However, for any t > 0, m > 0, .
NAm
exp tE{ Y U,
1

is an {#}-submartingale, by Jensen’s inequality. Therefore, by Doob [(1953),

z}), 1=0,1,...,N,
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> etz}

NAm
lim e **E {exp(t Y E{UkIZV})}
m— o 1

Theorem VII.3.2], for 0 < ¢ < C,,

NAm
P{(5.10) occurs} < lim P{supexp(t Y, E{U,l7}
1

m— 1

IA

N
— e *E {exp(tz U, )} (because U, is Fy-measurable)
1
) ) N
=e %1 + tf e“‘P{ZUk > x} dx]
L 0 1

[ ®
<e7t?|1+ tfxoe“‘ dx + tf C et 0= dx] [by (1.27)]
| 0 Xo

< e 2| et%o 4 Cl e(t—Cz)xo]‘
g — 1
For ¢ = 1C, we obtain (5.9).
We also obtain from (5.6), (5.8) and (5.9), by first letting y — « and then
z > o, that P{A = o} = 0. It then follows from Neveu [(1972), Proposition
VII.2.3C] that M, = lim, ,,, M, exists w.p.1, in case N = .

STEP 4. Finally we combine (5.5), (5.6), (5.8) and (5.9). This gives for
z>0and y >z V (yx, /e)x,
x2 1
P{My —M,>x} < exp(—@) +(1+ Cl)exp(—z—Cz(x0 - z))

C\1
+ Cglxy + —1)——exp(—L).
z z

(1.28) now follows by choosing

x
= =z, z=1x,+ C;2/3x%3

y \/'e- 0 2
(this choice makes the three exponents of the same order). Note that this
choice satisfies (5.3). Also y > z, provided vz < x/ Ve . However, for vz >
x/ Ve , the ratio

x
x}/2 + C; /3173

in the exponent in (1.28) is at, most Ve, so that (1.28) is trivial in that case.

REFERENCES

AI1ZENMAN, M. and WEHR, J. (1990). Rounding effects of quenched randomness on first-order
phase transitions. Comm. Math. Phys. 130 489-528.



338 H. KESTEN

ALEXANDER, K. S. (1993). A note on some rates of convergence in first-passage percolation. Ann.
Appl. Probab. 3 81-90.

BraMsoN, M. (1978). Minimal displacement of branching random walk. Z. Wahrsch. Verw.
Gebiete 45 89-108.

CHAYES, L. (1991). On the critical behavior of the first passage time in d > 3. Helv. Phys. Acta
64 1055-1069.

CHAYES, J. T., CHAYES, L. and DURRETT, R. (1986). Critical behavior of two dimensional first
passage percolation. J. Statist. Phys. 45 933-951.

Cox, J. T. and DURRETT, R. (1981). Some limit theorems for percolation processes with necessary
and sufficient conditions. Ann. Probab. 9 583-603.

DELLACHERIE, C. and MEYER, P. A. (1980). Probabilités et Potentiel. Théorie des Martingales.
Hermann, Paris. '

DURRETT, R. (1988). Lecture Notes on Particle System and Percolation. Wadsworth, Belmont, CA.

DooB, J. L. (1953). Stochastic Processes. Wiley, New York.

EDEN, M. (1961). A two dimensional growth process. In Proc. Fourth Berkeley Symp. Math.
Statist. Probab. 4 223-239. Univ. California Press, Berkeley.

FamiLy, F. and VicsEk, T., EDS. (1991). Dynamics of Fractal Surfaces. World Scientific, Singa-
pore.

FELLER, W. (1967). An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley,
New York.

GRIMMETT, G. and KESTEN, H. (1984). First-passage percolation, network flows and electrical
resistances. Z. Wahrsch. Verw. Gebiete 66 335-366.

HAMMERSLEY, J. M. and WELSH, D. J. A. (1965). First-passage percolation, subadditive processes,
stochastic networks, and generalized renewal theory. In Bernoulli, Bayes, Laplace
Anniversary Volume (J. Neyman and L. LeCam, eds.) 61-110. Springer, Berlin.

KARDAR, M., PARIsI, G. and ZHANG, Y-C. (1986). Dynamic scaling of growing interfaces. Phys.
Rev. Lett. 56 889-892.

KESTEN, H. (1986). Aspects of First-Passage Percolation. Lecture Notes in Math. 1180 125-264,
Springer, Berlin.

KESTEN, H. (1987). Percolation theory and first-passage percolation. Ann. Probab. 15 1231-1271.

KRruUG, J. and SpoHN, H. (1991). Kinetic roughening of growing surfaces. In Solids Far From
Equilibrium: Growth, Morphology and Defects (C. Godréche, ed.). Cambridge Univ.
Press.

McDiARMID, C. (1989). On the method of bounded differences. In Surveys in Combinatorics.
London Math. Soc. Lecture Note Series 141 148-188.

NEVEU, J. (1972). Martingales a Temps Discret. Masson & Cie, Paris.

RICHARDSON, D. (1973). Random growth in a tesselation. Proc. Cambridge Philos. Soc. T4
515-528.

ScHURGER, K. (1981). A class of branching processes on a lattice with interactions. Adv. in Appl.
Probab. 13 14-39.

SMyYTHE, R. T. and WIERMAN, J. C. (1978). First-Passage Percolation on the Square Lattice.
Lecture Notes in Math. 671. Springer, Berlin.

Worr, D. E. and KErTESz, J. (1987). Noise reduction in Eden models: I. J. Phys. A 20
L257-1.261.

ZABOLITSKY, J. G. and STAUFFER, D. (1986). Simulation of large Eden clusters. Phys. Rev. A 34
1523-1530.

ZHANG, Y. and ZHANG, Y-C. (1984). A limit theorem for N, ,/n in first-passage percolation. Ann.
Probab. 12 1068-1076. '

DEPARTMENT OF MATHEMATICS
CORNELL UNIVERSITY

WHITE HALL

ITHACA, NEW YORK 14853-7901



