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PARALLEL AND TANDEM FLUID NETWORKS WITH
DEPENDENT LEVY INPUTS

By OFFER KELLA

Hebrew University

A group of stations in parallel is considered, where the input pro-
cesses to the various stations are stochastically dependent nondecreasing
Lévy processes and the release rates are deterministic linear flows. It is
shown that the model of a tandem fluid network, with dependent or
independent Lévy inputs to the stations, can be seen as a special case of
this construction. In addition to other natural applications, the joint
stochastic structure of the workload processes of the different classes in a
preemptive resume priority M/G /1 queue can be viewed as a special case
of the model considered. Using martingale and regenerative arguments,
certain steady state characteristics are studied.

I. Introduction. Consider a number of stations in parallel that process
raw material that may be accurately approximated as continuous matter.
Some examples are in the food, chemical and petroleum industries, dams,
rapid manufacturing of very small items and the transfer of (bits of) informa-
tion over communication links. Regardless of the application, let us call the
material that the stations process fluid. The inputs to the various stations
are nondecreasing Lévy processes (subordinators); however, these processes
may be stochastically dependent in a sense that will be made clear in the
next section.

In this paper a general framework is first described, which is a multidi-
mensional reflected Lévy process, having no negative jumps. An associated
martingale is then defined and some consequences that serve as preliminary
results are given. As a concrete example, it will be shown how to apply these
ideas to study a tandem fluid network, as considered in Kella and Whitt
(1992b), but having inputs to every station, rather than only to the first.
Consequently, most of the results in Kella and Whitt (1992b) are generalized.
In particular, the joint steady state distribution of the fluid levels of two
nodes in tandem is found, when there are two independent (general) subordi-
nators feeding into both nodes. In Kella and Whitt (1992b) this distribution
was found only for the case where there is a compound Poisson process
feeding into the first node. These results are then used to obtain the explicit
© covariance matrix of the limiting distribution of the inventory levels for the
entire (multidimensional) tandem network. Finally, Section 5 is a remark on
applications to the M/G/1 queue with a preemptive priority discipline. It
should be mentioned at the outset that in my opinion the most interesting

Received December 1991; revised January 1993.
" AMS 1991 subject classifications. Primary 60J30; secondary 60K25, 60K30.
Key words and phrases. Lévy process, reflected Lévy process, multi-dimensional Lévy process,
martingale, queues, M /G /1 queue, fluid models, queueing networks, storage networks, general-
ized Pollaczek-Khinchine formula.

682

e]

v

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )z
The Annals of Applied Probability . STOR IS

WWWw.jstor.org



PARALLEL AND TANDEM NETWORKS WITH DEPENDENT INPUTS 683

and definite results in this paper are Theorems 3.1, 4.1 and 4.2 and Corollar-
ies 4.1 and 4.2.

For earlier works on fluid and related storage models, see Gaver and Miller
(1962), Miller (1963), Meyer, Rothkopf and Smith (1979, 1983), Newell (1982),
Anick, Mitra and Sondhi (1982), Mitra (1988), Chen and Mandelbaum (1991),
Chen and Yao (1992), Kella and Whitt (1992a,b) and further references in
these sources. For background on Lévy processes see, for example, Bingham
(1975), Breiman (1968), Fristedt (1974), Prabhu (1980), Jacod and Shiryaev
(1987) and Protter (1990).

2. The model and preliminary results. Denote # = (—%, ©) and
Z,=1[0,2), so that #" is the n-dimensional Euclidean space and % is the
corresponding positive orthant. In this section n-dimensional vectors will
always be column vectors and prime will denote transposition. Also denote by
a*=a Vv 0 = max(a,0) and by a = —a A 0 = —min(a,0). Endow £" with
its usual quadratic (L?) norm, so that continuity and boundedness are always
defined with respect to this metric. Throughout the paper LST abbreviates
Laplace—Stieltjes transform and w.l.o.g. abbreviates without loss of general-
ity.

Let us begin with an underlying standard (right-continuous and aug-
mented) filtered probability space (Q, %, P, {Ft > 0}). Throughout, adapted,
martingales and stopping times will be defined with respect to this filtration.
Call Y = {Y(®)|t > 0}, with Y(¢) = (Y,(2),...,Y,(¢)) and Y(0) = 0, an n-di-
mensional Lévy process if it is adapted, continuous in probability, Y(s + ¢) —
Y(t) is independent of &, and distributed like Y(s) for every nonnegative's, ¢
(stationary independent increments). There always exists a version with
paths that are right continuous having left limits, which is therefore strong
Markov. Throughout this paper, every Lévy process mentioned is assumed to
be such.

It is known that for every « € R" and ¢t > 0, E exp(ia'Y(?)) = exp(ty(a)),
where, given some centering or truncation function h: #" — %" [i.e., bounded
with A(x) = x in a neighborhood of zero],

(21) yY(a)=ica-— %a'za + Lyn (ei*'s — 1 —ia'h(x))u(dx),

where ¢ € #", 3, € R**" is a symmetric positive semindefinite matrix and
the Lévy measure u is a measure on %" satisfying u(%£"\ B(0,1)) < «,
({0} = 0 and [ )% ' xu(dx) < , with B(0,1) = {x|x'x < 1}. Equation (2.1)
is a generalization of the one-dimensional Lévy—Khinchine formula and it is
known that for every centering function, the triplet (c, 2, 1) is unique [e.g.,
Jacod and Shiryaev (1987), page 86, Lemma 2.4]. §(-) is called the (Fourier)
exponent of the Lévy process. It should be noted that a necessary and
sufficient condition for Yi,...,Y, to be independent processes is that 3 be
diagonal and the support of u be contained in the axes. In this case, it is easy
to see that ¢(a) = £7_,¢,(«;), where or every 1 <j < n, y; is the exponent
of Y.
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In this paper the focus will be only on the case where the process does not
have negative jumps in any coordinate, that is, assume from now on that the
Lévy measure is concentrated on %". In this case it is known that
E exp(—a'Y(8)) = exp(tp(@)) < © (a €.%"), where

1 ,
e(a) =y(ia) = —c'a + Ea’2a+f e -1

(2.2)
+ a'h(x)u(dx).

From now on, exponent will mean the Laplace—Stieltjes exponent ¢(-) and i
is reserved as an index notation rather than v— 1.

Because 2 is positive semidefinite and g(a) =e ** — 1 + a'h(x) is con-
vex for every fixed x € #7%, it is easy to see that ¢(-) is a convex function on
Z" with ¢(0) = 0. It is known [e.g., Protter (1990), pages 25 and 31, Theo-
rems 34 and 40, respectively] that without negative jumps EY,(1)” < » for
every 1 <j < n, so that EY;(1) always exists, but may be 1nﬁn1te If EY(D =
—(3/9a)(0) < 0 for every j=1,...,n then it immediately follows by the
convex1ty of ¢(-) that for every o e% "\{0}, £,.(B) = ¢( Ba) is strictly increas-
1ng and continuous on %™, with f, (O) 0. Therefore there exists an inverse
£21(). Now for x > 0 let T (x) = 1nﬂt|a’Y(t) = —x}. Then because «'Y is a
one-dimensional Lévy process with no negative jumps and exponent f£,(-), it
follows [e.g., Fristedt (1974), Bingham (1975) or Kella and Whitt (1992¢)] that

(2.3) CEeBTu9) — o~f'Bx  anq ET,(x) = x/f',(0).

In particular, with e; being the unit vector with 1 in the jth coordinate and 0
elsewhere, it will be convenient to denote

(24) ¢()=£() and Ty(x) =T, (x).
Given some random vector 0 < Z(0) € 7, (i.e., independent of Y), let

Ii(t) = — inf (Z,0) +Y,(t))  and
(2‘5) O<s<t
Zi(t) = Z;(0) + Y;(¢) + I(t).

Then Z; is a reflected Lévy process with I; being its local time at zero.
Because Y, has no negative jumps, I; is contmuous (clearly nondecreasing)
with I (O) = 0. It is known that under the assumption that EY;(1) < 0,

(2.6) lim Ee~*%® = a;¢/(0)/¢;( a;)

t—>
* [see Bingham (1975), Harrison (1977), Kella and Whitt (1991, 1992c), among
others]. In this article the process Z = (Z,,..., Z,)" will be the underlying
general model. Let us begin with two general results that will then be used
later on as a tool. Set I = (I,...,I).
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LEMMA 2.1.

M(t) = ¢(U)Lte_alz(s) ds + e~ @'Z20) _ g—a'Z(t)

(2.7) .
— —a'Z(s)
j§1 aj'[o e dI(s)

is a martingale. If }(0) > 0 for all 1 <j < n [hence T(x) < = a.s. for every
x > 0], then

M) = ¢(a)f0te'“’z(s)ds + e @ZO) _ p-a'Z()

(2.8) n ;
- X ajf B g—az(T, () dx
=1 0

J

is a martingale as well.

PrOOF. Observe that a'Y is a Lévy process with no negative jumps and
exponent f,(-). Also note that «'l is an adapted continuous process and it is
known that EI(t) < » for every ¢t > 0 and 1 <j < n. Applying Theorem 2 of
Kella and Whitt (1992¢) with the choice ¢ =f,, a =1,Y° =Y = «'(Z(0) + I)
and Z = a'Z (left and middle sides are in Kella and Whitt notation and right
sides are in the notation used here) gives that (2.7) is a martingale. To obtain
(2.8), make the change of variables s = T)(x) of the jth integral in the sum
and observe that I, is continuous and nondecreasing having the pseudo-
inverse T} [ie., [{(T(x)) = x for every x > 0]. O

COROLLARY 2.1. For every stopping time T such that P[T < »] = 1,

¢(@)E [ e 7" ds + B % — Ee~ 2D
0

(2.9) n r
= ¥ qE[ e %0 dI(z)
j=1 0

(meaning that either both sides are finite and equal or both are infinite). If, in
addition, ¢(0) >0 for all 1 <j<n, then the right side of (2.9) can be
replaced by T_ o E[§iMe™* ZT) dy,

Proor. Apply Doob’s optional sampling theorem to the bounded stopping
times T' At and then let ¢ — o, whereby limits and expectations can be
interchanged from the bounded (for e~*%TA") and monotone convergence
theorems (for the two integrals). O
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COROLLARY 2.2. If ¢}(0) > 0 for all 1 <j < n, then

1 . 2
i — —a'Z(s)
th_}rrolo[go(a) ; fOEe ds

(2.10) N Lo
—jgl aj‘P}(O)EIJ(—t)j;’ e~ 20, dx]=
and
lim [go(a)iftEe_“'z(s)ds
t— oo tJy
(2.11)

- L® —azan g | = 0
Z %¢;(0) EI(t) f x| =0.

PROOF. It can be shown that ¢™'I,(#) —» ¢j(0) in L' for every 1 <j <n.
Hence the results follow from the fact that [J®e™*?T) dx < I(2), for all
t > 0, and that EM, = 0. O

COROLLARY 2.3. Under the condition of Corollary 2.2, if as t — «, Z(t) —
Z* and Z(T(t)) - Z’* (Z{* = 0) for 1<j<n, all in distribution in the
ergodic sense, then

¢(a)Ee *%" = ajgojf(O)Ee_“'ZJ*
Jj=1

(2.12)
¢,(a;) Ee™ % Ee= 7",

Proor. For the first equality it suffices to show that for each 1 <j <n in
(2.11), one can replace () by ¢j(0)¢ (or equivalently, by ¢) without affecting
the limit. To see that this is valid, observe that

(2.13)

[0 gy — [ om0 ae| <|1(8) ~ ¢'(0)e],
0 0

so that, recalling that t‘IIj(t) - ¢/(0) in L, the replacement is justified. The
second equality follows from (2.6). O

It would be useful if (2.12) (if valid) determined the distribution of Z*. At
this point I do not know of a proof, and it is possible that (2.12) has multiple
solutions for n > 2. For n =1, (2.12) gives the generalized Pollaczek—
Khinchine formula, as expected.

Note that a special case of the foregoing model is when w(%#") =0, in
which case Y is an n-dimensional Brownian motion, so that Z is a special
case of a Brownian network [see Harrison (1988)]. In this paper the focus will
be only on the case Y;(¢) = X;(¢) — r;t, where X, is nondecreasing (subordina-
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tor) and r; > EX(1). X; therefore models the input of fluid to station j, where
subtractmg rit models our assumption that the station processes the fluid at
a constant deterministic rate (whenever the fluid level is positive). The
amount of fluid at station j at time ¢ is then given by Z,(¢). To be more
precise, setting X = (X,,...,X,) and r = (r,...,r,)’, assume that X is an
n-dimensional subordinator, that is, a Lévy process, having the exponent

(2.14) — (@) = —bla— [ (1—e")u(dx),

where for all 1 <j'<n, b; > 0 and jgnx w(dx) < o, This implies that Y is an
n-dimensional Lévy process with no negatlve jumps with exponent ¢(a) =

r'a— &a).

3. A tandem fluid network with external inputs to every station.
Kella and Whitt (1992b) considered a tandem fluid model with a (nondecreas-
ing) Lévy input only to the first station, where the jth station feeds the
J + 1st at a constant rate ;. The assumption there was that, w.lo.g., r, >
> r,. Here generality is lost by assuming this condition. However, for the
results of the parallel network to be applicable here, the assumption that
ry > -+ >r, has to be made, and it is. A generalization is considered where
there are inputs to nodes other than the first and those inputs are subordina-
tors. At first the subordinators are allowed to be dependent. However, for
stronger results, independence will have to be assumed. Let J; be the input
process to node j and let

(3.1) = m(a) = —bla— [ (1—e ") u(dx)

be the exponent of J, with n;(a;) = 7(0,...,0, ;,0,...,0). Forany 1 <j <n,
n=0(eg, J; = 0) is allowed. To s1mp11fy notatlon 1t is assumed throughout
that Z(0) = 0. Denote p; = nj(O) and impose the condition p1 +p, <1,
In particular, because r; > --- , this implies that p; + +pJ <r; for
every 1 <j < n. A critical observation is that as long as at least one of the
stations 1,..., j is not empty, the fluid is flowing out of station j with rate r;.
This Would not be true without the assumption that r; > -+ > r,, even if
py + - +p; <r; for every 1 <j < n. It should, therefore, be clear that letting
Z(t) be the total amount of fluid contained in stations 1,..., j, :

Zi(t) = f; Ji(t) —rit + I(t), with

(32) T ;

I(t) = —Oinf ( Y Ji(t) - rjt).
<s<t i=1
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Thus, Z has the structure of a parallel network with X, = X/_; J;, with
exponent

n n
(3.3) —€f(a)=—n| Y @, X @,...,a,_ 1+ a,,a,].
i=1 i=2

Let W= (W,,...,W,) be the fluid level processes at the corresponding sta-
tions. As is obvious from the description of the model,

Wi(¢) = Z;(¢) — Z;_4(2)

(3.4)
=dJi(t) + (rjioy.—r))t —L_y(t) + L(¢).
LEMMA 3.1. Z(t) » Z* and W(t) —» W* in distribution for some proper Z*
and W*,

ProOOF. It should be clear that T,(x) [see (2.4)] is a regeneration epoch for
the processes Z and W, because at this instant the entire network is empty.
It is well known that {T,(x)|x > 0} is a subordinator with drift x; thus, it can
be chosen to have a nonarithmetic distribution (with a proper choice of x).
Also, as in (2.3), ET,(x) = x/(r, — L}_, p;) < . Because both Z and W are
right continuous, the result follows [e.g., Asmussen (1987), Chapter V]. O

From (2.6), the (marginal) LST of Zj’-" is given by

J
(3.5) Ee— % = aj(rj -y pi)/(ajrj - n(aj,..., aj,O,...,O)),

i=1
where the first j coordinates of n have a; and the rest 0. Thus, with
2 98

1(0), Sy= X —————n(0)

da;day, 1<ik,i<j 90004 0,

(36) S,;= )y

1<ik<j

(noting that S,; = Var{T/_,J (1], we have, via some messy differentiation,
that

EZ* = S
T e v
2(’}' - Xl Pi)
(3.7) -
Var(Z}) = ———L—— + (EZ})".

3(rj - Pi)

In order to obtain the results that follow it will need to be assumed that
Jy,...,d, are independent subordinators; that is, that n(a) = I}_n(e).
, From now on this assumption is in force. As throughout this article, denote
o) =r;a; — i 1m(a;). Because p; + - +p; <r;, ¢; has an inverse that
is the negative of the exponent of the subordinator T [see (2.3) and (2.4)].
Before continuing let us state a well known result.
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LEMMA 3.2. Let B be a right continuous process with no negative jumps.
C(¢t) = —inf{B(s)|0 < s < t}~ is the unique nondecreasing, continuous pro-
cess for which C(0) =0, A=B + C >0 and [5 A(t) dC(¢) = 0.

The simple proof, for the case where B is continuous, is found in Harrison
[(1985), Chapter 2] and applies here without change. The result that is now
stated and proved is what I view as the most interesting result of this section.

THEOREM 3.1. For every 1 <j<n —1, W/ ={W, I(T}(x)),...,Wn(T}(x))|
x > 0} are the fluid level processes of a tandem fluid network of n — j stations,
with dependent subordinator inputs with exponent

n
(3.8) - 77](“1'+1,--~, @,) = —<Pj_1 Z [ni(ai) + (rie1 — ri)ai]
i=j+1
with input rates pj = (p, +r,_y —1r,)/(r; — Ti_1p), forj+ 1<k <n, sat-
isfying £7_; 10 =1 — (r, = Xi_; p)/ (rj — Z{_1 p;) < 1, where the flow rates
out of the stations arerj,, = -+ =r] =1

Proor. It suffices to show that the result holds for j = 1, because the
argument for each 1 <j<n — 1 is exactly the same. First recall that
I(T(x) = x and observe that 0 = Z(T(x)) = J(T(x)) — r;T(x) + x. Thus,
noting that r; — r, = Zf_((r; 1 — 1),

k
Z,(Ty(x)) = ‘g[Ji(Tl(x)) + (riog — ) Ty(%)]

—x + L (Ty(x)).

For 2 <j < n, setting Z}(x) = Z,(T(x)), J}(x) = J(T(x)) + (r;_; — rpTy(x)
and I}(x) = I(Ty(x)) gives that Z}(x) = T}_,J(x) — x + I}(x), for every
2 <k <n and x > 0. Hence, in order to establish the result, two things must
be shown. The first is that J'=(J3,...,J})" is an (n — 1)-dimensional
subordinator with respect to the (standard) filtration {77 olx > 0}, with
exponent given by (3.8). The second is that for every x >0, I!(x)=
_infO <y=< x(zf=2 Jtl(y) - y)

Because T'(x) is right continuous by definition, then so is J' (and Fr,)-
Now observe that, for x, y > 0,

JiH(x +y) - JiH(x)
(3.10) =J([T(x +y) — Ti(x)] + Ti(x))
— J(Ty(x)) + (rioy — 1) [To(x +9) — T(2)],
so that the stationary independent increment properties follow from the
'strong Markov property for J, the facts that Ty(x) < Ty(x + y) are stopping
times that are independent of (J,,...,J,) and the fact that T itself is a

subordinator. To establish (3.8), condition on T'(x) and then apply (2.3). p/ is
obtained via differentiation from (3.8).

(3.9)
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As for I}, the main observation is that, from the construction, every point
of increase of I, is also a point of increase of I;. In other words the (random)
measure on %, induced by I, is absolutely continuous with respect to the
one induced by I,. Hence, thanks to the Radon—Nikodym theorem, there
exists a nonnegative Borel measurable process U,, which is I;-integrable on
compacts, for which I,(¢) = [{U,(s) dI,(s). Performing the change of vari-
ables s = T'(y) as in the proof of Lemma 2.1 gives that I}(x) = [fU,(T(y))
dy. Thus I} is absolutely continuous with respect to Lebesgue measure. In
particular, it is continuous, nondecreasing with I}(0) = 0. Finally observe
that by the definition of I, and by change of variables (with the left side = 0),

[ 24(t) dI(t) = [ Z,(1)U,(2) dy(t)
(3.11) ° ° 3
= [ ZH0)U(T(%)) dx= [ Zi(x) dLi( ).

Hence all of the conditions of Lemma 3.2 are met with A = Z}, B(x) =
T¢_,JMx) — x and C = I}, which completes the proof of Theorem 3.1. O

From Theorem 3.1 and Lemma 3.1, the following corollary is immediate.

COROLLARY 3.1. The assumptions, hence the conclusions, of Corollary 2.3
are satisfied.

In our case Z{* = -+ = Z/* = 0 and (2.12) becomes

(3.12) Feo-a'2" — Z;L=laj(rj - Xl pi)EeXp(_Z?=j+laiZLj*)
Z}l=1[”j0‘j - "j(2?=j“i)]

Also it is easy to verify, using the same argument that yields Lemma 2.1 and
the subsequent corollaries, that one may replace «; by «; — a;,,; in (3.12)
(even if a; < a;, ) to give [see also Kella and Whitt (1992b)]

rioi(aj—ay, 1)("j Xl Pi)E exp( —Li_j4 laiWij*)
Z;'L=1[’”j( a; — a;y 1)~ "’Ij( aj)]
with W/* = Z/* — Z/*, and «a,,; = 0.

Although it would be easy at first to hope that (3.13) can be used induc-
tively to characterize the complete joint distribution of W*, Theorem 3.1
explains why one should not be so optimistic. After one iteration one is left
with a lower dimensional problem, but in which the inputs are dependent,

thereby losing the structure. It might still be true that (3.13) has a unique
solution, but if it is, a different approach seems to be needed.

(3.13) Ee *V'=

4. The two-dimensional case and the correlation structure of W*,
"In Kella and Whitt (1992b), the joint steady state distribution of the fluid
levels of two stations in tandem with compound Poisson input to the first
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station only was found by applying Kella and Whitt (1992a). This approach
does not directly apply when the input is not compound Poisson, and does not
apply at all when there is an additional input process feeding into the second
station, even if both inputs are compound Poisson. In this section, a two-fold
generalization will therefore be achieved, because two inputs are allowed and
both can be general subordinators.

It should be noted that if it is possible to find the joint distribution of (W;,
W,), then this will immediately give the joint distribution of (Z;, Z; — Z,) for
any i <j. This is true because one can replace the input to station 1 by
Jy + -+ +dJ;, the input to station 2 by J;,; + --- +J;, the output rate of
station 1 by r; and that of station 2 by r;. Hence only the joint distribution of
(W, W,) will be studied and other results will be obtained via substitution.
For the next theorem and what follows the following notation is used:

e(B) =riB—m(B), 0'i2=”7§,(0)’
fori=1,2, JF=Ji, WF=Wp*,
1 (B) = m3(B) = @1 [m( B) + (71 —13) B],

Po=p3=1—(r; —p1 — p3)/(r1 = P1)s

6y = %(0):(5%012 + 0'22)/("1 = p1)-
The caret (“hat”) notation instead of the superscript 1 will be more conve-
nient for the purpose of differentiation and power notation that will be
needed in this section. The following is the main result of this section and,

together with Theorem 4.2 (to come), is arguably the most important single
contribution of this paper.

THEOREM 4.1. The LST of the joint distribution of (W, W) is given by

) — (7’1 - pl)[al - ’?]2((12)] (1 - ﬁZ)aZ

4.1 Ee~ (Wi +a,W§ - - )
(4.1) e1( @) — ¢’1("72( 0‘2)) ay — My(ag)

PrOOF. Specializing (3.13) to the case n = 2 gives
Ee—(lhwl* +ayWi)

(4.2) (@ = ) (ry = p) Ee™ VT + ay(ry — py — py)

ri(a; —ay) +rgay — mi(@) — My @)

Theorem 3.1 and (2.6) imply that Ee~*2%# = (1 — p,)a,/(a, — f(a,)). The
rest is through straightforward manipulations. O

Note that if one sets a; = a,, then (4.1) gives the LST of Z, and setting
a, = 0 gives the one for W;* = Z¥, both of which are consistent with (2.6) or
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(3.5). Setting a; = 0 gives the interesting formula

(43) Ee Wi = (rl _ pl)nZ( a2) (1 _Fz)az = Ee—’flz(az)Wl*Ee‘azwz*’

€01('A72( 0‘2)) ay — M ay)

which gives the following decomposition result.

THEOREM 4.2. Let U} and U} be independent random variables that are
distributed like W and Wy, respectively, and that are also independent of
the process J,. Then

(44) Wi = Jo(UF) + U5
In particular,
EWy = p,EW; + EWS,

4.5 N
(45) Var(Wy) = 62EW; + pi Var(W;*) + Var(W3).

Formulae for the means and variances of W* and Wy are immediate with
the aid of (3.7). In particular, it is easy to check that computing EW,* via
(4.5) gives the same answer as from EWS = EZ} — EZY, which is

(4~6) EWz* (P201 + 0y )/(2("2 P1 _Pz))'
Cumbersome, but unavoidable, differentiations give
(4.7) 5 (0) = (A377(0) + 15 (0) + 3ﬁ2012&22)/(r1 - p1);

which yields, after some more tedious manipulations,
p3my (0) + 5 (0)
8(ry = p1 — p2)

and because Var(Z3) = Var(W;*) + Var(Wy) + 2 Cov(W;*, W,*), the following
surprisingly simple formulae are obtained:

(4.8)  Var(Wy§) = + (EW})® + 2EW}EW;

A E W* 2
Cov(W, W) = ”—(g—)
(4.9) R )
= & —(0_)_ + 2 ;‘12__)
2 3("1_P1) 2("1_/01) ’
so that
p2 III(O)
Cov(Z%, Z% —(1+— 1
(21, Z5) 3(r1 — p1)
' (4.10)

sl

1_P1)
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In particular W;* and W are positively correlated. Moreover, the following
result holds.

COROLLARY 4.1. The correlation coefficient of W;* and W3 can take on only
and all values in the interval (0,1/ V3).

ProoF. In Kella and Whitt (1992b) it was shown that for the special case
considered there this result is correct. Replacing o and (necessarily also)
n5(0) by zero decreases Var(W;*), which is the only term in the correlation
coefficient where these two values appear. Also, for this case the external
input to the second station is the deterministic function p,¢. Hence, it is easy
to see that this model is equivalent to a model with no input to the second
station and where the output rate from that station is r, — p,. Hence, the
arguments in Kella and Whitt (1992b) apply with no change for the more

general situation considered here. O

Recalling the second paragraph of this section and letting

J i
(411) ﬁij=1_(rj_ Zpk) (ri_ Zpk)’
k=1 k=1

for i < j, emphasizing that p;; = 0, the results are summarized as follows.

COROLLARY 4.2. Foreveryl <i,j<n,
(4.12) Cov(W}*, W*) = Cov(Zf, Z*) - Cov(Z}, Zr )

' — Cov(Z¥ 1, Z¥) + Cov(Z}_ 1, Z}- 1),

where, for 1 <i <j<n,

p_) i1y (0)

2 3(”i_22=1pk)

) 2
§e=10'k2 )

+(1 + pij)( 2("i — 22=1Pk)

Cov(Z}, Z}) = (1 +
(4.13)

5. A remark on preemptive resume priorities in the M/ G /1
queue. For an M/G/1 queue with preemptive resume priority discipline
[e.g., Conway, Maxwell and Miller (1967) and Jaiswal (1968)], let the priority
classes in the model be denoted by 1, ..., n, where if i < j, then a customer of
class i has priority over one of class j. For this model it should be clear that
as far as classes 1,...,Jj are concerned, classes j + 1,...,n can be disre-
garded. The work inputs of the various priority classes are independent
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compound Poisson processes. Hence, the total workload process of classes
1,...,jis given by (3.2) with J; being the input compound Poisson process of
class i, and where r; =1 for all 1 <j < n. The latter is true because the
server is serving at unit rate, as is customary in that literature. Thus, the
(joint) stochastic structure of the workload processes in an M/G/1 queue
with preemptive resume priority discipline is a special case of our tandem
fluid network with independent subordinator inputs. Hence, all of the results
in Sections 3 and 4 hold for this case. I do not know of similar results in the
literature of priority queues; therefore, indirectly, this article has contributed
to this old field as well. The one-dimensional results give, via PASTA [see
Wolff (1982)], the steady state distributions of the waiting times for the
various classes.
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