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THERE IS NO NONTRIVIAL HEDGING PORTFOLIO FOR
OPTION PRICING WITH TRANSACTION COSTS
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Carnegie Mellon University, Carnegie Mellon University and
Institute of Mathematics and Its Applications

Conventional wisdom holds that since continuous-time, Black—Scholes
hedging is infinitely expensive in a model with proportional transaction
costs, there is no continuous-time strategy which hedges a European call
option perfectly. Of course, if one is attempting to dominate the European
call rather than replicate it, then one can use the trivial strategy of buying
one share of the underlying stock and holding to maturity. In this paper
we prove that this is, in fact, the least expensive method of dominating
a European call in a Black—Scholes model with proportional transaction
costs.

1. Introduction. In a complete, continuous-time financial market with-
out transaction costs, every contingent claim (i.e., integrable random variable
whose value will be revealed at time 7 in the future) can be replicated by
starting with a certain initial capital at time ¢ = 0, and investing thereafter
according to the Black—Scholes hedging portfolio. This, and related arbitrage
considerations, justify the definition of the value of a claim to be the amount of
initial capital required for this hedging [see, e.g., Karatzas and Shreve (1991)
for the presentation of these ideas in a Brownian motion context; see Black
and Scholes (1973), Harrison and Kreps (1979), Harrison and Pliska (1981,
1983) for their original derivations]. In particular, consider the example of the
European call option, that is, the option of buying one share of stock at time
T for an a priori specified amount g > 0. If P(-) denotes the price process for
a share of the stock, then the value of this option at time T is (P(T) — q)™.
In a frictionless market, its value at time 0 is given by the celebrated Black—
Scholes option pricing formula, and is a number strictly between (P(0) — ¢)*
and P(0).

However, the Black—Scholes hedging portfolio requires trading at all time
instants, and the total turnover of stock in the time interval [0, 7] is infi-
nite. Therefore, in a model with transaction costs proportional to the amount
of trading, the Black—Scholes hedging portfolio is prohibitively expensive. In-
deed, through Monte Carlo simulation, Figlewski (1989) demonstrates that
even in discrete-time models, transaction costs are a substantial factor in
hedging. This has led to a general belief that in the continuous-time model
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with proportional transaction costs, there is no portfolio which replicates the
European call option and incurs finite transaction costs.

In this paper, we relax slightly the hedging condition, requiring only that
the hedging portfolio almost surely dominate rather than replicate the value
of the European call at maturity. With this relaxation, there is always the
trivial hedging strategy of buying and holding one share of the stock on which
the call is written. We show that this is in fact the cheapest dominating hedg-
ing strategy; this portfolio is, of course, of no interest to practitioners. As a
corollary to this result, we see that any strategy which replicates the Euro-
pean call is also uninteresting. The problem solved in this paper was brought
to our attention by Davis and Clark (1994), who cast as a formal conjecture
the “conventional wisdom” concerning Black—Scholes hedging in the presence
of transaction costs. We prove the conjecture of Davis and Clark. Their paper
obtains a necessary and sufficient condition for the existence of a nontriv-
ial hedging portfolio dominating the European call and offers arguments in
support of their contention that this condition cannot hold.

Our model (with proportional transaction costs) is the same as that of Davis
and Norman (1990), except that it uses the notation of Shreve and Soner
(1994). We describe it in Section 1, and define what we mean by hedging a
European call option in this market. The rest of the paper consists of a series
of theorems, propositions and lemmas, which eventually lead to the proof of
the main result. Here is a brief account of the proof: The method is based on a
careful analysis of the function ¢(%, p, x), which is defined to be the minimal
amount of money which must be invested in stock at time ¢ € [0, T') in order to
dominate the call at time 7', when at time ¢ the amount of money in the bond
is x and the price of one share of the stock is p. The function ¢ is convex in
(p, x) for each fixed ¢, and this enables us to treat it as if it were differentiable
in these variables. One discovers then that the partial derivative of ¢(¢, p,-)
with respect to x is constant in each of the two half-lines which comprise the
complement of a certain interval (a(, p), b(¢, p)) [defined by (3.22) and (3.23)].
A maximum principle argument using It0’s rule shows that ¢(¢, -, x) is a linear
function in p, when x < (a(¢, p), b(¢, p)) (Theorem 3.11). This linear growth,
bounds on ¢ analogous to the above-mentioned bounds on the Black—Scholes
price, and the (not so easy to prove) fact that a(-) and b(.) are nondecreasing
in p imply a(¢, p) = b(¢, p) = 0. Once this is established, the function ¢ is
known and the result follows.

To overcome the negative result confirmed in this paper, various relaxations
of perfect hedging have been proposed. Leland (1985) considers a model in
which trades occur at discrete times, and thus a certain “hedge slippage” oc-
curs at the time of each trade. However, the total cost of transaction remains
finite, and the Black—Scholes partial differential equation for the value of the
European call is obtained, albeit with an adjusted volatility. As the time be-
tween trades approaches zero, the hedge slippage disappears, the-adjusted
volatility approaches infinity and the value of the European call approaches
the value we obtain here. Hoggard, Whalley and Wilmott (1994) extend Le-
land’s analysis to other derivatives securities. Using the notion of domination
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rather than replication, Avellaneda and Paras (1994) extend Leland’s approach
even further.

A different approach to transaction costs is to introduce preferences. Hodges
and Neuberger (1989) maximize the utility of the difference between a desired
cash flow and the cash flow realized by a portfolio which must account for
transaction costs. Davis, Panas and Zariphopoulou (1993) continue this ap-
proach, defining the value of an option in a market with transaction costs to
be the minimal price under which an agent with preferences will choose to
hold it.

In a discrete, binomial model with transaction costs, there is a replicating
portfolio, as well as dominating portfolios which may have cheaper initial
value than the replicating portfolio. We refer the reader to Bensaid, Lesne,
Pagés and Scheinkman (1992), Boyle and Vorst (1992), Edirisinghe, Naik and
Uppal (1993) and Boyle and Tan (1994).

Related works are Davis and Zariphopoulou (1994), Flesaker and Hugh-
ston (1994), Hodges and Clewlow (1993), Gilster and Lee (1984), Henrotte
(1993), Merton (1989), Morton and Pliska (1993), Panas (1993), Pliska and
Selby (1993), Shen (1990), Toft (1993) and Dewynne, Whalley and Wilmott
(1994).

2. Model and definition of hedging. We consider a financial market
which consists of one bond and one stock, the price of which evolves according
to

(2.1) dP(¢)=oP(t)dW(¢),  P(t) = p €(0,00),

for ¢ € [to, T']. Here tq is the initial and 7T the terminal time, W is a standard
Brownian motion, defined on a complete probability space (), % ,P), and we
shall denote by {%;} the P-augmentation of the filtration %,¥ = o(W(s); 0 <
s < t) generated by W. The volatility o of the stock is assumed to be a positive
constant. We assume that the return rate of the stock, as well as the interest
rate of the bond, are equal to zero. This represents no loss of generality, as
explained in Remark 2.2(i) below. Notice that (2.1) implies

(2.2) P(t) = P*2(t) = pexp{a(W(2) - W(to)) —0*(t—t0)/2},  telto,T]

Let X(-) and Y(-) be the processes of dollar holdings in the bond and
stock, respectively. A trading strategy is a pair (L, M) of {¥;}-adapted, left-
continuous nondecreasing processes, satisfying L(to) = M(Zo) = 0, which are
to be interpreted as the cumulative amounts transfered from bond to stock
and stock to bond, respectively. Given fractional transaction costs A, u € (0,1)
and the initial holdings x, y, the corresponding portfolio holdings X = X t,:’:]’gy

and Y = Y} evolve according to

(2.3) X(s)=x—L(s)+(1— p)M(s),

(2.4) Y(s)=y—M(s)+(1—A)L(s)+ fts oY (u)dW(u),
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for s € [to, T']. Introduce the set . 2 {(2,y) | A-M)x+y >0, x+(1—p)y > 0}.
We shall say that a trading strategy (L, M) is admissible if the corresponding
holdings satisfy the solvency constraint (see Figure 1)

(2.5) (XPH @, Y () e/  as,

for every t ¢ [to, T'] [see Remark 2.2(ii) below for a weaker condition of sol-
vencyl. For ¢t = 19, (2.5) means that we require (x, y) ¢ ./ [strictly speaking, a
trading strategy is a quadruple (L, M, x, y)]. We denote the set of admissible
trading strategies by &7.

We shall say that the European call option with the strike price ¢ > 0 is
hedged by an admissible trading strategy (L, M) if the corresponding holdings
satisfy

(2.6) A-MX(T)+Y(T)>[-A—-A)g+ P(T)Lipir)>(1-2)g}>

2.7 X(T)+ Q- pw)Y(T)>[—q+ Q= p)P(T)1pr)>(1-1)g}-

The interpretation here is hedging in the sense of being able to transact at time
T so as to deliver a share of the stock, and to cover the remaining position in
the bond with the strike price g, if the option is exercised. Also, we assume that
the buyer of the option is eager to own the stock, so she exercises the option
already if P(T') > (1 — A)q (rather than P(T) > q), since, to buy a share at
time 7" one needs P(7")/(1—A) dollars. This is one of several ways conditions at
the final time could be specified. We have chosen this particular specification
for mathematical convenience. Let us mention that the results of this paper
still hold with the less natural definition of hedging in which the right-hand
sides of (2.6) and (2.7) are replaced by (P(T') — ¢)* and (1 — pn)(P(T) — ¢)7,
respectively. This definition is perhaps closer to the case of hedging with no
transaction costs. Of course, we may rewrite (2.6) as

(2.6") QA-MNX(TD)+Y(T) = [-1 - )g+ P(D]".

| Y

x+(1-3y=0

(1-A)x+y=0

Fic. 1.
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Moreover, the solvency condition X (7") +(1— u)Y(T') > 0 combined with (2.7)
yields

(2.7) X(T)+A-pw)Y(T)>[—q+ Q- w)P(T)]".
We define the set of hedgeable initial conditions
H= {(to, p,x,5) € [0,T) x (0,00) x ¥ | there exists

(2.8) (L, M) € & such that (2.6) and (2.7) are satisfied
by X3 (), Y25 (T), P2 (T)).

For each ¢y € (0, T'), we define

(2.9) H(to) 2 {(p, %, ) | (to, b, %, ¥) € H}.
For each (zo, p) € [0, T) x (0,00), we define

(2.10) H(to, p) = {(x,) | (to, P, %,y) € H}.
Define a function ¢: [0,7T) x (0,00) x R — R by

The following theorem is the main result of the paper. It shows that the least
costly way of hedging the European call option in a market with transaction
costs is the trivial one—to buy a share of the stock and hold it.

THEOREM 2.1. For a given q > 0, we have for every p € (0,00) and ty €

[0, T),
p—(1-MNx, Vx>0,

¢(t0’ b, x)= p— x, V ox < 0.
1-pn

REMARK 2.2. (i) We want to show that there is no loss of generality in
assuming that the interest rate r of the bond and the return rate b of the
stock are equal to zero. Indeed, suppose they are not, so that the stock price
obeys

dP(t) = P(t)[bdt+ o dW(t)],
and the holdings satisfy

X(s)=x+ /t " rX(s)ds — L(s)+ (1— w)M(s),

Y(s)=y+ /t “BY(s)ds — M(s)+ (1— A)L(s) + [t " oY () dW(w).

Suppose also that the analogue of Theorem 2.1 for this case does not hold, for
example, that (L, M) ¢ & are such that (2.6) and (2.7) hold with ¢, = 0,
(x,y) € /, x > 0and (1 - A)x+ y < p. Consider the discounted pro-
cesses X(t) = e X(t), and similarly for Y, P; set L(¢) = Jion e " dL(s)
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and similarly for M, and § = e "Tq. Introduce also the process ~Vf’(t) =
W(t)+ (b—r)o~'t, a Brownian motion under a probability measure P, equiv-
alent to the original measure P (Girsanov theorem). It is then easy to see that
P is a price process satisfying (2.1) with W replaced by W, that L, M, X and
Y satisfy corresponding versions of (2.3) and (2.4), and that (L, M) is an ad-
missible trading strategy which hedges the European call option on the stock
with price P(-) and strike price §, starting with the initial capital (x, y) € ./,
x>0,(1—A)x+ y < p. This is in contradiction to Theorem 2.1.

(i) The solvency constraint (2.5) is a standard, no-arbitrage type assump-
tion. It could be relaxed by requiring that (1 — A)X(T) + Y(T) > 0, (1 —
MX@)+Y(t) > —Bfor t < T, and similarly for X(-) + (1 — p)Y(-), where
B > 0 is a square-integrable random variable.

The rest of the paper is devoted to the preparations for the proof of Theo-
rem 2.1.

8. The proof. Let X = X7";” and Y = Y7} be the portfolio holdings
corresponding to the admissible trading strategy (L, M) and initial holdings
x,y. Extend the processes to [0, 7'] by left continuity, that is,

(3.1) L(s)=M(s)=0, X(s)=x, Y(s)=y, se[0,t].

Define the process
A sVip
(3.2) I(s) 2 / Yw)dW(w), sel0,T].
to
We have the following lemma.

LEMMA 3.1. There is a positive constant C such that
(3.3) EI*(t) < C,
for every t € [0,T].

PrOOF. Define y 21— (1 — w)(1 — A). Then the solvency conditions X +
A-w)Y>0,(1-A)X+Y >0imply

yL(s) <2+ (1—-p)y + (1 - p)al(s),

3.4)
yM(s) < (1-MNx+y+al(s), se[0,T].

Therefore, we have from (2.4) (suppressing s in the notation), Y < y + oI +
(1-AML<A+BIY>y+o0ol -M>—-A — BI, for some positive constants
A, B, which do not depend on s. Hence

(8.5) Y (s)| < A+ B|I(s)|.
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Next, fix ¢ € [¢9, T'] and define
2 tainf{s <t [Y(s)| > &},
3.6) Y®(s)2Y(s) ifs <
=0 ifs> 7y,

for all £ € .#. Let I®) be the corresponding integral of Y ¥, that is, I¥)(s) =
I(s) for s < 7, and = I(73) for s > 7. It is easy to see from (3.5) that
Y ®)(s)| < A + B|I®¥)(s)|. We have then, for s € [#,¢],

(3.7) E[I®(s)]2 = f PE[Y® ()2 du < 2A°T + 2B°T ft " E[IW (W) du.
to 0

Therefore, by Gronwall’s inequality, E[I*®)(¢)]?> < C (C independent of ¢).
When %k — oo, then 7, — ¢, I®(¢) = I(71) — I(¢) and (3.3) follows by Fatou’s
lemma. O

THEOREM 3.2. The set H of (2.8) is relatively closed in [0,T) x (0,00) x
7, that is, if (tn, Pn,%n, ¥n) € [0,T) x (0,00) x . converges to (to, p,x,y) €
[0,T) x (0,00) x . and satisfies (tn, Pn,%n,¥n) € H for every n € N, then
(tO, p,x, y) € H.

The proof is given in the Appendix.
COROLLARY 3.3. The function ¢ of (2.11) is lower semicontinuous.
PROPOSITION 3.4. For each ty € [0,T), the set H(ty) is convex.

PROOF. Let (p1,x1,y1) and (pg, x2,y2) be in H(ty) and let L;, M; and
Ly, M5 be such that Xﬁ’;f‘ﬁfi(T), YtL"fI{l’fi(T) and PtoPi(T) satisfy (2.6) and
(2.7) for i =1,2. For a3, as € [0,1] with a; + ag = 1, define

p = aip1 + azps, X = a1%1 + agXa, y=a1y1+azys,
L = a1L1+ agsLs, M=a1 M1+ asM,.
Then
X0 (1) = ar XY (T) + ea XT37(T),
YR (T) = an YE52M(T) + anY 1257(T),
PP(T) = ay PP (T) + ag PoP2(T).

The solvency condition is clearly satisfied by X ;f”l’ff“ and Yﬁ’:ﬁf . To check the
hedging property, it suffices to consider the set

(38)  {P"P(T)> (1-A)q, PP (T) > (1-A)g, P*"(T) < (1-A)g},
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other cases being either similar or trivial. On this set, we have
(1= DX (D) + Y95 (T) = [ (1~ Mg+ Poor(T)]
+ ag[ PPP2(T) — (1 - A)q]
= ~(1-N)g+ Por(T),

X0 (T)+ (1= )Y P52 (T) > an[—q + (1 — p)PP1(T)]
+ ag(1 - p)[PP(T) — (1 - A)q]
> —q+ (1 — u)PP(T).
Therefore, (p, x, y) € H(ty). O
Notice that we are entitled to write minimum rather than infimum in (2.11)

because of Theorem 3.2. Proposition 3.4 implies ¢(¢,-,-) is convex, and hence
continuous for each ¢, and so the subdifferentials

‘9p¢'(t, p,Xx)

3.9) .
={8p eR | @(t,p',x) > @(t, p,x)+ 8,(p' — p), ¥V p' € (0,00)},

ﬁx(D(t, p, x)
(3.10) .
={8: eR | @(t, p,x') > @(t, p,x) + 8:(x' — x), V 2’ € R}

are nonempty, compact sets for each (¢, p, x) € [0, T') x (0, 00) x R. In particular,
the left and right derivatives D, ¢(t, p, x) and D} ¢(t, p, x) with respect to x
exist, are left and right continuous, respectively, and satisfy

(3.11) D ¢(t, p,x) < Dfe(t, p, x),

with equality holding whenever one of them is continuous in x (with ¢ and p
held fixed). We have

l7x¢’(t, D, x) = [D;¢(t, b, x), D:¢(t, b, x)]

(3.12)
V(¢ p,x)e[0,T) x (0,00) x R.

PROPOSITION 3.5. Let vy = (—(1—p),1)and vs = (1, —(1— A)). If, for some
(tO) p) € [0’ T) X (07 OO)’ we have (x, y) € H(tO) p), then

(x,y)+aU1€H(t0,p), (x’y)+av2eH(t0,p) Va>0.

In particular,

1
< D;o(t,p,x)< Dfe(t,p,x) < —(1—A)
(3.13) 1-pn P, %) oltp (

V(¢ p,x)c[0,T)x (0,00) x R.

PrROOF. From (x,y)+ avy and (%, y) + avg, one can jump to (x,y) by a
transaction. O
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PROPOSITION 3.6. For every (to, p) € [0,T) x (0,00), we have
819 (p—-@)"—-A-MNx<e(to,p,x)<p—-(1-A)x Vx>0,

@-wp-o* - (1)

S¢(to,p,x)5p—<ﬁ)x Vx<0.

(3.15)

PROOF. Let y =1 — (1 — w)(1— A). For (to, p,x) € [0,T) x (0,00) x R,
define y = ¢(to, p, x). Let L, M be such that Xt° W (1), Yto J‘y(T) and PP(T)
satisfy (2.6) and (2.7). We have

E(P™P(T)— q)* < E(P™P(T) - (1-M)q)"
< E[1-MXP (D) + YR (D]
=(1-Mx+y— yEM(T)+ E[ oY () dW(s)
<(1-Mx+y,

because E [ (Yt°” (s))2ds < oo, according to (3.3) and (3.5). However,
(PP(s) —q)*, to < s < T, is a submartingale, so

(p— )t <E(P*P(T)—q)* <(1-Mx+y,

and the first inequality in (3.14) follows. On the other hand, if X (%) = «,
Y(to) = p — (1 — A)x and x > 0, we can jump to (0, p), and hold one share of
stock until the final time, so that X(7') =0, Y(T') = P(T) and (2.6) and (2.7)
are satisfied. This establishes the second inequality in (3.14).

For (3.15), we observe from (2.7') that

(1-p)p - @ < E(Q - w)P*?(T)—q)*

T [x+(1—/w)y—7EL(T)
7

(- WET oY (s) dW(s)]

<

-

+ y.

If X(¢0) =, Y(¢9) = p — (1/(1 — p))x, we can again jump to (0, p). O
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LEMMA 3.7. For every (t, p,x) € [0,T) x (0,00) x R, we have

1 x*+q

PRrROOF. It is clear from the hedging conditions (2.6") and (2.7') that ¢ is
nondecreasing in p, so d,¢(t, p, x) C [0, 00). It remains to find an upper bound
for D} (¢, p, x).

Let y = ¢(¢, p, x) and let L, M be such that Xt (T, Y: "y(T) and PHP(T)
satisfy (2.6") and (2.7'). Let a > 1 be given and set x=ax+(a—1)q/(1-A),
y=ay, P=ap, L =aL and M = aM. Then

(a—1)q
1-1°

X(T) = aX5(T) +
Yt_"_y(T) = aY50(T),
P"P(T) = aP*?(T)
and
1- A)X“‘y(T) + Y‘”(T) =a[(1- VDX +Y5(D)] + (@ — 1)g
> a(PYP(T) — (1 - A)g)* + (1 - A)(a— 1)q.
However,
a(P"P(T) -~ (1-M)g)" + (1 - 21)(a—1)g
> a(PYP(T) - (1 - 2)q) +(1 - A)(a—1)gq
= P"’(T) - (1- Mg,
and since the left-hand side is nonnegative, we in fact have
a(P4P(T) — (1 - A)q)" + (1 - A)(a—1)g > (P*P(T) — (1 A)q)".
Similarly,
XP2(T)+ Q- WY (D) = o XE5(T) + (1 - wY L37(1)] + (@ — g
>a[—q+(1— p)PP(T)]" + (a—1)q
> [—g+ (1 - w)PP(T)]*.

Therefore, y € H(¢, p,*) or, equivalently,

a<p(t,p,x>z<o(t,ap,ax+<a gt A)>

(a—1)(x" +q)
Q-1MNA-p)’

> (p(t7 ap’x) -
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where we have used (8.13). From this inequality, we have
o(t,ap,x) — ¢(t, p,x) < (a — 1)[<o(t, p,x)+ ——x+—L]-
1-M)A-p)
Dividing by (a — 1) p and letting « | 1, we obtain

1 +

PROPOSITION 3.8. The mapping ¢(t,-,-) is locally Lipschitz on (0,00) x R,
uniformly in t € [0, T).

(]

PrOOF. The bounds in Proposition 3.6 are independent of ¢ and so, because
of Lemma 3.7, d,¢(t, p, x) is locally bounded in p and x, independently of ¢.
According to (3.13), d.¢(¢, p, x) is bounded, independently of ¢, p and x. O

PROPOSITION 3.9. We have
ltif?} e, p,x")=¢(t,p,x) V(¢ p,x)e[0,T)x(0,00) xR

/
p—>p
x'—>x

PrOOF. Inlight of Proposition 3.8, it suffices to show that for some function
f: [t,T]— (0,00) with f continuous at ¢ and f(¢) = p, that

(3.16) lim o(t, (), x) = ¢(¢, p, x).
Let y = ¢(¢, p, x) and let L, M be such that X%ﬁ’&(T), Ygf;&'(T) and P»P(T)
satisfy (2.6) and (2.7). Then, for ¢ € (¢, T),
Y5E) > o(t, PP(t), X502,
From (2.3) and (3.13), we have
o(t, PPP(t), X751(1)) = @(¢, PP(¢), x — L(¥) + (1 — p)M (1)
> o(t', PY2(t), 2+ (1 — w)M (') + (1 — ML)
> @(t', PPP(¢), x) — M(¥)+ (1 — A)L(¥).
From (2.4) we have
Y5 (#) = o(t, p,x) — M(¢) + (1 - ML) + /t ‘ oY 51 (s)dW(s).
These three relations imply

tl
ot,p,x)+ [ oY () dW(s) > o(t, PYP(1), ),
and thus
@(t, p, x) > limsup ¢(¢', P*?(¥'), x).
't
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Corollary 3.3 implies

¢(t, p,x) < 1i1§,1¢itnf o(¢', PP(¢), x)
and we have (3.16). O

LeEMMA 3.10. Let (%o, po, %0) € [0,T) x (0,00) x R be given, define yo =
¢(to, Po, %0) and let L, M be such that XtL":I’f;’”(T), Y?:ﬁ’yf’(q‘) and P'Po(T)
satisfy (2.6) and (2.7). If

1
(317) ‘9x¢(t0) Do, xO) n <_ﬂ) _(1 - /\)) 7é g,
then L and M are continuous at to.

PROOF. Define ¢ = L(to+) and m = M(¢y+), so
X(tot) =2 — £+ (1— u)m, Y(tot) =y —m+ (1 -t
Choose 8. € d.¢(to, Po, o) N (—1/(1 — u), —(1 — A)). We have

@(to, Po, x0) — m + (1 — A)€ =Y (to+)
> ¢(to, po, X(to+))
= ¢(to, Po, X0 — £+ (1 — p)m)
> @(Zo, Po, %0) + 8x(—£ + (1 — w)m),

which implies
A-A+8,)>(1+6,(1— p))m.

However,1-A+8, <0and 1+ 8,(1 — ) >0, so we musthave £ =m = 0. O

THEOREM 3.11. Let (29, po, x0) € [0, T) x (0, 00) x R be given. If (3.17) holds,
then (3/9p)¢(to, po, %0) is defined and

J 1
31—)49(7?0, Do, Xo) = E¢'(to, Po, Xo).

PrROOF. Choose 8, € d.¢(to, po, %0) N (—1/(1 —u),—(1 — A)) and dp €
dp¢(to, Po, xo). Define

(P, x) = @(to, Po, %0) + 8p(p — Po) + 8:(x — x0) — (P — Po)? — (x — x0)2,
80 ¥(po, x0) = @(to, Po, X0) and

(318) W(P, x) < (D(to, b, x) for (p, x)# (pO; xO)'
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For £ € (0,(T — to) A po), define
B, = [to,to+8:) x (po — &, po + &) x (x0 — £, %0+ &),

where 8, € (0, £) will be determined below. For ¢ sufficiently small, we have
(3.19) e e (- -0-D), Y@Epo B,
ox 1—pn

Let us consider the face Fo = {to} x [Po — &, po+ £] x [%0 — &,%0 + £]
of the cube B,. This face has four edges, {to} x {po + &} x [x0 — &, %0 + £]
and {to} x [po — &, po + €] x {xo + £}, and on these edges, ¢ —  is strictly
positive because of (3.18). In fact, because ¢ — ¢ is lower semicontinuous, ¢ —
is bounded away from zero on these edges and, by Proposition 3.9, for some
8, € (0, ¢), ¢ — ¢ is also strictly positive on the four faces

F¥ = [to,to+ 8,1 x {po+ &} x [%0 — &, %0+ £],
Fzzté[to,to+5s] x [po— &, po+e]lx {xo+ e}
On the face F3é{to+6£}x[po—8,Po+s]x[xo—e,onr.e],go—(/fmayfajl

to be positive, but it is bounded from below, and for some &, sufficiently large
and

‘l’b‘(t, D, x) é W(P, x) - kb‘(t - tO),

we have ¢ — i, positive on the five faces F5, Fy, Fs.

At (2o, po, %0), ¢ — ¥, is zero, and so the lower semicontinuous function
¢ — i, attains a nonpositive minimum over B, at some point (Z,, p,, %) € B..
Because (¢ — ¢ )(t., ps, x) is minimized over x € [xg — &,x0 + €] at x, €
(x0 — &, %0 + &), we have

J 0
%‘/"(pe, xb‘) = }‘iwa(te, Ds, xe) € ﬁx¢(t5, DPs, xe)-

From (3.19), we conclude that
(3.20) 2t per2) 1 (2 -1 ) £2.

Set y, = ¢(ts, Ps, x.) and let L,, M, be such that X7 (T), Y% (T)
and P’-P:(T) satisfy (2.6) and (2.7). To simplify notation, we suppress super-
scripts and subscripts on the processes. According to Lemma 8.10, L = L, and
M = M, are continuous at ¢,. Thus,

7, Zmin{t > t, | (¢, P(t), X(t)) ¢ Bs}

is strictly greater than ¢, almost surely.
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It0’s rule for semimartingales [Meyer (1976), page 301, or Protter (1990),
page 74] implies

Ye(tATo, P(EAT,), X(EAT,))

IAT, J
= (ts, De, x£)+/ O'P—lﬁg dw

+[tt( bo+ 20t P wg)

INT, d
+ [ (-dL + (1 ) d M)

te

+ > [e(s, P(s), X(s1)) — ¢.(s, P(s), X(s))],

0<s<tAT:

where L and M°¢ denote the continuous parts of L and M. Unlike the ref-
erences cited, we have adopted the convention of left-continuous processes,
so any jump in X at time ¢ A 7, does not appear on the left-hand side of
the above equation; hence the sum on the right-hand side is over s < t A 7,
rather than s < ¢ A 7. In B,, the absolute value of the integrand |(d/dt)¢, +
302P%(%/3p?)¢.| is bounded by some constant C., so

/’:MS< Vet 1 2P 20 2¢€)d8> —C.(t —t,).

With ¢ chosen small enough to satisfy (3.19), with 0 < s < 7., and with ¢ =
L(s+)—L(s)and m = M(s+)—M(s), the segment connecting (s, P(s), X(s+))
and (s, P(s), X(s))liesin B, and so —1/(1 — u) < (d/dx)¢. < —(1—A) at every
point on the segment. Hence

1/16.(8, P(S), X(S+)) - ‘l’b‘(s, P(S), X(S))
= (s, P(s), X(s) — £+ (1 — w)m) — §(s, P(s), X(s))

where —1/(1 - u) <6< —(1-A).If £+ (1 — p)m > 0, then

1
0(—€+ (1 —p)m) > —'1_—”(—5 +(1 - p)m)
> —m+ (1-A)g,
whereas if —€+ (1 — p)m < 0, then

0(—Il+ (1 —p)m)>—(1—-A)(—£+(1—p)m)
> -—m+(1-A)L.
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In either case, we have
pe(s, P(s), X(s+)) — e(s, P(s), X(s))
> —(M(s+) — M(s))+ (1 — A)(L(s+) — L(s)).
Therefore,

Us(tAT, P(tAT,), X(EATS))— (s, Poyxs)
e P J dw - C e 9 dL 1 dM
> - _ _ - _ 4 _ c
_fte o 0p¢fs (t te)'l_fts ax‘/’e( +(1—p) )

+ ) [H(M(s+) — M(8)) + (1 - A)(L(s+) — L(s)].

L. <8<EAT,

On the other hand,

Y(tAT) ~ 0L, Prye) = [ M dM(s)+(1-A)dL(s)]+ [ " Y (s)dW(s).

&

Subtracting these relations, and using (3.19) and the fact that.
YAnr)>o(t AT, P(EAT), X(EAT,)),
we arrive at the inequality

[t AT, P(EATS), X(EATS)) —o(t AT, P(EAT,), X(EAT,))]

- [¢(te, D&, xe) - ‘/fe(te‘) Ds, xe)]
< fws olY(s) - P(S)itﬁa(s, P(s), X(s))]dW(s)+ Cu(t — t,).
ts ap

However, ¢ — ¢ attains its minimum over B, at (¢,, p,, x,), so the left side of
this inequality is nonnegative. We conclude that

—C.(t—t,) < /tt Gl{ss“}[Y(S) - P(S)%we(s, P(s), X(S))] dW(s)

vVitelt,T]

(3.21)

According to the following lemma, (3.21) implies
J
¢'(t8’ Ds, xs) = p£3;¢€(t€’ Ps, xe) = pe[ap - 2(pe - Po)]-
Letting ¢ | 0 and using Proposition 3.9, we obtain
¢(to, Po, X0) = Podyp, ¥ 8, € dpe(to, Po, X0). o

LEMMA 3.12. Let X (t) be an adapted, left-continuous, right-limited process
which is continuous at t = 0, with X(0) nonrandom. Let C be a constant and
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assume
—Ct < /0 "X(s)dW(s) Vite[0,1],
Then X(0)=0.
PROOF. We first consider the case C = 0. Let x = X(0) and assume x # 0.

We take x > 0 with no loss of generality. Define
T=1Ainf{t € [0,1]]| X(¢) < 3x},

M(t) = /0 " X(5)dW(s),

M(t) = /0 (X()v Lx)dW(s),

so that
M(t)=M(t), O0<t<r.

Now (M)(¢) = f{(X(¢) v 1x)?ds is strictly increasing and M((M)~!(s)) is a
standard Brownian motion. Therefore, for P-almﬂost every o, there is a se-
quence s; > sg > --- > 0 with s, | 0 such that M({M)~'(s,)) < O for every
n. Set t, = (M)~1(s,), so t, | 0 and M(t,) < O for every n. It follows that
M(t,) < O for n sufficiently large, and we have a contradiction.

If C # 0, use Girsanov’s theorem to change the probability measure so

that W(¢) 2 W(t) + f3 Cds/((X(s) v %x)) is a Brownian motion. Then 0 <
Ct+ [y X(s)dW(s) = J¢ X(s)dW(s) for 0 < ¢t < 7. Proceed as before. O

Henceforth, we hold ¢y € [0, T') fixed and suppress £, in the notation. We
define

(3.22) a(p) = maX[x €R; D ¢o(p,x)= —ﬁ}

(3.23) b(p) =min{x e R; D} ¢(p,x)=—(1- 1)},
where a(p) is —oo and b(p) is oo if the sets in (8.22) and (8.23), respectively,
are empty. We want to show that a(-) and 5(-) are finite and nondecreasing,
with a(0) = 5(0) = 0.

LEMMA 3.13. For every p > 0, we have

(3.24) a(p)<a 2 I‘T’“(p (@ -wp- ),

]_ _
(3.25) b(p) > b* 2 —T“(p —((1-wp-),

where vy 21 aQ-1A - pw).
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x+H{14)y=(1-})p

1- 1\
G

(0,((1- Wp-q) *

F1G. 2.

PrOOF. From Proposition 3.6 [and ((1—u)p—q)" < (p—q)*] we have the
bounds on ¢ as in Figure 2. The figure shows that a(p) < a* and b(p) > b*.
We find a* by solving simultaneously the equations

a*+(1-p)y=>0-u)p,
(1-Ma"+y=(1-mwp-"

The solution is a* = [(1 — x)/v](p — (1 — w)p — @)*).
We find b* by solving simultaneously the equations

'+ (1-pwy=0-w)(Q-p)p-9*,
A-Mb6"+y=p.
The solution is 6* = —[(1 — u)/y](p — (1 —p)p—g)*). O

LEMMA 3.14. The quantity a(-) is upper semicontinuous and b(-) is lower
semicontinuous.

PrROOF. Suppose p, — p. If a(p,) > —oo, then D, ¢(p,,a(p,)) =
—1/(1 — u), that is,

1
1-p
If a(p,) converges to ap € R along some subsequence, then taking the limit
along this subsequence, we obtain

(x' —a(pn)) vV x' cR.

@(Pn, %) = @(Pn,a(pr)) —

(x' —ap) Y x' €R,

1
¢(p’ x/) > (P(p) (1()) - 1
—p
so —1/(1 — p) € dp@(p,ao) and a(p) > ao. Hence,

limsup a( p,,) < a(p).
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A similar argument proves the lower semicontinuity of b(-). O
For B e (—-1/(1 — w),—(1— 1)), we set

(3.26) a(p, B) = max{x; D, ¢(p, x) < B},

(8.27) b(p, B) = min{x; Dy ¢(p, x) > B}.

Proposition 3.6 together with the monotonicity of ¢(p,-) shows that

1
lim D ¢(p,x)= lim Diro(p,x) = T
lim, 00 Dy @(p, %) =lim, . Df@(p,x) = —(1— A),

so a(p, B) and b( p, B) are finite for all p > 0 and B € (—-1/(1— p), —(1 - A)).
The following lemma is proved just as we proved Lemma 3.14.

LEMMA 3.15. Foreach B e (—1/(1 — w),—(1—A)), a(-, B) is upper semicon-
tinuous and b(-, B) is lower semicontinuous.

From the inequalities
D,¢(p,x) < Dje(p,x) <D ¢(p,¢) ifx<¢,
we have the following lemma.
LEMMA 3.16. If B,B e (~1/(1— p),—(1— 1)) and B < B, then
a(p, B) < b(p, B) < a(p, B).

Furthermore,

li = lim b =b(p).
g lim a(p,p)=alp),  lm (p,B)=b(p)

LEMMA3.17. IfB e (—1/(1— p),—(1—2)) and x € [b(p, B),a(p, B)], then
J 1
B e drp(p,x), 5;<p(p,x) = ?p(p,x)-

PROOF. Because D, ¢(p,-) is left continuous and D} ¢(p, -) is right contin-
uous, we have

D ¢(p,x) < D e(p,a(p,B)) < B < Die(p,b(p,B)) < D;¢(p,x),

which implies 8 € d.¢(p, x). Theorem 3.11 now implies (d/dp)e(p,x) =
(1/p)e(p,x). O
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PROPOSITION 3.18. Let 0 < p;1 < poand —1/(1—p) < B < —(1—A) be
given. Then

#(p2,a(p2, B)) — ¢(p1,a(p1, B))

_ (" %go(p, a(p, B))dp + Bla( pz, B) — a(p1, B)],

b1

(3.28)

¢(P2, b(p2’ B)) - (D(pl, b(pb B))
_ (" %go(p, b(p, B)) dp + BLb(pa, B) — b(p1, B)].

p1

(3.29)

REMARK. Proposition 3.18 gives validity to the formal computation

S0p.a(p, ) = -¢(p,alp, ) + 2-0(p,a(p, B) 35a(p, B

1

a

PROOF OF PROPOSITION 3.18. We set

F(p) £ ¢(p,a(p,B)) — Ba(p,B),  pelp,pal,

and show that F is convex. Indeed, for py < p’ < p”’ < pe and with p =
3P+ p"),d =a(p,B),a" =a(p”,B) and @ = }(a’' +a”), we have

sF(p)+3F(p")— F(P)
=30(p,a)+ 3e(p",a") — [e(P,a(D, B)) + B(@ — a(P, B))]
> Lo(p,a) + 30(p",a") — o(P, @)
>0,

where we have used the fact that 8 € d.¢(p, a(p, 8)) and the joint convexity
of ¢. Lemma 3.17 implies

Beoxe(p,alp,B)), Soel(pa(p,B) = Se(p,a(p.B) Y p>0.
Therefore, for any p, p’ € [ p1, p2], we have
F(p')=¢(p,a(p,B)) — Ba(p,B)
> o(p,a(p, ) + 0(p,alp, AP - P)
+ Bla(p’, B) — a(p, B)] — Ba(p, B)

— F(p) + %ap, a(p, B)D — p).



346 H. M. SONER, S. E. SHREVE AND J. CVITANIC

1
Slope - ‘i-_l-'-

3 X
a(p)=b(p) \
Slope - (1-A)

F1G. 3.

This shows that

%q,(p, o(p,B)) € 9F(p), ¥ p>0.

Consequently,

p2 1
F(po)~F(p) = [ Ze(p.a(p, ) dp,

pP1

which is (3.28). The proof of (3.29) is completely analogous. O

We need to understand how a(p) and b(p) vary with p in regions where
a(p) = b(p). This is the case that ¢ has either slope —1/(1 — p) or —(1 — A),
and the two regimes are separated by a “corner” (see Figure 3). If a(p) = b(p),
then for any B, 8 € (—1/(1 — p), —(1— 1)),

a(p) = a(p, B) = b(p, B) = b(p).

We show now that when S < B and the middle equality holds for all p in an
interval [ p1, p2], then a(p, B) = b( p, B) is nondecreasing in p.

COROLLARY 3.19. If0 < p1 < psand —1/(1 —p)<B<B < —(1— ), and
if
a(p1,B) =b(p1,B),  al(pz,B)=b(p2,B),
then a(pi1, B) < a(pe, B).

PRrROOF. From Proposition 3.18 we have

2 ] ~ ~ ~ ~
/p ’ —o(p,a(p, B dp + Bla(pa, B) ~ a(p1, B)]

= @(p2,a(p2, B)) — ¢(p1,a(p1, B))

= @(p2, b(p2, B)) — ¢(p1,b(p2, B))
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@(b(p, B))dp + BLb(p2, B) — b(p1, B)]

/‘Pz
b1

2 ] N R
e = e(p,b(p, B)dp + Bla(pa, B) ~ alp1, B)]

b1

SR

Since a(p, B) < b(p, B) (Lemma 3.16) and ¢(p,-) is nonincreasing, we must
have

(8 — B)la(p2, B) — a(p1, )] = 0. o
PROPOSITION 3.20. For all p > 0, a( p) and b(p) are finite.

PrOOF. It suffices to show a(p) > —oco and b(p) < oo for all p > 0. We
consider only a(p); the argument for b( p) is completely analogous.
Suppose for some p* > 0, we have a(p*) = —oo. Define for 0 < p < p*,

A(p) £ max{a(p); P € [p, p*1}
P(p) £ max{p' € [p, p*]; a(p') = A(P)}.

[Recall that a(-) is upper semicontinuous, so A(p) and P(p) are well defined,
although we have not yet ruled out the possibility A(p) = —oc0.]

Suppose for some py € (0, p*), we had A(pg) = —oo. Then a(p) = —o0
for all p ¢ [po, p*]. We have b(p) > b* given by (3.25), and according to
Theorem 3.11,

b7 1
19—§0(p,x) = _(P(p) x) v pe [pO) p*]’ X e (—OO, b*)
p p
This implies that
(D(p, x) = ﬁ)“P(pO’x) v be [pO, p*], X € (—OO, b*)’
and thus

* *
= lim D, ¢(p*,2)= 2 lim D, ¢(po,x)= _(p_) (L)
x—>—00 Po x—>— Po 1-— 7

This is a contradiction, which shows that
A(p) > —oco,  P(p)<p* ¥ pe(0,p").

Now let 0 < g1 < g2 < --- be a sequence with ¢, 1 p* and set p, = P(q,).
Then p, 1 p*, but p, < p* for every n, a(p.) = A(px»), and {a(p,)}, is a
nonincreasing sequence. Because a(-) is upper semicontinuous,

(3.30) lim a(p,) = a(p*) = —co.
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Therefore, there is some ny such that a(p,) < b*, for n > ng. Theorem 3.11
implies for n > ny that

K} 1
(9_¢(p’x) = —¢(P, x) V p € [Pn, P*], X € (a(pn)’b*)’
p p
and so
o(p", %)= T-p(pn,x) ¥z (a(pa),b)

In particular,

D3 ¢(pn,a(pn)) = x};{g )Ditp(pn, x)

=P i D+<p(p x)

p zla(pn)

pn 1
1-p
On the other hand, D;gg\(p,,, a(pn)) = —1/(1 — p). We conclude that

1

e e B

where B, is some number satisfying 8, > —(p./p*)(1/(1— p)).
Consider n > ng and choose S3,8 € (—1/(1— K); Br A Brnt1) with B < B.

We have a(pn’ 6) = a(pn) = b(pn, B) and a(pn+1: .B) = a(pn+1) = b(pn+1’ B)
Corollary 3.19 implies a(p,) < a(pn+1), and this contradicts (3.30).

We conclude that there can be no p* > 0 with a(p*) = —c0. O
THEOREM 3.21. The quantities a(-) and b(-) are nondecreasing.

PROOF. Suppose there are 0 < py < p* such that a(pg) > a(p*). For
Po < p < p*, define
A(p) =max{a(p’); p' €[p, p*1},
P(p) =max{p' € [p, p*]; a(p’) = A(P")}.

Because a(-) is upper semicontinuous, these maxima are attained. Set p; =
P(po), so po < p1 < p* and

(3.31) a(p) <a(p1) Y pe(p,p*l

If D} o(p1,a(p1)) = —1/(1— w), then b(p1) > a(p1), and because of (3.31)
and the lower semicontinuity of b(.), there is a § > 0 such that

[a(p1),a(p1) + 8] c [a(p),b(p)] Y pelp1,p1+3d]
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Since (d/dp)e(p,x) = (1/p)e(p, x) for x € (a(p),b(p)), we have ¢(p,x) =
(p/pP1)e(p1,%), ¥ x € (a(p1),a(p1)+ 8), p € [ p1, p1 + 8]. Therefore,

1
lim Die(p,x)=- lim Dle(pi,x)= L pre(pr,alp)) < ———,
xla(p1) P1 xla(p P1 1—p
which contradicts (3.13). We conclude that
1
(3.32) D:ﬁo(Pl, a(p1)) > —m-

We next show that
1
(3.33) D3 ¢(p,a(p)) = Tn YPe© (p1, P*1.

If not, then for some ps € (p1, p*], we would have D}¢(ps2,a(p2)) >
~1/(1— p). We could then choose S, 8 satisfying —1/(1 — u) < B <pB <
min{D} ¢(p1,a(p1)), DI ¢(p2,a(p2))}, and would have

a(pl’ B)=b(p1) B)’ a(p233)=b(p2’ B)
According to Corollary 3.19,
a(p1) = a(p1, B) < a(p2, B) = a(p2)

and (3.31) is contradicted.

We now claim that a(-) is nondecreasing on ( p1, p*]. If it were not, we could
find po, p* with p; < po < p* < p* and a(po) > a(p.). Replacing po by Ppo
and p* by p* in the preceding argument, we would obtain [cf. (3.32)]

L 1
D;¢(pr,a(pr) > —7—
— @

for some p; € [ po, p*). This would contradict (3.33).
Because a(-) is nondecreasing on (p1, p*], we have

lim a(p) < a(p*) < a(p1) < b(p1).
pip1
By the lower semicontinuity of b(-), there is a 8 > 0 satisfying

b(p)>a(p1+86)+8 ¥ pe(p1,p1+8]
which implies that

[a(p),b(p)]C [a(p1)+ 8,a(p1+8)+8] V¥V pe(p1,p1+8]l
We have

J 1
o ’x = - (p)x)
apqo(p ) ¢

Vxe (a(pl + 6)) a(pl + 6) =+ 5)’ D e (pl: P1 +5]’
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and so,

e(p,x)= o(p1+6,x)

p
p1+96
Yxe (a(pl + 8)) a(pl + 6) + 6)’ pbe (pl’ P1 + 6]
Thus, for p € (p1, p1 + 8), we have

Dio(p,a(pi+8))= lim Dfe(p,x)
xla(p1+8)
p

=———  lim
pP1+ 06 xla(pi+6)

p
= Di(py+6,a(p1+ 6
it o (P (p1 )

- (&)%)

where we have used (3.33). Letting p | p:1, we obtain

p1 1
(525) (1) < o-etprater+ o,
From (3.31) we know that a(p; + ) < a(p1), which implies

ocotpratpr+ ) = -1,
— R

We have again obtained a contradiction, and this time we conclude that there
can be no pair pg, p* with 0 < py < p* and a(po) > a(p*). In other words,
a(-) is nondecreasing.

Reversing the p-variable in the above proof, we can use it to show that b(.)
also is nondecreasing. More specifically, suppose there are 0 < p* < po such
that b( po) < b(p*). For p* < p < po, define

B(p) £ min{b(p'); p' € [p*, pl},
Q(p) 2 min{p’ € [p*, p]; b(p) = B(p)}.

Now proceed as before. O

COROLLARY 3.22. 0 <a(p)<b(p), Vp>0.

PROOF. Lemma 3.13 implies 5(0) = lim,,0b(p) > 0. Suppose we had
a(p*) < 0 for some p*. Then
a(p) <a(p*) <0=<b(p) Vpe(0,p’]
It follows from Theorem 3.11 that

;—qo(x,p) = —1~¢(x,p) Y x € (a(p*),0), p e (0, p*],
x p
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and so
Die(x,p)= 2 Di(x,p")  Vzc(a(p),0), pe (0]
Consequently,
l,fﬁ)lD:‘P(x’ p)=0 Y x € (a(p*),0),
which contradicts (3.13). O
COROLLARY 3.23. a(0) 2 lim,0 a(p) = 0 and b(0) 2 lim, 0 b(p) = 0.

PROOF. From Corollary 3.22 and Lemma 3.13, we have a(0) = 0. If 5(0) >
0, we can find p* > 0 such that

a(p) <a(p*) <b(0)<b(p) V¥ pe(0,p*]l
Arguing as in Corollary 3.22, we conclude that

. . P
lim D} (x, p) =lim — D (x, p*) =0 A4 *), 56(0)),
lim D (x, p) = lim . DX (, p") % € (a(p"), 5(0))
and (3.13) is contradicted. O
THEOREM 3.24. We have a(p) = b(p) = 0 for every p > 0.

PrROOF. Letting B8 + —(1 — A) in (3.29), using Lemma 3.16 and Proposi-
tion 3.8, we obtain for 0 < p; < po,

@(p2,b(p2)) + (1 — A)b(p2)

= @(p1,b(p1)) + (1 - b(py) + [

b1

p

;¢(p, b(p))dp.

Using (3.14) twice in this equality, we see that
(P2 — @) < @(p2,b(p2))+ (1 — A)b(p2)

< ¢(p1,b(p1)) + (1 - 1)b(p1) + fp’” [1 _ %(1 _ A)b(p)] dp
< @(p1,b(p1))+ (1 —Mb(p1)+ ps — p1 — (1 — /\)b(pl)log%.

This can hold for all pe > p; only if b(p1) = 0. Thus, b(p;) = O for all p; > 0.
Because of Corollary 3.22, a(p;) = 0 for all p; > 0 also. O

Finally, we prove the main result.
PROOF OF THEOREM 2.1. According to (3.34),

pz ]
¢(p2,0) = ¢(p1,0) + ;¢(p, 0)dp, 0 < p1 < po,
pP1
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which shows that (d/dp)e(p,0) = (1/p)¢(p,0) for all p > 0. This implies
¢(p,0) = ¢(1,0)p for all p > 0, and (3.14) shows that ¢(1,0) must be 1. Thus,
¢(p,0) = pfor all p > 0, and since D, ¢(p,x) = —1/(1 — ) for x. <a(p) =0
and D} ¢(p,x) = —(1 — A) for x > b(p) = 0, the theorem holds. O

APPENDIX

PROOF OF THEOREM 3.2. To prove the theorem we need to produce a strat-
egy (L, M) such that the corresponding pair (X, Y), starting at (x, y) at time
to, hedges the option. We first find a weak limit of subsequences of the ad-
missible trading strategies L,, M,, corresponding to the initial investments
Xn, Yn.

Denote by X ,,Y ,, the associated holdings in bond and stock and extend all
our processes to [0, 7] by left continuity, as in (8.1). Following the proof of
Lemma 3.1 and taking into account that x,, y, are bounded, it is seen that
there is a constant C such that

(A1) EIX(t) < C,

for every n, ¢, where I,,(s) :== [;"" Y ,(u) dW(u), s € [0, T].

Now, (3.4), (3.5) and (A.1) imply boundedness of the sequences {M,(-)},
{Ln()},{Y,(-)} in Ly, the Hilbert space of progressively measurable, meas x
P square-integrable processes. Here, meas stands for Lebesgue measure on
[0, T']. Consequently, there exist weakly convergent (relabeled) subsequences
in Ls. Denote the respective limits by M(.), L(-), and Y (-).

Following Karatzas and Shreve (1984), we say that two jointly measurable
processes N and N on [0, T'] x Q) are modifications of each other if

(A.2) Plwe Q: meas{0<s <T; Nw)# Ny(w)}=0]=1.

Using arguments of Karatzas and Shreve (1984), Lemmas 4.5 and 4.6, we
can show that M and L admit modifications (again denoted by M, and L)
which satisfy M(t9) = L(¢9) = 0, a.s, which are left-continuous, nondecreas-
ing and {%;}-adapted, and are still weak limits of M,, and L,. Moreover,
their Lemma 4.7 implies that L,(¢), and M,(t) converge weakly in L; =
Li(Q,%7,P) (i.e., as Li-random variables) to L(t), and M(¢), for almost
every t € [0,T]. Also, following the proof of that lemma, we have by weak
convergence, left continuity and monotonicity of M, M, for every A ¢ Fr,

T
liminf EM,(T)1, > 2 lim / EM,(s)1,ds
n—o00 h n=>o0 T-h

1 T
- / EM(s)14ds > EM(T — h)1,.
hJr_pn

Letting & | 0, we get
(A.3) lin})i;lf EM,(T)14 > EM(T)14 VAcYr.

Similarly for L,(T), L(T).
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Let X(-) be the solution to (2.3), that is, the process of holdings in bond
corresponding to the strategy (L, M), starting with x at time #y. Clearly, X(-)
is the weak limit of X, (-) in Lo.

Recall that Y is the weak limit of Y, in L. Fix r < o and let € Ly be
supported on [0,r] x Q. Then

T r - .
E/O Y.(s)n(s)ds= y,,Efo n(s)ds — yEfo n(s)dsE/(; yn(s)ds.

Hence, a modification of Y satisfies Y (s) = y for all s < .
We next claim that

t
I,(t) converges weakly in Lo(Q, F71,P) to I(t) :=/ Y (s)dW(s)
(A.4) to

Y telt,T]

Indeed, fix ¢ € [£o, T'] and notice that given an Ly(Q, %7, P)-random variable
Z, we have the representation Z = EZ + foT 2(s)dW(s), with 2(.) € Ls. As-
sume, without loss of generality, that EZ = 0. Denote by 2¢(-) the process
equal to zero for s > ¢, but otherwise equal to z(-). We have then

tvi, T
E[ZI,(t)] = E fo Y. (s)dW(s) fo 2(s) dW(s)
tn T
_E /0 Y. (s)dW(s) /0 2(s) dW(s)
T tn
(A.5) - E /0 Yo(s)zo(s)ds — yo E /0 2(s)ds
> E /0 " Y(s)zo(s)ds — yE /0 * 2(s)ds
T
- E /t Y(s)zo(s)ds = - - = E[ZI(2)].

Hence the claim (A.4).

This implies that I, (-) converges weakly in Ly to I(-). Indeed, for a process
n(-) € Ly we have E [, I,(s)n(s)ds = [T E[I,(s)n(s)]ds, which converges to
fOT E(I(s)n(s))ds. Consequently, taking weak limits in (2.4) for Y ,(-), we see
that Y (.) satisfies equation (2.4).

We show now that the trading strategy (M, L) is admissible, that is, that
X+ (1 -p)Y and (1 — )X + Y are nonnegative processes. We know that
X,(t) and Y, (%) converge weakly in L; to X(¢) and Y (¢) for almost every t.
The solvency condition is then satisfied for almost every ¢, and actually for
every t, because of the left continuity.

Finally, we prove the hedging property. Let S 2 {w e Q; A-1M)X(T)+
Y(T) < [—(1 — A)g + PP(T)]1,}, where A = {P®P(T) > (1 — A)q}. First
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observe that since
Ry 21— MNXuT)+ Yo (T)+ yMu(T) = (1 — Dy + yu + L(T),
REA-MNX(T)+Y(T)+yM(T)=(1-Nx+y+ IT),

from (A.4) we conclude that R, converges to R weakly. Then by (A.3), Fatou’s
lemma and (2.6°) used twice, we obtain

vyE1sM(T) < liminf yE1sM,(T)
= lim E1s{R, — (1 - 1) X.(T) + Ya(T))}

< E1gR — limsup E1s[ — (1 - A)g + P=P~(T)]"

n—>oo

< E1sR — E15[ — (1 - Mg+ P*P(T)]"
< yE1sM(T).

It follows that we have equalities everywhere, hence P(S) = 0. Similarly for
X(T)+ (1 — w)Y(T), so that the strategy (L, M) hedges the European option
and the proof has been completed. O
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