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QUEUES IN SERIES IN LIGHT TRAFFIC

By B. BraszczyszyN AND T. ROLSKI

University of Wroctaw

We study light traffic approximations for queues in series with renewal
arrivals and i.i.d. service time vectors. Formulae for limits of functions of
the waiting time at different stations based on single customer effect are
obtained for two approaches: dilation and thinning of the arrival process.
Interdeparture times from a station possess a one-dependence property in
light traffic. This paper complements previous studies of Daley and Rolski
and also Asmussen’s approach to light traffic limits applied to the cases
considered.

1. Introduction. A series of queues is the simplest example of a queue-
ing network. In most cases, the performance characteristics in such queues
are analytically intractable. One possible approach proposed recently for
overcoming this problem is to study systems in extreme situations; that is, in
light and heavy traffic conditions. Although this approach does not give
explicit formulae, interpolation formulae are possible in some cases as sug-
gested in Reiman and Simon (1988) or Whitt (1989).

We assume a renewal input at the first station and that the vectors
consisting of each customer’s service times at all stations are independent
and identically distributed. Moreover, we assume that the service times are
independent of the input but allow dependence, for each customer, of service
times at different stations. All customers obtain service in the same order,
and an unlimited queue may form in front of each server. If the input is
Poisson, light traffic results were given by Wolff (1982), Pinedo and Wolff
(1982) and Greenberg and Wolff (1988). Reiman and Simon (1989) studied
open Markovian networks of queues in light traffic conditions and from their
paper one can also get results for queues in series. However, the techniques
used in these papers are not applicable in a non-Markovian situation.

This paper arises out of work on light traffic in single-server queues by
Daley and Rolski (1984, 1991, 1993), Asmussen (1991) and Blaszczyszyn
(1990), using, in particular, methods developed in Daley and Rolski (1992) for
many-server queues. As in these papers, we study stationary waiting times at
a station when the light traffic conditions are defined in terms of either a
v-dilation or a m-thinning scheme. We note that there is an essential differ-
ence between such characteristics and, for example, the work load at a
station, because the asymptotic behavior of the work load in light traffic does
not depend on the fine structure of the input process, but is a consequence of
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Campbell’s type formulae [see, e.g., recent papers by Baccelli and Brémaud
(1991) or Sigman (1991) for such results]. A new feature studied in this paper
concerns interdeparture times from a node in light traffic conditions: These
are interarrival times at the next station. In light traffic we find asymptotic
properties of a marginal interdeparture time from a station, and also show
that the sequence of interdeparture times is asymptotically one-dependent.
Our asymptotic results are based on the single-customer effect that has been
observed in other situations, namely, that the waiting time of any customer
at the mth station is similar in light traffic to the waiting time of a customer
that follows a customer that has found the system empty.

As in previous papers, we conclude from our analysis that light traffic
limits for queues in series reflect consequences of any local clustering or
clumping behavior of the arrival process. For example, this paper considers
renewal arrival processes for which
(1.1) Pr{T <t} =c,t*+o(t*), t|0,
for some strictly positive constant ¢, and nonnegative «. Using the definition
introduced in Daley and Rolski (1991), we say that the interarrival time d.f.

belongs to the class %, =.%,(c,). Notice that a Poisson arrival process at rate
A belongs to #;(A). In Sections 4 and 5 we assume a > 0.

2. Preliminaries. The following idea of equivalence of two sequences
{X(y)} and {Y(y)} of nonnegative random variables that are degenerate at
zero for y — o comes from Asmussen (1991); see also Daley and Rolski (1992).

DEFINITION 2.1. Two families of nonnegative random variables { X(y)} and
{Y(y)} are asymptotically conditionally equivalent (ACE) when, in the limit

Y = ©,;

(a) Pr{X(y) # 0} - 0, Pr{Y(y) # 0} - 0, Pr{X(y) # 0} /Pr{Y(y) # 0} — 1.
(b) [[Pr{X(y) € [ X(y) # 0} — Pr{Y(y) € [Y(y) # O}l — 0.

Suppose that a model is parameterized by y > 0 and has a characteristic of
_interest Y(«y) for which Pr{Y(y) > 0} — 0 for y — «. The following technique
was successfully applied to many-server queues in Daley and Rolski (1992) to
characterize a family {Y(y)} in “light traffic conditions.” It is supposed that
there exists a probability space (Q,.%,Pr), and families {X()},{Y(y)} such
that for each y > 0, X(y) < Y(y) a.s., where 17(32 =3 Y(y) and a family of
nonnegative random variables U(y) is such that X(y) = Y(y) on {U(y) = 0}.
The following proposition is extracted from the proof of Theorem 4 from Daley
and Rolski (1992).

__ ProPosITION 2.2.  If for each 7y the random variable U(y) is independent of
. X(y) and if, as y > ,

PH(X() >0}
Pr{Y(v) > 0}
then the families {X(y)} and {Y(y)} are ACE.

Pr{U(y) =0} -1 and

2
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The following lemma, proved by Daley and Rolski (1992), is frequently
used in the paper.

LEMMA 2.3 (Multivariate Abelian lemma). Let f: R, — R, be a compo-
nentwise nonincreasing function with f(0) finite and f(t)| 0 for max, _; . it~
o, If the d.f. Aisin &, (c,) for some 0 < a < ©, then as y — ®,

yef o JF(vt) A(dty) - A(dt;)
(2.1) ' .
- (acy)’ [ o J(t ) F(E) dty

whenever the integral on the rhs is finite.

3. Single-server queues in series. We consider a series of m > 2
single-server queues GI/G/1 - -+ — G/1 in which the arrivals occur at the
epochs of a point process, specifically, the interarrival times {T,: n =0, +
1,...} are assumed to constitute a renewal process, independent of the service
times {S,} ={(S.,i=1,...,m): n =0, + 1,...} that are assumed to form a
sequence of independent identically distributed (i.i.d) nonnegative random
vectors. Here S! denotes the service time of the nth customer at the ith
station. Recall that we do not require independence between the service times
of any given customer at different stations. Customers proceed from one
station to the next in sequence and are served at each station in order of
arrival. Denote the waiting time of the nth customer at the ith station by W
For the first station it satisfies the recurrence relationship

(31) Wn1+1 = (Wnl + Srlz - Tn)+ ’
and for other stations we have
(3.2) W/, , = (min(R), P, — T,)),,
where
i
(3.3) Pi=Wi+Si+ X (Wh+Sk-sil),
B=2
P}, i=1,
34 R = :
(3.4) " min { ) (W} + S-Sk 1)}, i=2,...,m.
2<j<i k=j

Then clearly (3.1) may be written in the form (3.2). For two station queues the
foregoing relationship was given by Niu (1980), whereas longer series of
queues were described in a similar manner by Masterson and Sherman
(1963). Relations (3.1) and (3.2) can be established by noting that the input at
the ith station equals the output from the (i — 1)st station. Thus if T
denotes the time between departures of the nth and (n + 1)st customers from
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the (i — 1)st station,ithen
(3.5) Wii=W,+8S.-T)),,
(3.6) T,* =8, + (T, - W) = S0),,

where for consistency with (3.1) we put )} = 7,,.

In the paper we assume that
(3.7 0 < max ES! <ET < oo,

1<ism

Here and in the sequel S’ denotes the generic service time r.v. at the ith
station and T denotes a r.v. with the marginal distribution of any T,,. It is
known [see, e.g., Loynes (1962)] that condition (3.7) ensures stability at all
stations. It means that there exists a stationary sequence {(W},..., W™),
n € 7} satisfying (3.1)-(3.4). According to the previously introduced conven-
tion we write (W1!,..., W™) for a random vector distributed like any member
of the stationary sequence {(W},...,W™), n € Z}. The process can be
described briefly as a stable GI/G/1 — --- = G/1 queueing system.

We now construct a lower bound for W°. It is typical for our approach to
choose a suitable probability space for proofs. We remark that this does not
influence our results because they are distributional only. Suppose that for

each i = 1,..., m the sequence {V'} satisfies
i
(38) Vni+1 = (an + Z Srlf - Tn) .
k=1 +

Observe that {V,f} can be regarded as the total waiting time in the series
system restricted to the first i nodes, with a modified rule that allows only
one customer to be present at any of the stations at any given moment. It is
clear that such a discipline can only increase waiting times so

(3.9) Y W<V as.
E—1

LEMMA 8.1. Let Y7 ; ES* < ET. There exists a probability space ((}, 7, Pr)
supporting the stationary sequence of random elements {V,,, W,, S,, T,} such
that for eachi=1,...,m,

where
(8.11) Pi=8,+ X (St - Siii),
k=2
P, i=1,

2<j<i k=j

3.12 Ri = :
(3.12) =" min {Z(S,’f—S,’:;% }, i=2,...,m;
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furthermore,
3.13 W! = (min(R!,P - T on{Vi=0
n n n n + n

and for each n and i, and all k > n, the random elements V!, T, and S, are
independent.

Proor. By standard arguments we construct a stationary sequence
(T,,S,, W, . .. .WiLVl .. V™). n €7} satisfying (3.2)-(3.4) and (3.8) [see,
e.g., Baccelli and Brémaud (1987) or Rolski (1981)]. Then by construction of
V! and by assumption for the other elements, V! is independent of (T}, S,,
k = n). Now by (3.9) we have (3.13). O

REMARK. Note that the lhs of (3.10) is the waiting time of a customer that
follows one finding the system empty. Thus we call it a single-customer
representation.

We need the most general version of Lemma 3.1 only in Section 5.
Elsewhere it suffices that n = 1, in which case we omit the subscript n and
write S for S,. It is convenient to denote the partial sum of consecutive terms
a’,...,a’ of a sequence {a*} of reals by a!”/l. Thus (3.10)-(3.12) can be
rewritten as P} =S — St~ and R} = min,_;_,{S9 — S L1}
Similar notation can be used for subscripts.

4. Waiting time in light traffic. Except for Section 6 the rest of this
paper considers light traffic conditions defined via y-dilation discussed in
Daley and Rolski (1984, 1991). It means that each interarrival time is
multiplied by some y> 0 and we take the limit as y — . We write
(Wi(y),...,W™(y)) and V™(y) for appropriate waiting times when the input
is rescaled by v; that is, each interarrival time is multiplied by this constant.
We consider renewal arrival processes for which the interarrival time d.f.
belongs to #,(c,) [see (1.1)] for some strictly positive constant a.

When o > 0 the interarrival times are a.s. strictly positive, in which case,
in view of (3.9), it follows from the result (2.3a) of Daley and Rolski (1991)
that the vectors (W(y),..., W™(y)) decrease stochastically to (0,...,0). [A
trickier part of checking this assertion concerns monotonicity; this is done in
Blaszcezyszyn (1990).] The case o = 0 (i.e., when Pr{T = 0} > 0) is different:
the single-customer effect fails (see Corollary 2 for definition) and there is a
positive waiting time vector that, however, remains difficult to compute
except the case m = 2; see also Blaszczyszyn (1990).

In this section we show that for queues in series the families {W‘(y)} and
{(min(R’, P — yT)).} are ACE. For convenience we introduce the notation
p'=(P), and r' = (R),.

The results of this section are based on the following theorem.
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THEOREM 4.1. Ina GI/G/1 - -+ — G/1 queueing system for which the
interarrival time d.f. is in #(c,) for some 0 < a < o,

lim y*Eg(W'(7),....W"(7))

4.1
4 —cAZE[j (p' —)"g(0,...,0,dt, ri* ,..,r”‘)],

where g: R™ — R is a coordinatewise monotonic, nondecreasing function for
which g(0,...,0) = 0, provided that for some vy, > 0 and each i = 1,...,m,

(4.2) E[fft(f)" — t)ag(O, .0, dt, 7t ...,F'”)] < oo,
0
where

(48) P =Pi(y) = Wi(y) + 81+ X (WH(y)S* —§+1),

k=2
=1—2i(70)
_ _
(4.4) P, i 1 =1,
") min { ¥ (Wh(yp) +SF-SE}, i=2,...,m,
2<j<i | p—;

and p' = (PY),, 7' = (RY),.

Before the proof we give the following lemma, which states the result for
single-customer representation in light traffic.

LEMMA 4.2. If the interarrival time d.f. is in #(c,) for some 0 < a < ™,
then
lim y"‘Eg((mJn(Rl P' - yT)),,...,(min(R™, P™ — 'yT))+)
Yy
(4.5)
AZE[[ (p' —t)"g(0,...,0,dt, ri*1, ..., r”‘)],

where g: R™ — R is a coordinatewise monotonic, nondecreasing function for
which g(0,...,0) = 0 and such that the integrals in the rhs of (4.5) exist.

PrROOF. By an Abelian lemma [see, e.g., below (2.1) or Daley and Rolski
(1992)],

lim y*E[ g((min(R", P' = yT)),.,-.., (min(B", P" = yT)), ]

 (48) = ac,[ t*'Eg((min(R',P* - 1)), ,
. 0

(min(ﬂm’ pm - t))+ ) dt



QUEUES IN SERIES IN LIGHT TRAFFIC 887
To work out the rhs of (4.6), observe that by (3.11)-(3.12), 0 = P! — R' <

- <P™ —R™and,fori=1,...,m — 1, P! < Pi*! — R**! Hence the right-
hand side of (4.6) can be rewritten as

m i+ i+
acAZE[fE B 1t"“lg(O,...,O,(f”'—t)Jr,r"“Ll,...,r'”)dt ,

i=1 Ei_Ei

where P"*! — R™*! = o, Integration by parts yields the rhs of (4.5). O

ProoF oF THEOREM 4.1. Fix y, > 0. We have for y > v,,
lim sup 'y“E[g(Wl(y),...,W”‘(y))]

Yy ®

(4.7) < lim y*Eg((min(7, 5* — yT)), -,
y— ®©

(min(7™, 5™ — ¥T)), ).

Much as in Lemma 4.2, apply the Abelian lemma [see, e.g., below (2.1) or
Daley and Rolski (1992)] to the rhs of (4.7) to show that it equals

(4.8) acAf:ta~1Eg((nnn(fl,pl —t)),,..., (min(F", B™ - 1)), ) dt.
By a similar argument to that of the proof of Lemma 4.2, (4.8) equals
(4.9) ca E‘,IE[f:(ﬁi —¢)"g(0,...,0,dt, F“l,...,F’”)].
i=
A monotone convergence argument applied to the limit y, = 0 in (4.9),

provided (4.2) holds, coupled with the result of Lemma 4.2 and (3.10), proves
the theorem. O

We need the following integral of the beta density:
B(x,, x5,a,b) = fx2(1 —x)* 'xb 1 dx.
X1
COROLLARY 1. Letx > 0. If E(S*)**1 < o, k = 1,...,m, then
(4.10) lim y* Pr{W™(y) > x} =cAE[(p"‘ -x)% R™ >x]
Yy o
and if E(S*)*tF*l <o k =1,...,m, then

(4.11) lim y‘)‘E(W"‘(y))/3 = BcAE[(p’”)“BB(O‘, ;—m, a+1, B)]
Yoo

Proor. Equations (4.10) and (4.11) follow from (4.1) after substituting
g(x) = f(x,) with an appropriate function f. All we need to do is to check
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that the moment conditions on S ensure finiteness in (4.2). Observe from
(3.11)—(3.12), (3.9) and (4.3)-(4.4) that

E[f:m(ﬁ’” = )" f(dt)| <E(p™ + V" (%)) f(r™ + V" (%)),

so for f(y) = I(y > x), finiteness is ensured when E(p™ + V™(y,)* < o, for
which it is enough by Kiefer and Wolfowitz (1956) that E(S*)**1 < o,
k=1,2,...,i. Similarly for f(y) =y#, by Hélder’s inequality, it suffices
that E(p™ + V™(y)*™B < © and E(™ + V™(y,)*"? < o, for which
E(S*)*" P+l <o k =1,...,i,1is enough. O

The proof of Lemma 4.2, with Corollary 1 and Theorem 4.1, yields the
following result.

COROLLARY 2. If E(S8*)**! <o, k=1,...,m, then the families of r.v’s.
{(min(R™, P™ — yT)),} and {(W™(y)} are ACE, so we conclude that the
single-customer effect holds.

As a result of Theorem 4.1 in its general version we have, for example, the
following fact that can be justified in detail in a similar manner.

COROLLARY 8. If E(S)**3 <o (i=1,...,1 <m), then for k <1,

cov(WH(y), Wi(v)) = v~ cae(k, 1) + o(y™?),

where

e(k,l) = E[rlj(')rk(pk _ t)a dt] _ ;t__lE[rz(pk)aﬂ —ri(pt - rk)a+l]'

5. Interdeparture times in light traffic. In this section we study the
stationary ergodic sequence {T}", i € Z} of interarrival times at the mth
station [or, equivalently, interdeparture times from the (m — 1)th station] in
light traffic. More specifically we are going to study the expected value

(5.1) Eg(T{"(v),...,T,;"(v)) wheny -,

for a coordinatewise nonincreasing function g. From this we prove as the
main corollary of this section that the arrival process at the mth station is in
light traffic asymptotically one-dependent. This one-dependence property can
be defined as follows. ’

DEFINITION 5.1. A family of stationary sequences {X,(y): n € Z}, y > 0, is
said to be asymptotically one-dependent (AOD) if for each pair of monotone



QUEUES IN SERIES IN LIGHT TRAFFIC 889
nonincreasing indicator functions g;: R — R,, j = 1,2, such that g(x)10
when max, _;_, ¥, > ®and d > 2,
 Eg(X(v)s 5 Xa(1)82( XKy a(¥)s s Xaprann (V)
(5.2) lim

- 1.
Yoo Egl(Xl(Y)’ et an('y))EgZ(an-(-d('Y)’ et Xn1+d+n2(7))

As before, we consider here only the case when Pr{T' = 0} = 0, We can
prove by (3.1)-(3.6) that

(5.3) T/ = W™ + S — min(R}", P/" — T)).

We note that, in general, the departure process is not a renewal one.
Moreover, although for the first station 7)'(y) = yT}, it is not true that
interarrival times at the mth station satisfy T;"(y) = yT;"; however, it is
true that for y — o,
m-—1
" (y) — T > kZI (St1—St)

from which we obtain
y T (y) > T, y— e

To see this, it suffices to apply the sample path argument to (5.3), keeping in
mind that W}(y) - 0.

The time 7} that elapses between departures from the (m — Dth station
of the Ith and (I + Dth customer is fully determined by W, = {W/: i =
1,....m -1}, (T,: k=1,..., 0 and (Si: i=1,....m -1, k=1,...,1 + 1);
that is, by the waiting times of the first customer in all m — 1 stations and by
characteristics brought by the first  + 1 customers. With this in mind we use
the representation with explicit dependence on W; and (T,: £ = 1,...,1):

(5.4) " =9"(0)(W,Ty,...,T7),
where I7"(Nw,t,,...,t,) is a o(Si: i=1,....m—-1; k=1,...,1+ D-
measurable function. The main idea of this is to have T}, ..., T, independent

of other arguments, both explicit and implicit, of the representation ;™.

THEOREM 5.2. Let g: R —> R, be a coordinatewise nonincreasing function
with g(0,...,0) finite and such that g(t)|0 when max,_;,_,t, > ®. In a
GI/G/1 - - — G/1 queueing system for which the interarrival time d.f. is
in #(cy) for some 0 < a < oo,

32‘; y"Eg (T ()., T (7))

(5.5) = (acy)" [ = [Eg(F"(0,t1,.... t1):



890 B. BLASZCZYSZYN AND T. ROLSKI

provided that for some y, > 0,

(5.6) f ng(Z’"(Wl('yo),tl,...,tl):l= 1,...,n) [Ttg~tdt, <.
R™ E=1

~ ProoF. Observe first by (5.3) and (3.3)—(3.6), if w > w' componentwise,
then
(5.7 T(Woty,... t)) <I(W',t,...,t) as.

The random function ;™ is also monotone nondecreasing with respect to the
other part of its explicit arguments and

(5.8) T (Wt t) ~® a.s.when ¢, > .
Now by the monotonicity of g and (5.7) we have
liminfy*"Eg(T"(7),.-, T2"(7))

(5.9) > lim y" [ - JE(m(0,7t1,...,7t1):

yo®

n
1=1,...,n) TTA(dt,),
k=1

which in turn, by (5.8) and the multivariate Abelian lemma [see, e.g., below
(2.1)] equals the rhs of (5.5), provided (5.6) holds.
On the other hand, we fix y, > 0 and consider y > y,. By (5.7),

limsup y*"Eg(T{*(v),..., T,* (7))

Yoo

(5.10) < 3%7“”/ i JE&(T(Wi(70), vt1, -, v81):

1=1,...,n) [T A(dt,).
k=1

Now again we apply the Abelian lemma to the rhs of (5.10) and then let
y — . This, provided (5.6) holds, combined with (5.9) gives (5.5). O

REMARK. It is not easy to verify when condition (5.6) is satisfied. However,
in view of (3.3)-(3.4), (3.10)—(3.12), (3.9) and (6.3), T)" > S* — min(R}*, P/" —
T,) — V"1, and by (3.8),

vl = maX(O, Vet Shp U -1 )= < vt +‘5ﬂ{i;n—_1]1]

So it suffices to check the finiteness of the integral

fm fE[g(S;" — min( R}, B" — 1)

n
(V) + S = )] [T
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Applying (5.3) to (5.5) with n =1 and g(¢) = I(¢ < x), after some easy
transformations including integration by parts, we obtain the following result.
The assumption on the moments of S by Kiefer and Wolfowitz (1955, 1956)
yields (5.6).

COROLLARY 4. If E(8)**! < w fori=1,...,m, then
lim y* Pr(T™(y) <x} = c,E[(x — 8™ + P™)"; (x = 8™ — B™)].
y—>

We now study the structure of the departure process.

COROLLARY 5. Ina GI/G/1 — -+ — G/1 queueing system for which the
interarrival time d.f. is in #(c,) for some 0 < a < « and the service times
have finite moments of all orders, the arrival process {T(y): n € Z} at the
mth station is AOD when y — «,

ProoF. Take g,,g, as in Definition 5.1. For {T/*: 1 <l < n,} we use
representation (5.4), whereas for n; + d <1 <n, + d + n, we may write also
= Zm(w)(wnﬁd’ Tn1+d’ SRR Tn1+d+n2)’ where ,Z’”()(W, tn1+d’ SRR tn1+d+n2)
isao(Si:i=1,...,m—1;k=n,; +d,...,l + 1)-measurable function, and
put W, ., ={W,,,:i=1,...,m — 1}. We prove that

lim 'ya(n1+n2)Eg1(T1(7) 1o Tnl(‘y))g2(Tn1+d(7) 1o Tn1+d+n2(7))

y—>®

= (ac)"""[ - [Egy(F"(0,ty,..., 1)

[R'_:_ﬁ"z
n
(5.11) I=1,...,n) [Tt tdy
k=1
ng(%m(o, tn1+d""’tl): l = nl
ni+d+ng
td,...,ng+d+ny) T1 t&tat,.
k=n,+d

Now, because {9, I = 1,...,n;} and {I", L=n, +d,...,n, +d + ny} are
independent for d > 2, we can factor the rhs of (5.11) and conclude by
Theorem 5.2 that the numerator and denominator of (5.2) are of the same
order of magnitude with the same limit constant. To obtain (5.11), we cannot
apply Theorem 5.2 directly, but, much as in the proof of (5.5), we observe that
in (5.11) the lhs is not less than the rhs and that the lhs of (5.11) is not
greater than

(ac)"™ ™ [ R,;l-;nszgl(Z’”(Wl('yo),tl,...,tl): I=1,...,n)

(5.12) ng(Zm(W1(Yo), tl’ e tnl’ 70Tn1+1’ tee YOTn1+d—1’ tn1+d’ R tl):
. n1+d+n2

ny
L=ny+d,...,ny+d+n,) [Ttg7rdt, [T ¢ dty.
k=1

k=n,+d
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Letting y — « in (5.12), provided it is finite, we obtain again the rhs of (5.11).
To ensure finiteness of (5.12), as well as (5.6) for g, and g, separately, it
suffices to have finite moments of S of order a(n, + n,) + 1. For a formal
proof we have to use the Remark after Theorem 5.2 and the theorem on
moments of Kiefer and Wolfowitz (1955, 1956). O

6. Light traffic via thinning. Another possible approach to light traffic
limits proceeds via a thinning operation [called m-thinning in Daley and
Rolski (1991); see also Daley and Rolski (1992) and Asmussen (1991)]. By
7-thinning we mean that arrivals of customers into the system can be
regarded as the result of subjecting the process of potential arrivals to
independent thinning with common retention probability 7. We approach
light traffic conditions by allowing 7 — 0. In this section we discuss briefly
the consequence of taking such limits for GI/G/1 - --- - G/1 systems.

Note first that the intervals of a renewal process subject to independent
thinning can be represented as

(61) Tn(ﬂ') = 'ilTin

where {T},: i = 1,2,...; n = 1,2,...} is a doubly infinitely indexed sequence
of iid r.v’s, each T}, =; T for some generic interarrival time r.v. T of the
unthinned potential arrival process, and {»,} is a sequence of i.i.d. geometric
r.v.’s with

Pr{y, =r}(1—-m)"", r=12,....

Then for each 7, (T,(w), n € Z) is a sequence of ii.d. r.v.’s with the common
distribution function A and for each n the family of sequences {(T,(w)),
0 < 7 < 1} is a stochastically monotone R’-valued random process, because
T(w) <4 T(w'), when #’' < 7. Moreover, by a standard argument we can
assume that it is a sample path monotone decreasing random process [take
Q=1[0,1%, Pr= - ®dx®dx ® - and T,(7)w)=(A")"w;), where
o=(...,w,, w,...) and the inverse function A~! is defined as in Stoyan
(1983), Section 1.2]. Note that, irrespective of whether or not T' > 0 a.s., each
T,(7) - © a.s. as m — 0. The result is that the presented argument justifies
the existence of a probability space (£,.7, Pr) (we do not introduce separate
notation here although formally this may be a new space), a sequence {S,} of
independent and identically distributed random vectors, all distributed as the
generic service times vector S, which are independent of the process {(T, (7)),
0 < 7 < 1}. Again as in Section 4 we can prove that the stationary waiting
time (W™(#r)) at the mth station decreases stochastically to 0 regardless of
whether T' > 0 a.s. or not. ’

Let A denote the distribution of 7. We want to point out that in this
section any variable changing its values with the retention probability = is
marked by (7).
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THEOREM 6.1. Ina GI/G/1 - -+ - G/1 queueing system in which the
arrival process is subject to m-thinning, for a coordinatewise nondecreasing
function g: R™ - R with g(0,...,0) =0,

lin%) 7 'Eg(Wl(wm),...,W™(m))

(6.2) m i . .
=Y E[f H(p' - t)g(O,...,O,dt,r”l,...,r’”)},
i=1 0
provided that for some ' in 0 < 7' <1 andeachi=1,...,m,
(6.3) E[f?iH(p’" -~ t)g(O,.'..,O,dt,F”l,...,F”‘)] < oo,
0

where H = Y7_; A" is the zero-deleted renewal function,

P =Pi(m')y=WXa') +8*+ ¥ (Wh(m")S* — Sk-1),
k=2

P!, i=1,
R'=RY(w'") = min{E(Wk(ﬂ')‘l‘Sk_SAkﬁl)}’ i1=2,...,m,
2<j<i k=j

pt = (PY), and 7' = (RY),.

PrOOF. Much as in Section 4 we have for 7 < 7/,
(min(R’, P' — T(m))), < Wi(7) < (min(R'(7"), P{(m") = T(m))), .
For the lower bound (i.e., for the single-customer representation) we have
lim 7~ 'Eg((min(R', P' — T(w))),,...,(min(R™, P™ — T(m))),)

poee
70

It

: - _ n-1 (% : 1 1_
lim ,El(l ™) fo Eg((min(R', P* - t)),,...,
(min(R™, P™ — t)), )A¥(dt)
= wag((min(I_Bl,fl —t)),s...,(min(R™, P™ - t)), )H(dt)
0
and for an upper bound,

lim sup w‘lEg((min(l_Bi(w’), Pi(m') = T(m))), )

70
= meg(min(I_?l,I—’l —t),...,min(R™, P™ - t))H(dt).
0
Now arguing as in the proof of Theorem 4.1, we let 7' — 0 to obtain

lin}) 7 'Eg(Wi(m),...,W™(m))

- j:oEg((min(I_i’l,fl ~ ), )., (min(R™, P™ — t)), JH(dt).
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This completes the proof because the same decomposition and integration
techniques as in the analogous Theorem 4.1 may be used to state (6.2),
provided (6.3) holds. O

As an analogue of Corollary 3, the following result is established in a
straightforward manner. Note that the conditions are analogous to those of
the case @ = 1 in that corollary.

COROLLARY 6. If E[(S*)?] <, k=1,...,m, then the families of r.v.s
{min(R™, P™ — T7),} and {(W™(1)} are ACE and the single-customer effect
holds. '

Other results analogous to those of Section 4 are omitted apart from the
following three concerning the departure-time process.

THEOREM 6.2. Letg: R} — R, be a coordinatewise nonincreasing function
with g(0,...,0) finite and such that g(t)} 0 when max,_,_,t;, = . Let "
be as in (5.4). Then

lim 7" Bg (Tf"(w), .., T,"(w))
(6.4) = f . ng(Z’”(O,tl,...,tl):

n
I=1,...,n) [T H(dt,)
E=1
provided that for some 7' > 0,

(6.5) fﬁ; JEe(Fm(Wi(m'), b1, s t)): L = 1,...,n)kI=_[lH(dtk) < o,

Proor. By monotonicity of g we have
limi(r)lfﬂ'"‘Eg(Tlm(Tr) yees T())

> lim Y (1-m)*f o [Eg(@m(0,t,....t)):

20 i<
1<k<n

n
I=1,...,n) [T A% (dt,),
k=1

which equals the rhs of (6.4). On the other hand, for 7 < 7' we have
limsup 7w "Eg(T{*(7),..., T, (7))

70

n
< [ [BEET W(m )by t)sl = 1oeeom) TTHG) <o
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Now we let 7' — 0 and obtain, provided (6.5) holds, the rhs of (6.4). This
completes the proof. O

COROLLARY 7. If E(S)2 < fori=1,..., m, then

lin%)w_l Pr(T™(w) <x} = E[H(x - S™ + P™); x > S™ — R"].

COROLLARY 8. Ina GI/G/1 - -+ - G/1 queueing system in which the
service times have finite moments of all orders, the arrival process (T, (ar):
n € 7} at the mth station is AOD when 7 — 0.

7. Concluding remarks. It is useful to point out a few conclusions we
can draw from the foregoing results. In particular, we have given the order of
magnitude in light traffic of various performance characteristics that are
functions of the stationary waiting times or the interarrival times at nodes of
aGI/G/1 - -+ - G/1 series queueing system.

One problem that remains concerns the range of validity of the “single-
customer effect” in a G/G /1 queue (i.e., not necessarily renewal input). There
are examples of GI/G/1 queues where the effect breaks down [see, e.g.,
Daley and Rolski (1984) and Asmussen (1991)]. Some work on the nonre-
newal input case is given in Daley and Rolski (1991), but we are still far from
a complete understanding of the problem. As another example, consider a
node in a series of queues with independent service times and regard it as a
G/GI/1 queue in its own right. Interdeparture times 7™(y) from the
(m — D)st node are interarrival times at the mth node. Corollary 5.1 y1elds
for x > 0,

YAT(x) > ¢uE[(x — 8™ + P™) % x > S™ - R"],
where A%(x) = Pr{T™(y) < x}. If we suppose that the single-customer effect

holds, then, neglecting mathematical rigor, we would write, for a nondecreas-
ing function g such that g(0) = 0

v Eg(W"(y) = v [ “Eg(S™ — x) A™(dx)
N cAf“E[g(sm —x)(dx — 8™ +P™); x > S" — R"],
0

the “justification” here being Theorem 4.1. Howe&er, we have not as yet
been able to justify the preceding steps without exploiting the detail of the
particular queueing structure.’

Acknowledgment. We are grateful to Daryl Daley for his comments on
this paper.
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