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PARKING ARCS ON THE CIRCLE WITH APPLICATIONS
TO ONE-DIMENSIONAL COMMUNICATION NETWORKS

By E. G. COFFMAN, JR., C. L. MALLOWS AND BJORN POONEN
AT & T Bell Laboratories

Let (ry, 51),...,(r,, s,) be a sequence of requests to place arcs on the
unit circle, where 0 < r;, s; < 1 are endpoints relative to some origin on
the circle. The first request is always satisfied by reserving, or parking,
the shorter of the two arcs between r; and s; (either arc can be parked in
case of ties). Thereafter, one of the two arcs between r; and s; is parked if
and only if it does not overlap any arc already parked by the first i — 1
requests. Assuming that the r;, s, are 2n independent uniform random
draws from [0, 1], what is the expected number E(N,,) of parked arcs as a
function of n? By an asymptotic analysis of a relatively complicated exact
formula, we prove the estimate for large n:

E[N,] =cn*+0(1), n- o,

where a = (\/1— —3)/4 =0.28078... and where the evaluation of an
exact formula gives ¢ = 0.98487... . We also derive a limit law for the
distribution of gap lengths between parked arcs as n — . The problem
arises in a model of one-dimensional loss networks: The circle is a continu-
ous approximation of a ring network and arcs are paths between commu-
nicating stations. The application suggests open problems, which are also
discussed.

1. Introduction. Recent research in one-dimensional loss networks has
rekindled an interest in new versions of classical parking problems; Mannion
(1976) reviews much of the early literature on these problems. In a broad
survay on loss networks, Kelly (1991) discusses stochastic generalizations of
the following simple model of circuit-switching ring communication networks.
A large number of identical stations are equally spaced along a closed
communication path, or ring. A request by station r for communication with
station s is denoted by the pair (r, s), and is satisfied when one of the two
paths (arcs) connecting the two stations is allocated for their exclusive use.
For simplicity, we adopt a standard continuous approximation in which the
ring has unit length and requests (r, s) are pairs of real-valued coordinates,
0 <r, x < 1, relative to some fixed origin on the ring. We assume that r and
s are independent samples from the uniform distribution on [0, 1].

In the problem studied here, the ring is initially idle and a list (r, s,),...,
(r,,8,),... of independent requests is to be scanned in the order given. The
shorter of the two arcs between r; and s; is always allocated to the first
request. Thereafter, for each n > 2, the nth request is satisfied if and only if
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one of the two arcs between r, and s, does not overlap any arc already
allocated to the first n — 1 requests. Requests not satisfied are simply lost.
This paper studies the distribution of the number N, of satisfied requests and
the empirical size distribution of the gaps between satisfied requests, just
after the nth request has been inspected.

In analogy with classical parking problems, the operation of satisfying a
request will be referred to as parking an arc in some gap. Note that, after
parking the first arc, our problem on the circle reduces to parking intervals in
some gap [0, x]. The discussion below refers to the problem on an interval
and continues with the parking terminology.

Suppose we modify the problem on [0, x] so that all intervals have the
same length and the request sequence consists of single numbers ¢, q,, ...
drawn independently and uniformly at random from [0, x]. The ith interval
is parked with its midpoint at g, if and only if, in that position, the interval
lies entirely within [0, x] and overlaps none of the intervals already parked.
We then have a version of Renyi’s (1958) car parking problem, where cars are
the intervals being parked. Note that, in contrast to our parking-process,
Renyi’s process terminates almost surely; eventually all gaps between parked
intervals will have lengths less than the given interval length. Mannion
(1976, 1979) studies much more general parking problems in which general
distributions govern interval sizes and parking positions. However, the gener-
alized process retains the property that eventually all gaps will become
indivisible in a terminal state. The analysis characterizes the terminal state
as a function of the original gap size x. Note that our analysis is quite
different in that, for the nonterminating process, we characterize the state as
a function of the number n of parking attempts. Results for classical parking
problems are typically asymptotic in x, whereas our main results will be
asymptotic in n for given x.

Past research equally closely related to ours is that of Justicz, Scheiner-
man and Winkler (1990), who consider the problem instance on [0, 1] with the
same generator of random intervals. They pose the optimization question:
Given all intervals in advance, select a maximum cardinality subset that
can be parked in [0, 1]. In an analysis quite different from ours, they show,
among other interesting results, that the expected number selected is asymp-
totically (2/ Var)n'/2. This is to be compared with the asymptotically smaller
con(17 =8/4 result in Section 3 (see Corollary 1) for the on-line, sequential
selection version of the problem studied here.

Interval splitting problems or, to use the more colorful phrase, stick
breaking problems are also related to our parking problem. Brennan and
Durrett (1986, 1987) give a unified treatment of the work on these problems
and provide many references. To establish the connection, we construct a
continuous-time version of our problem on [0, x] which is interesting in its
own right. Let the requests (r,, s,), n > 1, arrive by a rate-1 Poisson process
and consider a gap of size y in the parking process at some time ¢. Since the
(r,,s,) are i.i.d. uniforms on [0, 1], the probability that the next request parks
an interval in the gap is y2. Then the number of requests that have to be
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inspected before one parks an interval in the gap is geometric with parameter
¥?, so the waiting time for an interval to be parked in the gap is exponential
with rate y®. Thus, we can formulate our problem on a gap of size x as
follows. After a rate-x® exponential time, the gap splits into two gaps of sizes
%1, ¥5. Then, after random, independent rate-x? and rate-x2 exponential
times, respectively, each of these gaps further subdivides into two more gaps.
The process continues: Whenever a gap of size y is created, it divides into two
gaps after a random rate-y? exponential time that is independent of all other
splitting times.

So far, the description is merely that of Brennan and Durrett’s (1986) stick
breaking process in continuous time; in fact, it is the special case of their rate
parameter x* when « = 2. The fundamental difference between stick break-
ing and our problem lies in the splitting mechanism. In stick breaking, a stick
(gap) of length y breaks into two pieces of sizes Zy and (1 — Z)y, where Z is
a random variable with a given distribution on [0, 1]. In our problem, a gap of
size y breaks into two gaps whose sum is less than y w.p.1. Of course, it is
Just this fact that converts a stick breaking problem into a parking problem; a
gap effectively breaks into three pieces with one reserved thereafter as a
parked object. In our specific case, a gap of size y breaks into three parts
equal in distribution to the spacings induced by two i.i.d. uniforms on [0, y]. If
Uy, Ug, denote the order statistics of two ii.d. uniforms on [0, 1], then the
two new gaps are the first and third spacings U,y and (1 - Ugy))y, while the
middle spacing (Ug, — U,y is the parked interval.

Section 2 keeps with the discrete-time model and develops the formulas on
which the asymptotic analyses of N, and the empirical gap-size distribution
in Sections 3 and 4 are based. The final remarks in Section 5 point to a
number of open problems. The remainder of this section comments briefly on
cognate problems.

Parking problems are fragmentation problems, as are dynamic packing
problems, in which the intervals to be packed are commonly called items. In
the latter problem, items are always placed against the item (or the origin)
that follows the left boundary of the gap in which the item is packed.
Fragmentation is created in packing problems by the random arrival and
departure of items. Coffman, Kadota and Shepp (1985) and Aldous (1986)
analyzed the problem with unit item sizes; several other variants in dynamic
storage allocation are surveyed by Coffman and Mitrani (1988).

The circle covering problems studied by Flatto and Konheim (1962) and
Shepp (1972), among others, are duals of the circle fragmentation problems.
The text by Kahane [(1985), Chapter 11] gives a modern treatment of the
theory. More generally, the parking problems studied here fall in a larger
class of sequential, or on-line selection problems. A single list of items is
scanned in a given order fixed in advance. As each item is inspected it is
selected or rejected once and for all. Commonly, the items are positive reals
and the selection rule attempts to optimize some property of the selected
subset. For example, the objective could be to select a maximum length
monotone sequence or a maximum cardinality subset subject to a sum
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constraint. An analysis of these problems and references to many others can
be found in Samuels and Steele (1981), Mallows, Nair, Shepp and Vardi
(1985), Coffman, Flatto and Weber (1987) and Justicz, Scheinerman and
Winkler (1990).

2. Exact formulas. To calculate the expected number EN, of arcs
parked, or equivalently the expected number of gaps between parked arcs, we
first reduce the circle problem to the problem on an interval. On the circle,
the first arc is always parked and its length is distributed uniformly on
[0,1/2], since we take the shorter of the two arcs with the specified end-
points. Hence the gap remaining is uniform on [1/2,1] and we have, consid-
ering EN, now as the expected number of gaps,

(2.1) EN,=2[' E, (z)dx, n=x1,
1/2

where E,(x) = E(N,(x)) and N,(x) = N,[0, x] is the number of gaps in [0, x]
after successively attempting to park n random intervals with endpoints
chosen independently and uniformly at random from [0, 1]. More generally,
for integers & > 0, let E*)(x) denote the expected value of the sum of the kth
powers of the gap lengths after attempting to park n intervals in [0, x]. Then
E (x) = EQ(x).

Extending the approach of Renyi (1958), a recurrence for E{¥)(x) develops
as follows. The first request (7, s) fails to fit in [0, x] with probability 1 — x2,
in which case the problem reduces to trying the remaining n — 1 requests in
the same interval [0, x]. If (r, s) fits, that is, if 0 < r, s < x, then two disjoint
gaps of lengths r and x —s (if r <s) or s and x — r (if s <r) are formed,
and the problem reduces to trying the remaining n — 1 requests in these
gaps. Taking expected values and using the symmetry in r and s leads to

EP(x) = (1 - ) E2y(x)

2.2 x
(2.2) + 2Lioj;=rdrds[E;’?l(r) +E® (x—3)]

for n > 1. Now integrate, interchanging the order of integration for the
second term of the integrand, to obtain for n > 1,

(23)  E®(x) = (1-22)E® (x) + 4f()x(x — r)E® (r) dr.

Together with E{¥(x) = x*, this specifies E{*)(x) completely.
By induction on n, it is easily verified from (2.3) that E{*)(x) is a polyno-
mial of the form

n
(2.4) EP(x) = ¥ uPxhr?,
j=0



1102 E. G. COFFMAN, JR. C. L. MALLOWS AND B. POONEN

where u{*) = 1, n > 0, uff) = 0 for j # 0, and where the coefficient of x**?/
in (2.3) yields

a® =y 4 + 4
(2.5) n n-lj o TnsLj-l E+2j—1 k+2j
= uﬁzk—)l,j - hk+2ju$Lk—)1,j—1a Jj=1,
where
h 1 4
L I(1-1)"
Let
J
W(()k):]., W;k): l_]'_-'[lhk+2l’ _]Z ].,
and

o) = (~1)u/ b,
Then (2.5) becomes

(2.6) v = oy, 1<j<n,
with v® =1, n > 0, v} = 0 for j # 0, s0 for 0 <j < n,
B _ |
(2.7) vk = (J)
180

@8 ity = ()
and, hence,

n 5 .
(29) BO(x) = ¥ (-1)(|astr nzo,

j=0

which is the desired result. The next section derives more easily interpreted
estimates from this formula.

A similar analysis will give a formula for A, , the expectation of the square
of the number of gaps after n tries. We have, as in (2.1),

(2.10) A, =E(N2)=2[" A, \(x)dz,
1/2

where
A,(x) = E((N,(x))").

As above, we find a recurrence
A (x) = (1-2*) A, 4()
X X
+ 2[ drf ds{A,_(r) + 2B, _(r,x—s) +A,_(x —s)}
2.11 o
@ (1-x)A,_ (%)

+4f dr(x—r) A, (r) +4[ dr[ " dtB, \(r,0),
0 0 0
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where B,(x, y) = E(N,[0, x]N,[1 — y,1]), x + y < 1. Further, we have
Bn(x’ y) = (1 - x2 _y2)Bn—1(x’ y)

+ 2[0"drjxdsE(Nn[o,r] + N[5, x])N,[1 - y,1])
+ 2f0ydrfryde(Nn[1 — %, 1](N,(0,7) + Ny(y — 7, %))
= (=%~ y")B, i(x,y) +4[ (x = r)B,_i(r,y) dr

+4[ (y = 5)B,_y(x,5) ds.
0
By induction, we find

n

(212)  B,(x,5) = ¥ bPxty¥,  A(x)= ¥ az¥,
itj<n i=0

where

— -1 -1 -1
B = b Y — hy,b21Y = hy bR,

whence
n!

b,(}” = (_l)lﬂ iTj»

il (n —i— )
where 7, = 7{%). Now (2.11) gives

agn) = agn—l) _ h2 a(n—-l) + bl(n—l)’

iYi—-1
where
; (2/)!(2k)!

pm — 4 -1 J+kb(n)—’ <i<

P B Y si=n
Hence

. n i n—i+m-1 n—j—1 bW
- corel(s)+ £ B weien
i m=1 j=m—1 i—m W,
Substituting, we find
(2.13) ®M=(—n%i?ﬁ1—q»
where
(2.14) =4 Y T @HW2R)! (j+ k)
b kmion Tiaker (27 2R+ 2)10

Assembling results, (2.10), (2.12) and (2.13) give
n -1 i .
(-1) [1—2—(2”1)]771‘(’;)(1_0})'

A, =2
As yet, we have been unable to find asymptotics for A, (x) and A,.

20+ 1
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3. Asymptotics. In an application of Cauchy’s integral formula, we ob-
tain asymptotics for E*)(x), n — =, by interpreting the terms on the right-
hand side of (2.9) as the residues of a meromorphic function, an approach
attributed to S. O. Rice [see Knuth (1973), page 138]. For further discussion of
the method and its applications, see Knuth (1973), Flajolet and Sedgewick
(1986), Szpankowski (1988) and Kirschenhofer, Prodinger and Szpankowski
(1989).

First note that

4 - m?=(1/2)m -1 (m-a-1)(m-B-1)
@em-1)2m mi-(1/2m m(m — (1/2)) ’

where a = (V17 — 3)/4=028...,8= —a — 3/2 = —1.78... . Thus (2.9) is
a (terminating) generalized hypergeometric series [see Erdélyi (1953)],

(3.1) 1

E(k)(x)=xkF(—nﬁ—aE—B'ﬁ+-1—ﬁ+1'x2
" R ) 2 272 7
(3.2) . f:(_l)n(,%)¢(k/2 +j)xk+2j

) 7] #(k/2) ’

where ¢(z) is the meromorphic function

I'(z —a)l(z - B)
F(z+1)I(z+ (1/2))°

(33) b(2) =

Furthermore, it is easily seen that (—1)/ (';) is the residue of the function
(-1)"n!
2(z—1)(z—n)

at the simple pole z = j, so for x > 0,

(34) u(2) =

¢(Z + k/z) xk+2z)
b(k/2) '

[Note that ¢(z + k/2) is holomorphic at z = 0, 1,..., n.] Using this we will
prove the following theorem.

(3.5) EP(x) = )E Resz:j(%(Z)

Jj=0

THEOREM 1. For fixed k > 0 and 6 € (0,1),
(3.6) E®(x) = c,n* */2x2e 4 O(n—1/2—k/2)
uniformly for x € [8,1] as n — », where
37 . - [(2a+3/9T(k/2 + 1/2T(k/2+1)
T'(a+1/2)0(a+ )I(k/2 + a + 3/2)

Proor. Consider the contour y shown in Figure 1, consisting of an arc of
a circle centered at 0 (slightly more than a semicircle) and a vertical segment
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Fic. 1. The contour vy.

along the line Re z = —1/2 — k/2. The radius of the circle is R > n, k. By
Cauchy’s integral formula,
1 z+k/2
__./wn 2 _d)(—/__)xk+2z dz
2mi )y P(k/2)
n ¢(z +k/2) ]

3.8 = Res,_.| ¢, (2 AT T k2
(3) P [ )52

¢(Z + k/z) k+2z
+ Resz=a—k/2[¢n(z) ¢(k/2) x ’
since the poles of ¢(z +k/2) are a —k/2,a —1—-k/2,...,B—k/2,B —
1—k/2,..., all of which are outside vy, except for o — & /2.

Since (—a) + (—=B) =1+ 1/2, it follows as in Erdélyi [(1953), page 7]
that ¢(z) is bounded everywhere in the complex plane after deleting small
balls of radius & around the poles. Hence ¢(z + k/2) is bounded on y and the
bound is independent of R. The same is true of x**2?, since x € (0,1]. But
#,(2) ~z="*D ag z — o, so the circular part of the integral tends to 0 as
R — =, So if we take the limit as R — « of (3.8) and substitute (3.5) we get

1 —1/2-k/2—iw d(z +k/2)
E () 2E M),
2mwi) 19 ks2+in ¢(k/2)

k+2z dz

(3.9)
bR L,

=EP(x) + Res,_ 2| ¥u(2) o(k/2)
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We show next that the left-hand side is O(rn~1/27%/2). As remarked before,
(¢(z + k/2)/dp(k/2)x*+2% is bounded on the contour, so it will suffice to
bound

(3.10) | ln(=1/2 = k/2 + iy)l dy,
as n — », From the product defining ,(z) we see that
(3.11) lg,(x +iy)l <l (x)] Vzx,yeR, x<O0.
Furthermore,
I, (x + iy)l x—7j x x—1 c(x
(3.12) Wnlx * )l A Y . < (2)
[, ()1 j=o|lx +iy—J x+iyl|lx+iy—1 y

for some constant c(x) > 0 independent of n. From (3.11) and (3.12) we
deduce that

(313) [ In(-1/2 = k/2 +iy)ldy < (k)l(~1/2 — k/2)]
for some constant ¢'(k) > 0 independent of n. However, for fixed z,

T HI(-=z 1
(3.14) ¢ (2) = - F((n_: +)n(+ 1)) - 1+ 0(5))

as n — », by (4) of Erdélyi [(1953), page 47], and this is O(n"1/27%/2) when
z= —1/2 — k/2, as desired. Now by (3.9) we see that

k/2
E;Lk)(x) = —ReSz=a_k/2[¢n(z)Mxk+22}

b(k/2)
+ O(n—l/z—k/Z)

_ _ E\Res.-o¥(2) 4io0a-iy2)
‘”"(“ 2) ok~
+ O(n—l/z—k/Z)

= n"‘_k/2F(—I;- - a)(l + 0(%))—————&;";]@“/‘2()2) x2e

-n*T'(-2)

(3.15)

+ O(n—l/z—k/Z),

by (3.14). The error in the first product gets absorbed into the big-O term at
the end, and we are left with n® */2x%% multiplied by a constant (depending
on k) which is

[(k/2 — a)Res,_,¢(2)
(%/2)
IF'(a—-B)I(k/2 +1/2)T(k/2 + 1)
T T(at1/T(at DI(k/2-B8) *
since B = —a — 3/2. The theorem is proved. O

(3.16)
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REMARK. We could have derived more precise asymptotic estimates by
using a contour further to the left which included more residues. For exam-

ple, this shows that the error term in Theorem 1 can be pushed down to
O(ne~17%/2),

COROLLARY 1. The expected number of intervals parked inside a starting
interval [0, 1] after n attempts are made is

(3.17) con® —1+ o(1).
Note that c, is about 1.84.

Proor. The number of intervals parked in [0,1] is one less that the
number of gaps, which is E®(1). O

COROLLARY 2. For the expected number parked on the circle,

EN, = (a+ 1)(1 - (%)Ml/z)con“ +0(1) =(0.98...)n* + o(1).

ProOF. Combine Theorem 1 with (2.1) and note that (n — 1) = n* — o(a)
since a < 1. O

We remark that the asymptotic formulas give excellent estimates, even for
relatively small n. For example, numerical calculations show that the rela-
tive error in estimating (2.9) with x = 1 by the asymptotic formula c,n® — 1
is 1.1, 0.46, 0.24 and 0.14% for n = 10, 20, 30 and 40, respectively.

Interestingly, asymptotics of the form of Corollaries 1 and 2 have arisen in
a completely different context. In an analysis of quadtree data structures,
Flajolet, Gonnet, Puech and Robson (1991) solved the recurrence

4
), =0, Q,=1+ (n+1)2(n k)Q,, n=>1,

and showed that @, ~ cn?®, n - », where ¢ = I'Qa + 2)/(2y(a + 1)3).

4. The limiting gap distribution. Here we find the asymptotic behav-
ior of the distribution of gaps left behind after attempting to park n intervals
in [0, 1]. (For the case of parking arcs on a circle, see the remarks following
the proof of Theorem 2 below.) The dependence of E*)(1) on % in Theorem 1
suggests that gap lengths will be on the order of n !/2, so we define a
distribution function

expected number of gaps with lengths < ¢ \/_
(4.1) F(t) p gap gt /

expected total number of gaps

As in Brennan and Durrett (1987), the limit law to follow uses the method of
moments.
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THEOREM 2. Fort > 0, lim, ., F,(t) = F(¢), where F(t) has the density
(42) f(x)=27"12T(a+ 3/2)x_1/2e_x2/2W_a_1/4 ya(x?),  x=0,

with W, (x) denoting Whittaker’s confluent hypergeometric function [see
Erdélyi (1953)].

REMARK. As we will see below, the density (4.2) is that of a random
variable VYZ , where Y and Z are independent, with Y having the unit-ex-
ponential density e ™, Y > 0, and Z having the beta density with exponents
1/2, o + 1:

I'(a+ 3/2)
I'(1/2)I'(a+ 2)

27 1%(1-2)%, 0<z<l.

PrOOF. By (4.1) the expected number of gaps of length less than or equal
to x is

(4.3) EP(1)F,(xVn),
so the expected sum of the kth powers of the gap lengths is

f:x"d(E;O>(1)Fn( x/n)) = EO(1) [ m(i)k dF,(y)

E®(1
= kSZ)f y dF(y)

On the other hand, this expected sum of kth powers is E{*)(1) by definition,
S0

(4.4)

o E®(1ynk/2
(45) [, ¥ dF.(5) = E—f)zf)—

By Theorem 1 this converges to c,/c, as n — . Moreover, (c,/c,)/k! tends
to zero as k — « by Stirling’s formula, so if there exists a distribution with
moments ¢, /c,, then it is unique by Theorem 30.1 of Billingsley (1979). After
finding such a distribution, we will verify that lim, ,, F,(¢) = F(¢), t > 0, is
an easy consequence of Theorem 30.2 of Billingsley (1979).

We will in fact find an F(¢) with a density f(¢) such that

o (33
(4.6) [0 thf(e) dt = —

0

for all real & > 0. [Note that ¢, is defined by (8.7) for all real k > 0.]
Substitute £ = 2s, ¢ = Vx and set

1
(47 £(x) = 5= f()
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to rewrite (4.6) as
% cys T'(a+3/2)I(s+1/2)I'(s+1)
f x°g(x)dx = =
0 Co Ir'(1/2)r'(s + a + 3/2)
(et 3/2T(s +1/2)
F(1/2)F(s + a+ 3/2)
by (3.7). Now observe that (4.8) simply states that E(X?®) = E(Y®)E(Z?),
where X is a random variable with density g(x) and Y and Z are the
exponential and beta distributed random variables defined in the remark

following the theorem statement. Now compute the joint density g(x, y) of X
and Y and integrate to obtain

g(x) = /:g(x,y) dy

(4.8)

(4.9)
I'(a+3/2) (= _
_ 12\ T/ ® 1/2,1 a
(et 1) fxe (xy) 7"(1—x/y) dy
and, after the change of variables y = x(1 + u),
F(a+3/2) ® ok w Cam1y2
(410) g(x) = m j;) e u (1 + u) du.

By an integral representation of Whittaker’s confluent hypergeomet-
ric function [Erdélyi (1953), (18), page 274], the integral in (4.10) is
F(a+ 1) x_3/4ex/2W_a_1/4,1/4, SO

(4.11) g(x) =m1’T(a+3/2)x 3% *?W_, 1,4 1,4(x).

Inverting (4.7) gives f(x) = 2xg(x2), the density of VX . Substituting for
g(x?) from (4.11) then yields (4.2).

Finally, since F is determined by its moments and since the £th moment
of F, converges to the kth moment of F for all £ > 0, {F,},_; converges
weakly to F by Theorem 30.2 of Billingsley (1979). However, F(¢) is continu-
ous on [0,x), so by definition of weak convergence, lim, ,, F,(t) = F(¢), as
desired. O

Theorem 2 holds without modification for the expected gap length distribu-
tion in the circle problem as well. This can be seen by an easy generalization
of Corollary 2 which shows that the expected sum of kth powers of gap
lengths for the circle problem is asymptotically a constant factor

(ﬂ) - (1)“7“““

= 0.18565...
1 2 0.18565

times the result E{*(1) for the problem on [0, 1]. The analysis in the proof of
Theorem 2 shows that such overall scale factors do nothing to the distribu-
tion. Thus the same limiting distribution also applies when parking intervals
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in [0, x] with x € (0, 1), for in this case, the scale factor is (E*)(x)) /(E*(1)),
which is asymptotically x¢, by Theorem 1. The initial configuration changes
the number of gaps after n attempted parkings by a constant factor, but has
no bearing on the asymptotic distribution of their lengths.

5. Final remarks. We leave as an open problem the inverse of the arc
parking problem: Given the number N to be parked, what is the asymptotic
distribution of the number n, of arcs that have to be inspected before exactly
N are parked? Our experience with this problem suggests that it is more
difficult than the ones solved in Sections 2—4. The same comment applies to
calculating asymptotics for the variance given by (2.12) and (2.13), which we
also leave as an open problem.

In on-line parking optimization problems, intervals must be selected or
rejected in sequence, but an interval can be rejected even if it fits in a gap.
One such problem is to determine the acceptance rule which maximizes the
expected number of intervals parked. Because of the more elaborate state,
this problem appears to be more difficult than stochastic on-line packing
problems [e.g., see Coffman, Flatto and Weber (1987)].

Extensions to our parking problem can be formulated from the models
studied by Kelly (1985, 1987), Ziedins (1987) and Ziedins and Kelly (1989).
For example, a ring consisting of £ > 1 independent cables is an important
generalization; arcs are to be parked on all £ cables. In this problem, arcs can
overlap, but at most £ can cover any point on the ring.
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