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IMPORTANCE SAMPLING FOR GIBBS RANDOM FIELDS

By PaoLo BALDI,! ARNOLDO FRIGESSI AND MAURO PICCIONT

Il Universita di Roma, Istituto per le Applicazioni del Calcolo, CNR
and Universita dell’Aquila

The existence of an asymptotically efficient importance sampling
distribution for estimating small probabilities of statistics of Gibbs ran-
dom fields is proved, together with its uniqueness, in an appropriate
sense. This distribution is also a Gibbs random field associated with an
interaction potential that is explieitly given. The particular case of Markov
chains is treated. The practical relevance of the results in applications is
discussed.

1. Introduction. Recently the role of large deviations results in the
development of importance sampling methods for stochastic processes has
been investigated. See, for example, the book by Bucklew [1] and the papers
by Glynn and Iglehart [11] and Bucklew, Ney and Sadowsky [2]. Assume that
the probability

(1.1) p,(A) = P(T, € A}

has to be evaluated, where P, is a probability measure on R” and 7,: R” — R
is a random variable. Especially when n is large, p,(A) cannot, in general, be
computed analytically. Furthermore, if p,(A) is very small, direct Monte
Carlo sampling from the measure P, is not efficient because a very large
sample would be required to reach reasonable accuracy. This situation is
often encountered in different contexts, from hypothesis testing to reliability
evaluation of stochastic systems. Here importance sampling methods are
useful.
An importance sampling estimate of p,(A) is given by

5 1 & wn P
(1.2) Pn(A)=Nk§1meA;(X )d—Q—(X )s

where X® = (X{®,...,X®), k =1,..., N, is an i.i.d. sample from the distri-
bution @, (the importance sampling distribution), which is supposed to be
absolutely continuous with respect to P,. Under @,, p,(A) is unbiased and
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its variance is

1 dp, \’
s o 2]

Therefore, the best importance sampling distribution €, minimizes the
second moment

-pl(A);).

dp, \*
vo,(A) = Eq,|lr,em| go | |

The class %, of admissible distributions @, should be selected on the basis of
computational convenience. For example, if all distributions on R" are in-
cluded in %,, then vy (A) can be reduced to p, 2(A) by choosing @, as the
restriction of P, to the set {T,, € A}. This solution is obviously impractical.

The explicit mlmmlzatlon of vg! (A) is, in general, impossible for large n.
Bucklew, Ney and Sadowsky [2] proposed to look at the minimization asymp-
totically in n. Assume that it is a priori known that

(1.4) Pa(A) ~e M
for n — o, where i(A) > 0, and that for all measures in %,
(1.5) vg (A) ~e e,

where @ is any weak limit of @, as n — «. For large n, the minimization of
vg,(A) may be replaced by the maximization of the rate ig(A). Moreover,
because the quantity in (1.3) is nonnegative, one always has io(A) < 2i(A).
Whenever

(16) ig(A) = 2i(4),

{@,} is said to be asymptotically efficient. The meaning of (1.4) and (1.5) is
that the probability measure p,(-) and the finite measure vg (), for any
Q, € %,, satisfy a large deviations principle with rate functions i and ig,
respectively. The minimization of these rate functions over A (assuming
suitable regularity conditions on this set) yields the exponents i(A) and
io(A).

¢ Bucklew, Ney and Sadowsky [2] investigated the existence and uniqueness
of an asymptotically efficient sampling distribution for empirical averages of
Markov chains. The goal of this paper is to extend their results to Gibbs
random fields in any dimension. As a special case, the Markov chain result is
viewed in a new light.

Consider a Gibbs random field P,, with values on a compact metric space
S, on a d-dimensional finite box A, 1Z¢%, n — « (hence the number of sites
|A,| replaces n from now on), that is associated with a continuous, transla-
tion-invariant and summable interaction potential . Fix any kind of bound-
ary conditions, possibly free. Let & be another interaction potential as before
and define 7, as the corresponding average energy over the box A,.
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Under natural conditions on A, we determine the asymptotically efficient
importance sampling distribution in the class of finite volume Gibbs random
fields with the given boundary condition. We prove that it is associated with
the interaction potential # — t*%, where t* depends on A.

Precise definitions are given in Section 2, where we recall the main
definitions and results concerning Gibbs random fields. In Section 3 we prove
the importance sampling result and give an easy two-dimensional example.
Section 4 is devoted to the special case of Markov chains. Finally, in Section 5
we collect some comments about the practical relevance of our result in
applications.

2. Gibbs random fields and large deviations. We recall the basic
ingredients for the specification of large deviations estimates for Gibbs ran-
dom fields. It is convenient to proceed first in a more abstract setting.
Because of our specific needs, we will consider general finite measures rather
than just probabilities.

A real extended function I: 22— R U {+%} on a topological space & is a
rate function if it is bounded from below and its level sets {I < I} are compact
for any [ € R. Let now 2 be a Polish space and P, be a sequence of finite
measures on the Borel o-algebra #(2). Let {c,} be a sequence such that
¢, » +=. The sequence {P,} is said to satisfy a large deviations principle
with rate function I and speed rate {c,} if:

(a) for every closed set C c .2,
1
lim sup—Ilog P,(C) < — inf I(x);
n— o Cn xeC
(b) for every open set O C .2,

1
lim inf— log P,(O) > — inf I(x).
x€0

n— o C,
Let T: 22— R be a continuous function and let R, = P, o T~!. Then the
following contraction principle holds. See Varadhan [17] for a proof.

ProposiTioN 2.1. If {P,} satisfies a large deviations principle with rate
function I, then R, satisfies a large deviations principle with the same speed
rate and rate function given by

3 = inf [ .
l(u) x:Tl(IDIC)=u (x)

In many applications, including ours, the rate function turns out to be
convex. The next lemma, which is inspired by Comets [3], gives the general
form of convex conjugate functions of rate functions contracted by a linear
functional (we refer to the book by Ekeland and Temam [5] for general
definitions).
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LEMMA 2.2. Let & be a locally convex Hausdorff space and let Z* be its
topological dual. Let I: & — R U {»} be a rate function and I*: 2% — R U {}
its conjugate; that is, I*(x*) = sup,[{x, x*) — I(x)]. For y € Z* define

i(u)= inf I(x).

x:{x,y)=u

Then i is a rate function and its conjugate is the function i*: R - R U {}
defined as

i*(t) =I*(ty).
Moreover, the following two facts are equivalent:
() u € 9i*(p);
(ii) there exists x' € 2 with {x',y) = u such that x' € JI*(ty).

PrOOF. Because I is a rate function and y € 2* defines a continuous
function on 2, it is easy to see that i is still a rate function. Then

i*(t) = sup{tv — i(v)} = sup{tx,y) — I(x)} = I*(ty).

Next assume (i). Because i*(¢) = sup, [tv — i(v)], the fact that u € 9i*(¢)
means that u is the point at which the supremum is attained so that
I*(ty) =i*(t) =tu —i(u) =tu—  inf I(x).
x:{x,y)=u
Because I is a rate function, the preceding infimum is attained at x’, which
implies that

I*(ty) =tu —I(x') =<(x', ty) — I(x'),

which means that x' € dI(¢y). The converse is proved similarly. O

We now turn to Gibbs random fields. A general reference for most of the
material that follows is Georgii’s book [9]. Let S be a compact metric space.
An interaction potential is a collection % of continuous functions Uy : SV — R,
indexed by V varying on all finite subsets of Z¢. % is said to be translation
tnvariant if

UV = UV+i
for all i € Z%. % is said to be summable if
IZll= Y IUllo < +co.
V:0eV

We denote by &, the Banach space of such summable and translation-in-
.variant interactions, endowed with the norm [|#/||. An interaction potential
has finite range if U, = 0 for all sets V whose diameter is larger than some
integer m. Finite-range interaction potentials are dense in %Z,.
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For any % € #,, for any finite A € Z? and any configuration x,. on S*
(called a boundary condition, abbreviated b.c.), define the energy

(2.1) Up(xp; %) = Z Uy(xy),
V:VNA+J

where xy denotes the restriction of the configuration x = (x,, x,.) € SZ% on
V and x, € SA.

Let p denote a fixed probability distribution on S and let p, denote the
corresponding product measure on S* for A € Z%. We shall suppose that the
support of p is S.

The finite-volume %-Gibbs distribution on S* given the b.c. x,. is defined
as

(2.2) I xAc(dsA) exp{ —U\(x; fo)}PA( dx,).

Z/;% Xpc
We consider a sequence of finite boxes A, C Z¢ increasing to Z% as n — ©
and a sequence x,. of b.c’s (possibly free). None of the limits below depends

on the particular choice of A, and the convergence is always uniform in x Ac-
For the sake of simplicity, we assume the boxes to be symmetric around the
origin. The limit

1
—log Z¥

(2.3) P(2) = lim o

mfo

exists and is called the pressure; it is independent of the given b.c. and finite
for all # € %,. Moreover, the pressure p is convex and continuous over %..

Let O = SZ be equipped with the product topology. Denote by .#, the
family of stationary (translation-invariant) probability distributions on the
product eg-algebra of Q) that, endowed with the weak topology, is a compact
metric space.

An infinite-volume #%-Gibbs distribution corresponding to the potential %
is any probability measure on () whose conditional distributions on S* given
x, are almost surely equal to (2.2) for any A. The set of infinite volume
translation-invariant #-Gibbs distributions on  is denoted by I'(%) and is
not empty. Two interaction potentials Z and 7 are said to be equivalent if
I(%) = T (7). It can be shown that (%) N [(?) # & implies equivalence
among % and 7.

If @ €4, we denote by @, the restriction of @ to S~ The specific
entropy of @ is defined as

H li ! E, |1 9Qu,
(Q) = Jim 7B, OgdPAn ,

where H is set equal to + if @, is not absolutely continuous w.r.t. p, for
some n.
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It is well known that the specific entropy, as a function on .Z,, is a rate
function. Defining the pairing

(2.4) (Q2) = ~Eo(%,), Qecd, %<,

where

1
(Z/O = Z ITT a1 UV ’
vioev [V

#, can be shown to be homeomorphic to a subset of %;*. Thus we can extend
H over all & assigning entropy +o to each functional that cannot be
represented as in (2.4). This extended entropy is clearly still a rate function
on Z.

The Gibbs variational principle states that the pressure p(%) and the
entropy H(Q) are convex conjugate functions. Moreover, the subgradient of p
at 7 is equal to I',(%). This means that

(25) p() = - inf (Ee(#) + H(@) = swp ((Q2) - H(Q))

and the infimum in (2.5) is attained exactly at all the elements in I',(#%).
Let
(2.6) P, = Hfmx/\%.
Here is the large deviations results of interest.for P,.
Given x, €8 Ax. we extend this configuration periodically to the whole Z¢
and we denote such a configuration by x(™). Define

(2.7) D 1

n, 2™
’ ALl

Z Sfix(")’

ieA,

where 7; is the shift operator on (). Clearly D, , is an element of .#,. Then
the following result holds. (See Comets [3], Follmer and Orey [6] and Olla
[13])

PROPOSITION 2.3. The distribution of D, ,» under P, satisfies a large
deviations principle with speed rate ¢, = |A,| and rate function

(2.8) I(Q) = H(Q) + Eo(%,) + p(%).

Next we specify the class of statistics 7, we are interested in. Let & be an
interaction potential in % and denote by

, 1
(2.9) T.( xAn) = mgA"( XA, xA;)
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the corresponding average energy per site of the configuration x A, over the
box A,. Also free b.c.’s are possible, in which case 7, becomes

1
(2.10) Al Y Gy(ay).
nlV:vca,
In particular, this covers the case of empirical averages of some local continu-
ous function g: SV — R, where V is a finite subset of Z%. It suffices to define
the interaction potential as & = {Gy, ; == g, Vi, Gy := 0 otherwise}. (2.9) and
(2.10) differ by o(|A, ) from the quantity

(2.11) Zo(r,2) = (D, ,», %),

IAn| i€,
uniformly in x, andin the b.c. x,.. This is because the three quantities (2.9),
(2.10) and (2.11) only differ for the terms in which the boundary is involved
(Georgii [9], Theorem 15.23). This fact easily enables us to derive a large
deviations principle for the distributions of T, directly as a consequence of
the contraction principle. In fact, the final approximation argument in the
proof of Theorem 6.1 in Olla [13] can be easily extended to non-finite-range
interactions.

PROPOSITION 2.4. The distribution of T, under P, satisfies a large devia-
tions principle with speed rate |A,| and rate function

(2.12) i(u) = lnf I(Q).
EQ(?O) u

To compute the contracted rate function i, Lemma 2.2 turns out to be
useful. First note that by the previous considerations, one easily has

1
hmlnf[mfmf Gy (xn,5 xA)]

n—oo Xpe XA |A |

n—©

1
11m1nf[sup1nfIA |gA (%75 xA)] =c_,

Xpe

(2.13) i
limsup |inf sup —— &, (x, ; 2, )
n—-o XA, N IA I
. 1
= limsup [sup sup —&, (x, ; x5 )| =t c,.
n—ow Tpe  Xp |An| " " "
THEOREM 2.5.

(i) The function F(Q) = H(Q) — {Q, %), defined on &*, has the convex
conjugate F*(7°) = p(% + 7), 7’ € B..
(ii) The real function
(2.14) f(u) = anf F(Q)
Eq(Zp)=u
has the convex conjugate f*(t) = p(% — tZ),t € R.
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(i) If
(2.15) dom( f) = {v:EQ(?O) =v,Q e, HQ) < +00},
then
dém(f) = (c_,c,).

In particular d8m(f) is independent of %.
(iv) For all u € (c_,c,) there exists t € R such that the infimum in (2.14)
is attained at all the elements @ € T (% — t%) with Ey(%,) = u.

Proor. (i) is an immediate conséquence of the Gibbs variational principle.
As for (ii), observe that

p(% —t%) = — inf {Eg(%, — t%,) + H(Q)}

Qed,

—inf . + _
n Ql(_:n; {Eo(%,) + H(Q)} — tu
Eq(?0)=u

—inf{f(u) — tu}
=f*(?).

To prove (iii), first observe that dom(f) is convex. Hence one has to show that
for any &> 0, there exist M and N in #, with E,(£,) <c_+ & and
E\y(Z,) > c,— &, both with finite specific entropy. We prove the existence of
M because the existence of N is obtained by the same argument. Choose A,
so that

inf@, (x,;%p) < (c_+ &/2)IA,l
X,
Because of the following Lemma 2.6,

. 1 £
lim Eﬂf_,'ﬁz I_/CI‘%‘" <c_+ —

to oo e 2

and the convergence is uniform in %yc. Thus for ¢ and n large enough, if
MeT(% -t2),

1
Ey(%y) =Ey A | E «?o”'i)

i€,

1 e
SEM mgf\" + 5

1 e
=EM Enf\/;,tf;z mf‘f/\n + 5‘

<c_+ e.
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Concerning (iv), by a well known property of the Legendre—Fenchel trans-
form (see, e.g., Rockafellar [15]), one has

d8m(f) c U af*(¢) < dom(f).

Thus by Lemma 2.2, u € f*(¢) if and only if there exists M € # such that
—M,%) =Eu(g,) =u with M € dF*(—t%) = dp(% — t&). By Theorem
16.14 in Georgii [7], this means that M € I'(Z — t2). O

LEMMA 2.6. Let Q, =TI%"'% be the (# — t%)-Gibbs distribution on the

A,x,\c
finite volume A with b.c. x,. and denote by m(x,.) the minimum value of
Z,(-; x5e). Let
Ae, xy) = {x) € S Zy(xy; 2p) < m(xy) + &)

Then all the limit points of @, as t — + are concentrated on the set of
minima of Z\(+; x,.). Moreover,

Q:(A(&,xy)) 20
as t — +x uniformly in the b.c. x,..

Proor. Because adding a constant to- &, does not change Q,, we can
assume that m(x,.) = 0. Now

1
Q(A°(&,%y)) = 7[40( )eXp(?/A( 255 %pe) — tEA( %5 %pe)) dpa( %)
t £, Xpc
with

Z, = [exp(%(xy; ) = tE(%5 %pe)) dpp(%1)

> exp(Zy(x5; %pc) =t (%45 %pe)) dppa(%4)
A(e/2, xe)

> e_tg/zf exp(Zy(x4; xp)) dpa(xy)
Ae/2, x50)
so that

eXp(%A( XA x/\v)) dpy(xy)
A(e, xpc)

Qt(AC(S, xA”)) < e—ta/z

f exP(%A( XA5 xA‘)) dpy(xy)
A(e/2, x )

Ce—te/Z
< ’
p(A( 8/2’ xA”))

where log C is the difference between the maximum and the minimum of %
on the pair (x,; x,.). Finally, to see that the r.h.s. is finite, argue as follows.
Because Z,(x,; x,) is uniformly continuous in (x,; x,.), A(&/2, x,.) contains
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a ball of radius § (independent of x,.). By compactness, it is easily seen that
the measure of any such ball is bounded from below by a positive constant,
because the support of p is the whole space. O

3. Importance sampling. Now we turn to our original problem. Recall
that, by Propositions 1.3 and 2.4, the asymptotic behavior of p,(A) = P{T, €
A}, where P, is defined in (2.6) and T, is given in (2.9), is governed by a large
deviations principle with rate function

(3.1) i(u) = Qlél/f/ [H(Q) + Eo(%) + p(%)].
Eo(Zy)=u

Let us choose the set of allowed importance sampling distributions as
% ={Q. =17 .. .7<a,).

If @, is used as the importance sampling distribution, then the second
moment of the importance sampling estimator p,(A) is given by

ap, \*
vo,(A) = Eq, 1(TneA)(w)

[Z?/] f{T A) 2?/’\ (xA ¢ xAc) N %n(xAn; xAcn)))pAn(dxAn)

ZWzZ?/—W
(=T
where @, = 3% v, Because
1 ZWzZ?Z v
n

’}I_I)Il’ |A | [ZZ/]2 = _2p(7/) +p(%) +p(2%_%)’

Q.{T, € A},

by applying Proposition 2.4 to @,, we obtain that the finite measure ve, ()
also satisfies a large deviations principle with rate function

(3.2) iy(u) =2p(%) —p(¥7) + Ql({:llf/ {H(Q) + 2Eo(%) — Eo(7,)}-
EQ(.?O);u
For any Borel set A define
iy (A) = yinf iy (¥),

i(A) = infi(y).
yEA
Recall that {Q,}, or equivalently the interaction potential 7, is asymptoti-
cally efficient if

(3.3) i (A) = iy (A°) = 2i(A°) = 2i( A).
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We are now ready to obtain the asymptotically efficient importance sam-
pling Gibbs random field.

THEOREM 3.1. For any 7' € Z,,
(3.4) iy (y) <2i(y) foreveryy € R.

Moreover, for every u € (c_,c,) there exists up to equivalence a unique
interaction potential for which the equality in (3.4) is attained at u. It has the
form ¥™* = % — t*&, where t* is any solution of the equation in t,

(3.5) Eo(%) =u, Q,eT(%-1t2).

ProoF. First note that dom(i,) = dom(i) = dom(f), according to (2.15).
Hence, it suffices to prove (8.4) for y € (c_,c,). Write 7 as Z — 7. By (2.1),
(2.2) and the Gibbs variational principle, we have

ly-o(¥) = 2i(y) = —2 ng} {H(Q) + Eo(#%,)} —p(# - 7)
E(Zp)=y

+ Qien/f;s (H(Q) + Eo(#,y) + Eo(7)}
Ey(Zy) =y

—2 ng;s {H(Q) + Eo(%,))
Ey(Zy)=y

+Qi(1_:1/£ {(H(Q) + Eq(%,) — Eo(7)))
+ inf {H(Q) + Eq(#,) + Eo(7,)).

Qed,

(3.6)

Define
A(Q) =H(Q) + Eq(%,) — Eq(7%),
B(Q) = H(Q) + Eo(%) + Eo(70)
and observe that

Jnf AQ)+ inf B(@)< nf A@+ inf B(Q)

5 Eo(Zo)=y Eg(Zy) =y Ey(Zy)=y
' < inf [A(Q) +B .
Jof [A(Q) + B(Q)]

Substituting this inequality back into (3.6) we get (3.4).
Moreover, if u € (¢_,c,), by Theorem 2.5 there exists ¢t* € R such that
E, (%)) = u, @ € [(# — t*2). By the Gibbs variational principle the mea-
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sure @, realizes the infimum
inf [A + B .
oy [A(Q) + B(Q)]
Eq(&))=u
Take 7= t*¥%. Then, by the Gibbs variational principle again, the

infy. , A(Q) is attained at @+ and, because Eg , o, = u, it is obvious that
such a @,« also realizes the infimum

inf B = inf {H + Eg(%,) + Eo(7¢
ngs (]) 12% { (Q) (%) o 0)}
Eq(&))=u Eo(&)=u
= ng/ff (H(Q) + Eq(#,) — t*Eo(Z,)} + 2t*u.
Eg(Z)—u

Thus, by (3.6) written for y = u, the interaction potential I'(# — t*2) actu-
ally realizes the equality in (3.4).

Conversely, if in (8.4) equality holds for y = u, then by the preceding
analysis (3.7) also must hold with the < sign replaced by =. If this
happens, then all @ €.#, that realize the infimum

(38) Qig/f{s [A(Q) + B(Q)]
Eo($)=u

necessarily also realize both the infima

3.9 inf i .
(3.9) QIQJSA(Q)’ Qléllf{s B(Q)
E(Zy)=y

But we have already proved that the infimum in (3.8) is attained at @,+. Thus
Q,~ also realizes the first infimum in (3.9), which by the Gibbs variational
principle implies @,« € I'(% — #°). Thus the two interaction potentials % — %"
and *Z are equivalent. O

As a consequence of the last part in the proof, if =% — %, then 7 is
equivalent to ¢t*2. Hence, t* is unique, except for the trivial case where £ is
equivalent to the uniformly zero potential, a situation that we shall exclude
from now on.

Theorem 3.1 allows us to obtain the asymptotically efficient importance
sampling distribution for p,(A}) and p,(A;), where A; =[u, +=) and

A, = (-, ul
Let
¢, = inf Ey(%,),
" gerw o( %)
¢ = sup EyH(%,).
QeT(%)

Because u < c; (resp. u > ¢j) implies p,(A}) = 1 [resp. p,(A;) — 1],
these cases are not interesting.
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COROLLARY 3.2. For ¢y <u <c, (resp. c_.<u <c¢y), % —t*Z is, up to
equivalence, the unique asymptotically efficientinteraction potential for p,(A;)
[resp. p,(A)], t* being the unique real number such that Ey(Z,) = u for
some Q € I' (% — t*2).

Proor. We prove the result for p,(A;). In the sequel we shall denote
* = 7% — t*Z to simplify the notations. Because I(@) = 0 only if @ € I'(%)
and [ is lower semicontinuous, i(x) = 0 if and only if ¢; < u < ¢j . Moreover,
by convexity, i is nondecreasing and continuous on [¢; , ¢*). Thus

inf i(y) = 'inf i(y) =i(u).
yeA] yeAfo

If 7" is asymptotically efficient, then i, (u) = 2i(u), from which 7 is equiva-
lent to 7*. Hence, it is enough to prove the foregoing equality for i,«, which
is a consequence of the following elementary convexity argument. The incre-
mental ratio

2i(z) — 2i(y)
2
is a nondecreasing function of z and y (this is true for every convex function).
We know that i(cy) =0 and iy+(u) = 2i(v). Thus by (3.4) one has for
¢y <y<u,
b (1) — ipe(9) _ 2i(w) = 2i(y) _ 2i(w)
u-—y - u-—y T u-—cqg

Because i+ is itself convex, the ratio
Ly (4) = iy ()
u-y
is nondecreasing in y and thus nonnegative also for y > u, from which it

follows that i,+(y) > i,«(w) for y > u. The result for p,(A;) is proven
analogously. O

Note that the previous corollary includes i(A;}) = 0, and in this case the
original interaction potential % is asymptotically efficient. Of course, here the
event T, € A is not exponentially rare in the volume |A ,|.

For the sake of simplicity, we assumed the same boundary conditions as in
P, for all members of the class &. It is not hard to see that a different choice
of b.c.’s does not change the rate functions i,, and thus does not modify the
asymptotically efficient interaction potential. At first sight this may seem
surprising when the asymptotically efficient interaction potential has a phase
transition, because the choice of b.c.’s effects the infinite volume limit points
" of the sequence Q,. To see the effect of b.c.’s in the choice of the importance
sampling distribution, one has to take into account in the asymptotic behav-
ior of vg (A) in (1.5) terms besides the leading term exp(—|A,,|i5 (A)). This is
particularly clear in the case ¢; <u <c¢; and c¢; <cg [in which case
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i(A}) = 0 and there is a phase transition]. However, even in this situation,
p,(A}) may still decay exponentially, but at a slower rate than [A | In some
cases, the corresponding rate functions have been calculated (see Dobrushin,
Kotecky and Shlosman [4]) and depend on the b.c.’s.

Equation (3.5) for t* involves an infinite volume expectation. The next
theorem allows approximation of ¢* with ¢¥, computed by means of finite
volume expectations.

THEOREM 3.3. For c¢_<u <c, and n sufficiently large there exists a
unique solution t} of

1
(3.10) m—lEnz;fgc(?A,,( T, Xp)) = U,

which converges to t* as n — .

Proor. Let

1
fu(t) = mlog Zy e
*(¢) =p(% - t%)
and recall that, by (2.13), f,(¢) = f*(¢). For every n the function f, is
smooth, with first derivative

1
fa(t) = IA_EH’HS’ (?A,,(xA,,, xA“,L))'

e

Moreover it is strictly convex, because its second derivative

" 1
fn(t) = 'A lvar(gAn(xAn’ xAc,,))

is strictly positive. By the definitions (2.13), if u € (c_, ¢, ), and by Lemma
2.6 for n sufficiently large, there is a unique ¢} such that f,(t¥) = u.

Suppose that ¢ does not converge to ¢*. Moreover, assume that there is a
subsequence (again denoted by ¢¥) that converges to a finite limit [ < ¢* (the
cases [ > t* and [ = + can be handled similarly). Choose & > 0 such that
eventually f.(I + &) > u. Then

fr(@*) = (L + &) = lim (£,(t*) = £ (1 + ¢))

- lim [li fi(s)ds= (t* — 1 — )u.

n—>o

Because a real convex function is absolutely continuous, the r.h.s. of the
foregoing equation is equal to

[7 sy ds < (¢ =1+ &),
l+e
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the final inequality being obtained because almost everywhere for s < t*,
F¥(s) <D_fH(t*) <u < af*(t*). 0

It is also easy to verify that, in the asymptotically efficient importance
sampling distribution of Corollary 3.2, one may replace t* with ¢}, without
affecting the large deviations rate functmn of vg .

We finish this section with the elementary example of the two-dimensional
Ising model, which also shows the effect of a phase transition.

In this case, we take d = 2, S —{ 1, +1} and # = {Uy}, where Uy, = 0
unless

U(i)(xi) = hx;, i € 7?2,
l]{i,j)(xi’ xj) —Bx;x;, i —jl=1,

for h > 0 and B > B, = 0.44068...(critical inverse temperature). The statis-
tic we are interested in is the average magnetization

g |A |zEA

which corresponds to the single site interaction potential

The interaction potential # — ¢t& gives rise to an Ising model with inverse
temperature B and external field ¢ — A. When ¢ = h, we have

I(% - h%) ={Amy + (1 - )m, A€ [0,1]},

where 7; and m; are different ergodic measures that are obtained one from
the other by reversing the sign of the configurations. Let

mg =B, (Xo) = —mj; = —E,(X,) > 0.

For t # h the infinite volume (% — t£)-Gibbs distribution is unique and
denoted by Q,. The function E, (XO) is well defined for ¢ # A and is strictly
increasing from —1 to +1. At t = h the function ¢ — Ey(X,) has a jump
from mg to mg. Let us denote by ¢ the inverse of ¢ > Eg(X,).

The asymptotically efficient interaction potential for samphng {T,eAl},
where u > ¢, = Eq (£,), is given by Z — £&(u)Z. The effect of phase transition
at ¢ = h makes the choice of ¢* = h optimal for all mg <u <m;.

4. Markov chains. In this section we consider a Markov chain {X,}, on
a compact metric state space S with transition kernel P. We assume that
P(x,-) has a derivative P(x, y) w.r.t. a reference probability measure p that
" is jointly continuous and strictly positive [ P(x, y) > ¢ > 0 for some ¢ > 0 and
for every x, y]. Under these assumptions it is well known that there exists a
unique stationary distribution 7 and that X, converges in law to 7 as
n — o,
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Bucklew, Ney and Sadowsky [2] determined the asymptotically efficient
importance sampling distribution in the class of uniformly recurrent Markov
chains for the estimation of

p.(A) = {T, € A},
where T, = (1/n)Z}_,8(X,) or, more generally, T, = (1/n)X}_,8(X,_1, X},).

We now derive their results as a particular application of the theorems in
Section 2. In addition, we are able to treat empirical averages of functions of
the type g(xy,..., x,,) for any m [however, w.r.t. the results in reference [2]
we need the extra assumption of the continuity of g and P(x, y)]. We deal
with the case m = 2 and refer at the end to the more general situation.

First, we describe how the law of a Markov chain can be obtained as a
Gibbs random field with an appropriate nearest neighbor interaction. (This
material can also be found in Georgii [9].) Indeed, on the space S consider
the interaction potential #Z given by

Uy (xy) = { —log P(xy, x4.1), ifV= {k,k + 1},
0, otherwise.
The law P on S% of the stationary Markov chain with transition kernel P
coincides with the infinite volume #%-Gibbs distribution, which is unique
because in this case there is no phase transition. It is easily checked that the
finite volume #-Gibbs distribution on S*», where A, = {1,..., n}, with fixed
b.c. x, at 0 and free b.c. at the other end, coincides with the distribution of
the Markov chain up to time n starting at x,:
P{T, 6 € A} = Hfmxo{Tn € A}.
Conversely, a Markov chain can be associated with any translation-invariant

interaction potential Z such that U, = O unless V =V, = {k, 2 + 1} for some
k: Consider the transition kernel associated with the density

()
Ar(x)’

where A is the principal eigenvalue of the operator

K, f(x) = [exp(—Uy(x,9))f(y)p(dy)

and r is the corresponding eigenfunction (which is strictly positive). The

unique translation-invariant infinite volume #-Gibbs random field coincides

then with the stationary Markov chain associated to P, because it results by

computing the density of X;,..., X,, conditioned to X; = x;and X, ,; = x,,;:
P(xO’ xl) P(xm xn+1)

Pn+1(x0’ xn+1)

(4.1) P(x,y) = exp(—Uy(x,))

= k(xo, xn+l)eXp(_UV0( X0, xl)) exP(_UVO(xn’ xn+1))
dI?

Apy (%0, Xnt1) (
e (e X))
dPAn
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In the correspondence between Markov chains and Gibbs random fields, of
course, equivalent interaction potentials induce the same Markov chain. In
particular, if two interaction potentials satisfy the relation

Uy (2,5) = Uy(2,5) + ¥(y) — (),

where ¢ is any continuous function on S, then by (4.1) they induce the same
Markov chain.

For a continuous function g(x,y) consider the finite-range interaction
potential

G (x ):= g(xk’xlé+1)’ lfv={k,k+1},
M 0, otherwise.

Applying Corollary 3.2, the asymptotically efficient importance sampling
distribution is the Gibbs random field @, associated with the interaction
potential % — ¢t*&, where t* satisfies E, (g(X,, X;)) = u. If g is not of the
form g(x,y) = y(x) — (y) for some ¢ (in which case, as we have already
remarked, & is equivalent to the identically zero potential), such a value of
t* is unique again by Theorem 3.1.

Hence by the foregoing equivalence between Markov chains and Gibbs
random fields, @, is the law of the stationary Markov chain with transition
kernel having density

ra(y)
AMt*)rps(x)’
where A(¢*) is the principal eigenvalue of the operator associated with the
kernel P(x, y)e!"*¥ and r,.(-) the associated eigenfunction. Thus we obtain

Theorem 3 in Bucklew, Ney and Sadowsky [2], provided we show that ¢* is
exactly the solution of

Pu(x,y) =P(x,y)et 8"

dl A2

This comes from the fact that log A(¢) is easily seen to be the pressure
p(# — tZ). By the Gibbs variational principle, the pressure p is differentiable
(in the absence of phase transition) and its Frechet derivative is given by

Dp(%)(‘%‘) = <Q’ WO>’
where @ € I'(?) so that, by the chain rule,

d 1
—log M(t) = —(Q,;, %) = Eo(%,) = Eq, E(g(Xo’Xl) +8(X_1, X))

dt
= EQ,(g(Xo’ Xl))‘

- In case the function g is a function of m variables, with m > 2, our theory
still can be applied, and we obtain an importance sampling distribution,
which, however, is not a standard Markov chain anymore, but an (m — 1)-
dependent Markov chain.
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5. Discussion. There are two main objections to the practical relevance
of the results presented in this paper. The aim of this final section is to
discuss them and point out where some further research is needed.

The first issue concerns the difficulty of getting N independent samples
from Gibbs random fields in two or more dimensions. The now standard
procedure for sampling from a finite volume #-Gibbs random field is to run
an ergodic Markov process on the configuration space S*» having as an
invariant measure 1% R ag” . Several relaxation methods of this type have been
proposed, among which ‘are the Metropolis and the Gibbs sampler (see
Geman [8] for a review). In this context, sampling from IT# A requires
running the algorithm until some relaxation time is elapsed, Whlch is needed
for the law of the process to get close to the invariant measure.

Once equilibrium is reached, the algorithm produces dependent samples,
nevertheless drawn approximately from the correct distribution. It is prefer-
able to take all these samples into account rather than to discard them, until
another nearly independent sample is produced. We shall refer to such a
procedure as dynamic sampling, as opposed to the independent (static)
sampling we have been considering in this paper.

Thus, once a dynamic sampling algorithm is chosen (e.g., the Gibbs sam-
pler with uniformly chosen single site update [8]), different interaction
potentials could be compared, also taking into account the “dynamic” proper-
ties induced by such a relaxation method. A natural criterion is the asymp-
totic variance

z\lrim N Var( p,( A)(XD,..., X(N))) = "an( A),

where {X®} are the iterations of the Gibbs sampler for Q,,.

This quantity is certainly more complicated to deal with (see Frigessi,
Hwang and Younes [7]) and one might guess that such analysis will favor
those potentials for which the corresponding algorithm converges faster to
equilibrium. In this context, we observe that the Ising example at the end of
Section 2 may give a result that is computationally not very attractive. In
fact, for some values of u the asymptotically efficient interaction potential
has a phase transition that will slow down the relaxation time in large boxes.
On the other hand, when the interaction is low, we can show that the static
analysis is actually still the relevant one.

In fact, let f, = 1 c o(dP,/d@,) so that, from (1.2),

1 N
Pu(4) = 5 L F(X).
k=1
Hence

0§ (A) = (ve,(4) —p?,(A))k_Z_ Py,
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where { p{®’} is the autocorrelation sequence of the process {f,(X*)}. There-
fore,

1 og(A) 1 (vg(A) - p2(A)) v
202y TR T LA "1°gk_z_m”(k)

By our results, the first term of the r.h.s converges (as n — ) to a positive
limit if and only if @, is not asymptotically efficient. The second term, the
integrated autocorrelation time, measures the loss in efficiency due to depen-
dent sampling. Its growth can be controlled by the reciprocal of the spectral
gap v, between 1 and the second largest eigenvalue of the Gibbs sampler (see
Frigessi, Hwang and Younes [7]). Hence, whenever the asymptotically effi-
cient importance sampling distribution is such that log(y,) = o(n), the effect
of dynamic sampling disappears in the limit. A sufficient condition for this is
the Dobrushin ergodicity condition (see Georgii [9]), which is stronger than
the absence of phase transition.

The second issue that should be taken into account is that two a priori
computations are needed to identify the asymptotically efficient importance
sampling distribution. Namely, we need (a) to solve (3.10) and (b) to compute
the Radon-Nikodym derivative dP, /dQ,, which contains as a factor the ratio
of the partition functions Z¥~ %% and ZZ. In general, there is no way to solve
these two problems analytically. They are, however, connected by the formula

Z%t?

Z%n i 9/ t*?(et ?A,,) = exp(/ EK/ S?n(gl\n) ds),

An,xxn

where the expectations are taken in the finite volume A, with the b.c. x,..
Any algorithm that computes EY if (?A ) for various values of ¢ will also
serve to solve (3.10). However, thls ¢an be done in general again by Monte
Carlo computations. This is suggested in Green [12] and Geyer and Thomp-
son [10], for the computation of maximum likelihood estimators for Gibbs
fields, which is formally analogous to (3.10). The use of stochastic relaxation
algorithms, such as in Younes [18], seems to be quite appropriate in this
respect. Because such a priori computations needed to identify the asymptoti-
cally efficient importance sampling distributions are again of Monte Carlo
type, it seems reasonable to try to use these preliminary runs, where ¢ is
varied, immediately for the approximation of p,(A) itself. The resulting
importance sampling estimator will then be an average of the (correlated)
samples produced for different values of #. Such ‘an algorithm deserves a
computational evaluation, even if it seems hard to analyze it rigorously.
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