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PROBABILISTIC ANALYSIS OF A CAPACITATED
VEHICLE ROUTING PROBLEM II'

By WaNSoo T. RHEE
Ohio State University

A fleet of vehicles located at a common depot must serve customers
located throughout the plane. Without loss of generality, the depot will be
located at the origin. Each vehicle must start at the depot, travel in turn
to each customer its serves and go back to the depot. Each vehicle can
serve at most k£ customers. The objective is to minimize the total distance
traveled by the fleet. In our model, the customers Xj,..., X, are indepen-
dent and uniformly distributed over the unit disc. If R'(X;,...,X,)
denotes the optimal solution with these customer locations, we show that
with overwhelming probability we have

2
R(Xy,...,X,) ~ 7+ LIXl - &/n| < K(nlogn)"?,

i<n

where ¢ and K are constants that depend on % only.

1. Introduction. A general routing problem is as follows. A fleet of
vehicles, starting at a common depot, must serve a set of customers with
demands. Without loss of generality, the depot will be located at the origin.
Each vehicle has unit capacity, and the sum of the demands of the customers
it will serve must not exceed 1. The vehicles must start at the depot, travel to
the customers they serve and go back to the depot. The objective is to
minimize the cost (= total distance traveled). In a previous model [Rhee
(1993a)], we studied the situation where both customers’ locations and de-
mands are random, with special focus on the case where demand is uniform
over [0, 1]. In the present paper, we focus on the case where the demands are
fixed and equal to 1/k (% > 2). (This integer % is fixed once and for all.) This
leads to dramatically different results. Throughout the paper, R'(x,,..., x,)
will denote the optimal solution of the routing problem with customer loca-
tions xi,..., x, (each of them having demand 1/k). We denote by |x|l the
distance from x to the origin. Our main result is as follows.

THEOREM 1.1. There exist constants &, K depending on k only with the
following property. Consider r.v’s X,,..., X, that are independent and uni-
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742 W. T. RHEE

formly distributed over the unit disc. Then

2
P(’R’(Xl,...,Xn) -7 Y IX,I — &/n| > K(nlog n)1/3)
1.1 =
(1.1) 1/
< ex -3 |-
P K(log n)*"?

It must be pointed out that this result captures second-order effects. The

term ¥, _ |l X;|l is asymptotically N(na, bVn) for some constants a, b (by the
central limit theorem).
Thus
R'(X,,...,X,) —na
(1.2) ~E4Y,

Vn

where Y is asymptotically N(0, ) and where ~ means up to effects of order
n~1/8(log n)'/3. It would be of interest to determine the value of &. The proof
will show that ¢ = ma, where «a is a constant related to a simpler problem. In
particular, when k2 = 2, a is the constant that arises in the “minimum
matching problem,” where one computes the minimum possible sum of the
distances between a pair of points when the points—except one when n is
odd—are matched in pairs. The factor 7 simply arises as the area of the unit
disc.

There is nothing magical about the term (n log n)/3. This is simply an
artifact of the method of proof. It seems actually perfectly conceivable that

2
R(X,,....X,) - 7 Y IX - &/n
t<n
is of order 1 with probability close to 1. Proving such a result seems, however,
to be quite beyond the range of present day techniques.

We would also like to mention that we have chosen the hypothesis that
Xi,..., X, are distributed uniformly in the unit disc for symmetry reasons.
Standard modifications of our proof would show that (1.2) still holds up to
effects of 0(1) for considerably more general distributions.

We now discuss the methods of the paper. A first obvious idea is that the
main contribution to the total distance traveled is the “radical collection cost”
2/R)L; _ ,llx,]l. Thus, it is natural to consider the functional

2
S'(xyy...,%,) =R'(xq,...,x,) — 7 3 Al

L<n
Observe that S’ depends only on the points, not on their order.

The quantity S'(X,,..., X,) will be studied via subadditivity methods.
There are, however, two reasons that this study is not routine and does not fit
in the scheme of Steele (1991). The first is that it is not monotonic; that is,
that adding one customer may decrease the value of S’ rather than increase



CAPACITATED VEHICLE ROUTING PROBLEM. II 743

it. The second is that, since the definition of S’ singles out the depot, the
functional S’ is neither translation invariant nor does it satisfy the homo-
geneity conditions of Steele (1991). There are two main tools for the proof.
The first tool is an inequality that shows that the value of S’ (or, more
accurately, of a slightly different functional) on a set F' is nearly equal to the
sum of the values on the subsets of certain partitions of F. This tool serves as
a substitute for subadditivity. The proof of this inequality is done in Section
2. The second tool is the introduction of a functional S, that expresses what
would happen (after renormalization) if the depot were located “at infinity.”
There are two ideas in doing this. First, S, will well approximate S’ when
the diameter of the set of customers is small compared to their distance to the
origin. Second, the new functional no longer singles out the depot, so it is
translation invariant and satisfies homogeneity conditions that make it
amenable to the usual subadditivity methods. Developing the properties of S,
is the purpose of Section 3. Finally the various tools come together in Section
4 to prove Theorem 1.1. In the main argument, the unit disc is partitioned in
little pieces A; that resemble squares. The inequality of Section 2 shows that
the cost S'(Xj,..., X,) of the total set of customers is nearly the sum of the
costs corresponding to the little pieces A;, and for each such piece, the cost
can be well approximated using S,. Moreover, this shows that S'(X;,..., X,)
is nearly equal to a sum of independent random variables, and the concentra-
tion of S'(X},..., X,) around its mean follows. (It should be pointed out that
changing one single customer location could conceivably create a big variation
in S’, so martingales do not seem to be of use here.) This approach to
concentration, that is apparently new, has already been applied with great
success to other problems [Rhee (1993c)].

2. Inequalities. While the overall plan of attack is rather simple, its
implementation runs into a number of technical difficulties. These are gen-
uinely low order hurdles, which nonetheless must be addressed in order to
make the proofs valid. One of these problems is better faced from the
beginning, since delaying would only force us to repeat steps. We have found
that is is more convenient to study a slightly different optimization problem
first. We have no intuitive explanation to offer as to why the change is
beneficial; only trial and error convinced us that the ¢ — 8 proofs are better
written with the new formulation. In this new formulation, we require that
there be at most one vehicle that serves less than 2 customers. The cost of a
schedule is then computed as the sum of the distances traveled by the
vehicles that serve % customers, plus pk~! times the distance traveled by the

one vehicle that may serve p < k& customers. We denote by R(x,..., x,) the
minimum possible cost (in the reformulated problem) to serve x,,..., x,, and
we set

2
S(xq,...,%,) =R(xq,...,x,) — Z DEAR

i<n
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This might be the place to point out that for 2 = 2, S(x,,..., x,) is exactly
the cost of the minimal matching of x,...,x,. In that case, the proof of
Theorem 1.1 can be considerably simplified, and much sharper results are
available [Rhee (1993b)].

LEMMA 2.1. Assume that a vehicle serves customers xy,..., x, (in that
order). Set
a = Z ”xi+1 - x,” > maX”x, - xJ”
1<i<p L,J=p

Then the distance R traveled by this vehicle satisfies

2 2a 2
(2.1) R>— ¥ lxl+ ) 2l

1<i<p i<p

ProOF. We observe that, for all 1 <j < p, we have

”xJ” < ”x1” + Z ”xi+1 - xi”,

1<i<j-1
sl <l i+ X Ny — 2,0l
Jj<i<p
so that
2llxill < lloeqll + llx, Il + @ = R
so that

2 Yzl < pllxgll + plix, Il + (p — 2)a
1<j<p

= pR — 2a.

We should also point out that the weaker inequality R > (2/p)L;_ ,llx;ll is
obvious, since R > 2max; _,llx,/l. O

Throughout the paper, T'(x4, ..., x,) will denote the length of the shortest
tour through points x,,..., x, of the plane.

For simplicity, we will say that a vehicle is complete if it serves k
customers, and incomplete otherwise. Beside the minor restriction that there
be at most one incomplete vehicle, (a sharper form of) the following lemma is
proved as Theorem 2.2 of Haimovich, Rinnooy Kan and Stougie (1988). The
simple argument is reproduced for the convenience of the reader.

LEMMA 2.2. Consider points x,..., x,. Then
(2.2) 0<S(xy,...,%,) <3T(x4,...,%,).

ProoF. (a) By (2.1), if a vehicle serves points y;,,..., y,, the distance it
travels is at least (2/p)L,_ ,lly;/l. Thus the contribution of the vehicle that
serves them has a total cost of at least (2/k)%,  ,|ly, . The left side inequality
of (2.2) follows by summation over all vehicles.
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(b) We can assume that x;,...,x, are numbered in such a way that
visiting them in that order produces a shortest tour. Consider the following
strategy. For (k + 1)p < n, the pth vehicle serves x,,,...; X4 1), in that
order, for a total travel distance of

”xkp+1“ + ”x(k+1)p” + Up,
where

U, = > llac; 1 — 2l

kp+1<i<(k+1p
We observe that, obviously, for kp + 1 <i,j < (k + 1)p we have
”x,” = ”xJ” - Up
so that

2
”xkp+1” + ”x(k+1)p” < '}; “x,” + 2Up~
kp+1<i<(k+1Dp

Hence the pth vehicle travels a distance at most

2
= Y gl + 30,

k kp+1<i<(k+1p

When n/k is not an integer, the last vehicle will serve items x4, q,..., %,

where q = [n/k]. The preceding argument shows that it will travel a dis-
tance

Z ”x,“ +3 Z ”xi+1 - x,”

qgk<i<n gk<i<n

n —qk

After weighting this last contribution by (n — gk)/k and summing the
corresponding contributions, we obtain the result. O

We will often combine (2.2) with the fact [Steele (1990)] that for a subset G
of the plane, of diameter D, the length T of the shortest tour through G
satisfies

(2.3) T < KDvcard G .
For a subset F of the plane, we use the notation R(F) = R(x,,..., x,) if
F ={x,,...,x,}, and a similar notation for S. Throughout the paper, K will

denote a constant depending on % only, not necessarily the same at each
occurrence.

PrOPOSITION 2.3. Consider two finite subsets F, G of the plane, and let D
be the diameter of F U G, that is,

D = sup{llx —yl; x,y € FU G}.
Then

(2.4) |S(F U G) — S(F)| < KDyecard G .
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COMMENT. If we change just one customer, conceivably the change of
value of S(F) can be as large as KD. Iterating this estimate shows that
changing p customers cannot create a variation of S(F) larger than KDp.
Proposition 2.3 makes a crucial improvement of this trivial estimate, replac-

ing p by /p.

PrOOF. We observe first that there is no loss of generality to assume that
F and G are disjoint.

Step 1. We bound R(F U G) knowing R(F). Consider an optimal solution
to the problem of serving the customers in F. At most one vehicle is
incomplete; we denote by y,..., y, the customers it serves. As is shown by
Lemma 2.2, the contribution of this vehicle to R(F) is at least (2/k)%, _ |l y;ll
Thus, the total length traveled by the other vehicles is at most R(F) —
(2/k)L; _ |ly;|l. This means that we can serve the customers of F\ {y,,..., y,}
with vehicles that are complete and that travel at most a total of R(F) —
2/R)L; _ ,|ly;ll. Now, by Lemma 2.2, the customers of G U {y,,..., y,} can be
served with vehicles for a total travel distance (in such a way that at most
one vehicle is incomplete)

R(GU {yy,...,9}) < Z lyill + - Z lzll + 3T,

i<r zeG

where T is the length of a tour through G U {y,,..., y,}.
From (2.3), we have

T < KD(card(G U{yi.es yr})l/z)'

Thus, we have shown how to serve the customers of F U G with a total cost
at most

R(F) - E > ”yi”) + ( 3l + Z lzl| + KDVE + card G

k i<r i<r zeG

with at most one incomplete vehicle. Thus, since we can assume cardG > 1,

R(FUG) <R(F) + Z lzll + KDVE + card G

zEG

<R(F) + 5 Z Izll + KDVcard G .

zEG

CoMMENT. The reader has observed that some effort is devoted to ensure
that the routing constructed has at most one incomplete vehicle. This feature
will be common in all the proofs of this section.

Step 2. We bound R(F) knowing R(F U G). Consider an optimal tour
through F U G. There is at most one incomplete vehicle. Consider the class V
of vehicles that consists of this vehicle, as well as of all the vehicles that serve
at least one customer of G. Then V contains at most 1 + card G vehicles.
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Consider the set F'' of customers of F that are served by a vehicle of V. Thus,
V serves the customers of F' U G. It follows from Lemma 2.1 that the
contribution of the vehicles of V to R(F U G) is at least (2/R)L, c p ugllxll.
Thus, we can serve the customers in (F U G)\ (F' U G) = F\ F' with a cost
of at most

2
R(FUG) - - FZ Gllxll
xeF'U

and with vehicles that are all full. Now, by Lemma 2.2 and (2.3) we have

2
R(F') < % Y llxll + KVcard F' .

xeF’

Thus

2
R(F) <R(FUG) - N Y llxll + KVcard F' .

xeG

This completes the proof since card F’' < k(1 + card G) < Kcard G. O

We come now to the cornerstone inequality. This inequality relates the cost
of serving customers in a domain with the sum of the costs of serving
customers in “regular” subdomains. The notion of regularity we need is
formalized as follows.

DEFINITION 2.4. For a number L > 0, we say that a domain A of the plane
has property H(L) if the following occurs. Consider any number 8 > 0 and
consider the domain

I;(A)={x€A;y & A, d(x,y) <B}.

Consider n points x,,..., x, in I;(A). Then

n

(2.5) T(xy,...,%,) <L+ JLpn.

COMMENTS. (1) The use of this definition is that a square A (and a
moderate distortion of a square) satisfies property H(L), where L is propor-
tional to the perimeter P of A. To see it, we mimic the usual proof that
T(x4,...,%,) < KVn when x,,...,x, belong to the unit square. We divide
I;(A) into small squares of side of order min(y/PB/n, B). The tour visits
points inside each square in an arbitrary order (creating a contribution of at
most 2 PBn ), and moves from one square to the next in a spiral pattern (see
Figure 1) thereby creating a contribution of order P (length of one turn) times
1 + Byn/PB (number of turns)

(2) A main feature of (2.5) is that for 8 small, the quantity LB is much
smaller than the area of A. For these small values of 8 and large n (these
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will be the values we will use later), (2.5) improves upon the estimate

T(%xq,...,%,) <3 perimeter of A + /2n area (A) .
of Haimovich, Rinnooy Kan and Stougie (1988).

Before we start the main body of work, we prove one more easy fact.

LEMMA 2.5. Consider disjoint sets F,,..., F,. Then
R(UF) < LR(F) + KDV,
i<s i<s

where D is the diameter of U, _, F;.

ProoF. For each i < s, consider a routing of cost R(F;). Each of these
tours might use at most one vehicle that is incomplete. Denote by G, the
customers this vehicle serves. The contribution of this vehicle to R(F)) is, by
Lemma 2.1, at least (2/k)L, . GiIIxII. Thus, we can serve all the customers in
U:<:F;\ G (where G = U, _,G,) with vehicles that are all complete and at a
cost at most

Y. R(F) - % Y il

i<s x€G

To complete the proof, we use from Lemma 2.2 the fact that

2
R(G) < 7 Y llxll + KDVcard G . O

xeG
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THEOREM 2.6. Consider a domain A and suppose that we have a partition
A = U, A, where each domain A, satisfies condition H(L,) for a certain
number L,. Set D, = max, _ diam(A,). Then, for each subset F of A, with
card F = n, we have

Y. R(FNA) <R(F) +K(Llogn + /LD,slog n + DV
(2.6) Iss

<R(F) + K(Llog n + Dys + DVs),
where D is the diameter of A and where L =%, _,L,.

Proor. We fix an optimal routing that serves the points of F, that will be
referred to as “the optimal routing of F.” We have to construct routings of the
sets F' N A, that satisfy (2.6). For x in F, we denote by C(x) the collection of
points of F' that are served by the same vehicle as x. If this vehicle is
complete and if all the points of C(x) belong to a given set A,, the points of
C(x) will be served by the same vehicle in the routing of F N A, that we
construct.

We have to decide how to serve the other points.

The main idea is articulated in two phases. First, in an optimal routing,
vehicles have a tendency to serve points close to each other. Thus, most of the
points x of A, and such that C(x) is not included in A; will be close to the
boundary of A;. On the other hand, combining Lemma 2.2 and (2.5) shows
that the closer the points are to the boundary of A;, the more efficiently they
can be served. Thereby, it is natural to proceed to a “stratification” of these
points as a function of their distance to the boundary of A,; this distance of a
point x of A, to the boundary of A, is appropriately measured by the largest
q for which x €I,,(A)). A careful choice of the various parameters is
necessary in order to obtain the relatively sharp bound (with only a log n
parasitic term) (2.6) provides. Weaker bounds (involving error terms that are
powers of n) are considerably easier to prove.

Consider the smallest integer g, such that D, < 279 and the smallest
integer q; with 27%1n < 27%. For ¢, < q < q,, we set

B, = UL-(A).
l<s

We set B, ,, = . For q, < q < q,, we consider the set F, of points that
have the property that C(x) is contained in B, but is not contained in B,.1,
and, moreover, that C(x) meets at least two dlfferent sets A;. We observe
that the sets F, are disjoint. Also, if x € F,, then since C(x) is not contained
in B, ;, we can find y€C(x)and [ <s ! such that y € A, y & I,--1(A)).
Since C(x) meets at least two different sets A,;, we can find z € A,, N C(x)
m # 1. By definition of I,-,-1(A;), we have ||y — z|| > 2777, Thus

(2.7) C(x) contains two points that are at least a distance 279! apart.

In the optimal routing of F, there is at most one vehicle that is incomplete.
Denote by G the set of customers this vehicle serves (so that card G < k). If
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we use (2.7), Lemma 2.1 and summation over q, < g < q;, we see that the
vehicles that serve F' = G U U F, in the optimal routing of F must
travel a distance at least

90<9=<4q;

(2.8) 2 Y lxll + ! Y 2 %cardF,.
k xEF' k 90<9<q,

This fact will be precious in bounding the cardinality of the sets F,. Indeed,

since the quantity (2.8) is bounded by the cost of an optimal routing of F, the

coefficient 277 in front of card F, implies the (intuitive) fact that card F,

decreases fast as ¢ decreases.

We now fix [ < s, and we show how to serve the customers of A, N F' = A,
NGUU qu). There we will take advantage of the fact that the customers
close to the boundary of A; can be served more efficiently.

First, we consider the customers of

Q'(1) = (Fq1 UG)NI-a(A4).

We set m'(1) = card @'(1) and we set m(1) = k[m’'(1)/k]. We consider a
subset @(1) of @'(1) with card @(1) = m(1).

Since D, satisfies property H(L;), we see by Lemma 2.2 that we can serve
the customers of @(1), with complete vehicles, with a cost at most

2
= L lall+3(L, + Y270 Lim(1D) ).
x€Q()

In the second stage, we consider the customers of
Q'(2) = (Q(D\Q(1)) U [(F,_1 U G) NL-0a(AY)].

We set m'(2) = card @'(2). We observe that m'(2) < k + card(F, _; N A)).
We set m(2) = k[m'(2)/k] and we consider a subset Q(2) of Q'(2) with
card @'(2) = m(2). By Lemma 2.2 again, these customers can be served with
complete vehicles and a cost of at most

2
- L lxll + 3(L, + {270 Lm(2) ).
x€Q(2)

Continuing in this fashion and by summation, we can serve all the
customers of U, = A, N (G U U ,F,) with a cost of at most

2
= E el +3((q - L4y T V)
xel, 90=9=q,
2
29 <= Y ll
( ) k xeU,

+ 3

(91 —q0) Ly + /(91 — q0) Ly Y 27%m(q) )

q0=<9=<q;
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by the Cauchy-Schwarz inequality. We now sum these inequalities over
l < s, writing now m,(q) rather than m(q) to indicate the dependence on /.
We remember that m,(q) < k + card(F, N D,), and we apply the
Cauchy-Schwarz inequality again. We find that we have succeeded to serve
all the customers of F' = G U U ,F, with a cost at most

2
- > llxll + 3{(q1 — qo) L
x€F’
(2.10)
+\/(Q1—q0)L\/2ks2‘q°+ Y 2 %cardF,|.
Q0<9=<q;

To make wuse of this bound, we must have a bound on Z =
Y <q<q,2 ?card F. Our task is to extract such a bound for (2.10) itself.
(Observe that 277 card F, < 27%'n < 279°). We recall that (2.8) shows that
the cost in the optimal routing serving the customers of F'’ is at least

2 Z
2.11 — lxll + —.

(2.11) 7 I el g
It is not possible to serve the customers of F' with a cost of less than
(2.11), with at most one incomplete vehicle, since otherwise the routing with
which the proof started would not be optimal. We can serve the customers of
F' with a cost (2.10), with, however, possibly s vehicles that are incomplete
(one for each subdomain). The proof of Lemma 2.5 shows that this routing can
be modified to obtain a routing that serves the customers of F' with at most

one incomplete vehicle and a cost at most

+y(a1 — 90) L(3ks2™% + Z) ) + KDVs .

We now know that (2.11) is less than (2.12). Using the inequalities
VA + B < VA + VB and 3VaZ < (9/2)ak + Z/(2k), we get, using the fact
that 2-% < 2D,

Z < K((Ql —qo)L + (a1 — qo) Lks27% + D‘/—S_)
< K((q1 —qo)L + 5279 + D\/'s_)

< K((q1 —-qo)L + sD, + D\/g)

Plugging this bound into (2.10) and recalling that ¢, — ¢, < K logn by
definition of g, yields the result. O

3. Away from the depot. In this section we study the case where the
central depot is located far away from the customers. Given a subset F of R2,
M,a € R, we set

Ry, o(F) =R(F + (M, a)),
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where
F+(M,a) ={(u+M,v+a): (u,v) €F}.
We set
2
Su,o(F) = RuolF) = 3 T 2+ (M, )|

In other words, the depot is now located at (—M, —a) rather than 0. We
observe that, by Lemma 2.2, we have

(3.1) 0 < Sy o(F) < K(card F)">.
We set
(3:2) S.F) = lim Sy (F).

First of all, we show that the limit exists and is independent of a. Using

the inequality Vs? + t2 < s + 2t2/s, for s,t > 0, we see that for any point
x = (u,v), we have for M > || x||,

33) 0<lx+(M,a)l N N CR N (L] +a)°
. < + - =3 =3 '
(83) O0<|x+(M,a)] - (u ) 2 u+M 2 M—|xl

Consider now points x; = (u;,vy),..., %, = (u,,v,). Set

2
f(M’a) =||x1 + (M’a)” +||xp + (M,a)" - ; Z ”xz + (M’a)”

i<p

Set A = max;_ ,llx,[l. By (3.3) we get, for M > A,
2 (A +a)’
f(M,a)—(u1+up——i§pui) 32——1‘—4——7.
Thus
(A+a) (A+a)’
(3.4) |f(M,a) — f(M',a")| <2 +2 .

M-A M -A

Suppose now that we number for convenience the vehicles of our fleet.
Consider an optimal routing when the depot is at (M, a). Consider the
routing [with the depot now at (M’, a')] where each vehicle serves the same
customers in the same order. This routing, combined with (3.4), shows that

(B+a)® (B+a)’

(8358) Sy o F) <SSy (F)+ 2card F U —B + T —B |

where B = max{||x||, |x|| € F}. Also, we can exchange (M, a) and (M',a’) in
(3.5). The proof that the limit exists in (3.2) is then easily concluded.

It should be pointed out that the value of S, (F) can be reformulated as the
minimal cost of a routing problem, where the cost of a vehicle that serves
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x; = (uy,vy),..., x, = (u,,v,) (in that order) is

2
up +u, - — Yu+ X lx, —xll
i<q 1<i<p

and where at most one vehicle serves less than % customers. In particular,
when %k = 2, S(F) is (at least when the number of customers is even) equal
to the minimum cost of a “simple matching.” When k > 2, S.(F) is related to
(but different from) the minimum cost of a decomposition of F into a union of
“k-chains.”

Consider a positive measure v on R2. We will say that a random subset F
of R? is generated by a Poisson point process of intensity measure » if for any
two disjoint subsets A, B of R?, the random sets F N A and F N B are
independent, and if card F N A is a Poisson r.v. of expectation »(A). In many
cases we will have dv = A du dv for some A > 0. We will then simply say that
the Poisson point process is of constant intensity A.

We now assume that F is a random subset of [0, 1]? that is generated by a
Poisson point process of constant intensity A. (Why we are now interested in
the unit square rather than the unit disc will become apparent in the
beginning of Section 4.)

We set 6(A) = ES(F). The main result is as follows.

THEOREM 3.1. There exists a universal constant a such that for A > 2 we
have
(1)
—_— —a
VA

log A
<KOg

(3.6) <K——.

The main idea in the introduction of S, is that this functional is now
translation invariant and has the appropriate homogeneity (= scaling) prop-
erties. Thus the proof can follow (a quantitative version of) the usual argu-
ments of Steele (1981).

Proor.

Step 1. The proof will rely on subadditivity. Denote by (C,), _ ,» the parti-
tion of [0, 1] into squares of side p~!. It follows from Lemma 2.5, Theorem
2.6 and the definition of S, that

S F)— Y SAFNnC;)|<K(p+plog(l+ card F)).

i<p?

By concavity of the log function, and since E card F = )\, we have

(3.7) .e(,\) — Y ES(FNC,)| <Kplog(1+)).

i<p?



754 W. T. RHEE
Step 2. Fix i < p? and consider the affine transformation U that sends C;

to [0, 1]2. By scaling, it should be clear from the existence of the limit in (3.2)
that

1
S(FNnC)= > (U(F N C;)).
Since U(F N C,) is a Poisson process with intensity A/p2, we have
ES(FnC(C) ! 0( A )
- Yoop\p°
so that, from (3.7),

< Kplog(l + A).

A
-
Replacing A by Ap? and setting f(A) = 6(1)/ VA, we get

log(1 + Ap?
(3.8) | F(ap?) = F(N)] = K—LW—’—’—)

Step 3. Consider r,s > 0. Then, using (3.8) for 4"9°A instead of A and
p = 2, we obtain, for A > 2,

1
(3.9) | F(474199) — f(479)| < Km(r +s+log A).

The same inequality holds if the term 47*19° is replaced by 4"9°*! (taking
now p = 3). Since

Y (r'+s)2778 % <K(r+s)27737°,
r'>r,s'=s

it follows from (3.9) that for r' > r, s’ > s, we have
L K
If(4r9 )\) —f(4 9/\)| < m—(r+s+log)t).

This shows that
h(A) = lim  f(479?)

min(r, 8) >
exists and that
log A
VA

Step 4. To conclude the proof, it suffices to show that A(A) does not depend
on A[we then set a = A(M)].
In this step, we prove the inequality

(3.10) lo(2) — 0(w)| <Ky/|A— |,

which is an important technical step toward this goal. There is no loss of
generality to assume A < pu.

lR()) —f(M| <K
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By Lemma 2.2 and an obvious limit argument, we see that for two subsets
F,G of [0,1]?> we have

(8.11) |S(F U G) — S.(F)| < Kcard G .

We also observe that if F' and G, respectively, are generated by two indepen-
dent Poisson point process with respective constant intensities A and u — A,
then F U G is generated by a Poisson point process of constant intensity u.
Then (3.10) follows from (8.11) by taking expectations.

Step 5. Since the ratio log2/log3 is irrational, the numbers alog2 +
blog3(a,b € Z) are dense in R. Thus, given A, u, £ > 0, we canfind a,b € Z
such that

A
_ 4a9b
M

(3.12)

<é&e—.
7

For r,s € N, we have
(1 — £)A479° < pdatr9%%s < (1 + £) 1479,
From (3.10) we observe that
|6( na®t79%+%) — (2479%)| < KVer 273"
so that

<Ke.

f( M4a+r9b+s)‘/—_f2a3b _ f()t4r98)

Letting r, s — o gives
h( M)‘/% 293¢ — h(2)

In view of (3.12) and since ¢ is arbitrary, this shows that A(A) = A(w), and
concludes the proof. O

<Kye.

We will need a result comparable to Theorem 3.1, but for nonuniform
Poisson point processes. Rather than proving a very general result, we focus
on the form we will need later on.

THEOREM 3.2. Consider a function h on [0,1]% and 0 < a < 1, and assume
that
(3.13) 1<h(x) <2,
(8.14) Vx,y€[0,1]?, |h(x) - A(y)| <alx —yl.

Consider n > 1 and a subset G of [0, 1]? that is generated by a Poisson point
process with intensity measure wh(u,v) dudv. (Thus, for a Borel subset A of
[0, 112, card(G N A) is a Poisson r.v. of expectation w [ [, h(u,v) dudv.) Then

'ESOO(G) - aﬁ[j[o 1]\/h(u,v) du dv

<K(1+1log p + (aplog ,u)1/3).

(3.15)
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Proor.
Step 1. Consider the squares (C)), _,
we have, mimicking the proof of (3.7),

2 as in the proof of Theorem 3.1. Thus

(3.16) ES(G) — ) ES(GNC,)| <Kplog(l+ u).
i<p?
Step 2. Denote by b; the minimum of 4 over C,. Proceeding as in Step 2 of
Theorem 3.1, we see that, in distribution,

(3.17) S(GNC,) = %Sw(G’),

where G' is a Poisson point process on [0,1]? with intensity measure
p 2uh(u,v)dudv, where b, < h(u,v) < b, + V2a/p.

Step 3. Consider two independent Poisson point processes G,,G, with
respective intensity measures p~%ub, dudv and p~%u(h;(u,v) — b;) dudv.
Then G, U G, is distributed like G'. Using Proposition 2.3 and taking
expectations, we have

(3.18) |ES.(G') — ES(G,)| < Ky/aup~® .

We observe that, for A <2, we have |60(A) — a/A| < K. Combining with
Theorem 3.1, we have

(3.19)

01
ES.(G,) - ;‘/,Lbil <K(1 +log p).

Thus from (3.17)-(3.19), we have

Jan

K
< —(1+logp) + K——".
p p

o
‘ESOO(G NC) ~ —3Vkb .

By (3.16) we get

a/w Vau
ES.(G) — b,| <Kp(1+logpu) +K——.
(G) e iSsz\/_ ( ) 7p
Since for (u,v) € C;, we have, using (3.13),
/B = VA(w0) < VB + o,
we have
1 a ap
— b, — h(u,v) dudv| < — < .
3o T E [, ) aua| < 2 < L

The result then follows by taking p of order max(1, a'/3u'/3(log n)~2/%). O
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4. Proof of Theorem 1.1. Before the proof starts, we still need to
develop one basic tool, that is, how to approximate S(F) when the diameter of
F' is small compared to the distance of F from the origin.

Given a number 0 < a < 1, we consider the map g, from [0, 1]2 to R? that
sends the point with coordinates (u,v) to the point with polar coordinates
1 + au, av. The purpose of this map is to transfer results previously obtained
for the unit square to the disc. We start with an elementary fact that shows
that, for a small, a~'g, is almost an isometry.

LEMMA 4.1. For x, x' in [0, 112, we have
a(1 - Ka)llx - x'll <] g,(x) — ga(2")|| < a(1 + Ka)|| x - x'|.
Proor. Let x = (u,v) and x' = (u',v’). Thus
lga(%) = gu(x) " = (1 + aw)® + (1 + aw')®
—2(1 +au)(1 +au')cosa(v —v')
=a?(u —u')? + 2(1 + au)(1 + au')(1 - cos a(v — v')).

For [t| < 1, we have

42
1—cost+ 5 <|Kt|®
so that
a’(v —v')? a?(v —v')?

(1-Ka) <1-cosa(v—-v')< (1 + Ka).

2
The result follows easily. O

2

In view of Lemma 4.1, it is intuitive that S(g,(F)) should be very close to
aS(F).

PROPOSITION 4.2. There exists a, > 0 such that whenever a < a,, for any
set F c [0, 1]%, we have

IS(g.(F)) — aS.(F)| < Ka*/card F .

PRrOOF.
Step 1. Consider M > 2. Consider points x,..., x, of F and their images
Y1, Y, under g,. We compare the quantities
A=|x, +(M,0)] +”xp + (M’O)” + X M -l

1<i<p

-2 T+ (,0)]

i<p
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and

2
B=llyll+lyll+ X lyiss =3l = = X Myl
1<i<p i<p
We set x; = (u;,v,). Since ||y;|l = 1 + au;, we have
2
(4.1) B=alu; +u,— = Yu |+ X Ny —wll
i<p 1<i<p

We recall that by (3.3) we have

0<|x;+ (M0 - (u; + M) <

M-2
Thus we get, by Lemma 4.1,
pa
laA — B| < + Z |a”xi+1 71 el | 7 _yi”|
M -2 1<i<p
pa
< + Ka? =l
M _ 2 a lszi‘;p”xl+l xl”
Using Lemma 2.1, we get
a
4.2 aA — B| < + Kpa?®A.
(4.2) | | < T

Step 2. We prove that
(4.3) S(g,(F)) <aS(F) + Ka*/card F .

Consider a routing of the customers [with the depot at (M,0)] with cost
R(F + (M, 0)). To this routing corresponds a routing of g,(F) where the same
vehicles serve the image by g, of the same customers in the same order.
Setting n = card F, summation of the inequality (4.2) over the vehicles in
this routing shows that

na

M-2’

S(g.(F)) < aC + Kpa®C +

where

2
C=R(F+(M,0) - — L |+ (M0l
xeF
By Lemma 2.2, C < Kyn , so that
na
M-2
Letting M — « and using the definition of S, yields (4.3).

Step 3. To control S(F) knowing S(g,(F)), we proceed in a similar way,
noting that the term a2A in (4.2) can be replaced by aB. O

S(g.(F)) < aC + Kpa®/n +

The following is pretty close to Theorem 1.1.
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THEOREM 4.3. Set £ = ma. Assume that the subset F of the unit disc is
generated by a Poisson point process with constant intensity . Then

1/3
P(IS(F) - &/X| = K(Alog )7 SK“”‘"(_W)'

PROOF. The overall program is as follows. We will decompose the unit disc
into the union of small pieces A;. The value of S(F) is related to LS(F N A))
through Lemma 2.5 and Theorem 2.6 Each piece A; (but one) looks rather
like a little square, and S(F N A;) can be related to S, of a new set via
Proposition 4.2. The expectation of this latter quantity has been studied
through (3.15). This scheme allows one to write S(F) as an approximate sum
of independent random variables with known expectation, and some control
on their magnitude, from which the inequality of Theorem 4.3 will follow by
standard methods.

Step 1. We define a suitable partition of the unit disc. Consider two
integers r, r’, to be determined later. We consider the domains (A,)y_; .
given as follows. The domain A, is the disc of center zero and radius
(1 + 27wr~')7"". The domains (4,), ., ,, are an enumeration of the domains
(W, ,)for 0 <l <r’,0 <m <r, where, in polar coordinates,

W, .= {( p,0);(L+2mr 1 < p<(1+2mr ),

2mm 2m(m + 1) }
<0< — ).
r r
It should be clear that W, ,, satisfies condition H(L, ,) of Definition 2.4,
where L, , is bounded by a constant times the length of the boundary of
W, .., that is,
K !
Ll,m < 7(1 + 2'77'7‘_1) .
Thus
Y L,,<Kr.
I,m

Step 2. We combine Lemma 2.5 and Theorem 2.6. We see that, provided
(4.4) A+ 27 Y < rl,

the number D, of Theorem 2.6 satisfies D, < r~!. Also, we have s = rr’ +
1<2rr'.
Thus

(4.5) S(F) - Osérr’S(F mAi)

< K(rlogcard F + y/rr’ log card F').

<K(rlogcard F + r').
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We set m, = S(FNA,). The r.v’s n, are independent, so that, within a
perturbation of smaller order, S(F) is expressed as a sum of independent
r.v.’s.

Step 3. We study the expectation of the r.v. n;. Set a = 27/r. If A, =W, ,,
it should be clear by homogeneity that m; is distributed like (1 + a)~!~ 1,
where 7 = S(G@), G being the subset of the domain g,([0, 1]?) generated by a
Poisson point process with constant intensity A’ = AM(1 + a)"2!~2. Consider
the set G’ = g;'(@). By Proposition 4.2, we have

|S(G) — aS(G")| < Ka*/card G
so that, taking expectations, and since the area of g,([0,1]?) is < Ka?,
(4.6) |ES(G) — aES(G")| < Ka®VX(1 +a) ™' ™"

To study S.(G'), one is tempted to use Theorem 3.1. However, one must be
cautious, since G' is generated by a Poisson point process with nonuniform
intensity. The intensity measure of G' is the inverse image by g, on [0, 1] of
the measure A(1 + a)"2"2 dudv on g,([0, 1]?), that is, the measure

M1+ a) % 2a2(1 + au) dudv.

In distribution, we can write G' = G, U G5, where G, is generated by a
Poisson point process with constant intensity

M1 +a) ? Patdudy
on [0, 1]%, while G, has intensity
M1 +a)  *aPududy.
By Proposition 2.3, we have
|SAG") — S.(G,)| < Ky/card G,

so that, taking expectations,
1/2

(4.7) |ES.(G') — ES.(G,)| < K(A(1 +a) ¥ %a?)
By Theorem 3.2, we have
|ES(G)) — aaVX (1 +a) ™| <K log(M1 + a) > *a?)
< Klog A.

Since En; = (1 + a)"'"1ES(@), we get, by combining the previous inequali-
ties (4.6), (4.7) and (4.8), that

| By, — aa®/X (1 +a) 7?2
<Ka(l+a) "' "'log A + KVXa*2(1 + a) ?' 72

We recall that this holds for 1 <i <rr’, A, =W, ,,, a = 27/r. We now sum
these inequalities, for 0 <l <r’, 0 <m <r. Since ;,,(1 + @) < K/a <

(4.8)

(4.9)
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Kr, we get

< Krlog A + KVaA.

)y ETI,-—qua\/X(a Y (1+a)-21—2)

1<i<rr’ o<i<r’

Now we have, under (4.4),

a ¥ (1+a)??-1

o<i<r’

< Ka

so that

¥y Eni—m\/xlsKrlog,HKm.

1<i<rr’
From Lemma 2.2, we see that under (4.4) this remains true if the sum for
i > 1 is replaced by the sum for i > 0. Combining with (4.5), we get

|S(F) — /X | <
(4.10)

Z (n; — Em)

O<i<rr'

+ K(r logcard F + r' + rlog A + K\//\/r).

Step 4. We choose r of order A/3(log A)~2/3, r' = Kr log A, so that (4.4)
holds and (4.10) becomes

IS(F) — ma/X| <

Y. (m —En)

O<i<rr’

+K N3 (log 1) "*/*logeard F + (Alog 1)'/°.

(4.11)

Since card F is a Poisson r.v. of expectation 27A, we have card FF < KA
with probability 1 — Ke *. Thus, to prove Theorem 4.3, it suffices to prove
that

(4.12) P(

Al/3
i—EilzK/\lo /\1/3)Sex -3 |-
OSizs:rr' K K (Alog 3) P K(log A)*?

It follows from Lemma 2.2 that

0 < n, < Kdiam Ajy/card(F N A))
and hence Ev; < K(diam A,)*/A. Setting ¢, = n, — Ev;, we have
(4.13) |&] < K(diam A;)*/A + K diam A;/card(F N 4;) .

Consider a Bernoulli sequence (&),.;.,, li.e, P(g;=1) =P(g;=—-1) =
1/2] that is independent of the sequence ¢;. Then it follows from Giné and
Zinn (1984), Lemma 2.7, that to prove (4.12), one can replace & by g &,
Using the subgaussian inequality [see, e.g., Ledoux and Talagrand (1991),
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(4.1), page 90], we get that for all B > 0 we have

' Alog V)¥?
P( Y aifilz()tlog/\)l/?’) sZexp(—%_)
(414) O<i<rr’

and we proceed to bound the last term.
For m <r’, consider the set I,, of indexes i such that A, = W, ,, for some
1,0 <! < r. The union of the sets A, for i € I, is the annulus

D, = {x; (1+ a)_l_1 <lxll< @1+ a)_l}.
By (4.13), using the inequality (a + b)? < 2a% + 2b2, we have
Y &2 <Kla*(1+a)* + Ka®(1 +a) % card (F N D)).
iel;

We recall that if Y is a Poisson r.v. with expectation u, we have E exp tY =
exp u(e’ — 1). In particular, EexpY < e2*, so that if u > 4u, P(Y > u) <
exp(—u + 2u) < exp(—u/2). Since the r.v. card(F N D,) is Poisson with ex-
pectation Aarea D; < 2wAa, we have

P(card(F N D;) > KAa) < exp(—Aa)
so that, with the same probability, we have
Y &2 <Kaa®(1 + a)_ZZ.
iel?
It follows that with probability less than or equal to r’ exp(— Aa), we have
Y., & <Kl

l<i<rr'

The reader will check that under (4.4) the term for i = 0 has a smaller order
contribution. Taking B = KAa? in (4.14) finishes the proof, since B < KAr~2
< KAY3(1og V¥3. O

COROLLARY 4.4. Consider r.v’s (X,);., that are uniformly distributed
over the unit disc. Then, for some number ¢ independent of n, we have

nl/3
P(|S(X,,....,X,) — &/n| = K(nl 3 <K S —
(1S(Xs,.., %) = &ln] 2 K(nlogm)'”") < K exp| ~ oz

PrOOF. In Theorem 4.3, we take A = n. We have P(card F = n) > 1/KVn
and, conditionally on this event, F is distributed like {X;,..., X,}. O

To complete the proof of Theorem 1.1, it suffices to prove the following
proposition.
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PrOPOSITION 4.5. For a subset F of the unit disc, we have

IR(F) - R'(F)| <K.

PrOOF. In the definition of R, we do not require that at most one vehicle
is incomplete and we do not give a weight to that vehicle. Thus, for any
subset F of the unit disc, we have R'(F) < R(F) + k.

Consider a routing with cost R'(F). Denote by G the subset of F that
consists of the customers that are served by a vehicle that is not complete. If
an incomplete vehicle serves a set H of customers, it travels at least

2max||x|| >
x€H

Z lell > —— Z ll]l.

dH xEH

Thus, the incomplete vehicles travel at least (2/(k — 1)L, ¢l x[l. By optimal-
ity of the routing, we have

(4.15) 7«;—2—— ):Gllxll <R'(G).

On the other hand, by Lemma 2.2,

2
(4.16) R(G) < T llxll +37(0),

xeG

where T(G) is the length of the shortest tour through G. Since R'(G) <
R(G) + E, we have

2 Y llxll + 8T(G) + k.

R'(G
( )SkxEG

Combining with (4.15), we see that

(4.17) Y llxll <k + 3T(G).

xeG

E(k — 1)

For p > 1, let us denote by N, the number of points in G that satisfy
277 < |lx|l < 277 *L. Thus

Y lxll> ¥ 2°°N,.

x€qG p=1

On the other hand, it is simple to see that T(G) < K%, ,277y/N, + K. Thus
by (4.17) we have

Y. 27PN, sK( Y 277N, + 1).

p=1 p=1
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Consider m > 1, to be determined later, and let I = {p > 1; N, > m}. Thus

Vm Y 277 /N, < Zz-prsK( Zz-P‘/FPH)

pel p=1 p=>1
sK( Y 277N, + Y 277N, + 1)
pel pel
SK(1+\/n_1+ 22‘P,/Np).
pel

Taking m = 4K? gives L,.;277\/N, <K, so that ¥,,,27"N, < K. Going
back to (4.16) gives R(G) < K. As the vehicles that serve the other customers
are complete, we have R(F) < R(G) + R(F\G) <R'(F) +K. O
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