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This paper concerns the optimal impulse control of piecewise deter-
ministic Markov processes (PDPs). The PDP optimal (full) control problem
with dynamic control plus impulse control is transformed to an equivalent
dynamic control problem. The existence of an optimal full control and a
generalized Bellman-Hamilton—-Jacobi necessary and sufficient optimality
condition for the PDP full control problem in terms of the value function
for the new dynamic control problem are derived. It is shown that the
value function of the original PDP optimal full control problem is
Lipschitz continuous and satisfies a generalized quasivariational inequal-
ity with a boundary condition. A necessary and sufficient optimality
condition is given in terms of the value function for the original full
control problem.

1. Introduction. This paper deals with optimal impulse control of piece-
wise deterministic Markov processes (abbreviated PDPs). Such processes,
first explicitly introduced by Davis (1984), are continuous time homogeneous
Markov processes consisting of a mixture of deterministic motion and random
jumps. The optimal control theory of PDPs has been developed by Vermes
(1985), Davis (1986), Soner (1986), Dempster (1991), Dempster and Ye (1990,
1991, 1992) and Ye (1990). The optimal stopping problem for PDPs has been
studied by Gugerli (1986) and Costa and Davis (1988). The optimal impulse
control problem for PDPs has recently been studied by Gatarek (1990, 1991,
1992), Costa and Davis (1989) and Lenhart (1989). In their papers, the
optimal PDP impulse control problem is formulated as follows. At a stopping
time 7, the state is moved from x to x + ¢ € E° (c R"), the interior of the
state space of the process, with impulse £ € U C R" and a cost c(x, £) is
incurred when the impulse ¢ is applied while the process is in state x. An
impulse control (strategy) m is a sequence of stopping times and impulses,

™= {71»§1»72»§2,~--},

where 7, > © almost surely as i — «. The controlled PDP x" satisfies
x"(¢v)) =x"(7]) + ;.
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The associated expected cost to be minimized is
J () = !Ex[fme"”lo(x”(t)) dt + ) e ie(x"(77), &)
0 i=1

To solve this optimal impulse control problem, Costa and Davis take the
value improvement approach while the others take the (quasi-) variational
inequality approach.

Since we will relate our approach to quasivariational inequalities, we now
illustrate this latter approach. Under certain assumptions, Gatarek (1990,
1991, 1992) and Lenhart (1989) characterized the value function as the
unique viscosity solution of the following quasivariatioal inequality:

(1) (AV -8V +1) A(MV—-V)=0 forxeE°,
(2) V(x) = onV(y)Qa(dy;x) for x € JE,

where E° and JE denote respectively the interior and the boundary of the
state space E of x”,

AV(x) = VV(x)f(x) + /\(x)on(V(y) - V(%)) Qy(dy; x)

and
MV(x) = viélg{c(x,v) + V(x +v)}.

The approach taken to the optimal PDP impulse control problem in this
paper is different from the approaches in the previous literature in two
respects: the very general formulation of the problem and the characteriza-
tion of optimality given.

By applying an impulse control action v in state x, instead of being moved
to state x + v € E°, the state x will be moved to state y € E°, which is a
random variable with a given transition measure @;(:; x,v). Since a deter-
ministic change to state x + v can be considered to be a random variable
with distribution 1.,,,(), the 1-atom measure concentrated on x + v, our
problem formulation generalizes the formulation of the PDP optimal impulse
control problem considered in the literature. It is similar to the concept of
interventions introduced by Yushkevich (1983) and we will therefore use the
words “intervention” and “impulse control” interchangeably. We will also call
a stopping time an intervention epoch (or moment). For each such stochastic
intervention, we will introduce a cost /;(x,v) of intervening with a control
action v from the compact set U; when the process is in state x. The
combination of @;, I, and U; allows considerable flexibility of representation.
For example, since the state space E € R" is assumed compact, we can model
the common requirement of state dependent deterministic interventions v €
U,(x) which move the process to y=x+v € E® at- cost c(x,y) >
>0 by setting @5(;x,v) = 1.,y ), l;(x,v) =clx,x+v) and
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Us == U, < zUs;(x). Further, we may introduce intervention sets F; to which
the process may always be returned by defining U;(x) == U [F; — x].

In Section 2, we formulate the PDP optimal full control problem. Unlike
the usual formulation of impulse control problems with no dynamic control,
the problem considered here includes not only impulse control, but also
dynamic control. We have also generalized the usual impulse control problem
by allowing interventions to occur even at jump epochs and at time ¢ = 0.

Other than the more general formulation, the novelty of this paper is to
transform the original PDP control problem with both dynamic control and
impulse control to a new PDP control problem with only dynamic control.
This is done in Section 3. The new problem is equivalent to the original
problem in that they both have the same expected cost, the data for the new
problem are obtained from the original problem and the control strategy
(dynamic plus impulse control) of the original problem can be recovered from
the corresponding control strategy (dynamic control only) of the new problem.
This approach was first taken by Dempster and Solel (1987) and Solel (1986)
to formulate stochastic scheduling as a PDP optimal control problem.

In Section 4, we set up the generalized Bellman-Hamilton-Jacobi (BHJ)
equation in terms of the value function of the new dynamic control problem
and provide a necessary and sufficient optimality condition for the PDP
optimal full control problem.

In Section 5, we show that the BHJ equation in terms of the value function
for the new dynamic control problem is the quasivariational inequality in
terms of the value function for the original PDP full control problem by giving
the relation between the value function for the original problem and that for
the new problem.

2. The PDP optimal full control problem. First we give a precise
definition of a PDP. Let E C R” be a state space with nonempty interior E°
and smooth boundary. We shall assume that there exists a point x, € E°
from which E is star-shaped and that lines [x,, z] C E intersect the bound-
ary JE at a unique point.

More generally, E may be taken to be a union of sets in R", or even
manifolds, whose boundaries have suitable smoothness properties. In the
practically important situation in which the state space is a (possibly count-
ably infinite) union of disjoint bounded sets in R”, it is sufficient that each
such component have the strongly star-shaped property assumed here for E.
(We shall make use of this straightforward extension in Section 3 in order to
keep the running cost of our transformed problem bounded.) Indeed, this
property is required only to ensure that the boundary jump cost defined on
that portion of JE in each component set can be extended in a Lipschitz
continuous manner to the entire set so that the value function of the
underlying deterministic control problem [see Dempster and Ye (1991)] de-
fined on each component is Lipschitz continuous on it. In the case of mani-
folds, the strongly star-shaped property is required for the pre-image of the
atlas of smooth local coordinate maps for each disjoint piece of the manifold.
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A piecewise deterministic process (PDP) taking values in E is determined
by its three local characteristics:

1. A Lipschitz continuous vector field f: E — R", which determines a flow (or
integral curve) ¢(¢, x) in E such that for ¢ > 0,

aitd)(t,x) =f(¢(t, x)), ¢(0,x) =x forall x € E°.

With the convention inf( := «, we define the boundary hitting time
(3) t«(x) =inf{¢ > 0: ¢(¢, x) € JE}.

2. A jump rate A: E° > R, = [0,) such that for each x € E° there is an
€ > 0 such that

(4) jOEA( é(s, x)) ds < o,

that is, the process does not manifest point (jump) explosions. (In the
sequel we will, for simplicity, assume A bounded.)

3. A transition measure Q: E° U I'* — P(E°), where P(E°) denotes the set of
probability measures on E° with the relative weak* topology and

5) I'“:={2€0E:3t>0,3x€E%st. 2 = ¢(¢, x)}

denotes the active boundary which flows may reach. Note that on reaching
I'™* the process necessarily jumps back to E°.

From these characteristics a right-continuous sample path x, of the pro-
cess {x,: ¢ > 0} starting at x € E° may be constructed as follows. Define
x, = ¢(t, x) for 0 < t < T, where T} is the realization of the first jump time
T, with generalized negative exponential distribution determined by

P[T, >¢t] = eXp[_fot)‘(d’(s’x))ds]’ t<t.(x),
0, t>t,(x).

Having realized T, = T, [possibly at T, = ¢, (x)], we have xp-= ¢(Ty, x) and
the post-jump state xp, has distribution given by

P,[xy, € AT, = T\] = Q(A; ¢(T}, x))

on the Borel sets A of E°.

We may now restart the process at Xp = %7, according to the same recipe,
and proceeding recursively we obtain a sequence of jump time realizations
T,,T,, ... between which x, follows the integral curves of f. Considering this
construction as generic yields the process {x,: ¢ > 0, X, = x} and the sequence
of its jump times T, T,,.... Our jump rate assumption (4) implies that
P,[T,,, > T,]1 =1 and we now further assume that P,[T, 1] = 1 for all
x € E°.

As shown by Davis (1984), {x,} is a temporally homogeneous strong Markov
process with right continuous, left-limited sample paths.
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The dynamic control problem arises when the local characteristics f, A, @
of {x,} depend on a control action v from a compact set U. We assume that
velUy,cR™ if x€E° and v e U,cR! if x € JE. Therefore, we shall
distinguish the transition measure @,(dy; x,v), for x € E°, v € U,, describ-
ing jumps from interior points, from @,(dy; x,v), for x € JE, v € U,, describ-
ing jumps from boundary points.

Impulse control is required if one wishes to take actions which can cause
an immediate change in the state of the process (i.e., a jump). We shall term
the times that such a decision is taken intervention epochs and denote them
by {7;}. At an intervention epoch, upon applying an impulse control v € U; C
R*, the state x is moved to state y, which is a random variable with
intervention transition measure @;(dy; x,v) and the process restarts at y as
before.

We make the following assumptions throughout:

(A1) The control sets U, U, and U; are compact.

(A2) The vector field f: E X U, » R™ is bounded, continuous and
Lipschitz continuous in x € E uniformly in v € U,,.

(A3) The jump rate A: E° X U, - R, is bounded, continuous and Lips-
chitz continuous in x € E° uniformly in v € U,.

(A4) The map Q,: E° X U, —» P(E®) is bounded, continuous relative to the
weak* topology on P(E°) and Lipschitz continuous in x € E° [i.e., for all
6 € C(E®) the map (x,v) = [z 0(y)Q,(dy; x,v) is continuous and Lipschitz
in x] uniformly in v € U,. The map @, is bounded, continuous and Lipschitz
continuous in x € JE uniformly in u € U,. The map Q;: E X U; » P(E®) is
bounded, continuous and Lipschitz continuous in x € E uniformly in u € U.

An interior control is defined by u.(7,, z,) where u,: R, X E® > U, is a
(separately) measurable function, 7, is the time elapsed since the last jump
(either a process jump, i.e., a jump determined by the local characteristics of
the process or one caused by intervention) and z, is the post-jump state (i.e.,
the state at the last jump time). Interior controls are piecewise open loop in
that at each jump time T' and post-jump state z, we choose a measurable
function ¢t — uy,(2) == u (¢t = T, 2) € U,.

A boundary control is a measurable feedback function u,: JE — Ui,.

A dynamic control is a pair (u,, u,) involving an interior control and a
boundary control.

An impulse control involves a sequence of stopping times {7,};_, adapted
to the filtration &, = o{x,; s < t}, where by convention 7, := 0, and a se-
quence of impulse control actions {u;(x, );_o, where u;: E - U; is measur-
able [cf. Costa and Davis (1989)].

An admissible (full) control policy u involves both a dynamic control and
an impulse control. We denote the set of admissible control policies by &.
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We also make the following assumptions in the sequel:
(A5) For any admissible (full) control », P¥[lim, T, = «] = 1for all x € E.

(A6) The running cost l,: E° X U, —» R, is nonnegative, bounded, contin-
uous and Lipschitz continuous in x € E° uniformly in u € U,. The boundary
(jump) cost l;: 9E X U, » R, is nonnegative, bounded, continuous and
Lipschitz continuous in x € JE uniformly in v € U,. The intervention cost
ls: E X Us —» R, is bounded away from 0 below, bounded above, continuous
and Lipschitz continuous in x € E uniformly in v € Uj.

The PDP optimal (full) control problem is to find an admissible (full)
control u such that the expected cost

To(u) = By| [ exp(=86)lo(x,, uo(7, 2,))

(6) + ) exp(—8T,)l, (XT;’ Uy (XT;))I(ka- c 0E)

Ty # 7

+ Z eXp( - 8Tk)l6(x'r;’ uB(x'r;))
k=0

is minimized, where 7, represents the time elapsed since the last jump, z,
represents the post-jump state, 8 > 0 is the discount factor, I, denotes the
indicator function of the event {-}, T, is a process jump epoch and 7, is an
intervention epoch.

Finally, we define the value function V: E - R, of the PDP optimal
control problem by

V(x) = inf J, (u)
ue®
for all x € E.

3. Reduction to a new problem with only dynamic control. First
we shall reformulate the PDP optimal full control problem in terms of a
different implementation of impulse controls.

Due to the (strong) Markov nature of PDPs and by the definition of
stopping times [cf. Davis (1976)], for any stopping time T there exists a
sequence of nonnegative random variables r, such that:

1. r, is 3 measurable for n = 0,1,2,....
2.7=Xlg <.cn, T, +1,) AT,,,;, where T;,T,... is the sequence of
jump times of the (controlled) PDP.

Consequently, by specifying after each jump (either a process jump or a jump
caused by an intervention) a time remaining to intervene t' > 0 (r,), which
diminishes at unit rate as process time evolves, any realized stopping time
re€(T,,T,, ] is either the time when ¢ = 0, provided no process jump has
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occurred (this corresponds to the case where T, + r, < T,,,), or the jump
epoch, if a process jump has occurred with ¢ > 0 (this corresponds to the case
where T, +r, > T, ).

Therefore, impulse control strategies can be implemented as follows. For
each possible pre-jump state x € E° of the process, a post-jump time remain-
ing to intervene ¢'(x) > 0 (in the absence of a process jump) is specified which
subsequently diminishes at unit rate with the evolution of (process) time.
Provided no process jump has occurred previously, an impulse control action
is applied whenever ¢’ = 0, and at each jump epoch a decision is made as to
whether or not to intervene. Having implemented interventions in the way
we have just described, we can reformulate the PDP optimal full control
problem as follows.

The PDP optimal full control problem is to find an admissible full control «
which involves both a dynamic control and an impulse control (policy)
(ug,t"), which specifies for each (pre-jump) state x € E a (post-jump) time
remaining to intervene ¢'(x) > 0 (i.e., a measurable function ¢': E — (0,«])
and an intervention control action us(x) [i.e., a measurable intervention
control function us: E — U;) which influences the (given) intervention transi-
tion measure @Qz: E X Uy, » P(E®)] so as to minimize the expected cost (6),
where 7, 7,, 75,... now denotes the sequence of stopping times correspond-
ing to the impulse control (u,, ¢') (and 7, := 0 by convention).

If we now compare a boundary control with an impulse control, we find
that they both move a process instantaneously to a new state chosen accord-
ing to the transition measures @, and @;, respectively. The difference is only
in the timing. A boundary control action is applied whenever the process hits
the boundary of the state space, while an impulse control action is applied at
intervention epochs. To reduce impulse controls to boundary controls, it is
sufficient to embed the original process in a new process in such a way that at
intervention epochs of the original process the new process will hit the
boundary of the new state space.

It is obvious that if we let ¢’ be one of the coordinates of the state of the
new process, the new process will hit the boundary of the new space when
t' = 0 since 0 is an end point of the interval (0, «).

However, in the case when the process jumps while ¢ > 0, that is, an
ordinary interior jump, a natural question to ask is how to embed the original
process so that the new process will hit a piece of its state space boundary at
this time. The idea here is to use a fictitious time construction, following
Yushkevich (1983, 1987) and Dempster and Solel (1987). We consider an
ordinary interior jump to be an interior jump of the new process. In this
event, the new process jumps to a state where all the coordinates are kept
constant except for ¢’, which is set equal to —5, an interior point of the
fictitious time interval (—6, —4). Fictitious time then runs backward until it
hits the boundary at ¢ = —6, at which time we decide whether or not to
intervene.

To be consistent, we let fictitious time run (backward) after both jump
epochs and interventions. Thus we can distinguish two kinds of boundary



406 M. A. H. DEMPSTER AND J. J. YE

states for the new process: boundary states at which we can decide whether
or not to intervene and ones at which we always intervene. Thus we define
the state space for fictitious time as a union of two disjoint time intervals
(-6, —4) U (-3, —1). In the case when #' = 0, the new process will jump to a
state where all the coordinates are kept constant except ¢', which is set equal
to —2, an interior point of the fictitious time interval (—3, —1). When the
new process hits the boundary # = —3, an impulse control action is taken.

Due to the use of fictitious time, the new process time increases one unit
for each intervention and each process jump. To calculate the original
process time, we must therefore keep track both of the number of original
process jumps and the number of interventions. We shall also find it conve-
nient to use these state variables to index the countable partition of the state
space of the new process referred to in Section 2.

We must also keep track of both the post-jump state and the time elapsed
since the last jump for the original process because interior control depends
upon them.

We now give the precise formulation. Define from the given controlled
process X, a new controlled process X, with state

(7N £:=(x,2,7,t',m,n),

where x is the state of the original process, z is the post-jump state of the
original process, 7 is the time elapsed since the last jump of the original
process, t' is the time remaining to intervene or fictitious time and m and n,
are, respectively, the number of interventions and the number of original
process jumps up to the present process time s.

If a strategy under consideration does not specify a next intervention
decision time, we need to take #' to be «, but we will instead take ¢ = —8.
Therefore, the new process X, evolves in a new state space defined as follows:

E° = CJ (E° X E° X T X T' X {m} x {n})

m,n=0

U G (JEXE°X T x [(—6,—4) U (-8,-1)] X {m} X {n}),

m,n=0

where
T = (0,%),
T'=(-»,-T7T)U(-6,-4)U(-3,-1) U (0,).

The active boundary of the new state space is

I = D (E°XE°xTx [{-6} U{-3} U{0}] x{m} x{n})

0
U C):o(l“* X E®x T x [{—6} U{=38} U {0}] x {m} x {n}),
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where I'* is the active boundary of the original state space E as defined by
(5).

Denote by {x, € E°: t € T} the original process and by (%, € E% seS)
the new process, where the original time set T is called the real time set and
S is termed the (new) process time set. Then real time ¢ in the new process is
represented implicitly in terms of (new) process time s as #(s) =s — (m, +
ng + 1) due to the fact that the new process time increases one unit for each
intervention and each process jump and the new process must be run for one
unit of fictitious time to allow the possibility of intervention in the original
process at real time ¢ = 0.

Since the time remaining to intervene and fictitious time ¢’ runs backward
at unit speed and all coordinates but fictitious time are kept constant while
fictitious time is running, the dynamics of the new process are as follows:

In E°XE° X T X [(—», =7) U (0,%)] X {m} X {n},
& =f(xg,uo(7,2,)), 2,=0, 7,o=1, f=—1.
In[E°UJE] XE° X T X[(—6,—4) U (-3, — 1] X {m} X {n}
i,=0, 2,=0, =0, {#=-1

While a trajectory of the original controlled process x, starting at x,
proceeds with time ¢, the corresponding trajectory of the new controlled
process %X, taking values in the state space E with dynamics defined as above
proceeds with time s in the following way.

The new process X, starts at the initial point (x,, x4,0, —2,0,0) at time

= 0 and goes in fictitious time to (x,, x4, 0, — 3,0, 0), which is a boundary
point of E® X E® X T' X (=3, —1) X {0} X {0} at s = 1.

If an impulse control action u, is applied, the original process jumps to
x; chosen randomly by the transition measure Q,(‘; xy,u;,) and ¢; is set.
Otherwise, Q;(-; x¢,u;) = 1, and ¢, is set. This formulation thus allows
impulse control action to be taken even at time ¢ = 0. The new process jumps
to either (x§, x¢,0,ty,1,0) or (x,, xy, 0, t;, 1,0), which are interior points of
E°XE°X T X T x {1} X {0} and in the first case an intervention cost of
I5(xg, us (x9)) > 0 is incurred, while otherwise 0 cost is incurred. After the
first jump the new process continues its motion described by the integral
curves until one of two possible cases occurs at real time ¢ or process time
s=t+ 1:

1.¢=0.
2.t >00r ¢ < —8 and ¢ is a jump epoch (either an interior jump or a
boundary jump).

In case 1, the new process hits the boundary. It jumps to
(%, 28,7, —2,1,00 EE° X E® X T X (=3, -1) X {1} X {0} or JE X E° X
T X (-3, —1) X {1} X {0} depending on whether x,-€ E° or x,-€ JE.

In case 2, if x,-€ E°, the new process has an interior jump to
(%,-, x$, 74~ —5,1,00 € E* X E® X T X (=6, —4) X {1} X {0}. If x,-€ JE, the
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new process hits the boundary. It jumps to (x,-, x{, 7,-, —5, 1,0) which is an
interior point of JE X E° X T X (—6, —4) X {1} x {0}.

In both cases, the new process will continue along the appropriate integral
curve until # = —3 in case 1 or ¢’ = —6 in case 2 at which point it will jump
using the given control strategy to a new state in which #' € (0,%) or
t'=—-8¢€ (-, —17).

In case 1, the original process jumps under an impulse control action u;
from x,- to x, according to the transition measure Q;(:; x,-, u;). In case 2,
the original process jumps optimally under either an impulse control (as in
case 2) or under an ordinary control, according to the appropriate transition
measure Q(; x,-, uy(7,-, 7)) or Q,(;; x,-,u,(x,-)), so as to minimize the
relevant remaining expected total cost. In the first instance, a cost
e ?'l(x,-, us(x,+)) is incurred, while in the second instance, a cost 0 or
e %1 ,(x,-, uy(x,-)) is incurred according as the process enjoyed an interior or
a boundary jump.

Note that in all cases, whether or not an intervention is dictated by the
control policy, the state variable of the original process jumps to a point in
E° In case 1, the process restarts again from the interior point
(x,, x,,0,¢,2, 0). In case 2, the process restarts again from the interior point
(x4, x,,0,¢,2,0) or (x,, x,,0,#,1,1) depending on which action (impulse or
not) takes place.

It remains to define the control sets U0 and U, admissible controls
& = (&,,4,), the jump rate A and the transition measures QO, Qa so as to
ensure that the new controlled process proceeds in the way described above.
The new control sets U0 and U, to be defined below will also be compact.

Since the new process undergoes an interior jump only when it is an
interior jump epoch of the original process and ¢ > 0, the interior control set
of the new process can be taken to be that of the original process, that is,
U, = U,. The new jump rate is

Mx,u), ifR€E°XE°XT
A&, = X[(0,%) U (=%, =T)] X {m} X {n},
0, otherwise.

When the new process has an interior jump, we want it to jump to the
state with all coordinates kept the same except that fictitious time is set to
—5. Therefore, the new interior jump transition measure is given by

Qo('; %)
Losr-smn(), f2€E°XE'XT
= X[(—, =7) U (0,%)] x {m} X {n},
1(4), otherwise.
The new boundary control set is defined as

U, == (Uy U U, U Uy) X Uy,
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where U, = [0,©) U {—8} is a one point compactification of [0, ). It is thus a
compact separable metric space. R .
An admissible boundary control is a feedback function @,: JE — U, such
that
Us X Uy, if € E°XE°XTx{—-38} x{m} x{n},
4,(2) €{[U;uU,] x U, if € JEXE° X T X {—6} X {m} x{n},
[Us U {uo(7,2)}] XU,, if£€E°XE°XTx{-6}x{m} x{n}.

The boundary jump transition measure Qa is defined as follows:

Qa('; -7?:, 12.;)

L r 2 o) ift€EXE°XT
x{0} x {m} x {n},
Lo or 5. if 2 € OE X EOX T
X[(0,) U (=, =7)]
x{m} X {n},
1,0(d2)Qs(dy; %, us)lg v s 1, n); ifX€EXE’XT

X{—=38} X {m} X {n}

and &, = (u;, t'),

l(y)(dZ)Qo(dy; X, uo('T, 2))1(0,t’,m,n+1)(')’ if £ EO X EO xXT
= x{—6} X {m} X {n}
and 4, = (uy(7, 2), t'),

1,,(d2)Q;s(dy; %, us)1g ¢ m 1, (s if£t€E°XE°XT
X{—6} X {m} x {n}

and 4, = (us, t),

1,(d2)Q,(dy; x, u; )1 4y ns1(); if£€dEXE*XT
x{—-6} x {m} X {n}

and &, = (u,,t),

1,(d2)Qs(dy; x,us)1 g v i1, ), if£€dEXE’XT
X{—6} X {m} X {n}

and @, := (ug,t').

We have now finished the construction embedding the original process in
the new process.

Next we identify cost functions for the new problem so that it has the same
expected total cost as the original problem.

Arrange the jump epochs T; and the intervention epochs =, of the original
process in increasing order (on each of its sample paths) and denote the
resulting sequence of (combined) epochs by {T}}. Since an intervention (per-
haps trivial) must occur at ¢ = 0, this sequence of epochs will begin with
TE = 0.

From the construction of the new process, we can see that the new process
jumps twice as often as the original process. Due to the unit increase in new
process time for each original process jump, the jth jump epoch T; of the new
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process can be obtained from the (combined) epochs of the original process as
follows:

g - T* + i, ifj=2iandi=0,1,2,...,
(8) I\ TF+i+1, ifj=2i+1landi=0,1,2,....

In other words, the 2ith jump epoch of the new process corresponds to a
pre-jump or intervention epoch of the original process and the (2i + 1)st jump
epoch of the new process corresponds to a post-jump epoch of the original
process, i = 0,1,2,... . These epochs are of course only infinitesimally dif-
ferent in real (original process) time.

Now rewrite the expected total cost of the original problem as follows:

J(u) = [Zf " _atlo(xt’uo("'t’ t)) dt
(9) ~
|

where

la(xT;, ua(th—))I(xT‘_ comy i T* =T for some j € N,

l~ x—, U * = =
(xT.- (X )) la(xfp ua(xn_))’ if T* = 7; for some j € N.

For T <t < Tf ,, setting ¢t == s — (i + 1), we have

T
fT* exp( —6t)lo(x,, ug(7,2,))dt

i

T* ,+G+1) .
= fT ' eXP(_3(3 -+ 1))l0(xs—(i+1))’ uo(Ts—(i+1)a zs—(i+1))) ds

*+@E+ 1)

Toiy
—/ **2 exp( —d8s) exp( (i + 1))l0(xs +1y Yol T (i+1)7zs—(i+1))) ds.

2l+1

Since T;* is the (i + 1)st jump or intervention epoch of the original fully
controlled process (due to the fact that a, perhaps trivial, intervention
necessarily occurs at ¢ = 0), the original PDP x, has i + 1 combined epochs
before t € [T;*, T ;1. Therefore, if we define the new running cost function £,
for v € U, as

ea(m+n)l0(~x’v), ifTeE°XE"X T X [(—00, —7) U (0,00)]
y(2,0) — x{m} X {n},

0, otherwise,
we have

szm “Ofo(%,, Go(%,, 5,)) ds = 0
T2l
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and

i A T*
sz”ze_sslo(;fx ylo(%,,2,)) ds = f =0t (x,, uo(T,, 2,)) dt.
T2i+1 T'l*

Consequently, we have

— (T _
)y /T e (%, uo(Ty, 2,)) dt
i=0

*
i

*® N
_ Z A7'2;+1e—8s[0(g’és, 120('?'8, és)) ds

i=0" T
(10) L
+ X [Tt lo(,, d0(% 2,)) ds
i=0 T21+1

o A
=/;e'83l0(£s,120(€-s,23)) ds.

Moreover, [, as defined remains bounded by virtue of (A6) on each of the
countable number of components of the state space of the new process
indexed by (m, n). Similarly, from (8), we have for (9),

exp(—‘o‘Ti*)l-(fo—,ﬁ(fo—))
= eXP(—3T2i+1) exp(8(i + 1))i(fo‘,a(fo'))

and x, has i combined epochs before T;*". Therefore, if we define the new
boundary cost function [/, as

I,(%,4,)
exp(8(m +n +1)),(x,u,), if £ JEXE°XTx{-6}
x{m} x{n} and @,= (u,,t'),
exp(8(m +n +1))l;(x,u;), ifx€IEXE’XT
x[{=3} U {-6}] x{m} x{n}
and 4, = (us,t'),
0, otherwise,

we have
exP(_5T2i)fa(£T5,’ ﬁa(’efz',))l(ff—z,.em =0
and
exp(—8Ty;.1) 0, (81, 85(15,,)) e, . - < omy

= exp(~ 8T [(xgp-, @ 275-)).
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Consequently,

©

2L exp( — 8T ) {(ps-, @ %75-))

(11) =
=Yy exp( ST)Z (xT- ua(xT ))l(aefj_eaﬁ)-

j=1

Let C denote the set of all admissible dynamic control policies for the new
dynamic control problem. Then the new PDP optimal control problem is to
find an optimal control among all admissible dynamic controls 4 :
(&, 14,) € C such that the expected total cost

(%) =E [f exp(— 3s)lo(xs,u0(€'3,zs))d8

A

+ L exp(= o)l (Re, (1) Dgy,- < om)

is minimized. Here %, = (x,, x,,0, —2,0,0).

We conclude from the equalities (9), (10) and (11) that the expected cost of
the new problem is the same as that of the original problem.

We end this section with an example illustrating the construction of the
new boundary controlled process from an original (only) impulse controlled
process.

EXAMPLE. A repair/maintenance model [cf. Costa and Davis (1989)]. Sup-
pose x, represents the cumulative degree of damage to a machine at time ¢.
This increases at rate f(x) when the degree of damage is x, and also
discontinuously due to independent random shocks which occur at Poisson
times and have some known distribution function G.

The intervention strategy is to replace the machine (i.e., set x, to 0) when
the cumulative damage first exceeds some fixed level x,,,. (Of course, this
could happen either at a shock time or between shocks; see Figure 1). There
may or may not be some delay in machine replacement.

Since there is no dynamic control in this case, we can take the new state
space to be E=uUyU> = o(E® X T" X {m} X {n}), where T" is defined as above.

While the traJectory of the original impulse controlled process x, starting
at x, proceeds with (real) time ¢, the corresponding trajectory of the new
process X, taking values in the new state space E proceeds with (process)
time s in the following way.

The new process starts at the initial state (x,, —2,0,0) at time s == 0 and
goes in fictitious time to (x,, —3,0,0) which is a boundary point of E° X
(—-3,-1) x {0} x {0} at s = 1.

Set the time remaining to intervene (i.e., the time remaining to replace the
machine provided no random shocks have occurred) #' := ¢, the time at
which, starting from the initial damage level «x,, the cumulative damage will
first exceed x,,, at t = t{, that is, such that [&f(x)dx + x, = x,,,, provid-
ing no random shocks occur before time ¢, and let the impulse control action
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Cumulative
damage =

zmax

AL

- - -
AN

| ¢, T, T; time ¢
| T
1st 2nd
Intervention Intervention
Time Time
Fic. 1.

be equal to zero. This is equivalent to taking a new boundary control
2, = (us,t') = (0, ¢;). Under this boundary control action, the new process
jumps to (x,,%,,1,0) € E®° X T" X {1} X {0} and, if (as shown in the figure)
there are no shocks before ¢ = t{,, continues its motion until it reaches the
state (x,,,,0,1,0) which is a boundary point of E° x T" x {1} x {0}. At this
boundary point, the new process has an uncontrolled boundary jump to
(X pax> —2,1,00 € E® X (=3, —1) X {1} X {0} and goes in fictitious time to
(%2> —3,1,0) which is a boundary point of E° X (-3, —1) X {1} X {0}. Ap-
plying the boundary control action 4,:= (—x,,,,%;), where ¢ satisfies
%0 = J&f(x) dx, the new process £, jumps to (0,¢,2,0) € E® X T" X {2} X
{0} and continues its motion until it reaches the state (x,-, #; — (T, — ¢{),2,0)
at the first jump time ¢ = T, or s = T, + 2. The process %, then takes an
interior jump to (xr;, —5,2,0) € E° x (-6, —4) x {2} X {0} and runs in fic-
titious time to (xp_, —6,2,0), which is a boundary point of E°x(-6,—4) X
{2} x {0}. Applying the boundary control action &, := ¢} (i.e., do not intervene),
where x.,, = [§2f(x)dx + 27, the new process jumps to (xp,%5,2,1) €
E° x T" x {2} x {1}, where xp, is determined by the distribution function G.
The new process X, again continues its motion until it reaches the state (x7,,
thy — (T, — T)),2,1) at the second jump time ¢t =T, or s = Ty + 3. It then
takes an interior jump to (xr;, —5,2,1) and proceeds in fictitious time to
(xTz-, —6,2,1), a boundary point. Applying the boundary control action &, =
(—x7;,t3) (ie., intervene to replace the machine), where t3 == ¢ [ie., xpa, =
/& f(x) dx], the new process jumps to (0, t3,1) and restarts again from this
interior point.
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This example shows that three possible cases can occur (see Figure 1):

. At time ¢, ¢’ = 0 and we intervene to replace the machine.

. At time T}, a jump epoch, a decision is made not to intervene.

. At time T,, a (second) jump epoch, a decision is made to intervene and
replace the machine.

WN =

A machine replacement delay—possibly independent random with a com-
mon known distribution function—together with a penalty for cumulative
wear X, exceeding x,, is an extension easily incorporated within the
framework of our theory, as is the optimal setting of x,,, itself.

4. Necessary and sufficient optimality conditions for the PDP full
optimal control problem. The purpose of this section is to give general-
ized BHJ necessary and sufficient optimality conditions for the PDP full
control problem. To this end, make the following further assumptions.

(A7) There exists a > 0 such that for all x € JE and all v € U,,,
(12) F(x,0) -n(x) > a >0,

where n(x) is the unit outward normal to JE € R" at the point x € JE and -
denotes inner product.

Assumption (A7) postulates that when the deterministic controlled flows
get sufficiently close to the boundary, they must hit the boundary in finite
time by virtue of requirement (12) that on the boundary the corresponding
field element makes an acute angle with the unit outward normal. (Any other
similar condition implying this finite boundary hitting time property would
suffice.)

(A8) The set

Ny(x) = {(f(x,u)', Max,u),l): 1> 1(x,u)

+A(x, u)fEOO(y)QO(dy; x,u),u € UO}

is convex for all x € E°, § € C(E®), where the prime denotes transpose.

This assumption is made only in the interests of clear presentation to
obviate the necessity for considering relaxed or generalized control policies in
cumbersome detail.

(A9) The jump rate satisfies
(13) inf AM(x,u) +8> )%,

xe€E°
ueU,

where A° = sup, , ¢ go ey, (x —y)Y(f(x,0) = fly,v)/lx - ylI%.
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In Section 3, we have transformed an original fully controlled PDP process
starting at x == x, to a new dynamically controlled PDP starting at % :
(x9, 29,0, —2,0,0). In order to use the dynamic programming approach, we
embed the new optimal control problem with initial state (xo, %y,0, —2,0,0)
in a famlly of optimal control problems obtained by varying the 1n1t1al
condition % € E. For any % = (x, z,7,t',m,n) € E, the new process starting
at & is constructed from the original process in exactly same way as we did
for & = (x,, %,,0, —2,0,0) except that at the new process time s = 0, the
original process has m interventions and n jumps, the post-jump state is z,
the time elapsed is 7 and the fictitious time is #. We can then define the
value function for the new dynamic control problem by

V(&) = mind,(2) forany % € E.
ael

Since value functions are in general not smooth even for deterministic
processes, V does not satisfy the Bellman—-Hamilton—-Jacobi equation in the
conventional sense. By replacing the conventional gradient in the BHJ equa-
tion with an appropriate minimum element in the Clarke generalized gradi-
ent, we have given a necessary and sufficient optimality condition for the
PDP dynamic control problem in terms of the resulting generalized BHJ
equation in Dempster and Ye (1992).

To apply results in Dempster and Ye (1992), we next introduce some
definitions of nonsmooth analysis which we will need. The reader is referred
to Clarke (1983) for more details.

Let Y be a subset of a Banach space X. Let ¢: Y — R be Lipschitz near a
given point x and let d be any vector in X. The generalized directional
derivative of ¢ at x in the direction d, denoted ¢°(x, d), is defined as follows:

¢°(x;d) = limsup [$(y + td) — ()] /2,

yox
tl0
where y is a vector in X and ¢ is a positive scalar.
Denote by X* the dual space of X. The generalized gradient of ¢ at «x,
denoted by d¢(x), is the subset of X* given by

op(x) = {{' € X*: $°(x;d) > {'d forall d € X}.
If ¢ is smooth, 9¢(x) reduces to the conventional gradient.
If ¢ is continuous and convex, the generalized gradient coincides with the

subgradient of convex analysis.
The function ¢ is said to be regular at x provided:

1. For all directions d, the usual one-sided directional derivative &' (x;d)
exists.
2. For all d, ¢'(x;d) = ¢°(x; d).

A function ¢ is called regular if it is regular at all x € Y.

The following theorem gives the existence of an optimal full control charac-
terization of the new value function V(%) and a necessary and sufficient
condition for optimality.
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THEOREM 1. Under assumptions (A1)—(A9), there exists an optimal full
control which solves the PDP optimal full control problem and the value
function V(2) of the equivalent transformed process X, is a Lipschitz continu-
ous solution of the generalized BHJ equation on E° given by

min {¢'(f(,v),0,1,-1)
¢'edV(R)
vel,
(14) +/\(x,v)[‘7(x,z,'r,—5,m,n) —V(fc)]
—8V(&) +e¥™Miy(x,v)} = 0,
VEREEXE*XT X [(—»,=T7) U (0,%)] X {m} X {n},

min {£(0,0,0, —1)} — 8V(Z) =0,
(15) £'e9gV(g)

Vie[E°UJE] XE* X T X [(—6,—4) U (-3, -1)] X {m} X {n}

(corresponding, respectively, to real and fictitious time interior evolution),
with boundary conditions

V(fc) = min {e's(m“‘”)ls(x,v) +f V(y,y,O,t’,m + l,n)Qs(dy;x,v)},
veUs E°

t'e Uy
(16) V€ [E°UJE] XE® X T x (-8} x {m} X {n},
V(#) = min {e's('”+”“)l8(x,v) —/ V(y,y,0,t,m + l,n)Qs(dy;x,v)}
veUs E°
t'eU,
(17) A min {f V(y, y,0,t',m,n + 1)Q,(dy; x, uy(7, z))},
teUy \E®

Vi€ E'XE°XTX{—-6} X {m} X {n},

V(%) = min { edmin+ Dl (x,v)

+f V(y,y,O,t’,m,n + l)Qa(dy;x,v)}
EO

(18) .
A min {e's('”+n+1)l§(x, v) +f OV(y, y,0,¢,m+1,n)Q;(dy; x, v)},
E

veUs
t'eUy

Vi€ dEXE®XTx{—-6} x{m} X {n}.

[These three boundary conditions for the Dirichlet problem for the generalized
BHJ equation, characterizing optimality for the transformed dynamic control
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problem in terms of its value function, correspond to ( potential) interventions,
respectively, at nonjump epochs, interior jump epochs and boundary jump
epochs of the original fully controlled process.]

A full control u* is optimal if and only if the interior control action u}
achieves the minimum in the generalized BHJ equation (14) and (15) in the
sense that for each possible post-jump state of the new process 2 :
(2,2,0,t',m,n) €E* X E* X T X [(— , 1) U (0,9)] X {m} X {n} and for all
¢ e aV(qS“ (z)) [there exists ¢ € aV(d;" (%)) achieving equality provided
that V is regular],

E(f(4(2),u$,(2)),0,1, =1) + A" (2), ud,(2))
X [V(d),“*(z),z,'r, -5,m,n) — V(d),“*(z), z,T,t' —7,m, n)]

- 8‘}((#:.‘*(2) 3y 2, T, t'— T,m, n) - ea(m+n)l0(¢:t*(z), ug‘r(\z)) =0
aere [0,t¥(2) A],

where ¥ (z) is the flow of the original problem, qS" "(8) = (¢” (x), x,7,t —
7, m, n) denotes the flow of the new process and for every £ € '*, the bound-
ary control and impulse control actions achieve the minimum in the boundary
conditions (16), (17) and (18). In other words, whenever t' = 0, we intervene
by choosing an impulse control action u} € U; and a time remaining to
intervene t'* such that the right-hand side of (16) is minimized. Whenever
t'>0 (or —w <t' < —8) and there is a process jump, we either let the
process jump and choose the time remaining to intervene t'* if the second term
in the right-hand side of (17) is the minimal value or otherwise intervene by
choosing the impulse control action u} € U; and a time remaining to inter-
vene t'*. Whenever t' > 0 (or —» < t' < —8) and the original PDP reaches
the boundary of the state space, we either apply the boundary control action
uj € U, and a time remaining to intervene t'™* if (u%,t*) achieves the
minimum in the right-hand side of (18) or otherwise intervene by choosing the
impulse control action u} € U, and the time remaining to intervene t'*.

REMARK. We do not have the uniqueness result for the solutions for the
generalized BHJ equation, as in Dempster and Ye (1990, 1991, 1992), since
the new state space E is not bounded.

ProoF. Notice that the new state space is a union of sets indexed by
(m, n). Although the control theory for the PDP optimal dynamic control
problem developed in Dempster and Ye (1992) is stated for the case when the
state space is connected, it is easy to see that the result is also true for the
general case when the state space is a union of sets with smooth boundary,
provided the problem data satisfies the appropriate assumptions on each
component of the state space. Under assumptions (A1)-(A9), it is straightfor-
ward to verify that the assumptions (A1)-(A9) of Dempster and Ye (1992) are
satisfied on each component of the state space indexed by (m, n).

The assumption in (A6) that I;(x,v) > &£> 0 for all x € E and v € U is
necessary to ensure the existence of an optimal control policy. Indeed, other-
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wise the infimum of the original fully controlled problem cost functional (6)
might be approached—but never achieved—by a sequence of impulse con-
trols involving an increasingly dense sequence of intervention times at which
the controlled process x, is reset to argmin, . 5 [min, ., 1o(2,0)] € E, (as-
suming that U; allows such interventions).

Applying the main result of Dempster and Ye (1992) to the transformed
dynamic control problem, we conclude that there exists an optimal control for
the new problem and the value function of the new dynamic problem V is a
Lipschitz continuous solution of the following generalized BHJ equation:

min {g'f(é,v) + X(é,v)fA (V($) — V(%))Qo(d9; 2
£eaV(d) E°

vel,

(19) - 8V (%) +f0(z‘,v)} =0, V2ek°,

with boundary condition

(20) V(%) = min{zj,(é,a) + [ V(9)8,(d9; 2,0 } Ve E.
vel, E° ]
We also conclude that an optimal control &* = (4f, 4}) is optimal if and
only ifforall 2 € E° and for all & € gV($¥ (2)) [there ex15ts £ € gV (%)
provided V is regular], we have

EF(SF(2),ut(2)) + A2 (2), ub,(2))
X [,(V(3) = V(#7(£)))Qo(d5; 61 (2))
— 8V(dZ(2)) + (¢ (8),ut,(2)) =0 ae.re[0,t(2)],

where #2°(2%) is the first time the flow #Z" (%) hits the boundary of the state
space E0 defined as in (3) and &} achieves the minimum in (20).

Since the PDP full control problem is equivalent to the new dynamic
control problem, we conclude from the existence of an optimal control for the
new dynamic control problem the existence of an optimal full control.

Substituting the uncareted (non-hat) counterparts into equations (19) and
(20), we obtain the BHJ equation with boundary conditions involving original
problem data (14)—(18).

Similarly, interpreting the necessary and sufficient optimality condition for
the new control problem in terms of the original problem data according to
the construction of the new process, the necessary and sufficient optimality
condition for the PDP full control problem follows. O

5. The generalized quasivariational inequality. The purpose of this
final section is to state our results in terms of the generalized quasivaria-
tional inequality for the PDP full control problem, which yields the quasivari-
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ational inequality for the problem of impulse control (only) of PDPs studied
by other authors.

To this end, we first give the relationship between the value function for
the new dynamic control problem and that for the original full control
problem.

PROPOSITION 3.  Prior to jumps of the transformed process,
V(x,2,7,—3,m,n) = exp(8(m + n + 1))V(x) (intervention),
V(x,z,7,-6,m,n) = exp(6(m +n + 1))V(x) (jump),

while post-jump we have
V(x,z,7,t,m,n) = exp(8(m + n))V(x)
fort' € (—», =7) U (0,x),

mi[l]l V(z,2,0,t',m + 1,n) = exp(8(m + n + 1))V(2) (intervention),
t'eUy

(21)

milI]l V(z,2,0,t',m,n+ 1) = exp(8(m + n + 1))V(2) (jump).
t'eUy

At an interior jump epoch T, where the interior control is optimal, we have
V(x, z,7,—5,m,n) = e‘s(’"”)f 0V(y)QO(dy; x,uy(2,7)).
E

Proor. By definition of the value function for the new dynamic control
problem, V(x, z,7,t', m, n) is the optimal cost for this transformed problem
with initial point (x, z, 7, ¢, m, n). For any initial point £ = (x, z,7, ¢, m, n),
the new process starting from (x, z, 7,¢', m, n) is constructed from the origi-
nal process in exactly the same way as we did for %, == (x,, x,,0, —2,0,0)
except that at the new process time s = 0, the original process has m
interventions and n jumps, the post-jump state is z, the time elapsed since
the last jump is 7 and the fictitious time is ¢'. Therefore, interpreting the
optimal cost in terms of the original problem data, using the definitions of [,
and [,, it is easy to see that for all ¢’ € (—», —7) U (0,»), we have

V(x,z,7,t',m,n) =e> ™MV (x).
Similarly, we have

min V(z,z,O,t’,m + 1,n) = infd (&)
t'eU, &

=exp(&(m +n + 1))V(x)

and

min V(x,x,0,¢',m,n + 1) = infdy (&)
t'eU, [

=exp(8(m +n + 1))V(x).
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By virtue of (15), we have
V(x,z,7,—-2,m,n) =e?V(x,2,7,—-3,m,n),
V(x,z,7,-5,m,n) =e°V(x,2,7,-6,m,n).
Therefore, we have
V(x,z,'r, -3,m,n) = e'SV(x,z,'r, —2,m,n)
=e% "™tV (x, 2,7, -2,0,0)
— Bt DY( )
and
V(x,z,7,—6,m,n) =e®V(x,2,7,-5,m,n)
=e%%m*MV(x,2,7,—5,0,0)
= dmAnt DY ().

At post-jump elapsed time points 7, where the interior control uy(z,7) is
optimal, we have by virtue of (17),

V(x,z,'r, -5,m,n)

= exp( —6)V(x, z,7,—6,m,n)

= exp( —6)t1,161i11;1r EoV(y,y,O, t',m,n+ 1)Qy(dy; x,uy(z,7))
= exp(—‘o‘)onexp( §(m +n+ 1))V(y)Q(dy; x,uy(z,7))
= exp(8(m + n))fEOV(y)QO(dy; x,uy(2,7)). O

The following theorem characterizes the value function V(z) of the original
PDP control problem as a Lipschitz continuous solution of the generalized
quasivariational inequality.

THEOREM 4. Under assumptions (A1)—(A9), the value function V(z) of the
original PDP optimal full control problem is a Lipschitz continuous solution
of the generalized quasivariational inequality

g,%i‘g(x)[ff(x,v) #(x0) [ (V(5) = V(2)Qu(dyi x,0)

(22) —-8V(x) +l0(x,v)]

A ll)léia{la(x,v) + fEOV(y)Qa(d;x,v)} - V(x)] =0 forxe€E°,



IMPULSE CONTROL OF PDPS 421

with the boundary condition
V(x) = min|,(x,0) + [ V(2)@:(dy;0)]
(23) '
A min [l.o.(x,v) +f V(y)QS(dy;x,v)] for x€ JE.
veUs E°

A full control u* = {7/}, _,, (u§, u}, ui)} [with corresponding trajectory x*(t)]
is optimal if and only if

T = inf{t > 78 11 V(x*(t))

= gxéi[rji[la(x*(t),v) + ./;OV(y)Q,s(dy;x*(t),v)]}
fork=0,1,2,...,

and for all & € dV(¢}(2)) [or there exists ¢ € V(' (2)) provided V is
regular] one has

§V(d!(2))f(¢7 (2), ud(2)) + M (2), ub(2))
X [ (V(9) = V((2)))Qo(dy; #7 (2), ubi(2))
= 8V(f(2)) + Io(d/(2),uf,(2)) =0
for all post-jump states zand a.e. t € [0,t,(z)],

where ¢} (2) is the flow corresponding to the optimal control u* starting at the
post-jump state z and

u%(z) = argmin {l (z,v) +f V(y)Q,(dy; z, v)}

vel,

for all z € JF such that milrjl {la(z,v) + f 0V(y)Q‘,(dy;z,v)} =V(2),
veU, E

uj(x'(7,)) = argmin {[;(x*(7,),v) + [ V(9)Qs(dy; x*(7,),v)
E, ;

veU;

fork=0,1,2,....

Proor. Since, by Theorem 1, the value function V of the transformed
problem is Lipschitz continuous on E, it follows easily from Proposition 3
that the value function V of the original problem is Lipschitz continuous on
E. By virtue of (21), V is independent of (z, 7, ¢'). Therefore, by Proposition
1.8 of Ye (1990), we have

(24) aV (&) = exp(8(m + n)) aV(x) x {0} x {0} x {0}.
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At x € E°, where the second term on the quasivariational inequality (22) is
strictly greater than zero, that is,

V(x) < min {ls(x,v) + V(y)Qa(dy;x,v)},
veUs E°
we have by virtue of Proposition 3 that

(25) V(x,z,7,-5,m,n) = e‘“’"*’”[ V(9)Qo(dy; x,ug(z,7)).
EO

Substituting (24), (25) and (21) into (14), expression (14) is reduced to the
generalized BHJ equation for the original problem, namely,

g,gilvjn(x){g'f(x,v) +2(x,0) [ (V(5) = V() Qu(dys #,0)

—-86V(x) + lo(x,v)} =0.

It follows that the quasivariational inequality (22) holds. Similarly (23)
follows from (18) using Proposition 3.

The remaining results follow from Proposition 3 and Theorem 1 in the
same way. O

REMARK 5. To relate our approach to the quasivariational approach taken
by other authors, assume that the value function V(z) is C!. Then in the case
in which there is no dynamic control, the impulse control action does not take
place at a jump epoch, [, == 0 and @,(-; x,v) == 1,,,(). (22) and (23) reduce,
respectively, to the quasivariational inequality (1) with boundary condition

).
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