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A LIMIT THEOREM FOR FUNCTIONALS OF JUMPS OF
BIRTH AND DEATH PROCESSES UNDER HEAVY
TRAFFIC CONDITION

By KEIGO YAMADA AND SUNG JO HONG

University of Tsukuba

For a class of birth and death processes under a heavy traffic condi-
tion, the asymptotic behavior of functionals of their jumps is investigated.
It is shown that, under suitable normalization, the functionals converge in
law to a process that is the sum of a Brownian motion and a constant
times the local time of a reflecting Brownian motion at zero. Some
applications to queueing processes are presented.

1. Introduction. We consider birth and death processes under the heavy
traffic condition, which means that birth and death rates are nearly equal at
the infinite level of the processes. Here, we study the asymptotic behavior of a
certain type of functional of jumps of such birth and death processes; specifi-
cally, we consider a sequence of birth and death processes {Y,(¢)},., on the
nonnegative integers with birth rates A,() and death rates u,(-) [ u,(0) = 0],
where A,(x) and u,(x) are nearly equal when n and x are large (see
Assumption 2). Our concern is to investigate the asymptotic behavior of the
following type of functionals of jumps of Y, (¢):

(1.1) U(t) = X f(Ya(s-),Y(s)), n=1,

AY:(i)ta&O

where AY,(s) = Y,(s) — Y,(s — ). Such a problem often occurs in applications.
For example, by taking f(:,-) appropriately in (1.1), U,(¢) represents, in the
context of queueing theory, arrival or departure processes. The asymptotic
analysis of such processes is important in connection with the investigation of
the limiting behavior of the waiting time of a queue under heavy traffic (see
Examples 5.2 and 5.3). Analyzing departure processes is also important
because they can serve as arrival processes to other service stations (see
Example 5.4). It will be shown that under the heavy traffic condition Assump-
tion 2 and other suitable conditions for A,(-), u,(-) and f(:,-), the normalized
processes U,(t) = (1/Vn XU,(nt) — nl,t), n = 1, where the [,’s are suitably
chosen constants, converge weakly to a process U,(¢). The limit process Uy(¢)
is characterized by U,(¢) = 8¢(¢) + B(¢), where 8 is a constant, £(¢) is the
local time of a reflecting Brownian motion X(#) at zero and B(¢) is a
Brownian motion that is generally not independent of X(¢). To obtain this
result, we follow the stochastic calculus approach used in Ikeda and Watan-
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abe ([2], Chapter 3, Section 4.4) and Papanicolaou, Stroock and Varadhan
([5], Section 3.5). More directly, we follow the approach in Yamada [10]. As we
see later, this approach is particularly well suited for birth and death
processes and it produces some useful results. As an example, the limiting
behavior of some processes appearing in queueing models is discussed. How-
ever, to overcome some difficulties that lie in our approach, we have to impose
some technical assumptions that restrict the scope of applications of our
result. In choosing the class of birth and death processes for our study, the
discussion in Serfozo [7], where the asymptotic behavior of the maximum of
some class of birth and death processes under the heavy traffic condition is
investigated, was helpful.

We denote by D([0,), R?) the space of functions f: [0,©) — R?¢ that are
right-continuous and admit left limits, and we endow this space with Skoro-
hod’s J; topology. Also “—, ” and “—, ” denote convergence in probability
and in law, respectively.

2. An outline of our approach with an example. In the next section
we will state Assumptions 1-6 and our result. However, because some
assumptions are rather technical in nature, in this section we will sketch
briefly our approach with an example for the functional U,(¢). This will
explain the need for our assumptions. For that purpose, we suppose that the
birth and death processes {Y,(¢)}, n > 1, represent a sequence of appropriate
queueing models of a single station. Thus, Y, (¢) is the number of customers in
the nth queue at time ¢. Let U,(¢) represent the number of busy cycles up to
time ¢ for the nth queue. U,(¢) is represented by

Un(t) = Z 1(Yn(s -) = O)I(AYn(s) = 1)
s<t

Thus, in (1.1) f(x, x + 1) = 1(x = 0) and f(x, x — 1) = 0. We want to investi-
gate the asymptotic behavior of U,(¢) as n tends to infinity under a heavy
traffic condition, which means here that the arrival rate A,(-) and the service
rate u,(-) become equal at the infinite level of the queue when n — «. In
other words, if we set A, = lim, , A,(x) and u, = lim, _,, p,(x), then p, =
A,/ t, = 1 and n — . Under this heavy traffic condition (see Assumption 2
for the exact condition) and some other technical conditions (Assumptions 1
and 3), it is known (Lemma 2) that the normalized processes X,(¢) =
(1/Vn)Y,(nt), n = 1, converge in law to a reflecting Brownian motion X(¢)
with a drift. We write U,(¢) as

Up(1) = [1(¥,(s =) = 0) dN(s),

where N'(t) = £, _,1(AY,(s) = 1), the number of arrivals up to time ¢. Let
NXt) = NXt) — [(r,(Y,(s))ds. Then the normalized process U,(¢) can be
written as (take [, = 0) ‘

~ 1 nt
U(t) = 7= ["&u(Ya(s) ds + M, (1) [=Au(t) + My()],
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where g,(x) = 1(x = 0)A,(x) and M,(¢) = (1/Vn)[F*1(Y,(s — ) = 0) AN.(s).
Thus, the investigation of the limit process of U,(¢) is reduced to that of
(A, (t), M,(¢)). Using more or less standard functional central limit theorems
for martingales [note that M,(¢), n > 1, are martingales], we can show that
the limit process of M,(¢) is a Brownian motion B(¢). On the other hand, the
investigation of the limit process of A,(#) is more technical. A heuristic
argument for this is as follows. Write A,(¢) = Wng,(VnX,(s)) ds. Suppose
X(¢) > 0 [recall that X(¢) is the limit process of X,(¢)]. Because g,(x) has
compact support independent of n and Vn X,(t) — =, Vng,(/nX,(t) - 0 as
n — «, This suggests that the limit process A(?), if it exists, does not increase
at time ¢. Thus, A(t) is nonnegative and increasing and increases only when
X(t) = 0; this indicates that A(¢) behaves like the local time of the process
X(#) at zero. Indeed, as is claimed in the Introduction, we can show that A(¢)
is a constant times the local time of X(¢) at zero. Although the foregoing
argument is not very precise, it may explain why we need the condition that
g,(x) has compact support (not depending on n; see Assumption 6). Formally,
we proceed as follows. For each n > 1, consider the equation

(Fu(x + 1) = F(2))A,(x) = (Fo(x) = F(x = 1)) pa(x) = 8a(%),

(2.1)
F(0) =0, xe€Z={0,1,2,...}.

[Note that if .#, represents the generator of the process Y, (¢), the preceding
equation can be written as %, F,(x) = g,(x).] F,(x) is uniquely determined
and A,(¢) can be written as
1 1 "
A (t) = —F, X (t)) - —=F X, (0)) + M, (),
a(%) ‘/’;n(‘/; #(2)) ‘/,7,1(\/'7 #(0)) + M, (t)

where M,(t), n > 1, are martingales. [Note that, in general, F,(Y,(#)) —

{2 F (Y, (s)) ds is a (local) martingale.] Because the asymptotic analysis of
Mn(t), as martingales, is not difficult, the main problem in studying the
limiting behavior of A,(¢)is reduced to that of (1/ Vn )F,(Vn X,(¢)). In view of
the fact that X,(¢) — X(¢) > 0 for a.e. t, the problem is then to investigate
the limiting behavior of (1/Vn)F,(Vnx,) when x, — x > 0. But, because
g,(x) has compact support, the problem is finally reduced to determining the
limiting behavior of (1/ Vn X a,(1) + - + a,(Vn x,)) when x, - x > 0, where

1) (%)
A (1) A(x)
This analysis is, however, rather complicated under the presence of the index
n. Thus we restrict our models to more specific ones so that the analysis

becomes feasible. This is the reason why we impose Assumptions 4 and 5. For
, an implication of these assumptions, see Remark 2.

(2.2) a,(x) =

' 3. Basic result. We suppose that for each n > 1, the birth and death
process Y,(¢) is defined on a stochastic basis (Q,,,, P,; %) satisfying the
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usual conditions (see Jacod and Shiryaev [4], page 2). We also make the
following assumptions:

AssuMPTION 1. A, (x) > O for all » and x, A, =lim, ., A,(x) and u, =
lim, ,, wm,(x) exist. Moreover, sup, A,(0) < «© and

suplx(A,(x) — A, + p, — (%)) < 0.

n,x

ASSUMPTION 2., > A, n > 1,lim, . Vn(A, — u,) =c, —» < ¢ <0, and
lim, . A, =lim,_, u, = A > 0. Moreover, A,(x)> A, and u, > u,(x) for
all x€Z ={0,1,2, ...}.

ASSUMPTION 3. lim, . , .. x(A,(x) — A, + u, — p,(x)) = 0.

AsSUMPTION 4. A, (x) and u,(x) can be written as

/\n(x) = /\n : )‘O(x) ' Xn(x)’
Pn(X) = py - po( %) « (%)
and lim, ., A, (x) [= Ax)] and lim, _, . ji,(x) [= @&(x)] exist.

ASSUMPTION 5.

. o Mo(R)

(1) J}gxgokljll\o(k) =a, O0<a<o,
* (R

(ii) 1im1’[’f”()=3, 0<B<=

g2z k=1 A, (k)

and {[T7_ (1, (k)/A,(k))} are bounded in n and x € Z.

AssuMPTION 6. There exist constants [,, n > 1, such that g,(x) == f(x,
x+ DAS(x) + f(x,x — Dp,(x) —1,, x € Z, has a compact support not de-
pending on n. Thus we assume that for a constant x, € Z, g,(x) = 0 for all
n>1 and x > x,. Moreover, there exists a function g(x) on Z such that
g, (x) > g(x)forall x € Z as n — o,

REMARK 1. Suppose that the process Y, (¢) represents the queue length of
a single station queueing model. Then the condition lim, ,.Va (A, — u,) = ¢
in Assumption 2 implies that when n — o, the arrival and service rates
become nearly equal when the queue length is very large. This condition is
typically called the heavy traffic condition in queueing theory. When the
arrival and service rates are independent of the queue length, this condition
coincides with the usual one (Whitt [8)]).

REMARK 2. By Assumptions 2 and 4, lim, . A, (x) = A-Ay(x)-A(x)
[== AMx)] and lim, ,, p,(x)p,(x) = A+ puo(x) - @(x) [:= u(x)]. Then Assump-
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tion 5 implies that the birth and death process with birth rate A(x) and death
rate u(x) is null recurrent; that is, recurrent but not ergodic (see Asmussen
[1], Chapter 3, Section 4, for the definition of “recurrent” and “ergodic”).
Indeed, by Assumptions 4 and 5(ii), we have lim, , IT;_,(@(k)/A(k)) = B.
Thus

(3.1) lim ] —z— —aB >0,

(32) Y 11

On the other hand, because A(x) is bounded [note that by Assumption 1,
A,(x) is bounded in n and x], (3.1) implies
* A(R)

> A0) - Mx — 1) *
3.3 = A0 =
@) R w0 am L um
Thus, (3.2) and (3.3) imply our assertion ([1], Chapter 3, Section 2); that is,
the process Y, (¢) beecomes null recurrent when n — o,

Some of the foregoing assumptions were imposed for technical reasons and
make our models restrictive. They are also not easy to check for arbitrarily
given A,(x) and u,(x). In particular, Assumption 5(ii) is generally difficult to
verify. For example, if A,(x) and u,(x) are given by A, (x) = A, - Ay(x) and
m(x) = w, - wo(x) [hence, A, (x) = @,(x) = 1], then it only remains to check
Assumption 5@3). On the other hand, if A,(x) and u,(x) are given by A,(x) =
A, + Ay(x) and w,(x) = w, + po(x), it is not clear whether Assumption 5
holds or not. As another example where our assumptions make the model
restrictive, let us consider the case g,(x) = A,(x) — A,, which appears in
Example 5.2 in Section 5, where we study the asymptotic behavior of arrival
processes. In this case, Assumption 6 for g,(x) implies that the model under
consideration is restricted to a class for which, for sufficiently large x, A,(x)
is a constant for each n. However, our assumptions are not too restrictive for
the following reasons: First, Assumptions 1-5 are typically satisfied for
models appearing in practical applications (see Example 3.1). Second, for an
arbitrarily given birth and death process Y(¢) with birth rate A(x) and death
rate u(x), we can always choose a sequence of processes Y,(¢), n > 1, with
A (x) and p,(x) such that Assumptions 1-5 are satisfied and with A, (x) =
w(x) and u,(x) = uw(x) for sufficiently large n as long as A(x) and u(x)
satisfy some appropriate conditions. Indeed, suppose that: () u() > A(x),
where M) = lim, ,, Mx) and p(o) = lim, ., p(x)lim, ., w(x); Gi)
Mx) = M), (o) > u(x) and x(A(x) — A®) + w(o) — u(x)) = 0 as n — oo
and (iii) Ay(x) = Mx)/AM») and wy(x) == u(x)/u(>) satisfy Assumption 5@).
* Then it is easy to see that we can take A, and u, so that A,(x) == A, - Ao(x)
and p,(x) == p, - uo(x) satisfy Assumptions 1-5 and A,(x) = A(x) and u,(x)
= u(x) for sufficiently large n if () and M) are nearly equal [Note that if
M) = u(x), we can take A, = A(®) and u, = u(®).] Thus, for an arbitrary
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given function f(,-), U@) =X,_,f(Y(s —),Y(s)) coincides with U, () =
¥, <:f(Y,(s —),Y,(s)) for sufficiently large n, and the asymptotic behavior of
U(t) as t — » is approximated by that of U,(¢) as t - © and n — .

ExaMpLE 3.1. For arbitrary fixed integers m, and m, (m, > 0, my > 0),
let

A(x) = X AL a®(x) - 1(x € (Ki_y, K}]),
k=1

mg .
pa(2) = X pn - u®(x) - L« € (Li-y, LR]),
k=1

where K and L} are nonnegative integers such that K§ =0 < K{ < -+ <
K =» and Ly =0<L} < - <L = Let A"() =lim, ., A"(x)
and u(™)() = lim, _,, u™?(x). Set

Ay = AT (), = ppepmP(),
Ao(x) = A (x) /AT (), po(x) = p"(x) /()

m

M) = (/X)) A () (x € [Kiy, KD,

(%) = ké(Mﬁ/uil‘z)(M(k’(x)/lb('”z’(x))l(x e [L;_,, Ly)).

We suppose that lim, ., x(1o(x) — uo(x)) = 0 and that Assumptions 2 and
5(i) hold. Then noting that A,(x) = f,(x) = 1 for sufficiently large »n and x, it
is easy to see that all Assumptions 1—5 are satisfied. A typical example of
u,(x) is given by

L Sps X =5,
3.4 =1{.
(3-4) (%) i x, ©<s,

and this represents the service rate for a multiserver queue.

Set
gn(x_l) Mn(x_l) gn(x_z)
)‘n(x_l) )‘n(x_l) /\n(x_2)
l"n(x - 1) :u'n(x - 2) /'Ln(l) gn(o)
An(x - 1) /\n(x - 2) )‘n(l) /\n(O) ’

( _ :U'n(l) :U“n(z) :U“n(x)
A WE W W e

F(x) =

(3.5) + o+

and let
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F(x,+1
(3.6) y= lim 22(%o* 1

n— an(xO) ’

which exists by our assumptions. Then our basic result is contained in the
following theorem.

THEOREM 1. Let us define processes {U(¢)}, . by
~ 1
U,(t) = —=(U,(nt) —I,nt), > 1.
(6) = =(Uy(nt) ~Lnt),

Assume Assumptions 1-6 and suppose Y,(0) »4 Y(0), where Y(0) is a ran-
dom variable. Then U(t) -4 Uy(¢) in D(0, ), RY), where

Uy(t) = 8£(t) + VF1(=) A By(t) + y/ fa()* A By(t).

In the theorem, 8 = yaB, By(t) and B,(¢) are two independent standard
Brownian motions and

£(t) = — inf (es + VABy(s) — VABy(s),
fi() = lim f(x, % + 1),
fo(®) = lim f(x, x — 1),

—

where in the final two expressions we assume the limits exist.

REMARK 3. It is well known that £(¢) is characterized as a unique solution
of the Skorohod equation (Ikeda and Watanabe [1], Chapter 3, Section 4.2):
X(t) = ct + VAB,(t) + VABy(t) + £(t),

where (X(2), £(t)) are continuous processes such that X(¢) > 0 for all ¢ > 0
and £(¢) is increasing with £(0) = 0 and satisfies

£(t) = fo‘l(X(s) = 0) d&(s).

Thus &(¢) is the local time of X(¢) at zero. Later it will be shown that X(¢) is
the weak limit of {X,(¢)}, . ;, where X,(¢) = (1/ Vn)Y,(nt) [see Lemma 2 and
(4.7)]. The proof of Theorem 1 uses this fact and the characterization of £(¢)
mentioned previously. Taking into consideration the foregoing fact, it is
sometimes more convenient to state Theorem 1 in the following form:

THEOREM 1. Under the same conditions in Theorem 3.1, (X,(t), U(t)) -
(X(2), Uy(#)) in D(0,), R?), where X,(t) and X(t) were given previously.
.REMARK 4. We can extend Theorem 1 in the following way. Set
Vi(t) = Lh(¥(s ). %(s), nxl.

s<t
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We assume that Assumption 6 also holds for h(-,-) with different /,, x, and
g(x); that is, [,, £, and g(x). Set

- 1 A
V.(¢) = ——‘/n=(Vn(nt) - nlnt), n>1.

Then under the same assumptions as in Theorem 1, we have (U, (¢), V,(t)) -
U,(), V() in D(0, ), R?), where V,(¢) is defined as

Vo(t) = 86(t) + Vhy(2) A By(t) + Y hy(=)* A By(2),

5 = yaB: ¥ is defined in the same way as y using
h(-,-) instead of f(-,"),
hy(®) = limA(x,x + 1),
x— ™

hy() = g}i_r)r:oh(x,x -1).

As before, we assume the existence of the limits %,() and %4(). The proof of
this fact can be done in the same way as the proof of Theorem 1.

4. Proving the theorem. We begin with a lemma.

LEMMA 1. For each n > 1, let g,(x) be any function defined on Z with
compact support not depending on n. We suppose that g,(x) = g(x) asn — »
for each x € Z. For the process Y,(t), we assume that A,(x) and u,(x) are
given by the form in Assumption 4 and that they satisfy the conditions in
Assumptions 4 and 5. Moreover, we assume Vn (A, — w,) = ¢ and lim A, =
lim w, = A > 0. Then

lim —l-Fn([‘/Exn]) - {28/0)(1 —exp(—(c¢/N)x)), Z i g:

n— o n

for any sequence {x,} such that x, = x > 0. ((a] denotes the largest integer
less than a.) In the preceding equation, F,(x), x = 0,1,..., is the unique
solution of (2.1) with g,(x) as before and & = yaB [where v is defined by (3:6)
using the previous g ,(x)).

PrOOF. Set F‘n(x) =F(x)—F,(x—1Dforx=1,2,.... [Fn(O) is arbitrar-
ily defined.] Then .

Fn(x+1))\n(x)—Fn(x)p,n(x)=gn(x), x=0,1,....
‘Because there exists x, such that g,(x) = 0 for x > x,

(4.1) F(x+1)=a,(2)F(xo+1)/a,(x,), *=xg,



848 K. YAMADA AND 8. J. HONG

where «,(x) was defined in (3.5). Hence

}Fn([mxn]) _ %(an(xo) bty (V] - 1))

Fn(xo + 1) + Fn(xO)
an(xO) ‘/—;

if [Vnx,] > x,. We can write a,(x) as

= (] (365 o3+ () o
+(An)x fjﬁn(k)) 3):=ai(x)+a3(x)+a3(x).

Because (, /A,)V*%] is bounded in n, by Assumption 5(ii), we have

J%(a;(%) b r (V] - 1))

< —‘/I%(Ia(xo)l + o ta([Vnz,] - 1)),

where a(x) = IT;_,(u(k)/ME)) — a. Then noting that x, - x>0 and
a(Vnx,] -1 -0,

—‘/%(a,}(xo) + - +a,%([\/;xn] - 1)) -0 asn —> o,
We can also show that

(4.2) %(af(xo) + - +a3([\/;xn] - 1)) -0 asn —> o,

Indeed, by Assumption 5(ii), for an arbitrary £ > 0 there exist ¥ and 7 such
that if x > x and n > 7, then

X (k)
kzl A (k)

Hence, the left-hand side of (4.2) is less than

,BISa.

1 11
—ﬁ(af(xo) + - +a3(3‘c)) + K—ﬁx—a[\/;xn] X,

By Assumption 2 (.e., lim,_, A, =lim, ,, u, =A) and x, > x>0 and
Assumption 4, the preceding quantity tends to Kex as n — «. Because ¢
was arbitrary, we get (4.2).
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On the other hand, we have

2 (a2(xg) + - +a2([V,] - 1))
1

Vn
©, X o, [ynx,]-1
et (A b

L= (/A g L (/)™
‘/E()‘n - I‘l‘n) " ‘/E()‘n - lu’n)

[ 2)fa - e~ 5)) e

When ¢ = 0, we have, for any x < [Vnx,] — 1,

o \* [y |
1<|—] <|— -1 asn — w,
A A

= aB/\n

n

Hence

i(oz,%(xo) + o +a3([\/;xn] - 1)) - afx asn — o,

Vn

Combining these results, we reach the conclusion. O

The sequence of processes {X,(¢)},. ; defined by
1
X (t) = =Y, (nt), n>1,
a(1) - (nt)

was introduced in Section 2.

LEMMA 2. Under Assumptions 1-3, X,(t) —. X(¢) in D((0,%), R'), where
X(t) is the unique nonnegative process satisfying the Skorohod equation

X(t) =ct + V2AB(¢) + £(t),

with B(t) being a standard Brownian motion and &(t) being a continuous
increasing process such that £(0) = 0 and

£(t) = /Otl(X(s) = 0) d&(s).

Proor. In Yamada[11], for a sequence of birth and death processes which
is slightly different from the one considered here, a similar result is given
under the same conditions as ours. The argument used there is applicable
here in almost the same way. Hence we omit the detailed discussion and
present the facts that will be used later and some discussion not found in
reference 11.
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Let us define processes N X(¢), N2(¢), NX(¢) and N2(¢) by
N,(t) = X 1(AY,(s) = 1),

s<t

Ni(t) = L 1(AY,(s) = -1),

s<t

NX(#) = NX(#) = [A(¥(5) ds,

N2 (8) = N2(8) = [ mn(¥o(5)) ds.
Then we have
Y,(¢) = Y,(0) + N;(¢) - N;(¢)
and hence X,(¢) can be written as
X,(t) = X,(0) + Dy(t) + &,(¢) + M, () — M (¢),
where

Dn(t) = ‘/E(An - /J'n)t’
1 nt
fn(t) = ﬁ_/(‘) (/\n(Yn(s)) - An - /J‘n(Yn(s)) + /"Ln) dS,

1.
M,(¢t) = ﬁNi(nt),
1
Vn

We can show using Assumptions 1 and 2 that each family of processes {X,},
{D,}, {&,), {M}} and {M?} is C-tight in D([0, ), R'). Hence {X,,, D,, &,, M},
M2}, . is tight in D([0,%), R5) (Jacod and Shiryaev [4], Chapter 6, Corollary
3.3) and, if we let {X, D, ¢, M,, M,} be any weak limit of {X,, D,, &,, M},
M2}, ., in D(0, =), R®), we have
X(t) =ct +&(t) + My(t) — My(¢t).

To identify the process M,(t) — M,(¢) that is a continuous martingale, we
note that A¢; X(¢) = 0} = 0 with probability 1 (¢ denotes Lebesgue mea-

sure). Indeed, because X(¢) has, as a semimartingale, a local time, the
density formula for local times (Jacod [3], page 188) implies

M2(t) = ~=N2(nt).

fotl(O)(X(S))d<M1 — M,)(s) =0.

Because M,(¢) and M,(¢) are orthogonal [note that M,(¢) and M2(t) are
-orthogonal], this further implies

(4.3) 0= fotl(o)(X(s))d<M1)(s).
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On the other hand, because A,(x) is bounded by Assumption 1, we have
KMIXt) — (M}!)(s)l < K|t — s| and, hence, by letting n tend to infinity, we
can easily show that ( M, )(¢) is absolutely continuous. That is, there exists a
measurable process a(t¢) such that (M, )(¢) = [{a(s) ds. Moreover, because
A, (x) is bounded below [note that A,(x) > A, ], we can choose the process a(?)
such that a(¢) > a > 0 for a constant «. Thus from (4.3),

0= j:l(o}(X(s))a(s) ds > afoﬁ(o,(X(s)) ds,

which implies [1,(X(s))ds = 0; that is, A¢; X(¢) = 0} = 0. Next, using
this fact and noting that A,(x) - A and u,(x) > A as n > © and x — = (see
Assumptions 2 and 3) and

M} = M2(8) = [[M (X (9)) + (Y X (s))] ds,

we have that (M} — M2)(¢t) >, 2\t for each t. Moreover, |A(M} — M2X¢)|
< 2/ Vn. Hence, by a standard functional central limit theorem for martin-
gales (e.g., Rebolledo [6]), there exists a Brownian motion B(¢) such that
M, (t) — M,(¢) = V2XB(2).

We can also show, by using Assumption 3, that the process £(¢) increases
only when X(¢) = 0 as asserted in the lemma. The argument for this is as
follows. We will show that £(¢) does not increase at ¢ when X(¢) > 0. For this
we may assume that because X(¢) and £(¢) are continuous, X, (¢) — X(¢) and
£,(t) = £(t) uniformly on each compact ¢-set with probability 1. Then we can
take t; and ¢, and a > 0 such that ¢; < ¢ <¢,, X(s) > 0 for s € [¢,,¢,] and
X,(s) > a for s € [t,¢t,] and for sufficiently large n. Then

0< §n(t2) — &(t1)

: fthX 5 P EO (MR X)) = Ay = (2 Ko(9)) + ) s

~ [VRE( (ML) =y = (K (5)) + ) ds =0,

IA

because X,(s) - X(s) > 0 for s € [¢;,t,]. Thus £(¢,) = &(¢;) and £&(-) does
not increase at t. O

REMARK 5. An intuitive argument for obtaining Lemma 2 goes as follows
and explains why we impose Assumption 3: X,(¢) can be written as

X,(t) = X,(0) + D,(t) + &'(t) + M (t) — M;(¢) + &(¢),

where

£1(1) = [1(X,(s) > 0) d&,(s),

£2() = [10(X,(5)) di(s).
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£L(t) can be written as

£1(8) = [UX,(5) > 0)(1/X,(5))ka(X,(5)) ds,
where
ku(X,(5)) = VrX,(s)(M(Vn X, (5)) = A, + m, — 1, (VR X, (5))).

At s where X(s) > 0, in view of Assumption 3, k,(X,(s)) - 0 when n — .
Thus if we admit the fact #{¢; X(¢) = 0} = 0, then the weak limit of &!(¢)
will be a null process. On the other hand, because £2(¢) increases only when
X, (¢) = 0, the weak limit of ¢2(¢) also increases only when X(¢) = 0. Hence,
in view of the discussion of the weak limit of M(¢) — M2(¢) in the proof of
Lemma 2, the limit process X(¢) will be the process given in Lemma 2.

PROOF OF THEOREM 1. We can write U (¢) as

U,(t) = A (t) + mi(t) + mi(t),
where

1 nt
An(t) = —‘/7—‘/;) gn(Yn(S))dS’

1 n -
mi(t) = o= ["fi(Y.(s =))dNi(s),

1 nt ~
m2(t) = ﬁfo f2(Y,(s —)) dN2(s),

fi(x) =f(x,x + 1), fo(x) =f(x,x—1)

and g,(x) is defined in Assumption 6.
We will prove our result in several steps.

StEP 1. Let &,(¢) = (X,(¢), D(t), £,(t), M1(¢), M2(¢), A, (), mi(2),
m2(¢)). In this step, we will show that {%/,(¢)}, ., is tight in D([0, »), R®). For
that purpose, it suffices to show that each family of processes of /,(¢) is
C-tight in D([0,%), R'). The tightness of {X,},. 1, {Du}ys1, {&Edns1r (Ms1
and {M}?}, ., is shown in Lemma 2. The C-tightness of {ml}, ., and {m2},
can be shown easily as in the case of {M}} and {M?}. Thus it only remains to
see that {A,}, ., is tight in D([0, ), R'). For functions g,(x), n > 1, given in
Assumption 6, let F,(x) be the unique solution of (2.1). Then, because

F (Y, (1)) = F,(Y,(0) + X AF.(Y.(s)) — F.(Ya(s —))}

s<t

= F(%,(0) + [8(Y(s)) ds + [F,(Y,(s =) + 1) dN(s)

-/ 'F(Y,(s —)) dN2(s),
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we have
(44) A, (1) = AL(2) — AL(D),
where

1 1

t = - 1 nt -
AL(t) = 7= ["F(Yu(s =) + 1) dN}(s) = 7= ["F(Yu(s =) AN (s).

1
7
We will show that {Al}, ., is C-tight and {A2}, ., is tight in D([0, ), R'),
respectively. Note that this implies the tightness of {A,},.; (Jacod and
Shiryaev [4], Chapter 6, Corollary 3.3). As for {Al}, . ;, we have

. . 1 k2
|A(t) — A(s)l < ﬁkglan(k)l,

where k; = min(VnX,(s),/nX,(t)) and k, = max(VnX,(s),/nX,(t)). Be-
cause |F,(k)| < K(u,/A,)*, where K is a constant not depending on n and k,
we have

K %
|AL(t) — AL(s)l < = X B/,
Vn 4,
where B is a constant that bounds {( ,/A,)""}, . ;. Thus we have
(4.5) |AL(¢) — Al(s)| < KB™ax(Xn(): X X (¢) — X, (8)l.
For any a € D([0,x), R?), let
w(a;I) = supla(s) — a(t)l, Ianintervalof[0,x),

s, tel
wr(a,0) =sup{w(e;[t,t+60]);0<t<t+0<T}, 6> 0.
Then, for any n > 0 and N > 0,

P(wT(A}l, 0) > n)
SP( sup |Xn(u)|2N)

O<ux<T

+ P(wT(A}l,O) >n, sup |X,(u)l <N)

O<ux<T

(4.6)

SP(OEEETan(u)I ZN) +P(wT(Xn,0) > K(;,V) ),

where K(N) is a constant not depending on n and the last inequality is due
to the fact that in view of (4.5),

|45(8) — AL(s)l < K(N)IX,(¢) - X,(s)
on the event {sup, _, . 7| X, (¥)| < N}. Because {X,}, . ; is tight, the inequality
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(4.6) implies
lim P(wy(A},0) > n) =0.

n—ow

Similarly, using (4.5), we can show

lim limsupP( sup |AL(t)| > N) =0.
Noo pow 0<t<T

Hence {Al}, . ; is C-tight in D([0, ), R') (Jacod and Shiryaev [4], Chapter 6,

Proposition 3.26).

Next we will show the tightness of {A2}, ;. To this end, it suffices to see
that {(A2)(¢), ¢ > 0}, , is C-tight, because A%(¢) is a locally square-integra-
ble martingale (Jacod and Shiryaev [4], Chapter 6, Theorem 4.13). Because
NX(t) and N2(¢) are orthogonal, we have

A(e) = [{E (X () + 1) A (X, (5)

+F,(Vn X,(5))" (Y X,(5)) } ds.
Because |F, (k)| < K(u,/A,)",

F‘n(\/;Xn(s) + 1)2 < K*( Mn//\n)2ﬁx"(3)+2
w12Xa(s)+2/yn

= K*[( /A"

< K2B2Xu($)+2/{n

Thus, owing to the same argument as before, on the event {sup, _, . /X, (x)|
< N}, we have

(AZ)(t) — (AZ)(s) < K(N)(t — 5)
for s <¢ < T. Then, as in the case of {Al} ., we have the tightness of
{A2}, . ;. Now we have shown the tightness of {A,}, . ;.

Here we note that any weak limit A(¢) of {A,(¢)},., is a continuous
process of bounded variation. Indeed, A ,(¢) can be written as

1 nt 1 nt
A,() = 7= "85 (Y(s) ds = —= [ (Y.(s)) ds

=A,(t) — A, (%),

where g f(Y,(s)) are the positive and negative parts of g,(Y,(s)), respec-
tively. Then, because g,*(x) have compact support not depending on n, we
can show tightness of {A,},.; and {A},. in exactly the same way as for
{A,}, . Because A;(¢) and A, (t) are both increasing and continuous, their
weak limits are also increasing and continuous. Hence A(t) is the difference
of the two increasing and continuous weak limits.

STEP 2. Let &(¢) = (X(2), D(¢), £(¢), M(¢), M,(t), A(¢), m(¢), my(t)) be
any weak limit of {7}, in D([0, ), R?). In this step, we will identify the
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weak limit o/(¢). To this end we may assume that with probability 1,
&,(t) - #(t) uniformly on any compact ¢-set. We will show that the following
two propositions hold:

ProOPOSITION 1.  A(2) = yaBE(2).

PROPOSITION 2. There exist two independent standard Brownian motions
By(t) and By(t) such that

M(t) = VABy(t), My(t) = ‘/XB2(t),
my(t) = V(=) ?ABy(8),  my(t) = Fa(=)* A By(2).

Once propositions 1 and 2 have been established, the conclusion of Theo-
rem 1 follows immediately. Indeed, we have U,(¢) = Uy(¢) == A(¢) + m(¢) +
my(t) in D(0, ), R'). On the other hand, X(¢) satisfies

(4.7 X(t) =ct + VAB,(t) — VAB,(t) + £(t),
where £() is an increasing process with £(0) = 0 and satisfies
£(t) = ["1(X(s) = 0) dé(s).
0
Hence £(t) can be explicitly written as
E(t) = — inft'(cs + VABy(s) — VABy(s))

(Ikeda and Watanabe [2] Chapter 3, Lemma 4.2). Thus by Propositions 1 and
2,

Up(t) = vaBE(t) + V(=) 2ABy(2) + VFa(=) A By(2).

Now we will prove Propositions 1 and 2.

PROOF OF PROPOSITION 1. Let A,(¢) be any weak limit of { A2}, . ;. Then we
can assume that, with probability 1, A%2(¢) — A,(¢) uniformly on any compact
t-set, and similarly for «7,(¢). Then we can show that there exists a standard
Brownian motion B(t) such that
X(s)

- )dB(s).

This result can be obtained by using (3.6) and (4.1), Assumptions 2, 3 and 5
and (as in Lemma 2) a functional central limit theorem of Rebolledo [6]. Now
letting n go to infinity in (4.4), we have, in view of Lemma 1,

Ay(2) = ‘/Z_Xfotaﬂv eXp(—c

8(%)(1—exb(—;X(t))) —Ay(t), c#0,
8X(t) —Ay(t), c=0

’(4.8) A(t) =
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for ¢ such that X(¢) > 0. However, because A(¢) and X(¢) are continuous,
(4.8) holds for all ¢ > 0. On the other hand, because X(¢) satisfies (4.7), by
Ito’s formula, we have, for the case ¢ # 0,

exp(—%X(t)) =1- X exp(——X(s)) dé(s) + my(t)

=1- Xg(t) + mO(t)7
where m(t) is a continuous martingale. Then from (4.8),

A(t) - 88(t) = —8(A/e)m(t) — Ay(t).

Because the process on the left-hand side is a continuous process of bounded
variation and the process on the right-hand side is a continuous martingale,
we have A(t) = §£(¢). Thus the proof is complete. O

PROOF OF PROPOSITION 2. By a standard argument, we can easily show
that the weak limits M,(¢), M,(¢), m,(¢) and m,(¢) are continuous square-in-
tegrable martingales such that

(M )(t) ={My)(t) = At, (M;,M;)(t)=0, i#],

(my)(t) = fu(=)°At,  (myd(t) = fo(=)*At,
(my, my)(t) =0, (M, m)(t) = fi(=) AL,
(M, my)(t) =fo()At,  (M;,m;)(t) =0, i#].

Then by a representation theorem for martingales (Ikeda and Watanabe [2],
Chapter 2, Theorem 7.1), we reach the conclusion. O

5. Examples. In the examples that follow, the birth and death processes
Y,(t), n > 1, are considered to represent a sequence of appropriate queueing
models of a single station. Thus Y,(¢) is the number of customers in the nth
queue at time ¢.

ExaMPLE 5.1 (Number of busy cycles). Let U,(¢) be the number of busy
cycles for the nth queue (this was considered in Section 2). As we saw there,
in Assumption 6 we take [/, = 0. Then gn(x) = 1(x = 0)A,(x) and we can
take x, = 1 in Assumption 6 Thus y =1 in (3.6) and for processes Y,(?),
n > 1, satisfying Assumptions 1-5, we have U,(t) - aB¢(t). To calculate a
and B explicitly, let us consider a simple model where A,(x) = A, and p,(x)

is given by (3.4). We let u, = fi,s,, Ao(x) = mo(x) =1, Xn(x) =1and

fin(2) = (2/5,)1(x <35,) + 1(s 2 5,).
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Then a = 1 and, assuming s, — s,

B = lim li[

Hence -
U/(t) >y —s!/s® inf (cu + VAB,(u) — \/)TBz(u)),
u<t
where A = lim, _, A,.
ExaMPLE 5.2 (Arrival and departure processes of customers). Let us de-
fine U,(¢) and V,(¢) by
U(t) = L1(AY,(s) =1)  [=N}(®)],

s<t

Vi(t) = L1AY,(s) = -1)  [=NX®)].

s<t

Thus U,(¢) and V,(¢) represent the arrival and departure processes of cus-
tomers for the nth queueing model. We assume the following condition (*):

(%) Either A,(x) — A, or u,(x) — u, has compact support not depending on
n.

Suppose, for example, the former case holds, and consider the process
U,(t). Then we have f(x,x + 1) =1 and f(x,x —1) =0 in (1.1) and take
I, =\, in Assumption 6. Then by Theorem 1, if we set U,(¢) =

1/ Vn XUy(nt) — A, nt),
U,(¢) —g 8£(t) + VABy(£), 8= yaB.
Next we define V,(¢) by
V,(¢) = (1/V0)(Vi(nt) = mont).
Then, because Y,(¢) = Y,(0) + NX(¢) — N2(¢), we have

ET0) + U, (0) + Vi (hy = )t = X,(0).

Hence, by Theorem 1, .
(U,(2),V,(£)) 5 (0€(2) + VAB(2), 8£(2) + VAB(t) + ct — X(2))
= (8£(t) + VABy(2),(8 — 1)&(t) + VABy(2))

Va(t) =
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in D([0,%), R?). Note that y is calculated by (3.6) using g,(x) = A,(x) — A,.
Similarly, if the latter case holds in (*), we have

(Tu(8), V(1)) 22 ((1 + 8) () + VABy(2), 8E(2) + VABy(2)),

Here 6’ = yaB and y is calculated by (3.6) using g,(x) = u,(x) — u,.

We note that 8£(¢) > 0 and (8 — 1)£(¢) < O for all ¢ in the former case in
(*), and a similar remark applies to the latter case. This is because A,(x) > A,
and u,(x) < p, for all x € Z (see Assumption 2) and

i
(5.1) = [T (A(Ta(9)) = &) ds =5 B(2),
1 nt
(5.2) = [ (1a(Y(5)) = ) ds =2(8 = DE(?)

in D([0,), R'). The convergence (5.1) is our result itself (see Proposition 1).
The result (5.2) comes from the following argument [note that (5.2) is not our
result: we are not assuming that u,(x) — u, has compact support not
depending on n]. Let B, (¢) be the process on the left-hand side in (5.2). Then,
because B,(t) = V,(¢) — M2(t), {B,},., is tight. Let B(#) be any weak limit
of {B,},>1- Then V,(¢) =4 B(t) + My(t), where M,(¢) is the weak limit of
{M?2}, ., which is a continuous martingale. Thus B(¢) + M,(¢) = (8 — 1)&(¢)
+ VAB,(t) and B(t) = (6 — 1)¢(¢). Because B(¢) < 0 forall ¢,(8 — 1)&(t) <0
for all ¢.
Consider a simple case: A,(x) = A,. Then & = 0 because g,(x) = 0. Thus

(T.(2),V,(2)) =& (VABy(2), —£(2) + VAB,(1))
in D([0, ), R2).

EXAMPLE 5.3 (Sojourn times of customers). In what follows, for simplicity
of our discussion we assume Y,(0) =0 for all n > 1. Let (N;)~'(¢) and
(N2)~1(t) be the inverse processes of N (¢) and N (¢), respectively; that is,

(an)—l(t) = inf{s; Nl(s) > t}
and
(N2)7'(¢) = inf{s; N2(s) > t}.
Then, for an arbitrary positive integer &,
W,(k) = (N2) (k) = (N}) '(k), n=1,

* is considered to be the sojourn time for the kth customer in the nth queueing
model. Our interest is in finding the limit process of the normalized processes
W.(t) = 1/Vn W, ((ntD, n > 1. We assume that the condition () of Example
5.2 is also satisfied here.
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By the result of Example 5.2, we have

1 1
V—;—(an(nt) - Annt), —‘/T(an(nt) - )tnnt)
- (Xy(2), X5(2))
in D([0, ), R?), where, for example, in the former case in (),

X,(t) = 8&(t) + VABy(¢),
Xy(8) = (5= 1)£(t) + VABy(t) - ct.

(5.3)

(5.4)

Because the inverse processes of (1/nA,)NXn-) and (1/nA,)N2(n-) are
A/n)XNDHY(A,n-)and 1/nXN2) (A, n ), respectively, (5.3) implies (using
Whitt [9]) that
1 _ 1 _
(/\n\/;(;(an) Y(A,nt) — t), Anﬁ(;(Nf) Y(Ant) — t))
—o(=X,(2), —X,(t)) in D([O,w)aRz)-

This convergence leads to

1 1 1
(T/f(( Y (nt)———nt T((N2) (nt)-——nt))
ay(_;xl(ﬁ),-%xz(ﬂ) in D([0,=), B?).
Thus we have

- 1 -1 -1
Wn(t)=—ﬁ((Nn2) (nt) = (N}) '(nt))

1 x t x t 1 x t

— — - [— f— [— = — —

< a7 A A7
in D([0,*), R'). Note that the limit process (1/A)X(¢/)) is a reflecting
Brownian motion. Furthermore, note that in obtaining the foregoing conver-

gence, we have not used the fact that X,(¢) and X,(¢) are expressed as in
(5.4), but used only the fact that (5.3) holds and X(¢) = X,(¢) — X,(¢).

ExamPLE 5.4 (Queue lengths of tandem models under heavy traffic condi-
tion). Let us consider a sequence of tandem queues that consists of two
stages. (We consider the case of two stages only for simplicity.)

For the nth model, let Y*(¢), # = 1,2, be the numbers of customers at
stage k£, N°(¢) the number of customers arriving at stage 1 until time ¢ and
NEk(¢), k = 1,2, the number of customers departing from stage % until time ¢.
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Then we have

(5.5) Y!(¢) = Y,1(0) + N(¢) — N (¢),

(5.6) Y2(t) = Y,2(0) + N;(t) — N2(¢t).

We assume that N*(¢), £ = 0, 1,2, have no common discontinuities and have

intensities A2(Y,1(¢)), AL(Y,}(¢)) and A%(Y,2(2)), respectively. Y,}(¢) is a birth
and death process treated in Section 3. We make the following assumptions:

AssuMPTION 7. For A%(-) and AL("), in addition to Assumptions 1-5, where
we set A,(x) = A%x) and u,(x) = AL(x), we also assume (*) in Example 5.2.

AssUMPTION 8. lim, ,, A2(x) = A2(®) < ®, A2(0) > A%(x) for all x and
lim, ,.Vn (AL(®) — A2(x)) = d,. Moreover, lim,_, AL(®) = lim, ,, A%(®) =
A=0.

ASSUMPTION 9. lim, . , . x(A%() — A%(x)) = a, and sup, , x(A%() —
X)) < .

Write d; = lim, , ,Vn (A%() — AL(»)) and A = lim,, _,, A%(x) in Assumption
1 for the processes {Y,!(¢)}, . ;. Then using the result of Example 5.2, we have
the following proposition.

PROPOSITION 3. Assume Assumption 7 for {Y,}(¢)},,, and Assumptions 8
and 9 for {Y2(t)},.,. Moreover assume (Y,}(0),Y,2(0)) =, (Y(0),Y,(0), a
random vector. Let (X}(¢), X2(¢)), ., be defined by

—I—-Yl(nt) and X2(t) = in(nt)
‘/; n n ‘/; n °

then (XX(t), X2(¢)) - (X,(t), X,(¢)) in D(0,®), R?), where (X (¢), X,(2)) is
characterized as the unique solution of the following Skorohod equation:
(5.7)  Xy(t) =dyt + VABy(t) + VABy(t) + &(t),

(5.8)  X,(¢) =dst + VABy(£) — VABy(2) + (8~ D)&(2) + £x(2),

where (X|(¢), X,(t)) and (£,(2), £€,(¢)) are nonnegative continuous processes
such that £,(0) = £,(0) = 0, £,(¢) and &,(t) are nondecreasing,

£4() = [[1(Xi(5) = 0) déi(s),

X, (¢) =

[Xa(s) dés(s) = at

and By(t), By(t) and By(t) are independent standard Brownian motions. & in
(5.8) is defined in Theorem 1 for the process Y,}(t).

A similar result was obtained in Yamada [11]. There the intensity A2(-)
was assumed, for technical reasons, not to depend on the queue length Y,}(¢);
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that is, A%(-) = A%. [But the assumption on A}(-) in [11] is more general than
the one made here.] As we see in the following text, we can remove this
restriction by using the result of Example 5.2 (this is the purpose of this
example). We must prove (5.7) and (5.8). To this end, write X2(¢) as

X2(t) = X2(0) + V() + D2(2) + MZ(¢) + £2(¢),
where

~ 1
V() = W(an(nt) — A(e)nt),

D2(t) = Vn (AL(=) — A2())¢,
1
Vn

1 nt
£2(t) = = ["(4() — B(TH()) s

X () = ii_g:o)ﬁ(x) fori =0,1,2.

M;(t) = =N}(nt),

n

We know that {D2},., and {M2},., are C-tight. {V,},,, is also C-tight by
Example 5.2. Then using the discussion in [11], we can show that {X},.,
and {£2},., are also C-tight in R([0,%), R"). Thus, setting U,(¢) =
1/ Vn XN (nt) — Xo@)nt), B(t) = {XHE), U0), Vo(#), X2(2), D2(),

M2(t), X)), ., is C-tight in D(0,), R). Let {(X(t),Ut),V(e), X,(0),

Dy(2), M,(t), £,(¢)} be any weak limit of {,}, . ;. Then by using the result of
Example 5.2 and by the discussions in the proof of Theorem 1 and in [11], it is
not hard to see that (5.7) and (5.8) hold.

In conclusion, the point of this example is that as long as we are concerned
with the limit process of X1(¢) only, there is no need to use Theorem 1 (or the
result of Example 5.2); all we need is Lemma 2. However, if we consider the
joint convergence of X!(¢) and X2(t), we need the help of our Theorem 1.

REMARK 6. The condition that lim Vn (A%(®) — AL(®) = d;, and
lim, _,,Vn (AL(®) — A2(=)) = d,, is called the heavy traffic condition as in
Remark 1. Concerning the condition that x(A2() — A2(x)) = a, as n > ®
and x — », we can make the same comment as in Remark 5, but we omit the
detailed discussion.
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