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OPTIMALITY OF MOVE-TO-FRONT FOR
SELF-ORGANIZING DATA STRUCTURES
WITH LOCALITY OF REFERENCES

By PHILIPPE CHASSAING

Université de Nancy

In papers about self-organizing data structures, it is often mentioned
that the assumption of independence of successive requests of keys should
be relaxed and that the dependence should assume the form of a locality
phenomenon. In this setting, the move-to-front rule is considered to be of
interest, but no optimality result concerning this rule has yet appeared. In
this paper we assume that the sequence of required keys is a Markov
chain with a transition kernel P and we consider the class * of stochas-
tic matrices P such that move-to-front is optimal among on-line rules,
with respect to the stationary search cost. We give properties of * that
bear out the usual explanation of optimality of move-to-front by a locality
phenomenon exhibited by the sequence of required keys. We explicitly
produce a large subclass of 5*, while showing that in some cases move-
to-front is optimal with respect to the speed of convergence toward
stationary search cost.

1. Introduction. Let us describe a simple example of a self-organizing
sequential search data structure. Let S ={1,2,..., M} be a set of items. Let
us also assume that these items are stored in different places and that the set
2 of places is {1,2,..., M}. When an item is required, it is searched for in
place 1, then, if not found, in place 2, and so on, and a cost p is incurred if the
item is finally found in place p. Once the item has been found, a control is
made on the search process by replacing the item in a wisely chosen place, in
order to decrease the search cost: Very often, the accessed item is replaced
closer to place 1, in such a way that the most frequently accessed items spend
most of their time near place 1. For instance, according to the rule transpose,
the accessed item is replaced one step ahead, while, according to the rule
move-to-front, it is replaced at the front of the list. When doing this, we must
free the new position A of the accessed item by pushing the items remaining
between the old position 2 and the new position h, the nonaccessed items
retaining their relative order, as in Figure 1.

Let F = (F,),., be the sequence of required keys. In most studies, the
starting assumption is that F' is a sequence of i.i.d. random variables, but in
general it is asserted in the course of the study that such an assumption is a
crude approximation that should be relaxed (see [12], [14]-[18], [22]), and
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some authors (see [12], [14]-[16], [18], [19]) suggest more precisely to con-
sider a Markovian dependence. We shall thus assume that F is a Markov
chain, with state space S and transition kernel P =[p, ;I. Let D, be the
disposition of keys in &, that is, the one-to-one mapping from S onto &
giving the position of each item after the replacement of F,_;; D, is the
initial disposition and A, denotes the control made on the system when F,
has been found, that is, the place where F, has been replaced.

Because D,,; is completely determined once (D,, F,, A,) is given, the
process X =(X,),.,, where X, = (D,,F,), is a controlled Markov chain
with finite state space S’ =.%), X S and finite control space A =% (here %,
is the symmetric group of order M!). The cost c(i,a) incurred when the
system is in state i = (x, #) and when the control a is chosen, is x(%). Such a
controlled Markov chain is generally called a self-organizing data structure,
and the decision rules (or policies) are called self-organizing sequential search
heuristics or replacement rules.

2. Classification of replacement rules. In the setting of controlled
Markov chains, the more general class of rules is the class @ of admissible
rules (see [8]): A rule R is said to be admissible if the decision A, is chosen
at random in the action space A, but following a distribution R(H,) depend-
ing on the history H, of the process up to time n, where

Hn = (X0$ AO, Xl,Al"'-’Xn—l’ An_l’Xn)‘

Admissible rules are thus, in computer science language, on-line rules, in the
more general usage of the term. An admissible rule R is thus a mapping from
the space of histories to the space of probability measures on A, and the law
of the process (X, A,), ., is well defined once the initial state, let us say i,
and the decision rule, let us say R, are given: Probabilities and expectations
with respect to this law are denoted by P ; and Ep ;.

In the special case studied here, the class @ contains every replacement
rule mentioned in the literature, as far as I know. The subclass &, of
deterministic markovian stationary rules plays a special part because, for the
usual criteria, if a rule is optimal in the subclass %), it is optimal in the class
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% (see [8]): A rule R is in &), if there exists a mapping f from S’ to A, such
that

R(Hn) = 5f(Xn)

for each n and each H,. Then we set R = (f).

P being usually unknown, the real problem is to find a rule optimal for any
P, but this seems hopeless, at least when the F, are dependent (see [6]).
Another approach could be as follows: Assume that P is known but that the
files have been secretly renumbered, which is an (imperfect) way to simulate
ignorance of P. In this way, if the apparent state of the system is (x, k), the
state with respect to the old numbering will be (x o o1, o(k)) for a wisely
chosen permutation o and the interesting rules are thus the rules of % that
are insensitive to renumbering; that is, the rules that are stable under the
action, so defined, of the symmetric group %), on S’. The class of such key
ignoring rules will be denoted by %k; (see [4] and [14]). A member of the
intersection %, of &, and %%; will be called a library-type rule, after the
works of Letac [20] and Diés [9], because it has the following characterization
(see [4] and [5]):

PROPOSITION 2.1. A rule (f) of &p belongs to &, iff f(x, k) depends only
on x(k).

Representative members of &, are transpose (R;), move-to-front (R ) and
move-to-back (Ry). The library-type rules have a low computational cost and
require no memory storage. In contrast, the rule count, or counter scheme
(see [2], [3], [10], [18]-[15], [17], [22], [23]), which belongs to F%; but not to
%, is usually discarded because it requires heavy additional storage space. It
is, however, quite an interesting candidate because, in the independent case,
its stationary search cost is optimal (for each P), being equal to that of the
optimal static ordering and, even more surprising, for each n, the average
search cost of count at step n is optimal in %; (see [14]). In [14] the exact
counterpart of the counter scheme in the Markovian case is suggested: At the
nth request, if ¥, =k, replace the files j by decreasing order of p, ;, or
rather, P being unknown, by decreasing order of the best estimates one can
get at that step for p, ;, from the sample (Fy, Fy,..., F,). Its stationary
search cost is optimal, but, in contrast with the counter scheme for indepen-
dent references, totally prohibitive auxiliary search costs are incurred, mak-
ing the rule ineffective (see [6]). In this paper, we thus do not attempt to
search for a rule optimal for any P: Many authors (see [2], [17], [22], [23]
suggest that a possible dependence of requests generally assumes the form of
a locality phenomenon. According to them, in that case, move-to-front is the
first candidate to be considered. We let ™ be the class of stochastic matrices
P such that move-to-front is optimal in € (and thus a fortiori in % or in
%), with respect to the stationary search cost. Thus, this paper aims to give
properties of #* that bear out the widely accredited explanation of optimality
of move-to-front by a locality phenomenon shown by the sequence of required
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keys, for instance, by exhibiting a large intersection between F* and the
class of stochastic matrices showing locality patterns as understood in [1].

The optimality results obtained so far for library-type rules once again
concern the independent case and differ basically from the Markovian case:
They show that transpose has a lower search cost than move-to-front, or that,
using a very special law for the F,, transpose is optimal in a subclass of &,
(see [9], [15], [21], [22], [24]). In the same spirit, Chung, Hajela and Seymour
[7] propose bounds for the ratio ¢/ ¢opr, under the irm, when R is move-to-
front or transpose and OPT is the optimal static ordering.

3. Comparing performances of rules. In order to compare perfor-
mance of rules, we shall retain two classical criteria: the stationary search
cost ¢r(2),

1
be(i) = liminf —E, (C, + - +C,),
n n ’

where C, is the cost incurred at step n [C, = ¢(X,,, A,)], and the discounted
cost Wx(i, B),
\I,R(i’ﬁ)= Z Bn[ER,i(Cn)’ 0<B<1

n>=0

(see [8]).

DEFINITION 3.1. R is called optimal if for any R’ in &, the function N0
is less than ¢,(-) and 1~ optimal if there exists B, in [0, 1[ such that for any
R'in &,

\IIR(" B) =< \IIR’(" B) VBe [ Bo> 1[

Let us consider a rule R in %,. Under Py ;, X =(X,),., is a Markov
chain, ¢z(i) is a true limit and

Vr(B) = 1-8

(see [8], page 69). So 1~ optimality of a rule R of %), entails optimality of R.
It entails, as well, the optimality of v, among the rules where the stationary
search cost is optimal. Note that vg is just the overwork as defined by Bitner
[3]; that is, we have
Eg ;(Cy + - +C,) = ndg(i) + vg(i) + &(n),

when, under R, the ergodic sets of X are not cyclic. The rate of convergence
toward ¢p is also considered in [11], [16] and [22]. One can also view vgp as a
starting cost (cf. [8], pages 66—67). Thus a 1~ optimal rule connects the

optimality of the stationary search cost to the starting cost optimality.
Let yg(i,a) = (yi(i, @), y2(i, a)) be defined by

yzle(i’a) =3 pi,j(a)d)R(j) — ¢r(7),

Jjes’

y}%(i,a) =c(i,a) + > pi,j(a)vR(j) — vg(i) — ¢r(7).

JES’

$p +vgp +&(B) with &(B) >0 when B—1"
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Let A, (resp. B; and C;) be the set of actions a such that yg(i,a) is
lexicographically lower than O (resp. 0 and greater than 0), and note that
yr(Z, R(?)) is zero [cf. (6.3)]. Let us recall some classical criteria for stationary
cost optimality and for 1~ optimality:

BELLMAN’S OPTIMALITY CONDITIONS. If A; is void for each i, R is said to
be Bellman-optimal and if, further, for each i, B; = {R(i)}, R is said to be
strictly Bellman-optimal. Bellman-optimality entails optimality and strict
Bellman-optimality entails 1~ optimality.

PROPOSITION 3.1. If R'(i) belongs to A; U B, for each i, then
br (") < br(").

In the sequel, #* (resp. ¥2 and $55) will denote the classes of stochastic
M X M matrices P such that if P is the transition matrix of F = (F),),. o,
then move-to-front is optimal (resp. Bellman-optimal and strictly Bellman-
optimal), and %&* (resp. &2 and #B°) will denote the classes of stochastic
matrices having the same properties with respect to move-to-back.

4. Results. The results of this paper follow.

THEOREM 1. (i) Let P =[p,, ,] be an element of * and let a = (ay,

Qg,...,ay) bein[0,1]1M. Let P, be the matrix with the general term
« _ | mPm n ifm # n,
Pm,n l-a,+a,Pp pm UYm=n.

Then P, is in 7.
(ii) The result remains valid when replacing ¥* with #* and [0, 11M with
(1, +[™ if P, is still a stochastic matrix [i.e., if sup,, a,(1 - p,, ,) < 1.

THEOREM 2. (i) Let P be an element of ¥ and let a = (A, A, ..., \) be in
[0,1[™. Then P, is in F25.

(ii) The result remains the same when replacing & with % and [0, 1[™ with
11, + o[ [if A < sup,,(1 = p,, ) ']

The effect of the perturbations on P, in parts (i) of these theorems, is to
increase the locality phenomenon and in parts (ii), to decrease it.

COROLLARY. The stochastic matrices P with general term

Bn, ifm#*n,
Pm,n = a,, ifm=n

are in F* if a > B and in F* if a < B. If further a has all its components
equal, P is in 755 (resp. in #2%) if a > B (resp. if a < B).
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This corollary is a straightforward consequence of Theorems 1 and 2,
because when «,, = B,, = 1/M, the search cost ¢, does not depend on R
[¢r = (M + 1)/2]. So we get examples of processes F' with arbitrary station-
ary law, such that move-to-front is optimal in & and, in particular, such that
the optimal static ordering (and the counter scheme) are more expensive than
move-to-front, not only from its heavy memory requirements, but also from
its search cost. As a matter of fact, this corollary can be proven directly,
observing that for these special matrices P, move-to-front coincides in the
long run with the optimal algorithm given in [6], that is, the counter scheme
revisited for Markov chains. This is no longer true for the matrices given in
Theorem 3.

We have constructed elements of #* from other elements of #*. This has
an interest in itself (supporting the notion that optimality of move-to-front
“increases” when locality increases), but it would be ineffective if there were
almost no elements in #*. So in the following text we give some significant
classes of elements of F*.

THEOREM 3. In the following two cases, P belongs to F5:

(i) when S is the union of p classes with q elements each and when

a, ifmandnarein the same class,
Pm,n B, otherwise

with
az B
(i) when, S being identified in a natural way with Z/MZ, we have
Pnm =@  Ppnmi1=B, DPum-1=7
with a + B + y = 1 and when further

az (BM L+ yMH(B - y)/(BYTE =M.
When P assumes one of the previously specified forms, the corresponding
inequality is also a necessary condition for P to belong to 2. The correspond-
ing strict inequality implies that P belongs to 55,

We obtain, in the course of the proof, stationary costs for R, agreeing with
the formula of Lam, Leung and Siu [19], even if for (ii) the hypotheses
required in [19] are not satisfied. We also obtain the value of the overwork
vg, whatever the initial state, up to an additive constant.

Note that the construction of P, from P appears in [1], pages 103 and
108-109, in the special case where p; ; does not depend on i: It is considered
an adequate model for real reference strings. According to the authors, “there
is adequacy in the weak sense if the model reflects the two properties of
locality and rare references,” “the locality property is exhibited when a
program tends to use small subsets of its pages for relatively long periods of
time” and “a program has the property of rare references if, in spite of locality
sets, the reference strings contain rarely used pages.” For kernels P of
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Theorem 3, the frequency of references to any given item is 1/M, because P
admits a transitive group of symmetries [5]. As a consequence, these kernels
do not satisfy the property of rare references. However, Theorem 1 allows us
to exhibit elements of #* showing adequacy in the weak sense. Let P be an
element of #* as described in Theorem 3(i). The associated P, reflects both
properties, provided that min; «; is small with respect to max; «;, because
according to P,, the frequency of item i is proportional to 1/¢;.

It may seem quite arbitrary to be so fixed on the optimality of R, and Ry,
rather than any other rule. Theorem 4 should dissipate this feeling, to some
extent. In the sequel, a rule of @ will be called constant if it belongs to %,
and if the associated mapping (from £ to A) is constant. There are thus M
constant rules, and among them are R, and Rjp.

THEOREM 4. If the class of Bellman-optimal library-type rules is not void,
it contains a constant rule.

I have no example for which a constant rule is optimal in # if it is not R
or Ry, but we may expect that, Ry and Ry being some kind of extreme
points of the set of constant rules, if a constant rule is optimal, then either R
or Ry is optimal. Thus a statement such as “If the class of optimal library-type
rules is not void, it contains Ry or Rp” would be more satisfactory than
Theorem 4, but this remains a conjecture.

5. Generalizations. We can replace the standard cost c((x, k), a) = x(k)
by the more general cost c((x, k), a) = k(x(k)), where k is any mapping from
Z to R, and Theorems 1 and 4 remain true with natural changes to the
definition of R, and Rjy: Set x* (resp. x**) for the minimum value (resp. the
maximum) of the mapping « and set m* (resp. m**) to be a member of &
such that

k(m*) = k* [resp. k(m**) = k**].
Finally, let Ry (resp. Ry) be the constant rule associated with place m* (resp.

With these changes, Theorem 2 remains true, replacing 25 and %25
with 2 and #5. Furthermore, Theorem 2 remains true as it is, assuming
that « has only one extremum of each kind.

Finally we may consider the case when & is a tree (see [9] and [20]). Then
the part of Theorem 2 concerning R remains true, provided that m* is the
root of the tree.

6. Preliminary results.

PROPOSITION 6.1. The stochastic process X = (X,,), . o, where
Xn = ( Dﬂ > Fﬂ) >

is a controlled Markov process with state space S' =%, X S and action set
A=2
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ProoF. Let T, ,x be the disposition of the items after access to item &
and replacement of 2 on place a, if the previous disposition were x. Observe
that X satisfies the Markov property, because

P[X,..=(x',k")X,=(x,k),A, =a,and (A,_;,H,_,) € B]
(6.1) _ | Pees i x" =T 4 (%),
0, otherwise,
which does not depend on B. O

Unless otherwise indicated, in the sequel the search cost incurred in state
i = (x, k) will be k(x(k)), where k is any mapping from % to R. We shall
consider a new cost function

M
(62) ¢&(i,a) =E[Ci|Xy=iand Ay =a] = Y p, nk(T, x(m)).

m=1
Optimal (resp. 1~ optimal, Bellman-optimal, etc.) rules are exactly the same
for ¢ and ¢, and ¢y and yy are unaffected by this change, because we have
(see [5])
Vp(i, B) = (Yr(i, B) — x(x(k)))/B-
When R is in %), say R = (f), then we shall set
cp(i) =¢(i, f(i)) and pi,j(R) ’zpi,j(f(i));

Py =[p; (R)]; jcg will be the kernel of (X,),., when rule R is used and
;. j(R) will be the long run average sojourn time in state j, starting from i:

1 T
- (R) = lim —— ¥ p®(R).
7Tz,]( ) T—1>I£-loo T +1 tgopz,]( )

The following classical result will be needed in the sequel (see [8], page 68).
Let II(R) be the matrix [; ;(R)]. Consider the system

v— Prv=cp — ¢p,
(63) II(R)v = 0.

PROPOSITION 6.2. The unique solution of (6.3) is vg = (vg(i);c g

DEFINITION 6.1. Let & associate each state with the next disposition of
items, according to move-to-front. For i = (x, m) in S’, let S; be the set of
states j = (y, m) € S’ such that the relative order of S — {m} in i and j is
identical [i.e., such that ®(i) = ®(j); see Figure 2].

LEMMA 6.1. Let p; = (p; (@), c 5 4ea and c; = (C(; 4))sec a- Then p; and
c; are constant on each S;.

This means that the future of the process, when its present state is
i = (x, m), depends on the relative position of the files of S — {m}, but it does
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not depend on the position of m. For instance, if we assume that F, = E,
the action A, = 3 gives the same result if D, is any of the dispositions in
Figure 2 and this is still true for any value of A,.

ProOF OF LEMMA 6.1. The assertion about p; follows from
T, T, ox =T, .x

m,a

and from (6.1). It implies the assertion concerning c;, considering (6.2). O

Lemma 6.1 points out the class &, of rules R := (f) that factor through ®.
Such rules will be called C-rules. From Lemma 6.1, it is clear that “the”
optimal decision is the same at each state of S;, so we have the following
lemma.

LEMMA 6.2. Among Bellman-optimal rules, at least one is a C-rule.

Lemma 6.2 follows at once from Lemma 6.1 and from results about
“lumpable” controlled Markov chains stated in Section 3 of [5]. The idea is
that ®(X,) is Markov if a C-rule is used, and that consequently ¢, ¢z, Vg
and yj factor through .

Another useful property of C-rules is the nice behavior of the trajectories
of X when we slow the time for F, by adding an arbitrary time of sojourn in
each term of the sequence (F),),. ,, before jumping to the next state. Let us
drop the random considerations for a while: Let (F),),., be a nonrandom
sequence of items and let (X)), . o be the corresponding nonrandom sequence
of states of the sequential search data structure. Let (F,),., be a new
nonrandom sequence of items built by replacing each F, by a sequence of Y,
items, each of them equal to F, [Y, > 1;if all Y, are 1, (F,), ., = (F.),. 0l
Let (X)), . o, be the corresponding sequence of states for the sequential search
data structure.

LEMMA 6.3. If R is a C-rule, (X)), . is built from (X,), ., by replacing
each X, by a sequence of Y, members of S’, the first one being X, and the
Y, — 1 remaining terms being all equal to (D, , ,, F,).

For instance, this is true for rules such as move-to-front or move-to-back,
as we see in Figure 3 and 4, where the sequence (F,) =DBAB... is

n>0
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A D B A B

B A D B A

C B A D D

D C C C C

E E E E E
Fic. 8.

replaced with (F)),., = DDDBBAAAAAB..., ie., (Y,,Y,,Y,) = (3,2,5). If
move-to-front is used, the sequence (D,, D,,..., D,) is as shown in Figure 3
and through slowing, it becomes (D}, D}, ..., D},) as in Figure 4, where the
trajectory and the ending state do not depend on the values of Y;. One can be
convinced, using this kind of figure, that for a rule outside of %, (e.g.,
transpose) the trajectory becomes more strongly dependent on the values of
the Y;’s and in a quite unpredictable way.

PrOOF OF LEMMA 6.3. From the figures, the lemma is clear. The key point
is that,if F, ., = F,, then X, ., is in the same S; as X, so if, furthermore, R
is a C-rule, then A,,; = A,. Consequently, X, ,, remains equal to X, ,; as
long as F, ., remains equal to F,. O

It is a well known fact that if the foregoing Y, are taken at random with
the law

P(Y, =k/F,=m) = (1-aqa,)" 'a kE>1,

then F, is a Markov chain with transition matrix P,. More precisely, let
(Z,), o be a sequence of i.i.d. random variables, independent of (F)), . ,, in
which Z, =(Z,, )1, <» and the Z, , are mutually independent with laws,
respectively,

m?

E-1
I]:D(Zn,m:k) = (1_am) ) k>1,
and take
Y, :Zn,Fn~

S P—— s —— 1 pr— pre— e
al [o] E D B E A Al [a] [a A B
— —_—— — ——t — —— —_—
1 [2 ORE D D B B B B B A
c| [B] B B| [A | E D D D D F D |
! - — — end — E— — — — —
D C C C C C c c C c C C
— _— — _— I —— —— _— _— — ]
E E E 'ﬁ E E E E E E E E
| | L ] | ] | | | L] ] ]

Fic. 4.
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Then F, is a Markov chain with transition matrix P,. Consider a C-rule (f)
and let ¢,(i, @) be its stationary search cost when the starting state is i and
when the transition matrix of the item process (F}), ., is P,. Finally, let
be the stationary probability of the item n.

LEMMA 6.4. Assume that P has only one ergodic class. Then we have

¢f(i) + Z(y,n)es'ﬂ'i,(y,n)( f)(l/an - l)K(f(y, n))
Z:f‘zl=1(77-n/an) ’

d)f( i , O ) =
provided that no «,, is zero.

ProOF. We give the proof under the additional assumption that X =
(X,),. o has only one ergodic class. In the general case the idea is similar,
but needs heavy notation, because we have to consider each typical trajectory
for X and Y before going to expectations. Assume the process X starts at a
given recurrent state i = (x, m) and let T be the time of the first return of X
to i. Then the time of first return of X’ to i is given by

T-1
[
T = Z Yt,F,’
t=0

provided that x(m) # f(x, m). The cumulated search cost before T’ is simi-
larly given by

T-1
C' = EO [C. + k(F(X))(Y,,r, — )]

Because ¢.(i, @) = E(C")/EK(T"), we have to compute the two last expecta-
tions, and we obtain

E(T") = ¥ Wi,(y,n)(f) i

(y,n)es’ 7"i,i(f) a,

because if X sojourns N; units of time in state j = (y,n) between two
consecutive passages at i, then the corresponding elapsed time for X' will
be the sum of N; i.i.d. random variables (independent from N;) with mean
1/a,, and because the expectation of N; is well known to be =, ;/m,; ;.
Similar considerations give

T, f)
E(C') = t,(y,n)(
(©) (y,nz):esf Wi,i(f)

[K(y(n)) + (ai -1 K(f(y,n))]~

n

The existence of a recurrent state (x, m) satisfying x(m) # f(x, m) is insured
by the additional assumption. O

7. Proof of Theorem 2. In this section, because the only rule of interest
is move-to-front, we shall denote this last rule by R. When A is 0, it is easy
to compute directly Wy(B,i, ). One finds that the stationary search cost
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¢r(i, ) is «* and that vy(7, @) is zero, in which ¢g(i, ) and (i, a) are
related to P,. So Theorem 2 holds true in this case and we can assume in the
sequel that A is positive. We need to compute yp(i, a), that is, p; /(a, @),
cg(i, a), ¢pg(i, @) and (i, @) in terms of the corresponding values for A = 1,
in order to check Bellman’s condition. We have from (6.1) that

p(x,m),(y,n)(a’ a) = )‘p(x,m),(y,n)(a)’
except when y = 7,, ,x and n = m, where

p(x,m),(y,n)(a’ Ol) =1- A+ Ap(x,m),(y,n)(a)‘

It follows at once that

(7.1) cp(a,i) = Acgp(i) + (1 — A) k™.
Lemma 6.4 gives

(7.2) dr(a,i) = Abg(i) + (1= A)ic*,
We claim that

(713) Up(a) =

and, assuming (7.3), we can compute yz(a) = (yi(@), y2(a)) in terms of yg:

ylli,(i,a,a) = X pi,j(a’a)¢R(j’ a) — ¢p(i, @)

JjEeS’
=M T £ @) + (1= )Ty, m) = da),
JeSs’

in which we let i be (x, m). Because (T,, ,x, m) and i belong to the same S,,
we get

(74) Yh(i a, @) = Xyh(i,a).
Similarly,
yl%(i’a7 a) = E(i7a7 a) + ‘;S’pi’j(a, a)i’R(j’ a) - TJR(i’ a) - ¢R(i> a)
= (1= N(x(a) = «*) +Ae(i,a) + A ZS pi,j(@)vg(J)
Jes’

+(1 = MR((T, 0%, m)) — Vr(3) — Adg(i)

and because v factors through @,

(7.5) Yi(i,a,@) = (1 A)(x(a) — «*) + Ayi(i, a).

So we have proved that move-to-front satisfies Bellman’s condition with
respect to P,. Furthermore, if « has value «* only at point m* and if A is not
1, then P, belongs to 55

When we deal with move-to-back instead of move-to-front (assuming that
it is still denoted by R), then (7.3), (7.1), (7.2), (7.5) and (7.4) still hold true, «*
being eventually replaced with «**. O
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PRrROOF OF (7.3). Consider the new Markov chain W = (W,), . , defined by
W, = &(X,)

and let P and P, be the kernels of W corresponding to P, and Pg(a). We
have

B,=(1-AI+ AP,
and, as a consequence, 1= ﬁa. Because cj factors through ®, we can set
cp(a,i) =é(a,®(i)), Vp(a,i) = 0(a,P(i)) and
¢r(a,i) = $(a, ®(i)).
Now, according to Proposition 6.2 and relations (7.1) and (7.2),

(I-P)o=XNI-P)o=N¢é—¢)=é(a) - ¢(a)
and

~

M,=1v=0.
Proposition 6.2 thus implies that ¥ = v(a). O

8. Proof of Theorem 1. In this proof, in contrast to that of Theorem 2,
it is no longer sufficient to study the consequences of replacing P with P, for
the performance of move-to-front, because move-to-front does not necessarily
meet Bellman’s condition under P. The only way we can prove optimality of
move-to-front under P, seems to be by comparing the performance of move-
to-front under P, to the performance of each rule of &}, under P,. Fortu-
nately, Lemma 6.2 allows us not to have to study the consequences of the
change of P to P, for each rule of %7, (a task that would be very hard with
regard to the rule “transpose,” for instance), but only for C-rules. Fortunately
again, it turns out that, for C-rules, this task is “doable” (see Lemma 6.4).

STEP 1. F has only one ergodic class and the «,, are positive. We assume
that P is in #*. We have to show that

(8.1) br, (i, @) < ¢(i, @)

for any stationary rule (), under the hypothesis that ¢, (i) < ¢,(i). Keeping
in mind Lemma 6.2, we can restrict ourselves to C-rules and (8.1) becomes

¢Rp(i) + Z:(y,n)ES’ Tri,(y,n)(RF)(l/an - l)K*
Z:nM=17Tn(]'/an)

< d)f(l) + Z(y,n)ES' 77-i,(y,n)(f)(]'/an - l)K(f(y’n))
B Zf‘zilwn(]'/an) .
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Then, (8.1) follows from

1 1
)» 7Ti,(y,n)(RF)(O[_ - 1)"* = X "i,(y,n)(f)(a— - I)K*.

(y,n)esS n (y,n)e8

Let us proceed to the proof of the second part of the theorem, concerning
%*. Because « is now an element of [1, + [ a probabilistic construction of
Q = P, in terms of a Markov chain with transition matrix P is no longer
available. Therefore, we have to reverse our point of view: Set 8= (1/a;,
1/ay,...,1/ay), so that B8 is in [0,1]¥ and so that we have a probabilistic
construction of P as @gz. The hypothesis is now

(82) ¢RF(i,B) S¢f(i7ﬁ)

for any R = (f) in %,. The argument B in these expressions means that the
value is related to @4 (i.e., P) and we drop 8 when g8 is (1,1,...,1). We want
to deduce from (8.2) that

(8.3) ¢r (1) < ¢p(2)

for any C-rule f. Now (8.2) can be written

1
¢RF(Z) + Z Wi,(y,n)(RB)(—— - l)K**

(y,n)e8 Bn

1
S(v‘bf(i)_*‘ Z 77'i,(y,n)(f)(_B——_]')K(f(y’n))’

(y,n)e8
and it is quite clear that

1 1
> 7"'i,(y,n)(RB)(B_n - 1)"** > ) Wi,(y,n)(f)(ﬂ_n - 1)K(f(y, n)),

(y,n)eS (y,n)eS
so (8.3) follows at once.

StEP 2. F has several ergodic classes and the «,, are positive. Let
E,,E,,...,E, be the ergodic classes of F and let E be the union of these
classes. Furthermore, let E’ (resp. E.) be the set of states i = (x, m) such
that m is in E (resp. E,). If i is in E’, Lemma 6.4 still holds true and (8.1)
follows as in Step 1. Let T (resp. T') be the time of first entrance of F in E
(resp. F' in E) and set

pi(F) =Py (X7 =J)
for a given C-rule (f). When i is not in E’, we have

k
(84) ¢r(a,i) = 2 2 pii(F)ep(a,)).

r=1j€E,
Clearly, we have that (i) I;cp pj,(f) does not depend on f, because if
i = (x, m), we have

L p}(f) =P, (Fp €E,).
J<E;
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We claim that (ii) j — ¢5 (@, j) is constant on each E;. Assuming this last
point, we can give the end of the proof of Step 2. With ¢ (e, r) standing for
the value of ¢ («,j) when j belongs to Ej,

bp(a,i) = Z ¢r(a,r) ¥ p}(Ryr)

€K,
(8.5) ’

Z Z p;k,j(f)d’RF(a?j)'

r=1j€E,

Comparing (8.4) and (8.5) ends the proof, because (8.1) holds true when i
belongs to E'.

Now, let us prove point (ii). Unfortunately, there are several ergodic clas-
ses in E. (which is closed). Let ®; be defined on E. by ®(x, m) = (x|g , m).
One easily sees that U = (U,), . , = (P(X})), ., is a Markov chain, and that
because items out of E, are never required, the cost C, incurred at time n
depends only on U,. Using an argument similar to that in Letac [20], page 18,
or in Lam, Leung and Siu [19], Theorem 2.1.2, we see that U has a
regeneration state and therefore a unique ergodic class.

The part of Theorem 1 concerning &#* can be proven in the same way.

StEP 3. Some a,, are zero. Let & be the set of items m such that «,, is
zero and let &’ be the set of states i = (x, m) such that m belongs to &.
There are two subclasses among ergodic classes of F': The ergodic classes of
F that do not intersect & and the classes {m} in which m belongs to &. Let
E,E,,...,E, be the ergodic classes of the first kind, the union of ergodic
classes of the second kind (say E,,, E,,..., E;.) being &, and let E, be
defined from E, as in Step 2. Relation (8.1) still holds true for i in the E, of
the first kind, with the same proof as in Step 1. For a state i belonging to &,
(8.1) holds true because

d)RF(i, a) = k*.

The proof is finished, with the help of points (i) and (ii), as in the second step.
O

9. Proof of Theorem 3. In this section we consider only the cost func-
tion k,(p) = p that is commonly considered in the related literature. From
[5], we know two things: On the one hand, it is more likely that a library-type
rule is optimal if the kernel P of F has a transitive group of symmetries and,
on the other hand, (6.3) is easier to solve, due to some state space reduction
for X, if P is state-transitive. Searching for kernels P of the class 2, we
shall thus focus on state-transitive kernels. The two examples that follow are
kernels of random walks for some group structure on S.

A. Locality by bunches. Now we shall prove part (i) of Theorem 3. Let
M = pq and let (K, K,,..., Kq) be a partition of S with #K; = p for each i;
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let pa + (g — DpB = 1. When a file of K, is required, let the next file be any
of the files in K, with probability @ and any of the files outside K; with
probability 8. When o > B, this is a reasonable model for the locality
phenomenon, as pictured in [17], page 399: “small groups of keys tend to
occur in bunches.” With respect to the locality assumption, the condition that
the K; have the same cardinality is artificial, but this condition is required
for the state-transitivity of P.

Proor oF THEOREM 3(i). When B = 0, the optimality of the move-to-front
rule is easy to check directly and the minimal cost is (p + 1)/2, so we
assume, from now on, that B is positive. This insures ergodicity of X under
move-to-front. From [25], it follows that the set of solutions of

(9.1) v; — (Prv); = cz(i) — ¢, 1eS’,

with unknowns (v,); c g and the real number ¢, is exactly {(vz(0) + K); . g/,
¢r)IK € R}. Clearly y, remains unchanged if v, is replaced with v, + K, so
ergodicity allows us to replace the solution of (6.3), which requires prelimi-
nary computation of ¢, and Ilg, with the solution of (9.1). Another conse-
quence of ergodicity on Bellman’s condition is that y3 is identically zero.

In this section i denotes the state (x, m) and K(m) denotes, among
subsets K, the one that contains item m. Symmetries of P (see [5]) and the
probabilistic interpretation of vy as a starting cost suggest the following trial
for the solution of (9.1):

1
(9.2) y=A— X «x'(n),
neK(m)
in which A is positive and x’ denotes T, ; x. Let us take

1
G(x,A)=—#A x(n),
neA

the center of gravity of the subset A of S, when the disposition is x.
Assuming (9.2), let us check that there exists a real number ¢ such that
((v); e 5> ®) is a solution of (9.1), or equivalently, of

(93) v(x,m) = E((x? m)? 1) - ¢ + Z av(x’,n) + Z Bv(x’,n)‘
neK(m) n&K(m)

Our guess will be right if there exist ¢ and A such that, independently of x
and m, we have

AG(x',K(m),)) =¢((x,m),1) — ¢+ ra ), G(T, x',K(n),)

neK(m)
(9.4)
+A8 )Y G(T,,x',K(n),).
ne&K(m),

The result follows from the next lemma
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LEMMA 9.1. Let x be a disposition, A a subset of F and U a random
element of A. Then

#A
[E[G(TU,lx, A)] =
Proor.

G(Ty 1%, A) — G(x, A) = #iA[l —x(U) +r(U) - 1] <0,

in which r(U) is the rank of U in A,
r(U) = #{m € Alx(m) < x(U)},

r(U) — 1is the number of files in A whose positions are increased by 1 when
U goes to position 1 and 1 — x(U) is the contribution to G(T; ,x, A) — G(x, A)
of the move of U. Finally, it is easy to check that

#A + 1

2

E[x(U)] = G(x,A) and E[r(U)] =

LEMMA 9.2. For any disposition x,

+1
5

1 4 M
- Z G(x’Ki) =
q ;-1

LEMMA 9.3. For any disposition x,

+1

M
¢((x,n),a) = (a— B)pG(T, ,x,K(n)) + Bpq 5

PROOF OF LEMMA 9.3 Lemma 9.2 is clear and gives
¢((x,n),a) = apG(T, ,x,K(n)) + Bp L. G(T, .x,K;)
K,#K(n),
M+1
2

=(a—-B)pG(T, ,x,K,) + Bpq ]

Now, by applying Lemma 9.1 with A = K(m), we can simplify each term of
(9.4):

p—1 1p+1
Xa ), G(T, x',K(n))=rap G(x',K(m)) + —
neK(m) ’ p p 2

and

, p—1 , 1p+1
AL G(T,,x',K(n),) =2Bp L G(x', K;) + ——5—1,
n&K(m), K#Km),l P p
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so that
ra Y, G(T,,x',K(n))+r8 Y G(T, ,x',K(n))
neK(m) n&K(m),
-1 1 1
=A(a—B)p[p G(x', K(m)) + =2 ]
p 2
9 [p—-1 . 1p+1
+ )t/3pi=zl[——p G(x',K;) + ; 2 ]
=Ma-B)(p - 1)G(x', K(m)) + Ap(a, M, p),
in which

+
2 p 2
Using Lemma 9.3 and putting the pieces together, we reduce the system (9.3)
to

p+1 p—-1M+1 1p+1
¢(a,M,p)=(a—/s)T+BM( - )

A=(a=B)p+Ma-B)(p-1),

M+1
¢ = Bpq B

and because (9.5) has a solution, so does (9.3). When B> 0, X is irreducible,
S0 we can use any solution of (9.1) in Bellman’s condition. Furthermore, we
have

(9.5)

+ Ap(a, M, p)

p

ST

We now have to check that

1 € argmin {E((x,m),a) + Z p(x’m)’(y’n)(a)v(y’n)}.
a (y,n)eS’

Computations similar to those given above show that

c((x,m),a) + X Piasmy iy @)Uy
(y,n)esS’

M+1
=)‘G(Tm,ax’K(m))+qu +)\(//(01,M,p).

2
Because A has the same sign as « — B, Theorem 3(i) follows from the fact
that G(T, ,x, A) is an increasing function of @ when n belongs to A. O

Note that (9.5) easily gives the explicit expression of the minimal stationary
search cost ¢, in that context.

B. Nearest neighbor random walks on cyclic groups. For Theorem 3(ii) we
identify S with Z,, and we let P be the kernel of the random walk with law
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w=ad,+ Bd, + y6_,. When o =1, move-to-front is optimal because its
stationary search cost is 1, so we assume, from now on, that o < 1.

Proor oF THEOREM 3(ii). It is easy to check that state

S_((r o2 3 - M),y
1 M M-1 - 2)

is a regeneration state for X when B > 0 and y = 0, and thus, a fortiori,
when y > 0. We are thus allowed to use the solution of system (9.1) in yg.
Because 7,(m) = m + k is a symmetry of P, we have, from Theorem 2 of [5],
that
(9.6) Ve, by = Yry_ 12, 1) with (7,x)(m) = x(m + k).
From the interpretation of v, as a starting cost, we have found, when y = 0,
that vgp(x, 1) is the number of inversions of x (see [6]). When y # 0, a natural
idea is thus to try
Uz,1) = > ai,j]lx(i)> x(j)
1<i<j<M
as a solution for (9.1). From (9.6), the solution of (9.1) can be reduced to
checking that there exists a real number ¢ and coefficients «; ; such that for
any x,
(9.7) Ux,1) = x(1) — ¢+ av )+ Bv(flx',l) + YU 21y
where x’ still denotes T, ;x. Let
z; j(2) = Lioys 2y
We have
z; (%) = zi+1,j+1(x)’ if2<j<M,

zim(m1%) =1 =2 ;,1(%)
and a similar statement holds for z; ,(7_,x). Furthermore,
z, j(x') =z j(x), f2<i<M-1,
z,,;(x") = 0.

It follows that (9.7) can be written in terms of the z; (x), and that
a sufficient condition for (9.7) to hold true is that the coefficients of the 2; i
as well as the constant term, are zero. After straightforward computa-
tions, we obtain that (a; ;) <; < can be written (w;); _, .y, in which
(w,)1 < < y—p+1 Would be a solution of

YW — (B+ y)w, + Bw;_; =0,

with boundary conditions w; = 1 and wy;_,,; = —1. So, when B # v,
1— i-1
o, =12 P icien,
1-(B/7)
(9.8)
M-1

d=1+(M-1)y+B Y ay
i=1
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and when B = v,

i+j—M-2 o
aiJ:_j—i—M R 1<i<j=<M,
(9.9)

M-11
¢=1+(1-a) ¥ -
i=1

The Bellman condition gives optimality of move-to-front if for any x,
1le argmin{ Y p(x’l),(y’n)(a)v(y,n)}.

a (y,n)e8’

Let T, ,x = x,. We have

Y P 1@ Uy, my = W, 1y F By 2y + Yy, 1y
(y,n)e8S’

By ignoring terms that depend on x but not on a, we only have to check that,
for any «,

(9.10) 1 € argminy, (a),
a
with

M
Y (a) = X (aay ;= Baj 1y + vy ;11)21 j(%,),
j=2

in which a; 5., is assumed to be defined by (9.8) or (9.9), and thus to be — 1.
Let us set

é&(a) = ¢.(a) — ¥(a — 1), 2<a<M,
and
8(Jj) = aay ;= Baj_y yt+ vay ji1, 2<j<M.
If x(1) is %, we have
(£:(a))acacu = (8(x71(1)), 8(271(2)),..., 8(x7 (2 — 1)),
8(x Mk +1)),...,8(x"(M))).

From (9.11), in order that (9.10) hold true for a given x, it will thus be
sufficient that

(9.12) 8(j) is nonnegative for each j.

(9.11)

However, in order that (9.10) hold true for any x, it is necessary that £,(2)
[i.e., 8(x71(1))] be nonnegative for each x, which is equivalent to (9.12).
Condition (9.12) is thus equivalent to the Bellman condition. Straightforward
computations prove that

5(2) = (M) = min(5(,); 2 <j < M)
and that

5(2) 2 0= ax (B 1+ yM (- y) /(B -y Y. O
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10. Proof of Theorem 4. Let R be a library-type Bellman-optimal rule
and let f be the map such that R(x, m) = f(x(m)). From Lemma 6.1
we know that the vectors (L,cq p;i(@)dr(k)),c, and (E(j, @) +
Lies Py (@)ug(k)),c , are constant on the class S;. We have

4e() = min{ T p;s(@)dn(k)la <4},

The second term of the preceding relation is constant for j in S,. Thus, and
though R is not a C-rule, ¢z(j) factors through ®. Similarly v5(;) is constant
on S; and so is the set B; appearing in the Bellman condition. Because R is
optimal, for j = (y, k), B; contains f . Let i be (x, m). Because B; is
constant on S;, B; contains f,,, for any (y, m) in S,, that is, it contains

{f(T,, ,x(m))la € A} = {f(a)la € P} = f(£).

Let a, be any fixed element in f(#) and let R’ be the library-type policy
associated with f’, where [’ is constant with value a,. Then Proposition 3.1
implies that the stationary search cost of R’ is lower than that of R and is
thus minimal. O
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