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METASTABILITY IN THE GREENBERG-HASTINGS MODEL

By ROBERT FIscH, JANKO GRAVNER AND DAVID GRIFFEATH

Colby College, University of California, Davis and
University of Wisconsin—Madison

The Greenberg-Hastings model (GHM) is a family of multitype cellu-
lar automata that emulate excitable media, exhibiting the nucleation and
spiral formation characteristic of such complex systems. In this paper we
study the asymptotic frequency of nucleation in GHM dynamics on 72 as
the number of types, or colors, becomes large. Starting from uniform
product measure over k colors, and assuming that the excitation thresh-
old 6 is not too large, the box size L, needed for formation of a spiral core
is shown to grow exponentially: L, = exp{C,} as k — <. By exploiting
connections with percolation theory, we find that C = 0.23 + 0.06 in the
nearest neighbor, 6 = 1 case. In contrast, GHM rules obey power law
nucleation scaling when started from a suitable nonuniform product
measure over the « colors. This effect is driven by critical percolation.
Finally, we present some analogous results for a random GHM, an inter-
acting Markovian system closely related to the epidemic with regrowth of
Durrett and Neuhauser.

1. Introduction. In the context of spatial dynamical systems, metasta-
bility refers to the displacement of one apparent steady state by another,
often abruptly and after a prolonged period of time. Such “punctuated
equilibria” are typically caused by the appearance of structures with superior
self-organizational ability, due either to exceptionally large dynamic fluctua-
tions or propagation across great distances from rare nucleating pockets in
the initial state. Metastability effects are especially prevalent in the vari-
ety of complex systems known as excitable media, outstanding examples of
which are neural signal transmission, atrial fibrillation and the Belousov-
Zhabotinski (BZ) chemical reaction.

The Greenberg—Hastings model (GHM) 7y, is a very simple cellular
automaton that emulates an excitable medium. At each time ¢, vy, € {0,...,
k — 1})2°. This means that for each x € Z¢, y,(x) has one of k possible types
0,...,k — 1, which appear as different colors in computer simulations, so we
refer to them as colors. Recall that a cellular automaton (CA) (see Toffoli and
Margolus [23]) is a dynamic configuration on a lattice of sites that updates in
parallel according to a local homogeneous deterministic rule. Modeling of
excitable media by iterated maps goes back to Wiener and Rosenblueth [25]
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in the mid 1940s. Several researchers contributed to the formalization of
their idea in terms of CA dynamics; then about 15 years ago Greenberg and
Hastings isolated the essential phenomenological features in their simple
three-color nearest-neighbor rule [14]. Ever since, especially with the advent
of microcomputers, many scientists across the spectrum of applied science
have generalized GHM to incorporate more detailed aspects of the BZ reac-
tion and other excitable media. The papers of Winfree, Winfree and Seifert
[26] and Gerhardt, Schuster and Tyson [11] exemplify this work.

To strike a balance between physical verisimilitude and mathematical
tractability, as in [9], we consider the GHM to comprise a family of CA rules
indexed by three parameters: a finite neighborhood .7 of the origin, a thresh-
old number 6 of sites needed for excitation and the number « of available
colors. For given .7, 6 and «, taking the neighborhood of x to be the translate
of #, ¥, = x +.#, the update algorithm is as follows:

(v.(x) + 1) mod k, ify,(x)=1or

(1'1) 'Yt+1(x) = #{y SV 7t(y) = 1} >
Ye(%), otherwise

(# denotes cardinality). In words, if a site x has color £ at time ¢, the color
may become (k + 1) mod « at time ¢ + 1. If 2 > 1 this change is automatic,
that is, it occurs inevitably, whereas if & = 0 the change is by contact: it
happens only if at least 0 sites within .#, have color 1.

One can define the GHM on a subset A of 7Z¢ as well, assuming free
boundary: For x € A we take .#, = {y: y € A N (x +.#)}. One such subset is
the box B; = {z: ||lzll. < L}, in which case periodic boundary is also natural:
opposite boundaries are identified so the neighbor structure wraps around at
the edges. The choice of boundary condition will play no significant rule in
our analysis. Throughout this paper we consider planar GHM dynamics
(d = 2), either on Bj, or on all of Z2?; some of our ideas generalize easily to
higher dimensions but others do not. We will start from random initial states
Yo- Specifically, y, will be u-distributed, where w is a translation invariant
product measure.

What happens when GHM begins in a homogeneous disordered initial
state? Figure 1 shows six gray-scale “still frames” of one representative
evolution on a 240 X 240 box: the rule with .#'= B3, 6 =6, « = 8, initial
densities P,(y,=0)=2/9, B(y,=k)=1/9 for 1<k <7 and periodic
boundary. Type 0 (“rested,” or “exc1table”) is the lightest shade of gray; type 1
(“excited”) is black and types 2,...,7 are intermediate shades from darker to
lighter. Evidently by time 10 the overwhelming majority of sites have color 0.
Note that the all 0’s configuration is a trap from which no further excitation
is possible. However, four isolated pockets of 1’s have formed stable “pace-
makers” that generate wave activity. By time 20 these nucleating centers
give rise to remarkably coherent spiral pairs, sometimes called “ram’s horns.”
Each spiral pair generates concentric rings that spread out until, by time 40,
they annihilate upon collision with one another. In this manner, by time 80
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time 0

time 10 : time 20

time 40

Fic. 1. Nucleation of ram’s horns in a range 3 Greenberg—Hastings model.
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the entire space is covered with a locally periodic steady state of oscillating
waves. Nucleation of spirals, spiral pairs and/or target patterns from noisy
starting configurations is characteristic of many real-world excitable media,
although the nucleation mechanism is poorly understood in most instances.
Our paper [9] contains color computer graphics that illustrate additional
varieties of complex self-organization, as well as an extensive bibliography of
research on excitable media. The even more exotic dynamics of closely related
cyclic cellular automaton (CCA) models are also described and illustra-
ted. Figure 1 was created using EXCITE! [10], > 386-compatible freeware
that facilitates GHM and CCA experimentation; the program is available by
request.

The simplest choice for vy, is primordial soup: the random configuration
that paints each site independently with a color chosen uniformly from the
available palette {0,1,..., x — 1}. Let us reserve the notation 7 for this
distribution, either on B; or Z? according to context. Our rather whimsical
terminology is motivated by some emerging questions of artificial life: How
are iterates of local logical rules able to transform randomness into organized
structures that can move about, reproduce, compete, compute and carry out
other evolutionary functions? See Waldrop’s report [24] or Levy’s recent book
[20] for popular accounts of this exciting new field. We do not wish to impart
any profound significance to primordial soup 7. It is simply a mathematically
expedient starting state that (by the monkey-at-the-typewriter principle)
has every possible finite configuration, however extraordinary, represented
somewhere on the infinite lattice.

If one starts the rule that generated Figure 1 from = rather than the u
with double weight on color 0, then vy, invariably dies out on a 240 X 240 box,
that is, fixates in all 0’s. (Because any color except 0 advances automatically,
the only way the GHM can fixate is for all colors to become 0 eventually.)
Here “invariably” means the probability of forming a spiral core is so small
that thousands of EXCITE! trials are unlikely to yield a single instance of
nucleation. To expect to obtain ram’s horns starting from 7, one must either
decrease the threshold 6 to 5 or increase the box size L far beyond the
capability of any currently feasible graphics array. In the infinite GHM, that
is, on all of Z%, 7 will definitely generate ram’s horns. Indeed, somewhere in
the infinite initial soup there is an exact copy of the Figure 1 configuration at
time ¢ = 80. The ram’s horns there are examples of stable periodic objects
(spos) [9]: configurations y(A) on a finite A C Z? with the property that the
color at every site x within A sees at least 0 of its successor color within
(x +) N A. A moment’s thought reveals that the color at every site of an spo
advances every time under GHM dynamics, irrespective of the state of the
system off A. In general, if a GHM rule admits spos, then it cannot die out on
7? starting from 7. See Durrett and Griffeath [4] for results on the existence
of spos for GHM dynamics.

Our central problem here is the following: If a GHM with specific parame-
ters nucleates on Z2, then how large an L is needed so that the finite system
on B; survives, that is, does not die out? In the formulation of our results we
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typically fix .#° and 6, letting x — ®. A natural interpretation of GHM
dynamics calls states 2,..., k — 1 refractory, k — 2 updates being the deter-
ministic recovery time for a cell after it has been excited before it is again
ready to fire. In this context, we are studying asymptotic system behavior as
the refractory period becomes large. As it turns out, roughly speaking, the
size of the finite system needed to support nucleation grows exponentially
with the number of colors k. Alternatively, this exponential scaling can be
interpreted as the length scale that separates nucleating pacemakers in the
infinite system when « is large. From the point of view of a local observer at
the origin 0, with overwhelming probability y, appears to die out (by time
t = 5k, say). However, after a period of time that is exponential in «, 0 is
suddenly “overrun” by waves of activity that started far, far away. The
apparently stable all 0’s state is displaced by self-organized local periodicity.

This paper presents a series of theorems that give precise meaning to some
aspects of the caricature of the previous paragraphs. Before turning to the
results, let us digress briefly to mention some methodological aspects of
research on excitable cellular automata that motivate our work. First, there
is an intriguing interplay between computer visualization and deductive
reasoning. The theory that we develop here was motivated in large part by
innumerable experiments with the CAM-6 cellular automaton machine [23],
EXCITE! and other programs. However, in the study of subtle phenomena
such as self-organization and metastability, one quickly learns that a video
display does not always offer an accurate window onto the behavior of an
infinite interacting system, or even a very large finite one. There is nothing
like a traditional theorem and proof to dispel paranoia about “monsters” out
there somewhere that might fundamentally alter system behavior.

Moreover, our asymptotic scaling results offer some insight into the mech-
anism of GHM nucleation. As the reader will soon see, connectivity questions
play a key role and several of our arguments depend on recent, remarkable
advances in percolation theory. Ideally we would hope that probabilistic
analysis of nucleation and self-organization might prove illuminating to
applied researchers in the area of excitable media. As mathematicians, we
began studying cellular automata to gain a better understanding of some
closely related interacting particle systems [1, 7]. The last section of this
paper illustrates the utility of such connections. By focusing on excitable CA
rules for the past several years, we have become devoted to these models in
their own right. They are beautiful examples of complex deterministic
dynamics started from random initial states, a kind of stochastic process that
offers promising new directions for applied probability.

The organization of this paper is as follows. We begin in the next section
by establishing a general metastability theorem for the (7, 6, k) Greenberg-
Hastings model (1.1). If 0 is too large in comparison to #7, then nucleation is
impossible and vy, dies out. The critical value 6,07, k) for death is not known,
but as a warm-up for the main theme of nucleation scaling we show that if #’
is symmetric (—#'=.#) and 0 > ##/2, then the system dies out by a fixed
time T regardless of the initial state y,, on either the infinite lattice or a
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large finite one. This is a more general sufficient condition for a stronger kind
of GHM death, with a simpler proof, than claim (2) of Section 4 in [9].

THEOREM 1. Let v, be the GHM on 7% or B; (L large), with symmetric
neighbor set ¥, threshold 0, and «k colors. Assume that 0 > ##/2. Then v,
dies out globally, that is, there is a deterministic time T = T'(/#, 0), indepen-
dent of the initial configuration v, such that yr,, = 0.

If 0 is sufficiently small in comparison with #7#; then (as in Figure 1)
stable periodic objects exist and nucleation is to be expected on Z2. Again,
just how small 6 needs to be is a difficult question (cf. [4]), but for box
neighborhoods .#'= B, and 0 < p%/4, it is quite simple to construct spos for
any k > 3. In this context, as k — o, and starting from primordial soup 7, we
will show that the GHM on B; d1es out with overwhelming probablhty if
L < e°%, but survives with overwhelming probability if L > e€P’~_ Here and
throughout the paper, ¢, C and other customary letters denote positive finite
constants that may change from line to line or page to page according to the
context.

THEOREM 2. Let vy, be the GHM on B; with neighbor set .#, threshold 0
and « colors, started from uniform product measure .

(a) For each a €(0,3) there is a constant ¢ =c, such that if a#/ <
0 < #4,5 < ak and L < e°®, then P (dies out) > 1 — % .

(b) Assume that #'= B, and 6 < p2 /4. There is a constant C such that if
L > €'« , then P_ (survwes) - 1las p— ©or k— o

Beginning in Section 3 and for the remainder of the paper, we specialize to
the Greenberg—Hastings model with .#"= {z: ||z[l; = 1} and 6 = 1. Let us call
this nearest-neighbor threshold-1 case the basic GHM. The reasons for
specializing are largely technical. Various dynamical invariants such as open
bonds, the index of a loop and defects, notions that were originally formu-
lated for the basic CCA in [8], apply equally well to the basic GHM. It follows
that the basic GHM on Z2, started from 7, is uniformly locally periodic with
probability 1, that is, every site eventually advances around the color wheel
at every time step (see [8]). Moreover, by exploiting these invariants one can
carry the nucleation analysis to a deeper level. Part (a) of our next result is
merely a special case of the previous theorem. However, in part (b) our
description of the infinite system as observed from the origin more fully
captures the metastability effect: 0 has color O by time «, retains that color
until time e~ and then is repeatedly excited by a 1 after time e¢~. [Presuma-
bly the time intervals in (b) can be replaced by [e€* + (i — Dk, e®* + ix],
that is, the origin becomes periodic by a time that is exponential in «, but we
do not know how to prove this.]
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THEOREM 3. Let vy, be the basic k-color GHM started from uniform
product measure . There are constants 0 < ¢ < C such that the following are
true:

(a) Consider vy, on B;. Then as k = =,
P _(diesout) -1 ifL <e®"

50 ifL > eC~.

(b) Consider vy, on Z2. Then as k — © the probability of the following event
converges to 1:

v(0) =0 fork—1<t<e,
and then

v,(0) =1 foratleastonet € [(i — 1)e*, ie®];i=1,2,....

Define c* (resp. C*) to be the supremum of all ¢’s (resp. the infimum of all
C’s) for which the conclusion in Theorem 3(a) holds. It is quite plausible that
c¢* = C*, but proving this equality seems beyond the reach of our methods.
Instead, we settle for reasonably good rigorous bounds on ¢* and C*.

THEOREM 4. 0.177 < c¢* < C* < 0.288.

Although these numbers themselves do not convey much, our ability to
estimate this closely the scaling rate for a complex effect in an interac-
ting system entails some understanding of the underlying mechanism. The
derivation of our upper bound is particularly illuminating, involving dynamic
defect formation and an interesting comparison with a nonhomogeneous
oriented percolation problem.

Section 3 concludes with a brief discussion of our CAM-based numerical
estimation of the ostensible common value ¢* = C*. The data supports a best
guess of

c* =C* = 0.223 + 0.01.

In Section 4 we turn to the issue of k-color GHM nucleation starting from
product measures other than primordial soup. Under 7, an enormous finite
volume is needed to support spiral formation once « is large, so it is natural
to ask whether some other homogeneous random medium is more conducive
to nucleation, and if so, which medium is optimal. We feel that such questions
are fundamental to the subject of CA self-organization, and that probability
theory will play a crucial role in resolving them. Let u denote a product
density with P,(y,(x) =%k)=p,, 0 <k <k —1, on Z* or B, according to
context. We first show that v, is almost surely locally periodic on Z? if and
only if u attaches positive density to 0, 1 and at least one additional celor.
Then we indicate that the nucleation scaling is still exponential in « for the
great preponderance of initial product measures w. However, certain special
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choices of the densities ( ;) can lead to power-law scaling. The main result of
Section 4 (Theorem 7) asserts that if P, is concentrated on {0, 1,2}, with

1
Mo =P, — —3, Mg=1—-p,—— and u, >— forsomeA >0,
K K K
where p, = 0.59 is the critical value for site percolation on Z2, then for a
suitable v > 0, the GHM on B,. satisfies

P,(v, survives) > 1 as k - .

We illustrate this effect by growing a 170 color spiral pair on a 400 X 400
box.

Last, in Section 5 we turn to a variant of the GHM with random dynamics.
The random Greenberg-Hastings model (RGHM) ¥, is a nearest neighbor
continuous-time Markovian interaction on {0, .. ., k — 1}2°. Besides «, there is
an additional parameter B that determines the system’s generator. Let
¥(x) = k. If B > 1, then « changes to (¢ + 1) mod x at exponential rate 1,
whereas if £ = 0 a change to 1 occurs at rate 8- #{y €.7,: ¥,(x) = 1}. This
process is closely related to the epidemic with regrowth of Durrett and
Neuhauser [5]. We are able to apply results from that paper and the earlier
work of Cox and Durrett [2] to obtain counterparts to our previous GHM
results for the RGHM on exponential boxes B,. with « large. Detailed
discussion and formulation of these theorems is deferred to Section 5. The
point we want to stress is that many of the Markov processes commonly
known as interacting particle systems, in particular those that self-organize
by means of wave propagation, can profitably be viewed as perturbations of
deterministic CA dynamics started from random initial states.

2. A metastability result for Greenberg-Hastings models with
general threshold and range. In this section, we consider Greenberg-
Hastings models with neighbor set .7, threshold 6 and « colors. We prove
Theorems 1 and 2 of the Introduction. Our first theorem establishes global
death of either finite or infinite systems, started from any initial configura-
tion, when .7 is symmetric and 0 > #7/2.

PROOF OF THEOREM 1. Abbreviate n = ## and let p = max{||z|.: z €}
be the range of .7. For the purpose of this argument, a (directed) edge at time
t connects a 1 at some z € Z2 to a 0 in z +.7. Fix a large ¢ and note that if
7,(x) = 1, then there must have been at least 6 edges to x at time ¢ — 1,
hence at least 0 1’s within range p of x at that time. So by symmetry of .7,
there can be at most n — 6 edges from x at time ¢. More generally, if
Xy,...,%; are distinct sites with color 1 at time ¢ — j, then there are at least
l;6 edges to these sites at time ¢ —j — 1, and hence, because each 1 can
contnbute at most n — 6 edges, there must be at least [0/(n — 6)]I; I’
in Ul A, at time ¢t — j — 1. Proceeding by induction on j, if y,(x) = 1, then
at tlme t — j there must be at least 8//(n — 6)/~! 1’s within range jp of x.
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Because 6 > n/2, we have 6/(n — 8) > 1. Thus 60[6/(n — )}~ ! grows
exponentially, whereas the number of sites within jp of x grows quadrati-
cally. Choose T so that 0[8/(n — 6)]7 > (2pT + 1)2. There cannot possibly be
enough 1’s close enough to x in the initial configuration to generate a 1 at x
at time T, so y;, ., = 0 regardless of y,. O

Our second theorem deals with the GHM on a finite box B; c Z? starting
from primordial soup 7: P, (y,(x) =k) = 1/k for £ =0,..., k — 1. For rela-
tively small values of # we show that with high probability, eventually in
time, vy, fixates at all 0’s if L is too small but fluctuates if L is sufficiently
large. The cutoff occurs for L that grow exponentially in the parameter «.

PrOOF OF THEOREM 2. (a) Suppose y,_;(x) = 1. Such an x must have 6 2’s
in its neighborhood, each such 2 having 6 3’s in its neighborhood, and so on.
Hence, setting x,_, = x at time k — 2 there exists a sequence of sites x;,
J=Kk—2,k—3,...,0, such that x; has at least 6 neighboring sites of color
k —j — 1, one of which is x;_, (this last for j > 1). If A; denotes the sites
that x; “sees” with color k —j — 1 at time « — 2, then the A; are clearly
disjoint. Moreover, for j > 1 we can select x;_; € A; in a prescribed fashion,
for example, the site in A; that is closest to 0 with some convention in case of
ties. Translated into a condition at time 0, this means that x, sees 6 1’s on
Ay, x, sees 6 Os on A; D x, and, for j=2,...,k — 2, x; sees 6 sites in
I={0,k—1,...,k—j+1lon A; 5%, ;.

Fix j and a site x, and write n = #7. Let X, X,,... be ii.d. Bernoulli
random variables with P(X; = 1) =/« (j = #I,). Applying standard large
deviations estimation to the time O condition of the last paragraph, we see
that

P, (at least 0 sites of y,(x + (#\ {0})) have a color in I;)

K

n K—Jj+eYy "
SP(X;+X,+ - +X, 2 0) <e M(E[e*]) = e—w(#) ,

for each A > 0. Assuming that j < 6kx/n and choosing e* = 0(x/j — 1)/
(n — 6) to minimize this last expression, we obtain

( n—20 ) O n o\ \'(k—=j\" ny\o( j \°
( ) - < e"( ——) -] .
0 n—20 K—J K (7] K—J
Fix B € (0, @) such that Bk = 1. Because an < 0, it follows from the crite-
rion of the previous paragraph, in terms of disjoint A, that

P_(v._1(x) = 1for some x € B;)
2 o [n\E<[ Lo B o
=+ e (5) ([(1—B)K]"“)

nB )GBK
0(1-B)

(2.1)

< (2L +1)°
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Set B = a/4 to get

Oak/4
P_(v,1(x) = 1forsome x € B) < (2L + I)Z(Z—E—a)
Because « < 3, the preceding probability is majorized by (2L + 1)% e~ **¢/16,
Thus part (a) of the theorem is proved, with ¢ = a/50.

(b) We paint a suitable ring of blocks so that it inevitably creates an spo at
about time k. For any fixed « one can exhibit a range p spo that occurs in the
initial state with probability exp{—cp? « log «} (cf. [9]). Hence it suffices to
establish prevalent spo formation for large k. Arrange 4k a X a squares in a
“square ring,” and denote them by @, ..., @,,_;, starting from the upper left
corner of the ring and proceeding clockwise. One-quarter of the arrangement
is shown in the array in the next paragraph. Take a to be the largest integer

such that a(p —a + 1) > 6, thatis, a =|(p+ 1+ {(p + 1)2 —40)/2]. (It
is here that we need 6 < p%/4.) Then (a + 1Xp — a) < 6 — 1, and hence
a(p — a) < 6 — 1. Color the squares so that all of @, has color 1, all of @, has
color 0 and all sites in Qj, J = 2,...,k — 2, have colors from the set I, = {0,
k—1,...,k —j+ 1}, whereas Q,_; is colored entirely with 2’s. Paint the
remaining squares so that the colors of sites in @; satisfy the same require-
ments as colors in @ ,,,q .- The value of a is chosen so that, for example, @,
(entirely 1’s) will infect every point in @, (0’s) but will not infect any point in
Q;. Hence 1’s travel from full block to full block, reaching @,_; at time
t = k — 3, and leaving a “trail” of blocks colored 2,3,..., k — 2. Also at this
time, @,_, has all 0’s and the 2’s initially on @,_; turn to k — 1s.

If sites outside U; @; are removed, any of the specified colorings, therefore,
produces an spo at time « — 3. How can we ensure that sites from outside the
ring do not interfere with this formation? In the following scheme, every
letter stands for an a X a block:

R, R, R, R, Ry R, R, R, R,
Ry Ry R, R, R, R, R, R; Ry,
RO RO QO Ql QZ Q3 Q4 Q5 QK—4
Ry R, @Qu_: R, R, R, R, Ry - R,
R, R, Q4 Ry, Ry Ry, R, R; R, 4

RO RO Q4K—3 RO RO

Specifying conditions on the colors in R, R,,...,R,_, is enough: Other
requirements are determined by 90° rotation symmetry. So set all colors in
R, equal to 2, and require that R; should not include any color from
1,0,k —1,k—2,...,k—j—1},j=5,...,k — 3. Let A = U, R,V U; .1t
is not hard to check that if there is no 1 anywhere outside A, then an spo is
created at time « — 3. (Colors for the R’s are chosen so that they cannot
possibly be excited during this time period: they may contain 0’s only after
the 1’s have already moved past.)
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Hence we only need to ensure that no 1 from outside A will affect the
dynamics in A. This is guaranteed if there is no 1 within [ distance px of A,
an event with probability at least

1 9p%c?
_ 2
(1 - ;) =>e 18p “,

because a < p. On the other hand, our specification on A happens with

probability at least
1500 / .1 | 202
e
K K"

provided « is large enough. Now choose C = 25 and subdivide B; into
squares of size 3pk X 3pk. The probability that the just described scenario
occurs in at least one of these boxes is at least

2 K 2
1-(1- e‘43”2")L /@S 1 - exp{—e™"*/(3pK)?},

which clearly converges to 1 as pk — . O

3. Metastability in the nearest neighbor GHM started from pri-
mordial soup. For the remainder of the paper, let us focus on the basic
Greenberg-Hastings model y, with /' ={z: |z, =1}, =1 and x> 3.
Throughout this section the dynamics will start from uniform product mea-
sure m: P _(yy(x) =i) = 1/k. We begin by proving Theorem 3. The overall
strategy is the same as for Theorem 2, but dynamic invariants of the
nearest-neighbor case, first identified in [8], enable us to carry out a some-
what more detailed analysis. A clock (cf. [8)) in v, is a loop z,, 24,..., 2, = 2,
in Z? such that y,(z;,,) — 7,(z;) = 1 mod « for i = 0,1,...,7 — 1. Note that
for the basic model a clock is a particularly simple variety of spo; in particu-
lar, clocks are unaffected by the external dynamics.

Proor or THEOREM 3. Excitation propagates along nearest-neighbor self-
avoiding paths in the basic GHM. The number of such paths of length % is
clearly at most 4 - 3*~ 1, so a simpler version of the argument leading to (2.1)
yields the estimate

P,(v4(x) = 1for some x € B;) < (2L + 1)*4 - 3*k! k¥,

for £ < k — 1, on B;. Choosing &k = /3, the first claim of (a) follows for ¢ < 3.
The second claim of (a) is essentially a special case of Theorem 2(b) (take
a = 1 in that construction).

To verify the first claim of (b), observe that for « large,

P_(v,(0) =1forsomet € [k — 1,e“])
< P_(y,(x) = 1for some x € By)
+ P.(7v, on B, has a 1 that survives for 3 time steps)
+ P_(y, on B, has a 1 that survives for /3 time steps).
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The first two probabilities on the right are O(1/«), and we have just seen
that the last is exponentially small. Finally, we need to establish the second
claim of (b). By the construction for the second part of (a), with probability
tending to 1, there is a clock within a distance of 0 that is at most exponential
in k. Hence, to finish the proof, we now show that 0 is visited at least once
during each block of time [(i — 1)e€*, ie€*],i =1,2,..., for some C.

Suppose that x is connected to y via a shortest path g of length k.
Assume, moreover, that this path consists of all 0’s, except that the color of y
is 1 (at ¢ = 0, say). Then x must have color 1 sometime during the time
period [0, 2]. This fact is easy to check by induction on k: If £ =1 it is
obvious; otherwise, consider the closest 1 on the path at time ¢ = 1 (which
must be closer than &).

Now consider a shortest path g from the site x = 0 to a clock at time ¢,
assuming its length to be % < e®*. Assume also that y is the farthest site
from 0 on p such that the part of p between 0 and y consists of 0’s. Let z be
the next site beyond y on p. If no site on the path from 0 to y (including 0
and y) becomes 1 during the time interval [¢,¢ + k], then at time ¢t + « — 1
the path from 0 to z must consist of 0’s. Hence, according to the preceding
paragraph, if 0 does not change for (x — 1)(k — 1) + k time units, it must at
time (k — 1)k be connected to the clock by a path of 0’s. However, then it
must become 1 during the next « + & time units (by the preceding paragraph
once more). Hence, if £ is very much larger than «, 0 cannot stay unchanged
for a period of 2k2 time units. After a suitable redefinition of C, the proof is
complete. O

We now turn to the numerical bounds of Theorem 4 for the exponential
rate of nucleation in the basic k-color GHM as k — 0. Our principal tool is an
analysis of the following oriented percolation problem (see, e.g. [3]). Let ¢:
(0, ) — (0, 1] be a continuous function with the property that

—log ¢(p)

lim sup

— < >,
p—0 lr//(p)

where ¢ is a positive nonincreasing function on (0,®), integrable in a
neighborhood of 0 and such that py(p) - 0 as p — 0. This implies that for
each finite @ > 0, there exist § > 0 and K < « such that

—log ¢(p) <Ky(p A 8) forp €(0,a].

On the oriented percolation lattice .#= {(x,y) € Z?: x, y > 0} make site
(x, ¥) open with probability ¢((x + y)/k), where « is a fixed positive integer.
We call this model ¢-oriented site percolation ($-OSP). The case ¢(r) =r A 1
is called linear oriented site percolation (LOSP). Thus, in LOSP the probabil-
ity that a site (x, y) is open increases linearly with its level x + y until it
reaches probability 1. Denote by P(«, k) the probability that 0 is connected to
some site at level £ in ¢-OSP.
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One can define the GHM on .#: Excitation is only transmitted along the
directed edges of .. Starting from a single 1 at 0, surrounded by all 0’s, the
probability that the excitation will persist up to time % is the same as
the probability of an open path to level £ in LOSP. Moreover, it is clear that
if a 1 survives in the GHM on %, then (under the natural coupling) it also
survives in the basic GHM on Z2. These are the reasons that nonhomoge-
neous oriented percolation is of interest to us.

The abbreviation OSP will refer to standard (homogeneous) oriented
site percolation (cf. [3]). For a fixed positive integer m and p € [0, 1], let
Q(p, m) be the probability that OSP with density p of open sites, started
from a single occupied site at 0, percolates up to level m. With p fixed,
the sequence —log Q(p, m) is subadditive, and therefore lim,, . (1/m)
(—log Q(p, m)) exists and is equal to inf,(1/mX —log Q(p, m)). We denote
this limit by ®(p). Also, let p = inf{p: Q(p, ) > 0} be the critical density
for OSP.

Our immediate goal is to prove that for any a € (0,%), there exists a
g(a) > 0 such that P(k, ax) = exp{—g(a)k + o(k)}, and to identify g(a)
exactly in terms of ¢ and ®. This is done in the next proposition. First,
though, we need a preliminary result about subcritical OSP. Let E, denote
the expectation operator corresponding to the probability measure P, =
P(¢| percolation to level k).

LEMMA 1. Consider OSP with density of open sites p < p;. Let k be any
positive integer. There exists an M > 0, independent of k, such that
E,[# (sites at level k connected to 0}] < M.

Proor. Fix a large 2 and assume that g is the highest path connecting
0 to level k. Note that this conditioning does not influence the probability
that a site below g is open. Because p < p; there is an a > 0 such that
Q(p, m) < e *™ for large m (see [15]). Let y, be the second coordinate of the
last site (the one at level %) of p. If there are at least m sites at level &
connected to 0, given p, then there is an open connection between segments
(B —y0,9); 0<y<y,—-m+1} and {(k ~y,y); 0<y<y,—m+ 1}
Hence, for y, > m,

P,(# {sites at level & connected to 0} > m)
Yo—m o
< Z e—a(yo—i) < e—am Z e—ai =: g~ am 2
i=0 i=0
Because this probability is 0 for y, < m, we can take M = 3%, O
The exact asymptotics for P(k, ax) are as follows.

ProposITION 1. For each a > 0,

1 a
(3.1) lim —log P(x, ax) = = [ ®((p)) dp.
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REMARK. ®(p) =0 for p > p/, so one may just as well integrate over
[0, ] N {¢ < p;}. In particular, the proposition implies that for LOSP,

1 anpt
(3.2) lim ~log P(x, ax) = — [*"* ®(p) dp.
K—ox K 0

PrOOF OF PROPOSITION 1. Fix a positive integer m, write u; = inf{¢(x):
1/k < x < a} and define

m(i —1) mi
Iiz{_g————)—?—‘]} 1’21)
K K

u; = inf{¢(x): x € I}, i>2
and
U =sup{¢(x):x €}, ix>1.

We first prove the “>” half of (3.1). Conditioned on the event that 0
percolates to level m(i — 1), the probability that 0 percolates to level mi is at
least @Q(u;, m). It follows that P(k, k) > I1*/" Q(u;, m). (The diligent reader
should replace k/m by |k/m] + 1 here, and make similar adjustments in
succeeding text.) Therefore,

liminfllog P(k, ak)

K—>» K
ak/m
> liminf— Y log @(u;, m)
k=>» K g

(3.3)

ak/m

1 1
= liminf| —log Q(u,, m) + —— Y. log Q(u;, m)
K m K

K= =2

1 e
— ["log Q(&(p), m) dp.
m-Jo
To justify the last equality in (3.3), let
1
RK(p)m) = __lOgQ(ui?m) ifPEIi,I,iZ2.
m

It is clear that R, (p,m) » —(1/m)log Q(¢(p), m) for each p € (0, a] as
k — o, Moreover, because

1
—(~log Q(p,m)) < —logQ(p,1) = —log(2p — p?) < —logp

for each m and p, it follows that R (p,m) < K ¢(p A 6). Now the fact
that —log @(u;, m) < —mlogu, < mK¢(1/k) and bounded convergence
yield (3.3). Sending m — « in the last expression of (3.3), bounded conver-
gence also lets us conclude that

liminfllog P(x, ak) > —fa(I)(qS(p)) dp.
0

koo K
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Now we prove the “ < ” half of (3.1). Assume first that ¢ < p;f — & for some
g > 0. Denote by S, the event that the ¢-OSP survives up to level .. Then

P(Smilsm(i—l))
m@i-1)+1
< ) [P(#{sites at level m(i — 1) connected to 0} =j|Sm(i_1))
Jj=1

X jQ(U;, m)]
E[#{sites at level m(i — 1) connected to 0} |Sm(i_ 1)]Q(Ui, m).

Using Lemma 1, we conclude that P(«, ak) < [1#{™ MQ(U;, m) and, there-
fore,

1 o ak/m
lim sup —log P(«k, ax) < Elog M + limsup — Y. log Q(U;, m)
K— 0 K K— i=1

_ g M+ (M d
= —log +Zf0 og Q($(p), m) dp

for each m. Letting m — o, we get

1 P
lim sup —log P(x, ax) < — [ ®((p)) dp.

K— 00 0

It follows that for each £ > 0,

1 a
lim sup —log P(«, ax) < — [ ®(S(P)) Ligipy< p: -y dP-

K— 00 0

Let &£ — 0 to finish the proof. O

Let us now derive the numerical bounds of Theorem 4 for the exponential
rate of nucleation in the basic GHM as « — ». Let o be the connectivity
constant [17] for Z* and let p, be the critical value for two-dimensional
unoriented site percolation [16]. We claim that the following lower and upper
estimates hold:

1
(3.4) c* > E;,
(3.5) C* < [(®) = [O%(p)dp.

To get (3.4), one merely refines the estimation for the first half of Theorem
3(a): Standard subadditivity arguments imply that the number of self-avoiding
paths of length n grows like o” (at the exponential level), so the 3 in our
previous argument can be replaced by o, yielding a lower bound of 1/20
instead of 1/6. The derivation of (3.5) is more involved, relying on Proposition
1 in the LOSP case.
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Before proceeding to the proof of (3.5), let us show the concrete numerical
estimates that (3.4) and (8.5) provide. If one computes the number of self-
avoiding walks of length n, then the nth root of this number is an upper
bound for o. This is done for n = 18 in [17], giving o < 2.8165, and hence
¢ > 0.177. Actually, o is believed to be about 2.7, which yields a nonrigorous
lower bound of 0.185.

Subadditivity helps in applying (3.5) as well. It implies that

1 c
C* < %[Op(—logQ(p,m)) dp.

For m = 1 this gives C* < p, — 3 p,log p, + (2 — p)log(2 — p,) — log 2. The
widely believed estimate p, = 0.5927 yields a nonrigorous upper bound
of 0.295. Replacing p, by 1 does not hurt much, giving a rigorous bound of
1 — log2 < 0.307. A larger m improves the estimate, but involves consider-
ably more work. Numerical results for p, = 0.5927 and m = 2, 3 and 4 give
nonrigorous upper bounds for C* of 0.289, 0.286 and 0.284, respectively. With
p. = 1, the same m’s give 0.299, 0.294 and 0.291, whereas with p, = 0.6819
(the best known rigorous upper bound, due to Zuev [27]) we get 0.295, 0.291
and 0.288. This last rigorous upper estimate is the one that appears in
Theorem 4.

In light of the preceding discussion, Theorem 4 will be proved once we
derive (3.5). Our argument relies on the notions of open loop, index and
defect from [8]. A nearest-neighbor bond in Z? is open at time ¢ if the color
increment across that bond in vy, equals O or +1 (mod «). An open loop at
time ¢ is a loop in Z? that consists entirely of open bonds in v,. Straightfor-
ward case checking shows that open bonds, and hence open loops, cannot be
destroyed by basic GHM dynamics. Now suppose that [ = (z,, 24,..., 2, = 2,)
is an open loop. For j =1,...,n — 1, call [/, j + 1] (n = 0) a clockwise (resp.
counterclockwise) edge if z; has color 0 (resp. 1) and z;, ; has color 1 (resp. 0).
The index of [ is the difference between the number of counterclockwise and
clockwise edges. This index is also invariant under GHM dynamics, as can be
seen- by checking that edges are only created or annihilated in pairs of
opposite variety. See [8] for more details and an illustration. (Although that
paper deals with the basic CCA, all invariants identified there are shared by
the basic GHM.) A defect is an open loop with nonzero index. Because any
defect contains at least one site with color 1, index invariance implies that
GHM dynamics cannot fixate once a defect is formed. We note in passing
that CCA nucleation is much more complex; partial results in [12] indicate
superexponential scaling.

Before proceeding to the proof of Theorem 4, let us state a simple lemma
that plays an important role and will also be applied later in the paper. In
essence it states that if, along a path, a “leading 1” sees 0’s all the way to the
edge of box B; and if the boundary of B; is suitably isolated from 1’s, then
later on some leading 1 (not necessarily the same) must also see all 0’s on the
path to the boundary. We omit the quick and easy proof by induction.
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LEMMA 2. Consider the GHM on B;. For 0 <t < u, assume that at time ¢
there is a self-avoiding path z,, 24,..., 2, to the boundary of By such that
v/(z,) = 1 and v,(z;) = O otherwise. Assume also that there are no additional
1’s within [}-distance u — t of the boundary of By. Then there is a j = j(u)
such that v,(z;) = 1 and v,(z;) = 0 fori >j.

ProOF oF THEOREM 4. Roughly speaking, our strategy is to exhibit a
defect on B, by time k with probability at least exp{— [(®)«}. Because
defects cannot be destroyed and must include at least one excited site, this
precludes death of v,. Then (3.5) is easy. A defect is certainly formed if a 1,
starting at 0, survives on a path ¢ of size k and then at time x — 1 can be
connected through 0’s back to 0. However, survival until time ¢, = (p, + &)«
should suffice, for some & > 0, because after ¢, a 1 should have no trouble
percolating back to its original position through sites that have already
become 0’s. As we shall see, Proposition 1 yields a lower bound on the
probability of such a “good” percolating path g.

We will need a few facts from the theory of unoriented site percolation. The
first is that p, > 3 (due to Higuchi [18]); hence we can choose & > 0 so that
1 + 8 < p,. The second is that for p > p_, 0 percolates with positive probabil-
ity in the quarter space @ = {(x, y): x > 0, y > 0} (a consequence of Russo’s
fundamental work [22]). The third is that for any p < p, there is an a > 0
such that P(0 is connected to n sites) < e " for any n > 1 (the proof in [16]
for bond percolation also applies to the site model). We will use this last fact
for p = 1 + 8, with n = 4(log k/a).

Fix £> 0 and let £ = |( p, + €)«|. Call a nearest-neighbor path ¢ in z?
fast if it goes either up or to the right at each step. Fix a fast path g:
0=2y,2,...,2; (lz;lli =%). We now define several “good” events, each
referring only to the configuration of y, on Bj, (for the sake of clarity, we
sometimes refer to colors 0 and 1 as « and « + 1, respectively):

G, = {vo(z) €{xk+1,k,k—1,...,k — i + 1} and p is the lowest fast
path with this property},
Gy = {yo(x) # x + 1for any x € @\ {0} with [x[l; <% which is at
|| - Il;-distance at most 2n from g (this includes sites on go)},

G; = {in (Q N {llxlly < k}) \ @ thereis no path of n sites with colors in
{K+ Lk, k—1,...,6—(3+ 5)K}},

G, = {site z, + e, has color k — &, and all sites in

{(x=>0,y>0,x+y=F+1}
Ufx=-1,-1<y<k+1Ju{-1l<x<k+1,y= -1}

have color outside {x + 1,x,x — 1,..., k — 2n}},
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G5 = {there is a path ¢’ from z, + e, to a site outside B,,,

which stays inside z, + e; + @,

and such that y(p') c {k —k,k —k +1,...,k — 1}},
G; = {no 00, 01 or 11 neighbor pairs outside

{x>-1,y> -1, x+y <k +1}},
G=G, N NGq.

Now suppose that G happens. At time % there is a 1 at z, that is
connected via a path of 0’s to the outside of B,,. (G;—G, and Gy ensure that
the 1 moves on g without colliding with another 1 in the process, whereas Gy
guarantees the path of 0’s.) By Lemma 2 (with ¢ = %, u = k — 1) the last 1 on
o' at time k — 1, w say, is connected to a site outside B,,. Moreover, 0 is
connected to w by a path with colors 0 (at 0),x — 1, k — 2,...,1 (at w). All
sites outside B,, have color 0 or k — 1 (by Gg). We claim that the same is
true for sites in —@. This is so because at time (3 + §)« all the I’s in Bj, lie
in{x+y >+ 8« —2n} (by G;, G, and the fact that the 1 on p is mov-
ing further away from 0 at each time step); hence they are too far away to
reach —@ by time « — 1. We conclude that w is connected to 0 by a path that
consists entirely of 0’s and « — 1’s at time x — 1. By concatenation we obtain
an open loop through 0 with index 1, that is, the desired defect.

We need to bound P_(G) from below. Clearly

P.(G) = P,(G, N Gy N G3) P,(Gy) Pr(G5 N Ge).

The easiest event to control is Gy:

2n+2)3"

K

P.(Gy) = %(1 -

which, because n is of order log x, goes to 0 as a power of . Next, write
G, = Gy N Gy, where

G, ={no k+ longp}, G%={no k+ 1off p within |- |l;-distance 27 of p}.

Then P.(G, N G, N G3) = P,(G)P,(G,|G)P, (G N G,|G,). Tt is clear that
P.(G,|G) = 1/k. Now it is in estimating P,(Gj N G4|G,) that we find it
helpful to think of 0 as x and 1 as « + 1. G; is then decreasing on the
configuration off p: Decreasing any color off g cannot destroy this event. The
same is true for Gy and G; as well. So by the Fortuin-Kastelyn—Ginibre
(FKG) inequality [16], P,(G% N G5|G,) = P,(G3)P,(G,), but

2

4kn 25
P(Gy) > (1 - —) and P,(GS) < 25k%e " < —.
K K

Finally, returning to the usual color code, observe that G5 and Gg are
increasing events: Increasing any color cannot destroy either. So by FKG
again, P.(G5; N Gg) > P,(G;)P,(Gy). Because Gy can be identified with a
supercritical problem in @, P, (G5) > a(e) > 0, where a(e¢) is independent of
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k. Of course P_(Gg) > P,(no 00, 01 or 11 neighbor pairs in By, ). Let B, (resp.
B,) denote all sites (i, j) in B;, with i + j even (resp. odd). Note that no two
sites in B; (or B,) are neighbors of each other. Let b, = #B;. Then, by
conditioning on the number n of 0’s or 1’s in B; and using the fact that any
set of n sites has at most 4n boundary sites, we get

(G > % (bl)(—z—)n(l ) %)bl—n(l B 3)4,,

n=0 n K K

[l 2 ) ool )

The expression on the right clearly converges to a positive limit.
Putting all the estimates together, we conclude that P,(G) >
exp{—clog? x}P_(G,). Hence

P_(G happens for some fast p) > ) exp{—clog? «}P,(G, happens for p)
fast p

> exp{—clog® k}P(k, |(p. + )k]).
Therefore, applying Proposition 1,

1
lim inf —log P, (v,(0) = 1, the 1 at 0 creates a defect in Bj, by time «)
kK=o K

1 p.te
> liminf;logP(K,[(pc+8)KJ)2 —f ®(p) dp.
K— © 0

Sending & — 0 and noting that disjoint translates of B(5«) have independent
chances of producing a translate of G, (3.5) follows. O

We have performed extensive numerical experiments on the CAM-6 cellu-
lar automaton machine [23] in order to estimate the putative nucleation
scaling rate ¢* = C* for the basic k-color GHM v, on an L X L box. Given «,
suppose that |P_(y, = 0 eventually) — 3| is minimized at L = L, and that
L, = Ae®™ for k large. Let us conclude this section by describing the data we
have accumulated and the analysis made in order to estimate C* and A.

A trial consisted of running the basic k-color GHM on an L X L box, with
free boundaries, starting from uniform product measure 7. Each trial lasted
until time ¢t = 2k, and was considered to have nucleated if at least one site in
Ys. had color 1. For each pair of values « and L for which data were
collected, we kept track of the number of trials run and the number of those
trials achieving nucleation. The values of k range from 4 to 30. For each «,
corresponding values of L were chosen to capture the range of system
behavior from rare nucleation to prevalent nucleation. At least 20 trials were
run for each (k, L) pair. In the regime where nucleation occurred approxi-
mately half the time, either more trials were run or the range of L values
was covered more thoroughly. Between 480 and 1690 trials were conducted
for each k, more than 1000 in most cases.
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The data were used to estimate L, for each «. First, data for extreme
values of L were eliminated in order to focus on values of L for which the
likelihood of nucleation was neither too small nor too large. Data points for
the remaining allowed values of L were then fitted to a best least-squares
line, and that line was used to compute the estimate L,. Finally, a plot of
In L, vs. k was made. The least-squares line for these data was computed,
and from this line we estimated C* and A. To perform this analysis, one
must decide rather arbitrarily how to eliminate extreme values of L for each
k. We did so by choosing “minimum and maximum nucleation ratios.” The
eliminated values were all those less than the smallest value of L whose ratio
of nucleations to trials exceeded the minimum nucleation ratio, and also all
those greater than the largest value of L whose ratio of nucleations to trials
was greater than the maximum nucleation ratio.

Here are the results of the analysis for three choices of the minimum and
maximum nucleation ratios. When the minimum and maximum nucleation
ratios are 0.4 and 0.6, the estimates are C* = 0.225 and A = 1.325; when
the ratios are 0.25 and 0.75, the estimates are C* = 0.223 and A = 1.375;
and when the ratios are 0.1 and 0.9 (the data set shown in Figure 2), the

P
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Fic. 2. Table and least-squares plot for estimation of c*.
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estimates are C* = 0.222 and A = 1.394. On the basis of our experiments we
offer the “ballpark” formula:

(3.6) . L~ 14X 022«

4. GHM metastability starting from product measures that contain
only three colors. Let us now turn to GHM behavior starting from distri-
butions other than primordial soup. As explained in the Introduction, we are
particularly interested in other product measures u that self-organize more
efficiently. For simplicity we focus our analysis on u supported by only three
colors. Such measures were considered by Mazelko and Showalter [21]. Our
results shed some light on the density of 1’s and 2’s needed to produce the
maximum density of nucleating centers, an issue addressed briefly in [21].

We begin this section by proving a necessary and sufficient condition for
uniform local periodicity starting from translation invariant initial u. Note
that if y, does not contain either 0’s or 1’s, then y,_; = 0. The case when v,
contains only 0’s and 1’s, which gives rise to annihilating rings, is analyzed
in [13]. Our next result shows that on Z2 every site eventually updates every
time whenever u gives positive density to 0’s, 1’s and at least one additional
color.

THEOREM 5. Let vy, be the basic k-color Greenberg—Hastings model on 7?2
starting from a translation invariant w, with p, = P (y(x) =k), 0 <k <
k— 1 If uy >0, uy > 0 and w, > 0 for some k € (2,..., k — 1}, then almost
surely, for any x, v, (x) = (y,(x) + 1) mod « eventually in t.

Proor. If « =3, then there is a clock in vy, If k>4, then a finite
configuration of the following form produces a clock at time ¢ = k — 2:

1

et

O I
™0
>0 >
3O ;-
=0 -

el el el el e el el e e e N
i i i i R Rl R I I e e e
HJ3TOJIMHOOODODODODOO M
—_ O DRI
H O HMHMRMRFRRF H H =
o RSO -
H I IO N

H3»O0OOOOOOOHJIIO I
H ™A
el el el el el el e el el el e

H>™O -
>0 -
O I
O
—_>™O -

The diagram shows the case x = 10. Sites that are not labeled can have any
color. In general, the central block of arbitrary colors consists of (k — 5) X
(k — b) sites. (It is empty if k = 4 or 5.) The idea behind our construction is as
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follows. Let y be the position of the leftmost uppermost 0. No matter what &
is, at time ¢ = k — 2 thereis a 1 at ¥y and a 0 at y + e;: 1’s in the initial
configuration form a protective shield at ¢t = 1,2,..., kK — 2 that no other 1
can penetrate. It does not matter that 2 may turn to 0 at time 1 because the
paths along which 1’s that see 0’s travel are the fastest possible to y. Once a
clock is formed, the proof of uniform local periodicity proceeds just as for the
basic CCA in [8]. O

Next on the agenda are two lemmas that give sufficient conditions for
death of vy, on a finite box B;. Lemma 3 simply states that survival of a finite
system is equivalent to-eventual defect formation. Lemma 4 then asserts that
excitation cannot persist if vy, is completely dominated by two successive
colors except for very small isolated clusters of colors from the rest of the
palette. The statements and proofs of these results involve “topological”
features of chains of infection: the nearest-neighbor paths along which excita-
tion (a 1) travels. Specifically, Lemma 4 relies on the fact that the index of an
open loop ! is unchanged by a detour involving an open loop of index 0. More
precisely, suppose I = (z,, z,...,2;, = 2,) and for some 0 <i <j <, z, and
z; are connected by an open path p. We can form I’ by replacing the part of /
between z; and z; with p. It is easy to see that index(!’) = index(l) if the
open loop formed by ! between 2, and z;, together with p, has index 0.

- LEMMA 3. Let vy, be the basic k-color Greenberg—Hastings model on a
finite box B;. Suppose that 7 is the first time that some x € B; is infected for
the second time by the same 1. Then v. contains a defect. Consequently,
{v, survives} = {y, contains a defect for some t}.

PrOOF. Assume that y,(x) = 1. Let this 1 propagate along a self-avoiding
loop I = (x = x¢, x4, X9,...,x, = x). Assume that t > k — landset n =t — k
+ 1. At time ¢ the color of x, is 0, and the colors of x,,,,..., x,,,_; = x, are
k—1,k—2,...,2,1, respectively. Map x,,...,x, into {0,...,n} and call
every 1in {1,..., n} that has either a 1 or a 0 on its left an L, and any 1 that
has a 1 or 0 on its right an R. We claim there are always at least as many R’s
as L’s.

Accepting this for a moment, suppose the 1 originating at x first reaches x
again at time 7. Then at time 7 — 1 the index of [ equals 1 + #R’s — #L’s > 1,
s0 v,(1) is a defect. In a finite GHM that survives, some path of infection must
eventually visit the same site twice, so survival is equivalent to defect
formation.

The claim is proved by induction. A case by case analysis reveals that
under basic GHM dynamics R’s and L’s may either annihilate in pairs, be
created in pairs, an L may leave at 0 or an R may appear from 0. (The same
analysis shows that the eventual index of [ is equal to the number of times x
is infected after first becoming a 1, up to and including the second time it is
infected by that same 1.) We omit further details, which appear in [12]. O
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LEMMA 4. Suppose k > 5 and there is a color k such that every [*-cluster
(i.e., [”-connected component) of &= {x: yo(x) & {k,k + 1}} has at most
(k — 5)/3 sites. Then every site x has y,(x) = 1 for at most one time t.

ProoF. The conclusion follows from Lemma 3 once we prove that it is
impossible for a defect to be formed. To this end, assume the converse, and let
time 7 be such that there is a self-avoiding defect I: z,, z,..., 25,1 = 2, in
7,. Then [ cannot be entirely included in either a single [*-cluster of . (these
are too small) or a single [“-cluster of ¢ (I would have index 0). Without
loss of generality, assume that z, €., zy €% °. Then there exist i,,, m =
1,2,...,M+1,and j,,, m = 1,2,..., M, such that i; =0, i;,,;, = N + 1and,
for m=1,2,.... M, i,<j,<i,,, With z, €% for i, <n<j, -1
and z, € °for j, <n <i,,; — 1. Let p, be a self-avoiding open path that
connects z; _; (zy if m = 1) with z; through ¢°% = (x + B,) N.%.

If an [”-connected set has size n, then it is easy to prove by induction that
its exterior [”-boundary is a loop with size at most 4n + 4. Hence any two
points of this boundary can be connected by a path of at most 2n + 4 sites. It
follows that the (open) loop made of p,, and the part of [ connecting z; 1 to
z; has at most (k — 5)/3 + 2(k — 5)/3 + 4 < k sites, and thus cannot be a
defect. We can, therefore, replace all parts of / between z; _; and z; by g,
without changing the index. However, this leaves a loop through 5’ ; hence
its index at time 7 must be 0, a contradiction. O

Using Lemma 4 and Theorem 5 it is not difficult to establish exponential
nucleation scaling starting from many three-color product measures as either
k becomes large or the density p of initial excitation tends to 0.

THEOREM 6. Let vy, be the basic Greenberg—Hastings model on B;. Assume
that the initial product measure u contains only three colors. More precisely,
suppose there exists a k € {2,..., kK — 1} such that the densities of u are given
by w, = u, =pand puy, =1 — 2p for some p > 0. Assume that p < 0.02 and
Kk > 6. Then there exist constants ¢ and C such that:

(@) If L < p~°*, then P,(y, dies out) - 1 asp — 0 or k — =, -
(b) If L > p=©*, then P(yt dies out) > 0 asp — 0 or k > »,

Proor. To prove (a), we let G be the event that there is no [”-cluster of
{x: yo(x) # 0} of size greater than (x — 5)/3. By Lemma 4, P (v, fixates) >
P (®). The number of [*-clusters with n sites, one of which is the origin, is
bounded above by 3 (13)" (see [16], page 75). Therefore,

P(G°) < (2L + 1)*3(13)"° *(2p)/*? < 15(26) /> 2 pr/3-2-2ex,
Because k > 7, this last quantity clearly tends to 0 as p — 0 as soon as

¢ < g — %. On the other hand, if p < 0.02, then we can choose ¢ = 0.027 to
conclude that P(G) — 1 as k — .
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For (b) we use the (x + 5) X (x + 5) construction in the proof of Theorem 5
to see that

Pp(yt dies) < (1 _ p20(K+5))4/(pr(K+5)2) < exp{—4(K N 2)_2p20(x+5)—c;<}‘

Choosing C > 40 and assuming « > 5, the preceding expression tends to 0 as
either p > Oor k > . O

Suppose now that u is a product measure consisting of only 0’s, 1’s and 2’s,
with densities that depend on «, and that there is a § > 0 such that either
() mo <p,— 6 or (ii) uy <1 — p, — 8. Recall that the size of a subcritical
percolation cluster has an exponential tail. In case (i), then, because a 1 needs
to find a self-avoiding path of k — 2 0’s in order to survive, y, must die out on
small enough exponential boxes. In case (ii) the same conclusion follows from
Lemma 4. If we want survival on subexponential boxes, it is therefore
necessary that the densities of 0’s and 2’s be close to p, and 1 — p,, respec-
tively. Our next result, mentioned in the Introduction, deals with this case.

THEOREM 7. Assume w is a product measure such that pu, >p, — 1/«3,
pe=1—p, —1/k% u; = 1/k* for some A > 0 and W, = O otherwise. Let v,
be the basic k-color Greenberg—Hastings model on B, .. For a suitable choice of
v, P(y, survives) - 1 as k — .

As an illustration of this power-law nucleation, spiral formation is easy
with 170 colors on a 400 X 400 grid by a judicious choice of initial measure:
o = 0.61, u; = 0.0005 and u, = 0.3895; see Figure 3. We invite the reader to
estimate, using (3.6), the size of a square graphics array, with 1000 pixels per
inch resolution, that would be required to achieve 170-color basic GHM
nucleation from primordial soup. Suffice it to say that L would need to exceed
the diameter of our solar system. The following proof gives a poor estimate for
the infimum v* of power law exponents v that can be achieved. Rick Durrett
(private communication) has a nice proof that »* < 2. The ease with which
experiments such as the one in Figure 3 succeed suggests that v* may, in
fact, be closer to 1.

PrOOF OF THEOREM 7. Our goal is a lower bound on the probability that a
defect is formed by time k — 2 in B,,. We need to show how 0’s enable 1’s to
survive while 2’s prevent the 1’s from making rings. Write B, = B,, N {x, >
0}, B;, =B, N{x; <0,x2,>0}, By=B, N{x; <0,x, <0} and /B =
B, \ B,, _;. Consider the following events:

Gy = {70(0) = 1, yo(x) +# 1for x € B, \ {0}},

G, = {there is a path of 0’s in B, that connects 0 to 4B},

G; = {there is an [*-path of 2’s in B,, that connects 0 to 4B},
G, = {there is an /*-path of 2’s in B,, that connects 0 to JB},
Gs = {vo(x) = 2for x = —e;, —e; +e,, —e; — ey},
G=G, N NGy
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(b)

FiG. 3. Power-law nucleation scaling: The basic GHM with « = 170 at (a) t = 200 and (b)
t = 500.
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We claim that G c {3 a defect at time « — 2}. To see this, let p; be
a self-avoiding path of 0’s that guarantees G, and let p, and g5 be self-
avoiding [*-paths of 2’s that guarantee G4 and G,, respectively. Denote by B,
the region in B,, below (and including) g, and above (and including) g 4. This
region is connected: Each point in By, is connected via a path to 0. Moreover,
at time « — 2 all points in B; have color 0. This is so because all 1’s except
the 1 at 0 are unable to reach B, (due to G,), while the 1 at 0 is also
prevented from reaching B, (due to G, G, and Gjy).

Let p, consist of sites 0 = z,, z,..., 2, € dB, with llz,,; —z,lli =1, i =
0,...,m — 1. Let m, be the largest i for which y,_,(2;) = 1. Then y,_,(2,) =0
for 1 > my by Lemma 2. It follows that there exists a path of sites 0 =
20y 21512 g = 2,,, such that y _,(z))=k—-i—-1 for i=0,...,x—2.
Define the loop [ to consist of zj,...,2,_5, 2, +15--+5 Z2ps @ path in dB that
connects z,, to any point z € B, and finally a path in B, that connects z to
0. This path has index 1.

Let us now estimate P#(G). First, we use the following results due to Russo
[22]. Fix integers i, j > 0, make sites in the box B, ; =[0,7 — 1] X [0,/ — 1]
occupied independently with probability p, and let p; ; (resp. p};) be the
probability that there is a path (resp. [”-path) of occupied (resp. unoccupied)
sites in B, ; that connects {x; = 0} to {x; =i — 1}. Then there exists a

i
positive « so that for each i,

*
Pigiza and pf, > a.

This enables us to find a lower bound for the probability g; that 0 is
connected via unoccupied sites in B; ; to {x, =i — 1} U{x, =i — 1}. Let  be
the smallest integer such that 2! > i. Then (see [22])

q; 2p1’2p2’4 e pgl-l’gl > al > C((logl/log2)+1 — C”'logoc/logZ.

Denote by vy; the configuration in which there is a 1 at 0, but all other sites
are 0 with probability p, and 2 with probability 1 — p.. Write u' for the law
of y;. Under a natural coupling P,

_ 4(4k + 1)*
P(yo(x) = yo(x) forall x € B, \ {0}) = 1 — — =

so it suffices to find bounds for P, (G,), ..., P,(G;) starting from ;. However,
it is easy to see that

o
P“,(Gz) > m, PM,(G3IG5) = PM:(G4IG5) =Qqg, and

P.(Gs) = (1-p,)".
Hence

P“/(G) > COK(2 log a/log 2)—1—-A
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for some c,. The probability that a translate of G occurs somewhere in the
box B,. is at least

—~1-\4k?/(4x+1)
1_(1_COK210ga/log2 1 /\) ,

which converges to 1 as soon as v > 2 + A — 2log a/log2. O

There are other three-color combinations that yield power law metastabil-
ity. We leave it as a puzzle for the reader to determine what initial densities
one should select when the colors involved are « — 1, 0 and 1.

5. Metastability of a random Greenberg—Hastlng model. The ran-

dom Greenberg—Hastmgs model (RGHM) ¥, is a Markov process on {0, .
k — 1}*°. Besides .#" and k, there is an additional parameter 8 that enters
into the generator. Let & be the color of a site x at time ¢ [i.e., ¥,(x) = k]. If
k > 1, then a jump to (¥ + 1) mod k occurs at exponential rate 1, whereas if
k =0, a jump to 1 occurs at rate B-#{y €4,: ¥,(y) = 1}). This process is
easily constructed using graphical representation [3]. Let us assume that
A ={z:lzlly = 1}

Note that the case « =2 is the well-known contact process (see [3)]),
whereas k = » (i.e., no “regrowth” transition k — 1 — 0) is the Cox—Durrett
forest fire model studied in [2]. This last reference proves existence of a
critical value B, for forest fire survival starting from a single 1 (burning tree)
at the origin in a forest of 0’s (susceptible trees): P(¥,(x) = 1 for some x) — 0
as t - « for B < B, whereas P(¥, survives) > 0 for 8 > B,. In the latter case
the ring of fire spreads linearly in time and acquires an asymptotic shape. On
the other hand, Durrett and Neuhauser [5] have proved (for a slightly
different model with regrowth, but the same techniques apply to our process)
that if 8> g, then for any k < » the random GHM %, has a stationary
distribution that assigns no mass to all 0’s.

Our first result for ¥, is a random analog of Theorem 1. On any box B,
regardless of the initial distribution, ¥, is eventually trapped by all 0’s. So we
emphasize the growth rate of the time 7 by which this happens for large L as
k = . On sufficiently small exponential boxes the extinction time grows at
most linearly. On large enough exponential boxes, and assuming that B is
suitably large, the extinction time grows at least as an exponential of
an exponential. Similar metastability results for the basic one-dimensional
contact process were proved in [15].

THEOREM 8. Let ¥, be the random Greenberg—Hastings model on B; with
excitation parameter B and k colors, started from m (uniform k-color product
measure on By). Let 7 = min{t > 0: ¥, = 0}.

(a) There exist constants a and c such that P,(r<ak) — 1 as k — ©
whenever L < e®~,

(b) Assume that B> B,. Then there exist constants b and C such that
P(r<el ™) 5 0 as k > » whenever L > e°*,
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PrROOF. (a) It is enough to fix a site with color 1, say 0, and show that
there exists a 8 < 1 such that the probability this site is still the ancestor of
the color of some site at time 8k is exponentially small. Let Gy(t, k) be the
event that there exists a self-avoiding path 0 = 2y, ..., z,, such that a succes-
sor of the 1 at 0 moves on this path and reaches z, at time ¢, and let G, be
the event that some G(8«, k) with £ > [5/(2log 3)]x = S« happens Also, let
G, be the event that no site in B,: changes color « times. If G, happens but
G, does not, then the 1 at 0 can only survive until time ¢ = 8k if there is a
self-avoiding path z,..., zj, J < 5K such that y,(z ) = 1, the 1 moves along
this path during the tlme 1nterva1 [0,¢] and the leadlng 1 on this path
survives (i.e., infects successive sites before changing to 2). Therefore,

P_ (the 1 at 0 survives up to time 8k, G$)

<4 ) 3™+ P (GS) < 6e /2 4+ 4te 1Ok
Jj<bxk

where ¢,(8) > 0 for 6§ < 1. We need this estimate to eliminate the possibility
that a 1 might survive on some path with a length that is sublinear in «. )

Let us now proceed to estimate the likelihood of G,. For fixed a < §,
P.(G)) < P (G((t,ak) happens for some ¢ < k). Assuming G,, this last
event occurs only if the leading 1 on a path 0 = z,..., z;, survives. On our
fixed path, denote this event by G;. For 1 <i < 6k, let X, Dbe the first time
that %,(z;) = 0. Also, let Y,,Y,,... be iid. mean 1 exponentlal random
variables and let Z,, Z,,... be i.i.d. mean 1/ exponential random variables,
all independent of one another. Then standard large deviations estimates
imply that for each r > 1,

Pﬂ( Y Y, > raK) < exp{—c,(r)ax},

k<ak

1
P,T( Y Z, > ra—K) < exp{—cy(r)ax)
k<ak B
for some c(r), c,(r) that both converge to = as r — o, It follows that
P (Gy) <P (X, <Y, X, <Y, +Z,+Y,,...
<Y, +Z, +Y,+Zy+ - +Y,

a

k—1 + ZaK—l + Yax)
g

1 ak
1+ E)a) + exp{—cy(r)ak} + exp{—cy(r)ax},

aK—

ak —

1 1
_P,,(XISr(1+—~)aK, » X <r(1+
B B

+ exp{—c,(r)ak} + exp{—c,y(r)ax}

< (2r

where the last inequality uses the fact that P (X, < c«k) < 2¢ for k suffi-
ciently large. Finally, P (G,) < 4-3“P_(G,) + P (G2) so choosing r so that
c;(r)>1log3 (i =1,2), and then a small, shows that G, has exponentially
small probability, as desired.
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(b) We use the comparison of ¥, to a one-dependent oriented percolation
from [5]. Fix b and write L, = Le **. Given x € B, and a time ¢, call (x, ¢)
occupied if x + B, contains at least e”*/? 1s at time ¢. Provided that & is
large enough, an argument in [5] implies that the set {(m,n) € Z%: m + n is
even and ((m, 0), ¢,) is occupied} dominates a one-dependent oriented percola-
tion with density of wet sites close to 1. Here ¢, is a suitably chosen sequence
of times that increase to », and ¢, > c;e®*n for some constant c.

Now let X, X,,... be iid. random variables with P (X; =1) =1/k =
1- P (X, = 0). If « is sufficiently large, then

log P,((x,0) is not occupied)
< log PW(X1 + Xy + o+ X < ebK/Z)

1
<eb /2 4 ebrlog|l — —(1 —e )| < —e¥/2
K

It now follows that with probability converging to 1 as k — =, all sites in B,
are occupied.

Finally, using a standard contour argument, it is possible to choose
a constant C’ so that oriented percolation, started with occupied sites
(2i,0), =L, <i < L, survives up to time e®Zo with probability converging
to 1 as L, — . This implies that ¥, remains alive on B;, L > ¢, up to time
e®Lo with probability converging to 1 as k — %, provided of course that
C>b. O

What happens if 8 < B,? In this case the forest fire of [2] dies out, and the
next lemma shows that it does so at an exponential rate. Let U =
{x: %,(x) = 1 for some ¢} be the set of points that are ever on fire.

LEMMA 5. If k = », B < B, and ¥,(2) = 1(,_o), then there exists a constant
a > 0 so that

P(Un{z:lzll. > L} # &) <e k.

Proor. Call the probability in question p,. Let e(x, y), x € Z2%, y €.4;,
be independent exponential random variables with mean 1/8 and, indepen-
dently, let T(x), x € Z?2, be independent exponential random variables with
expectation 1. We call a bond x — y open if e(x, y) < T(x). Then (see [2]) U
is exactly the set of all sites that can be reached from 0 by a (directed) path of
open bonds. Denote by R; the probability of a left to right open crossing
of B;. It follows easily from [2] that for any B < B, there exists a ¢ > 0
such that R; <e °L. Moreover, a standard percolation argument (cf. [16])
implies that R, > [1 — (1 — p;)**]?, hence p; < 4\/R; , and the exponential
estimate is proved. O

Suppose ¥,(x) = 1. Call y a primary successor at time t > 0 if y is
connected via a space—time infection path to the 1 at x at time 0, but this
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path does not pass through any space-time point that has changed k or more
times (i.e., 1’s that are regrown on “new” 0’s are not counted as successors of
the original 1). Let A, be the set of 1’s that are primary successors at some
time s < ¢. Denote by B, the set of all sites in the forest fire started from
¥o(2) = 1,,_,, that have caught fire by time ¢. Two more lemmas are required
for our final theorem. The first describes a key coupling between A, and B,;
the second derives a straightforward large deviations estimate.

LEMMA 6. For any initial measure on Z*\ {x}, B, is distributionally above
A,, that is, there is a coupling of A, and B, such that A, C B,.

Proor. For any bond x — y, and % > 1, let e,(x, y) be exponential ran-
dom variables with mean B!, independent for distinct bonds and values of
k. As before, let T(x), x € Z?2, be independent exponential random variables
with mean 1. In the forest fire model we let S(y) be the time when y first
becomes 1, whereas in the GHM we let S(y) be the time that y becomes
a primary successor of x. (This can only happen once in either case.) Make
the 1 change to 2 at time S(x) + T'(x) in either case. During this lifetime, y
tries to infect its neighbor z at all times S(y) + e(y, 2), S(y) + e,(y, 2) +
ey(y, 2),... that are smaller than S(y) + T(y). If the color of z is 0 at one of
these times, then z makes the transition to 1. This defines the dynamics of
the forest fire. Use any graphical representation to define additional transi-
tions in the GHM. By induction, we need to prove that if A, C B, and a site z
is added to A, at time ¢, then it has been added to B, at some time s < ¢.
However, if z has not been on fire by time ¢, then its color in the forest fire
model is 0, so it must become a 1 at this time. Hence the inclusion is
preserved by this transition. O

LEMMA 7. Fix m large. Suppose that y,(x) = 1. The probability that this 1
has a successor y at time t with ||y — x|l; > mt is bounded above by

4(B+m)( 98 \™
m— 2B B+m) '

Proor. Let X, X,,... be independent exponential random variables with
mean 1/8. The probability of the event in question is bounded above by
Y 4-3P(X, + - +X,<t) < ¥ 4-3%™E[(e )’
I>mt t>mt
L

3B
B+ m

< 4e™ )

I>mt

>

which easily gives the result. O

We conclude by showing that the RGHM dies out quickly whenever 8 < B,
and « is large. Thus there are two kinds of behavior on exponential boxes
B,.. for large «: If either B or c¢ is too small, then ¥, typically dies out in
linear time (in «), but if B and c are large enough, then ¥, is likely to live for
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a very long time. Note that we have not addressed the critical behavior when
B = B.; it seems hard to even guess what happens in that case.

THEOREM 9. Let ¥, be the random Greenberg—Hastings model with excita-
tion parameter B and k colors. Assume that B < ,.

(a) On 72, there exists a k, so that for k > k, and any ¥,, ¥, dies out
strongly. That is, :

P_(%,(x) = O for all sufficiently larget) = 1 for each x.
(b) For the process on By, given any ¢ > 0 there exists an a > 0 such that if
L < e, then
P (r<ak)—>1 ask— .

ProOF. Assume there are 1’s at [ sites x,,...,x; initially. Fix time
t = k/4. We claim k can be chosen large enough that for all x' > k the
expected total number of successors of these 1’s at time ¢ is less than [/2
(regardless of the. colors at sites other than x,,..., x,.) To see this, denote by
N; the total number of successors at time ¢ of the 1 at x,. We need to show
that E_[N,] < 1 for k sufficiently large. Let S; be the event that the 1 at x;,
has a primary successor at time ¢. If I > «*, then

P (N;=21) <P, (the 1 at x; has a successor y at time ¢: ||y — x;/l; > 5

<C

B+ 4k/3

for some constant C, by Lemma 7. If, on the other hand, 1 </ < «*, then we
write

K

Vi/8 VEss
i) =¥

P.(N;>1) <P, (S;) +P.(N;>1,58))
and estimate
P,(S;) <P (UN (x; + Buu) # D) + P (S;,UN (%, + Ban) = D)
<e "' + P_(asitein (x; + B,y4), after it first becomes 1,
stays in that state for at least vk /20 time units)
< e—aK1/4 + 5K1/2e—,/7/20,
where we have used Lemmas 5 and 6. Also,
P,(N;>1,5;) <P, (the 1 at x; has a successor y at time ¢: [y — x;ll; > «?)
+ P, (some site y: ly — x,ll; < k% changes «

times during [0, ¢])

2

9 K
A ) + 5rte A«

<C|———
B+ k/4
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for some positive C and A, by Lemma 7 and an easy large deviations
estimate. Taken together, these bounds yield a C > 0 such that
: v (9B
B[N]- TP(N =D sCces"+CL ()
=1 I=1

K b
which can clearly be made smaller than 1 if « is large enough.
Now let k' > k and fixa 1 at x in ¥,. Let M, be the number of successors
at time nk/4, n = 1,2,... . By induction, E[M,] < (3)", and hence

P_ (the 1 at x has a successor at time t) <P, (M, ,, > 1)
<E My, ] <2c 274/~

Because y,(x) = 1 implies that either an initial 1 at y with ||x — yll; < ¢2 has
a successor at time ¢, or else an initial 1 at y with ||x — y|; > ¢2 has a
successor at x at time ¢, (a) is an easy consequence of Borel-Cantelli and
Lemma 7. Finally, (b) follows by choosing a > (k/2log2)c. O
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