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THE EQUIVALENCE OF THE COX PROCESS WITH
SQUARED RADIAL ORNSTEIN-UHLENBECK
INTENSITY AND THE DEATH PROCESS
IN A SIMPLE POPULATION MODEL

By PETER CLIFFORD AND GANG WEI

Oxford University

Two kinds of stationary point process are considered. One is gener-
ated by the sequence of death times in a simple immigration, birth and
death process; the other is the Cox process with intensity given by the
square of the radial Ornstein-Uhlenbeck process. By comparison of the
coincidence densities, we show that the two classes of processes are
equivalent. An explicit expression is given for the coincidence density of
arbitrary order.

1. Introduction. In statistical applications the objective in analyzing a
Cox process [Cox (1955)] is to draw inferences about the unobserved intensity
process from the observed pattern of points. A simplifying assumption is that
the intensity is a Markov process. Smith (1984), for example, has proposed a
method for dealing with the case in which the intensity is a finite state
Markov chain. In the continuous case it would be convenient to have avail-
able a flexible parametric family of diffusions to model the intensity process.
Minimally, three parameters are required: two to control the scale and shape
of the equilibrium intensity and one to control the smoothness of the trajecto-
ries. The final choice of model will also be influenced by considerations of
mathematical tractability and the ease with which the point process can be
simulated. A possible candidate is the d-dimensional squared radial Orn-
stein—Uhlenbeck process.

The purpose of this paper is to show that if a Cox process has an intensity
that is the square of a stationary radial Ornstein—Uhlenbeck process, then it
is equivalent to the process of death times in a simple stationary immigra-
tion, birth and death process; a process that is easy to simulate. The result is
surprising because it provides a theoretical link between two of the most
basic stochastic processes. The equivalence of the point processes in the case
d = 2 was first noted by Srinivasan (1988). However the result is not well
known. Our method of proof is simpler than that of Srinivasan and we believe
that the generalization is new.

The plan of the paper is as follows. In Sections 2 and 3 we collect basic
results about the simple immigration, birth and death process and the radial
Ornstein—Uhlenbeck process. In Section 4 we prove some lemmas relating
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864 P. CLIFFORD AND G. WEI

the factorial moments and ordinary moments of the two processes. Sections 5
and 6 contain statements of the main results and their proofs.

2. The immigration, birth and death process. Let {Y(¢)} be a station-
ary Markov population process with constant rates of immigration, birth and
death, given by v, A and u, respectively. In other words, if Y(¢) = n, then the
intensity of transition to n + 1is » + nA and the intensity of the transition to
n —1is nu for n > 0. See, for example, Moran (1968). For convenience, we
define the following parameters:
m—=A A v

= 6= —.
2’ A w—=2A’ A

(1) a=

It is well known that {Y(#)} has an equilibrium distribution provided A < u
and we shall insist on this condition throughout. Furthermore, the equilib-
rium distribution is negative binomial and is given by

J

(2)  Prob(Y(0) =) (1 A)BF(8+j) A 1 =0,1,2
0 = = 7l s~ 11> =V, lL,4,...,
/ w) T(8)! \m /
with associated probability generating function
(3) Go(2) = E(2"®) = (1 - B(z - 1)) ",

Given that Y(0) = y, the distribution of Y(¢) can be represented as
Yy
(4) Y(t) = ¥ Wi(t) +N(2),
i=1

where W,(t) is the number of survivors in the family that originated with the
ith member of the population at time ¢ = 0, and N(¢) is the contribution to
the population size arising from new immigrations in (0,¢). Because
N(t), W(2), Wy(t),... are independent and W,(t), W,(¢),... are identically
distributed, it follows that the probability generating function (p.g.f.) of Y(¢)
is

(5) G(2;5) = E(2"VIY(0) =y) = Py (2) Py(2),

where Py (z) and Py(2) are the p.gf.s of W and N, respectively. Both Py,
and Py are well known [Moran (1968)]. With our notation they can be
rewritten as

Py(z) =1+ p*(z — )m(z - 1),

6
© Py(z) = [m(z - 1)]°,
' where .
(7) m(u) = (1- (1 - p*)u) "’

and p = exp(— at).
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3. The radial Ornstein-Uhlenbeck process. Let {R(¢}} denote a sta-
tionary radial Ornstein—Uhlenbeck process represented by the stochastic
differential equation

(8) dR(t) = [(8— 1/2)R™(t) — R(¢t)] dt + dB(t),

where 8 > 0 is given by (1) and B is Brownian motion. When 28 is an
integer, R(¢) can be thought of as the distance from the origin of a Brownian
particle moving in 28 dimensions, subject to a restoring force directly propor-
tional to the distance. In equilibrium the squared distance has a x?2 distribu-
tion with 26 degrees of freedom. The transition density of {R(¢)} [i.e., the
density at R(¢) = r given that R(0) = s] is given by

1 —(s?+r?)e?
p(t,s,r) =2r28‘1e"21 _e2texp[ T

©) t

2rse”

L1708
X (rse”t) Isl(m),

where I is the modified Bessel function [Karlin and Taylor (1981), page 334].
We will be interested in the process {V(¢)} defined by

(10) V() = §R2(at), for —o <t < oo,

which is also a diffusion and therefore a Markov process. The parameters «
and B are related to u, A and » by (1). From (9), using properties of the
Bessel function [Abramovitz and Stegun (1965)], the conditional moment
generating function (m.g.f) of V(¢) given V(0) = y can be evaluated as

(11)  M(u;y) = E(e*"®|V(0) = y) = exp(ypum(u))m®(u).

Note that m®(u) is the m.g.f. of a gamma distribution with scale parameter
M1 — p2)/(u — A) and shape parameter 8. The m.g.f. of the equilibrium
distribution is obtained by letting ¢ — « or equivalently p — 0 because

p = exp(—at). Denoting the equilibrium m.g.f. by M(z) and recalling that
we have assumed that the process {V(¢)} is stationary, we have

(12) Mo(u) = E(e*V®) = (1 - Bu) ",

which is the m.g.f. of a gamma distribution with scale parameter B and shape
S.
The conditional m.g.f. can also be written in the form

© -k, J

(13) M(u;y) = T —m®(w),

Jj=0

‘where « = p2y/((1 — p?)B); that is, the conditional distribution is a Poisson
mixture of gamma distributions. This provides a straightforward way of
simulating the process {V(¢)} once a discrete set of times has been chosen.
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4. Conditional moments. First recall that if A(z) is the p.g.f. of an
nonnegative integer-valued random variable X and if A(1 + u) is finite for all
v in some interval about zero, then the kth factorial moment of X is given by

d*h(z) d*h(1 + u)
(k)Y = =
(14) E(X®™) el Tk Y

Equivalently, E(X®) is the coefficient of u* /! in the expansion of A(1 + w).
We now compare the moments of the stationary processes {Y(¢)} and {V(¢)}.

LEMMA 1. The factorial moments of Y(0) are equal to the ordinary moments
of V(0).

ProoF. From (3) and (12) we have
(15) Go(1+u) =My(u).

Taking derivatives of kth order and evaluating at u = 0, the result follows
because on the left-hand side we have the kth factorial moment of Y(0) using
(14), and on the right-hand side we have the kth ordinary moment of V(0) by
the definition of a m.g.f. O

Let p(y)=a, +a;y + +a,y* be an arbitrary polynomial in y and
define p(y) to be

(16) B(y) =ag+ay® + - +a,y®.
We will refer to p as the factorial polynomial associated with p.

LEMMA 2. For each k =1,2,... the conditional expectation E(Y*®(t)|
Y(0) = y), considered as a function of y, is the factorial polynomial associated
with E(VE@#)|V(0) = y).

PROOF. First note that both E(Y ®)(¢)|Y(0) = y) and E(V*()|V(0) = y)
are polynomials in y of order k. For example,

E(Y®(2)|Y(0) =y) = ?gTG‘(l + u; )
(17) dk

=

’u=0

2

1+ p?um(w)) m(u)’

u=

which means that each successive differentiation introduces a higher power
of y. The resulting expression-is a polynomial in y because 1 + plum(u) =1
when u = 0. We can collect factorial powers together to obtain the expression

(18) E(Y(k)(t)lY(O) =y)=ayt Ay + o Fagy® =pu(y),
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where p,(y) is a factorial polynomial. In a similar fashion, the kth condi-
tional moment of V(¢) given V(0) = y can be written as

(19) E(Vk(t)|V(O) =y) =bpo + by y + +by, k.

To prove the lemma we must show that a,; = b,; for all k£ and for all j < k.
Using (18) the conditional p.g.f. can be written as

L
(20) G(1+u;y) = X —55:(v)
so k!
for |u| sufficiently small.
Now note that
* e %Y
(21) Y ——y® =0
y=0 ¥:
so that
© e %Y
(22) ) Pr(y) = pi(0),
y=0
where p, is the ordinary polynomial associated with p,. Using (20) and (22),
© —00y © uk
)y G,(1+u;y) = 2: ZTpk(O)
(23) v )
© ko]
= Z Z k! ak]’

k=0 j=0
and substituting the explicit form for G,(1 + u; y) from (5) we have

© 700y © -0y y
Y —Gl+uy) =X (1 + p2um(u)) m®(u)
(299 7% 7 =0
_ es”z"m(”)m‘s(u)
=M,(u,0).

Comparison of (23) and (24) shows that a,; is the coefficient of u*0/ /k! in
M,(u, 0). However, from (19) the coefficient of u kyi/klin M(u, y) is by, so
that a,; = b,;, which proves the lemma. O

LEMMA 3. For each k =1,2,... the conditional expectation E(Y &)
Y(0) = y) considered as a function of § is a polynomial in & of order k.

PrOOF. The proof follows from (17) because each derivative introduces an
extra power of 8. O

LEMMA 4. For each k =1,2,... the conditional expectation E(Y *)(¢)|
© Y(0) = y) is differentiable with respect to t so that

(25) E(Y®(t)|Y(7) =y) =E(Y®()|Y(0) =y) + o(7) asT—0.
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PROOF. Again this follows directly from (17) because the joint distribution
of (Y(¢),Y(7)) is the same as that of (Y(¢ — 7),Y(0)) by stationarity and
p = exp(—at) is a differentiable function of ¢. O

5. Equivalence of the two point processes. Our treatment of point
processes will follow that of Daley and Vere-Jones (1988), who provide a
comprehensive theoretical background. We are interested in point processes
that are both orderly and stationary. The kth order coincidence density of
such a process is defined to be

(26) hy(ty, .o ty) = lilgl TRE[I(t, ¢+ 1) I(t, 8, + 7)]
70+

for arbitrary ¢, < -+ < t,, where I(¢,¢ + 7) = 1 if there is exactly one point
in the interval (¢,¢ + 7) and I(¢,¢ + 7) = 0 otherwise.

Coincidence densities, or higher order intensities as they are sometimes
known, were studied extensively by Macchi (1975). It is known that the
coincidence densities characterize the point process [Daley and Vere-Jones
(1988), Section 5.4]; that is, if two orderly point processes have the same
coincidence densities of all orders, then they are stochastically equivalent. We
will make use of this fact to demonstrate our main result.

THEOREM 1. The point process associated with the times of deaths in the
population process {Y(t)} is stochastically equivalent to the Cox process with
intensity process { uV(¢)}.

ProOF. We start by considering the Cox process with intensity A(¢)
defined by A(¢) = uV(¢) for all ¢. Conditional on the intensity, the point
process is an inhomogeneous Poisson process and the kth order coincidence
density is simply the product of the intensities A(¢;)-- A(¢,). Uncondition-
ally, this gives

(27) Riy(tys..s ) = E(A(t) -+ A(%)),

and in terms of V(¢),

(28) hk(tl”"’tk) = /.LkE(Vl b Vk)’

where we use the notation V; = V(¢,), i = 1,..., k, for convenience.

We can evaluate the expectation by successive conditioning, making use of
the fact that V,,...,V, is a Markov sequence. Conditioning on V,,...,V,_,
and using the Markov property, we have

(29) E(Vy - ViIVy,..., Vi) = Vo VL E(V,V, ).

The expectation E(V,|V,_,) is a polynomial in V,_; of order 1 by (19). When
. multiplied by V,_; we obtain a polynomial of order 2, which we denote by
q5(V,_,). Note that here p = exp(—a(t, —¢, ;). Next, conditioning on
V,,...,V,_, the expectation becomes V; - V,_,E[q,(V,_DIV,_,], which
can be written as V; -+ V,_5q4(V,_,), where g3 is a polynomial of order 3.
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Continuing in this way, we have finally
(30) E(Vy =+ V,) = E(q:(V1)),

where g, is a polynomial of order k.

Let us now consider the coincidence densities of the point process produced
by the deaths in {Y(¢)}. As before, we consider an arbitrary set of times
t; < -+ <t,. We assume that 7 is sufficiently small and that the intervals
(t;,t; + 7) are disjoint. For convenience we write I; instead of I(¢,,¢; + 7), for
i =1,..., k. Denoting the o-field generated by {Y(s), s < t} by %(¢), we have

(31) E(Ikl.@(tk)) = E(LIY(2)) = Y (8,) + o(7),

where u is the death intensity and we have used the Markov property of
{Y(#)). It follows that

(32) E(I, - L1#B(t,)) = I, - L_y[mY () + o(7)],
and taking conditional expectations given %(¢,_, + 7),
E(L - L|B(t,_, + 7))
=1 - Ik_l[TME[Y(tk)|Y(tk_1 + 7)] + 0(7)].
To evaluate the conditional expectation given #(¢,_,) we use
E{1,_ B[Y(t,)|Y(t,_ + 1)]|#B(2:_1))

= Prob[I,_, = 1|Y(¢,_,)]
(34) XE[Y(t)Y(ty 1+ 7)=Y(t,_1) — 1] + o(7)
Y (6, ) E[Y()Y (8 1 + 7) = Y(t,_1) — 1] +o(7)
gy (Y(t,-1)) + o(7).

Each equality in (34) introduces an additional term of o(r). The first o(7)
term is introduced by the approximation

(35) Prob[L,_; =1NY(t, y+7)—Y(t,_y) # ~1|Y(t,_y)]| = o(7),

because the probability that more than one event occurs in (¢,_,¢,_; + 7) is
o(7). The second arises from the approximation

(36) Prob[I,_, = 1|Y(t, ;)] = Y (t,_1) + o(7)

and the third is introduced by applying Lemma 4 because yE(Y(t)|Y (2, +

)=y — 1) = yE(Y@)|Y(¢,_,) =y — 1) + o(r). Finally, because

E[Y(t,)|Y(t,_,) = y] is the factorial polynomial associated with E[V, V,_, =

y] by Lemma 2, it follows that yE[ Y(t)|Y(¢,_) =y — 1] is the factorial

polynomial associated with yE[V,|V,_; = y] or g,(y) in our previous notation.
In other words, using (33) and (34),

(37) E[Il Ikl'@(tk—l)] = :U'ZTZII Ik—zdz(Y(tk—l)) + 0(72)~

(33)
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For the next two steps, we take conditional expectations with respect to
HB(t, 5+ 1) and then PB(¢,_,). In the latter case we must consider
yE[G(Y (¢, _)|Y(¢,_,) =y — 1]. By Lemma 2, each of the factorial powers in
the factorial polynomial §, has an expectation that can be expressed as a
polynomial in factorial powers of y — 1. Multiplying by y these become
polynomials in factorial powers of y, and collecting terms, the whole expres-
sion becomes ¢;(y), the factorial polynomial associated with g,(y). Continu-
ing in this way we have eventually

(38)  E(I, - I,) = E[E(I,  LIY(t,))] = **E[g,(Y(t1))] + (),

so that the coincidence density of order k is u*E[§,(Y(¢,))].

We now use Lemma 1 to compare the two coincidence densities (.e.,
w*E[§,(Y(¢,)] and u*E[q,(V(¢,)D. Because G, is a factorial polynomial and
each of the factorial moments of Y(¢,) is equal to the corresponding ordinary
moments of V(¢;) by Lemma 1, it follows that the two coincidence intensities
are identical and the proof is complete. O

6. Explicit expression for coincidence density. To give an explicit
expression for the kth order coincidence density we must introduce some
graph-theoretic concepts. We consider an undirected graph with % vertices
labelled 1,2, ..., k. Suppose that every vertex in the graph is either isolated
or of degree 2. In other words, the graph consists of connected components
each of which is either an isolated vertex, a pair of vertices joined by two
edges or a larger circuit containing three or more vertices. We denote the set
of all such graphs by Z.

Let the set of pairs S ={(i,j), 1 <i <k, i <j <k} be ordered by some
convention, for example, (1,1),...,(1,%),(2,2),...,(2,%),...,(k, k). Each
graph g € £ can be described by S(g), an associated vector whose elements
are increasingly ordered members of S. The presence of the pair (i,i)
signifies that vertex i is isolated. If (i, ) is present and i # j, then there is an
edge joining vertex i to vertex j. Note that if the vertices {i,j} form a
connected component of size 2 in the graph, the pair (i, j) will be repeated,
consecutively, in the vector. We use the notation [, to indicate a product
taken over each of the pairs s in the vector S(g).

THEOREM 2. The kth order coincidence density of the processes described

in Section 5 is given by
R
(39) B(tys..nty) = (wB)” X 2% [ 1 ps,
gey sE€g

where p;; = p; ;, = exp(—alt; — t,], c is the number of connected components
in the graph g and a is the number of such components containing more than
two vertices. .

‘ ProoOF. First of all, we will prove the theorem when 26 is integer, by
calculating the coincidence density for the Cox process. Writing N = 2§, the
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process {R%(¢)} can be represented as
N
(40) R%(¢t) = Y. UZX(t), forallt,
n=1

where {U,(¢)} are independent real-valued stationary Ornstein—Uhlenbeck
processes, each represented by the stochastic differential equation

(41) dU(t) = —U(t) dt + dB(t).

The Ornstein—Uhlenbeck process is a Gaussian Markov process with zero
mean and autocovariance E[U(¢)U(0)] = exp(—|¢)). When 2§ is integer this is
the most straightforward way to simulate the process { R(¢)}. For background,
see Karlin and Taylor [(1981), Chapter 15].

To calculate the kth order coincidence density we must evaluate

hy(tys--sty) = E[A(t) - A(%)]

42 k
(“42) =(%B) E[R?(at,) - R*(aty)].
Using (40),
k N
E[R%(at,) - R*(at,)] =E[1—[( r sz)]
(43) J=1\n=1

= Z E[U1211 UkZJ'k]’
Grs-o o J)Efl, ., N}
where the U, = U,(at;) and the vectors (U,,,...,U,,) for n =1,..., N are
independent multivariate normals each with variance—covariance matrix
{p;;} with p,; = exp(—alt; — t;}). To evaluate the expectation we consider
Hy(6), the joint m.g.f. of the variables {U,,}, where

N

HU(G) =E €xp Z i ojnljjn)}

n=1j=1

(44) y

k k
= exp(1/2 Z Z Z oinojn pij)’
n=1i=1j=1

using the multivariate normality. For a typical term on the right-hand side of
(43) we have

2 2 012j1 okzjk .
E[UZ, - U] = Coeff. of —*——" in Hy(9)

2k
(45) N

k
1 k

= Coeff. of 0121-1 0k2jk in E( Zl '21 '21 0,05, pij) .
*\n=1i=1j=

Now notice that any graph g € £ can be associated with a term of the form
0121‘1 O,fjk. We do this by indexing the components using the index set
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{1,...,N} and then constructing the product of terms 6;, 0, over all the pairs
(Z, j) in the vector S(g). For example, the graph with four vertices, in which
vertex 4 is isolated with index 2, and in which (1,2, 3} form a circuit with
index 1, corresponds to the product 07262602 602%. Conversely, any product of
the form 67, - 67, corresponds to a set of graphs in & with indexed
components.

We now multiply out the % factors in the power term in (45) and sum as in
(43), picking out all terms associated with a particular graph g € &. In this
way, a product AIl ., p, is formed, where A depends on g. We now
determine the multiplier A. We use the vector of pairs S(g) = (s,,...,s,) to
decide which p term is chosen from each of the % factors, so that p associated
with the pair s; is selected from the ith factor, for i = 1,..., k. If the graph
has ¢ components, each component can be indexed in N ways, which intro-
duces a multiplier of N¢, and if the pair s does not correspond to an isolated
vertex, then 2p, will appear in each factor. This introduces a multiplier of
2%~v where v is the number of isolated vertices. However, the elements S(g)
can be allocated to the & factors of the power term in k! ways, which would
introduce a further multiplier of k! except that components of size 2 have to
be dealt with separately because their associated pair s appears twice in
S(g) and does not produce a distinguishable permutation. We must, there-
fore, divide by 27, where p is the number of components of size 2. The
product I'l,., p;, therefore, appears with a multiplier of k!2*~*"PN¢ or
k12°**5¢, where a is the number of components having three or more vertices.
This proves the result in the case 2§ is integer. To complete the proof in the
general case we use Lemma 3. Thus we know that the coincidence density is a
polynomial in 6 and we have shown that the result is true when & is an
arbitrary positive half-integer. It follows that the formula is valid for all
positive 8.

As an illustration, the third order coincidence density is

(46) (,u,ﬂ)3(2p12 P23 P130 + piy 8% + ply 8% + p2y 87 + 83)

because the only graphs on three vertices are the 3-circuit, a pair plus an
isolated vertex and three isolated vertices. O

7. Remarks. The equivalence of the two point processes in the case

8 = 1 was first noticed by Srinivasan (1988). Srinivasan considered a popula-
tion process with immigration, birth, death and emigration; the point process
being the process of emigration. However, this formulation does not produce a
wider class of processes because the emigration process can be thought of as a
thinning of a death process with a larger death parameter. In the Cox process
- considered by Srinivasan the intensity is proportional to the squared modu-
lus of a complex Gaussian Markov process. The squared modulus of a such an
intensity process is stochastically equivalent to the process {(UZ(at) +
UZ(at))/2}, where the U’s are independent Ornstein-Uhlenbeck processes.
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The coincidence densities for the Cox process in this special case are known
[Daley and Vere-Jones (1988)] and have the simple form

(47) Ri(tis--»t) = (uB)" Perm{p,;},

where Perm( p; j} is the permanent of the matrix { p; j}.

The full equivalence of the two types of point process means that the
parameters of the population process v, A and u are mapped onto the three
parameters of the squared radial Ornstein—Uhlenbeck process. The shape,
scale and autoregression parameters §, 8 and « are given in terms of v, A
and p in (1), and, conversely,

(48) v=2apBs, A=2aB and u=2a(l+ B)

define the immigration, birth and death rates for the associated population
model.
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