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ON RATES OF CONVERGENCE FOR COMMON
SUBSEQUENCES AND FIRST PASSAGE TIME

BY WANS00O T. RHEE!
Ohio State University

We give a unified simple proof of recent results of Alexander concern-
ing the rate of convergence of the mean length of the longest common
subsequence of two random sequences and the rate of convergence of the
expected value of certain passage times in percolation theory.

1. Longest common subsequence. Given a finite set A, we say that two
sequences X = (x;);i<, and y = (¥;)i<» in A have a common subsequence of
length % provided forsome 1 <iy <---<iy<nandl<ji<---< j, <n,we
have x;, = yj, for all 1 < £ < k. The length of the longest common subsequence
is denoted by L(x,y).

Consider now two independent A-valued i.i.d. sequences X,, = (X;);<, and
Y, = (Y;)i<, with common law and the random variable L, = L(X,Y). It
follows from the standard superadditivity method that y = lim, ., EL,/n
exists and depends only on the law of X;.

THEOREM 1 (Alexander [2]). For some universal constant K,

(1) ny > EL, > ny — K(nlogn)'2.

Setting for simplicity y, = EL,, we first observe that the inequality yn > vy,
follows from superadditivity. Our proof relies on the following two lemmas.

LEMMA 1. Foralln, p> 0,

(2) P(Ly, > 4p) < (4n)*(P(Lg, = 2p))">.

LEMMA 2. Foralln >0, all ¢,

(3) P(|L, — | = t) < 2exp(—t%/2n).

We should observe that Lemma 2 is a straightforward consequence of
Azuma’s inequality; (see [1], [7], [8] and also [9], Section 6). Before we prove
Lemma 1, we show how to deduce Theorem 1. Taking p such that 2p > yg,,
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(2) and (3) imply

_ 2
P(Lyy > 4p) <2(4n)* exp(—(—szf”—)—)
A routine computation shows that this implies that
4 E(L4n) = van < 2v2n + K(nIOgn)1/2~

(For simplicity, we denote by K a universal constant, not necessarily the same
at each occurrence.) Using (4), for 2%n rather than n, we get

Yok+2p < Yoty E (log 2kn ) 1/2

Qk+2p — kt+lp 4 2kn

Summation of these inequalities for 0 < & < ¢, and another routine computa-
tion shows that ‘

1/2
Yot+2p Y2n log n
25+2nS%+K( n ) )

Letting £ — oo, we get 2ny < vya, + K(nlogn)'/2. Thus (1) is proved for n

even, and hence for all n by monotonicity of y,.

PROOF OF LEMMA 1. Step 1. Given two sequences X = (X;);<4, and y =
(¥i)i<an, and integers 1 < q1 < g2 <4n and 1 <ry <rg <4n, we define

L(x,y; q1,q2; T1,72) = L(Xgy, s %q55 Yrise s Yra)-
We prove that if L(x,y) > 4p, we can find q1, gz, 71,72 such that
(5) g2 —qi+re—ri=2n,  L(x,¥; q1,92; r1,72) = p.

Indeed for i < 5, we can find integers n;, m;, withni =1<ng <--- <ns =
4n and my =1 < mg < --- < ms = 4n such that for 1 <i <4, we have

L(x,y; ni,niy1; m;,m;y1) = p.
Because

> (nig1—ni+miy1 —my;) = 8n,
1<i<4
we have for some 1 < i < 4, nj;1 —n; + mj;1 — m; < 2n. We then choose
g1 < n;, nis1 < qe and r1 < m;,m;y1 < rg such that (5) holds.
Step 2. Because (crudely) there are at most (4n)* possible choices for
q1,92,71, T2, we can find such numbers satisfying the first requirement of (5)

. and such that .

P(L(X4n, Yan; q1,q2; 71,72) > p) > (4n) *P(L(X4n, Y4,) > 4p).



46 W. T. RHEE

Setting ¢ = g2 — q1 and r = rg — r1, we have
P(L(X4,Y,) 2 p) = P(L(X,,Yq) = p)
= P(L(X4n,Y4n; q1,92; r1,72) = p).
Step 3. The key point is now the reflection argument. Because g + r = 2n,
P(L(X2n,Y2,) > 2p) > P(L(X,Y,) > p)P(L(X,,Yy) > p),

which concludes the proof. O

2. Passage time. Let there be a bond between each nearest neighbor pair
of sites in Z?. To each bond b is attached a random passage time X. These
passage times are i.i.d. of common law w. We assume

(6) n({0}) < pe,

™ /t2d,u.(t) <o,

where p, is the critical probability for Bernoulli bond percolation on Z<.

The passage time through a lattice path II is the sum of the passage times
through the bonds of Il. Denoting by 0 the origin and by n the point of coordi-
nates (n,0,...,0). We are interested in the infimum T, of the passage times
through all the paths linking 0 to n. We set y, = ET,, so that y,.m < yn+¥Ym
and hence y = lim,,_, o, y,/n exists.

THEOREM 2. Under conditions (6) and (7), for some constant C independent
of n, we have
ny <y, < ny+ C(nlogn)Y/2
This theorem is closely related to a result of Alexander [3]. The reason for the
gain of a factor /logn and the weaker integrability condition (7) lies in the
use of Lemma 4 (which follows) rather than of the original result of Kesten [5].
The structure of the proof is identical to that of Theorem 1. It relies on two

lemmas. For simplicity, we denote by C' a number depending only on u, d, that
may vary at each occurrence.

LEMMA 3. For each t > 0 and some constant C, we have

(8) P(T4, < 4t) < CnC(P(Tg, < 2t))"* + Cexp(—n/C).

LEMMA 4. For each n, each t.> 0, we have

9) P(T, < yn —t) < Cexp(—t*/Cn).
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Once these are proved, the proof of Theorem 2 mimics the proof of Theo-
rem 1. Lemma 4 follows from [9], Section 8.3, equation (8.2.9).

PROOF OF LEMMA 3. Step 1. By a result of Kesten [5], it follows from (6)
that there exist constants C1, Cq, independent of n, such that with probability
greater than or equal to 1 — e /€1 there exists a path of length at most Can
from 0 to 4n with passage time T'4,.

Step 2. Consider a path II from 0 to 4n with passage time 6. For 0 <i < 4,
consider the first (resp. last) site b; (resp. a;) on Il that has its first coordinate
equal to in. Obviously, there exists 0 < i < 3 such that the sum of the passage
times on the bonds of I1 between a; and b;,; is at most §/4. We observe also
that if IT has length less than or equal to Can, then there are at most C3n?
choices for each a; and each b;, 1, where C3 depends on Cs, d only.

Step 3. Given two sites a, b € Z%, let us denote by H(a, b, ¢) the event that
there exists a path II from a to b, with passage time at most ¢, such that each
site visited by II, except a and b, has a first coordinate larger than the first
coordinate a; of a and smaller than the first coordinate b; of b.

It follows from Steps 1 and 2 that for any ¢ > 0, we can find a, b € Z¢, with

b1 —a1 =n and
P(H(a,b,t)) > C5'°n "% P(Ty, < 4t) — exp(—n/C1).

Step 4. By translation invariance, P(H(a,b,t)) = P(H(0,b — a,t)). Be-
cause the first coordinate of b — a is n, we also have by reflection

P(T3, <2t) > P(H(0,b —a,t))%
This concludes the proof. O

3. Conclusion. The proofs we have given are rather straightforward and
are significantly simpler than the original proofs. Both, however, rely on a
reflection argument. This is a very serious limitation. Results of Kesten [6]
and sharper recent results of Alexander [4] cover cases where no reflections
seem relevant, and in particular the “off axis” case of first passage percolation.
These results are considerably deeper than those presented here, whose appeal
lies in simplicity rather than depth.
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