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STOCHASTIC MODELS OF
HOST-MACROPARASITE INTERACTION

BY VALERIE IsHaM

University College London

The interactions between macroparasites and their hosts, in terms of
parasite-induced acquired immunity and additional mortality of the host,
are of considerable interest and importance. In this paper, a simple
nonlinear stochastic model for the parasite load within a single host over
the lifetime of the host is investigated. By concentrating on a model
incorporating only parasite-induced excess host mortality, exact algebraic
results are possible, which provide insight into the effects of this interac-
tion mechanism. A method of approximating the moments of parasite load
is explored under a range of parametric assumptions. Extensions of the
model to allow for heterogeneity between hosts and to incorporate various
types of acquired immunity within the host are discussed briefly.

1. Introduction. Modeling the immuno-epidemiology of infection is a
problem of considerable current interest and importance; see, for example,
the papers and their cited references in the volumes edited by Grenfell and
Dobson (1995) and Isham and Medley (1995), on infectious diseases in,
respectively, wildlife and humans, that resulted from the recent Epidemic
Models program at the Isaac Newton Institute in Cambridge.

In this paper, we shall consider macroparasitic infections. For such infec-
tions, both the severity of symptoms of disease in the host and the degree to
which the host passes on the infection to others depends not only on whether
or not the host is infected, but on the actual level of infection as measured by
the parasite load. There is a substantial literature on modeling macropara-
sitic infections, mostly using a deterministic approach, although often allow-
ing for variation over the population; see Hadeler (1984), Kretzschmar (1989)
for some specific examples as well as the general survey of Anderson and May
(1991). Few papers take a stochastic view, and the present paper has its
antecedents in the work of Tallis and Leyton (1966, 1969), although in those
papers there is no attempt to model the interaction between the parasites
and their hosts.

In a recent paper, Grenfell, Dietz and Roberts (1995) developed a stochas-
tic model that incorporates host-parasite interactions, for a host population
infected by macroparasites such as helminths. The key problem is to investi-
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gate how the host develops immunity to the parasite as a result of infection,
and the consequent effect that this has on the demography of both host and
parasite populations. Specifically, the model considers the parasite burden as
a function of the age of the host, allowing for the effect of parasite-induced
host mortality and acquired immunity. It is assumed that the effect of
acquired immunity is to increase the mortality of the parasites, but other
effects such as reduced fertility of the parasite or resistance of the host to
reinfection are also possible and of interest.

In this model, the state of a host at age a (conditionally upon survival to
that age) is a triple of variables {I(a), L(a), M(a)}, where I represents the
host’s immunity level and reflects the host’s experience of past infections, and
L and M are, respectively, the numbers of parasite larvae and mature
parasites infecting the host. It is assumed that parasite larvae are acquired
by the hosts at time points modeled by a Poisson process (in principle the rate
could be age-dependent) and that at each such time point a random number,
C, of larvae are ingested. Of particular interest is the way in which the
variability of the input process of infections, and most especially of C, is
transformed into the variability of the state of the host as a function of age.
While I is a conceptual construct of the model, empirical data on L and M
are available and can be compared with theoretical predictions. Often biolo-
gists assume that such data follow a negative binomial distribution, which
provides an acceptable fit; see, for example, Anderson and May (1978), Pacala
and Dobson (1988) and Wilson (1994) and the recent review given by Shaw
(1994).

Grenfell, Dietz and Roberts (1995) derive differential equations for the
joint probability generating function of I(a), L(a) and M(a) conditionally
upon the host reaching age a, and for the first- and second-order moments of
these variables. The nonlinearity of the model means that the latter equa-
tions involve higher-order moments and cannot therefore be solved as they
stand. The authors look at approximate solutions, obtained by assuming that
the variables have a multivariate normal distribution [Whittle (1957)] so that
their higher moments can all be expressed as appropriate functions of their
mean vector and covariance matrix. The appropriateness of this type of
approximation will be discussed in Section 4; intuitively it is plausible when
large parasite burdens have become established.

In the special case of this model when the parasites have no effect on their
host, either by inducing an increased host mortality rate or by stimulating an
immune reaction, the effect of which is to increase the death rate of the
‘parasites in the host, the model is linear. This means that the equations for
the moments of the variables can be solved without the need for approxima-
tion, and in this case Grenfell, Dietz and Roberts (1995) deduce some simple
relations between the coefficient of variation of C and those for L and M.

It is highly desirable to obtain corresponding relations in the more compli-
cated nonlinear model, and Grenfell, Dietz and Roberts (1995) have used
numerical simulations of the model to show that in some cases of practical
interest, the parameter values are such that the relations for the linear case
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are approximately valid. It is also important to know how well the normal
approximations work in the nonlinear case. For these reasons, in this paper,
the properties of an even simpler model will be investigated.

In this simpler model, no attempt will be made to incorporate the effects of
acquired immunity or to distinguish between the mature and larval stages of
the parasite. This means that the state of the host at age a can be taken to be
a single variable M(a) representing the number of parasites infesting the
host. The model is still nonlinear because the parasites increase the mortality
of their host. However, the model is substantially simpler to analyze and, in
particular, the distribution of M(a) can be derived analytically, allowing both
its dependence on the distribution of C and the adequacy of the normal
approximation to be explored under a range of parametric assumptions.

The formal definition of this model is given and its properties are derived
in Section 2 of this paper. In Section 3, we consider the results in more detail
for some particular special cases of the input distribution for the number C of
parasites ingested per encounter, while in Section 4 some approximations to
the first- and second-order moments of the process are examined. In both
these sections, some numerical comparisons are made for illustration. Some
extensions of the model to allow for heterogeneity between hosts are consid-
ered in Section 5 and further generalizations to allow for the incorporation of
various sorts of immune reaction are discussed briefly in Section 6.

2. The Model.

2.1. Definition. We consider the following model for the parasite load
M(a) of a particular host that has survived to age a, as a function of a. We
assume that at birth the host is free of parasites [i.e., M(0) = 0 a.s.] and over
its lifetime is exposed to parasites at times that form a nonhomogeneous
Poisson process of rate ¢(a). At an exposure instant, the host acquires a
random number C of parasites, independently from one exposure to another.
Let C have probability generating function A(z) = L7_, Ak 2z°. While we could,
without loss of generality, take h, = 0, we shall not do so here because we
shall later assume some standard forms for the distribution of C and it is
convenient not to have to condition on C > 0 there. We make no attempt to
incorporate parasite reproduction in the model and, for simplicity, assume
implicitly that the population of parasites in the environment of the host is at
a constant level. However the case considered does cover a scenario in which
not all the acquired parasites become established in the host, as long as the
establishment mechanism acts independently between parasites (see Section
5.2).

Let uy(a) be the death rate of a host at age a in the absence of any
parasite burden and assume that this rate is increased by an amount a for
each parasite present. Let parasites within the host die off independently at
rate u, per parasite. Thus, for a host that has survived to age a, with
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M(a) = m, the possible transitions are:

1. to m + ¢ at rate ¢(a)h, for c = 1,2,...;
2. to m — 1 at rate uym;
3. that the host dies, at rate uy(a) + am.

2.2. Model equations. Let p,,(a) = P(host survives to age a and M(a) =
m). Then for m > 0,

dp,(a)
—ga = “lmm(a) +am + (1~ ho)¢(a) + mym}pn(a)
2.1) n
+ ”‘M(m + 1)pm+1(a) + ¢(a) Z pm—c(a)hc’
c=1
and the generating function P(a;z2) == L},_,p,(a)z™ satisfies the differen-
tial equation
dP(a;z)
T (uale) - d(a)[A(2) - 1])P(a 2)
(2.2) @
dP(a; z)
—{(a + m)z = g} ——-
It follows that S(a) := P(a;1) = P(host survives to age a) satisfies
dS(a)
(2.3) 7o~ tu(@)S(a) — amy(a)S(a),

where my(a) = E{M(a)}. We emphasize that M(a) is the parasite load
conditionally upon the survival of the host to age a.

Then the probability generating function Q(a; z) = P(a; z)/S(a) of M(a)
is the solution of

SULE) _ (g(a)h(z) — 1] + amy())@(ai 2)

da
dQ(a; 2)
dz

For the rest of this paper, we shall assume that the rate of exposure of the
host to parasites is not age-dependent, that is, that ¢(a) = ¢, a constant. In
this case, it is straightforward to solve (2.4) by standard methods, using the
boundary conditions @(a; z) = 1 when a = 0 or z = 1, to obtain the explicit
" solution

(2.5) Q(a;2) =exp{[f01 +

(a;1)

(2.4)

—{(a+ py)z — py)

f@(a;z) d’[l - h(u)] du }
z (py + a)u = py |
where

0(a;2z) = {my + [(a+ py)z — pmylexp(—(a + wy)a)}/(a + py).
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Note that this distribution does not depend upon the function uy since we
are conditioning on the survival of the host.

The properties of the distribution of M(a) can now be found as required. In
principle, it is possible to expand Q(a; z) in a power series in z to determine
explicitly the probability distribution of M(a). In practice, this does not give
rise to nice expressions in general and this option will not be considered
further. However, the first few moments of the distribution are easy to write
down and, in particular,

(2.6) E(M(a)) = ¢{1 - h(6(a;1))}/a,
var(M(a)) = {¢4'(1) — uyE(M(a))
— o' (8(a;1))exp(~ (a + uy)a)}/a
and hence the index of dispersion, I,,(a), for M(a) is given by
var(M(a))
b @) = B (a))

_ K1) - H(8(a;1))exp(—(a+ py)a)  py
- 1 - h(6(a;1)) a’

where #/(1) is just the mean E(C). Note that equations (2.6)—(2.8) are given
on the assumption a # 0; results for the case o = 0 will be given separately
in Section 3.1.

The probability that a host of age a has never been infected is exp{ — ¢(1 —
ho)a}, the probability that a host of age a is infected is simply 1 — Q(a;0),
while the probability, S(a), that the host survives to that age can be ex-
pressed as

S(a) = exp{—j:p,H(u) du}exp{—afo"E(M(u)) du},

where the first term of the product represents the probability of the host’s
survival in the absence of parasite-induced effects, while the second term is
the chance of escaping parasite-induced mortality.

To determine the prevalence of infection in the population it is necessary
to weight the probability, 1 — Q(a;0), that an individual of age a is infected,
by the probability that an arbitrarily chosen member of the population is of
age a. Thus the prevalence of infection is given by

f:ll — Q(a;0)]S(a) da/f:S(a) da.

If we let @ — =, then the distribution of M(a) approaches an equilibrium,;
since a only appears in the distribution of M(a) via the expression exp{ —(a
+ wy)al}, it is clear that this exponential decay governs the rate of conver-
. gence. Remember that M(a) is the number of parasites conditionally upon
surviving to age a. In fact, as we shall see in some numerical illustrations
later, in many cases the equilibrium values will be achieved fairly quickly

(2.7)

(2.8)
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relative to a typical host lifetime, and therefore these values are of substan-
tial interest. The behavior of the function 6(a;1) is crucial: As a increases,
this function decreases from 6(0;1) = 1 to 6(; 1) = u,,/(uy + @), so that if
o < u,, it is nearly constant. We have, as a — «,

_Hw
(a+ py)’

h M a M —h(w)|du
(2.9) Q(a;z)aexp{/“”[ (m/ (@ + par)) = h(w)] }

0(a;z) —

z (a+ my)u — py

(2.10) E(M(a))ﬂg{l—h( Hu )}

a+ Wy

P (1 M M
(2.11) var(M(a)) — ¢ af ) - Ma;b {1 - h a:‘LP«M },
R(1) oy

fula) = 1—h(pu/(a+ py)) o

Note that the limiting generating function in (2.9) is the generating function
of the limiting stochastic process, so that there is no ambiguity as to the
interpretation of these results.

3. Special cases.

3.1. No parasite-induced mortality: « = 0. As a basis for comparison, it is
useful to consider first the special case when a = 0, although our main
interest is in the impact on the system of parasite-induced mortality (« > 0).
In this case, there is no interaction between the parasites (once ingested) and
their host, and the model is linear; see Tallis and Leyton (1969). Equation

(2.5) simplifies to
. _ 6(a; 2) $[1 - h(u)] du
Q(a; 2) —exp{—fz o (1— ) },
where 6(a;2) = 1 — (1 — z)exp(—uy,a) and 6(a;1) = 1. Then
E(M(a)) = oh'(1){1 — exp(—uya)}/my

and
var(M(a)) = E(M(a)) + ¢2"(1){1 — exp(—2pya)}/(2py),
and, since 2'(1) = E(C) and #"(1) = E(C? — C),

E(C? - C)
2E(C)
Thus M(a) is overdispersed for all ages a, as long as P(C < 1) < 1, that is, if
there is a chance of acquiring more than one parasite in a single exposure. In

fact, it is easy to use expansions to show that this also applies for a # 0 as
long as a/uy, is sufficiently small. If we write I, for the index of dispersion of

Iy(a) =1+ (1 + exp(—pya)).
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C, we see that, as a — o,
Iy(a) » {1 + E(C) + I}.

3.2. Constant C. We consider only the simplest case, when, at each
exposure instant, a single parasite is ingested by the host. Then C = 1 a.s.
and A(z) = z. In this case the general results simplify very substantially and
we find that M(a) has a Poisson distribution with mean

d(1 —exp(—(py + a)a))/(py + a).
This process is perhaps more familiar as a modification of an M /M /~ queue

in which the system has a random lifetime, conditionally upon the survival of
that system.

3.3. Negative binomial C. Suppose that C has a negative binomial distri-
bution with an integer index, £ > 1, and parameter p, 0 < p < 1; that is,

P(C=r) = (k+;— 1)pk(1—p)’ forr=0,1,...,

so that h(z) = p*/{1 — (1 — p)z}*. It is convenient to reparameterize this
distribution in terms of 2 and the mean m. = E(C) = k(1 — p)/p, and we
note that the index of dispersion of this distribution can then be expressed as
Io =1+ my/k. By using a partial fraction expansion of the integrand in
(2.5), and integrating term by term, it can be shown that
Q(a; z) = exp{f(k + mc(1 - 0(a;1))) — f(k)
(3.1) +f(k + me(1 —2)) — f(k + me(1 — 0(a; 2)))}
Xy (p1/ Pk S/ (pome)
where
-1
pimc(1 —z)exp(—p;mca)

—(1+ :
v kp, + a(1 — exp(—p,mca))

¢kk k-1 1 (le )j—l
mcpowk_1j=1k_j Po

f(w) =

and p; = (& + py)/me, py = py(k + me) — py.
In equilibrium, that is, as a = «, 0(a; z) = u,/(a + w,,) for all values of
z, and therefore (3.1) simplifies to

Q(a; z) - exp{f(k + mc(1 —2)) — f(k)}

X(1+ mg(1 - z)/k)_(pl/p.")kg1kk¢/(p°m0).
Thus we see that M(«) can be regarded as a sum of k independent variables
Y, + - +Y,_; + X, where the probability generating function of Y; is

ok*{(k + (1 - 2)mg) ™" — kI7H) wy + @ i
[(”’M ]

(3.2)

exp (i + @) (% — 1) T a)k + amg
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and X has a negative binomial distribution with mean

pmc (my + a)k
(a+ py)k | (py + a)k + amg
and index RE(X)/m. Note that the index of dispersion for X is 1 + E(C) /.
In the special case when k2 =1 so that the parasite input, C, has a
geometric distribution with mean m, the equilibrium distribution of para-
site load is negative binomial with mean
éme
My +a+ amg
and index v := E(M(©))/m, so that I,,(«) = 1 + m = 1. Thus, in this very
special case, the index of dispersion of the input C is invariant under the
transformation to the output M of the process. Note also that, in this limiting
case, the probability that a host is free of parasites is (1 + m,)™".

k

E(M()) -

3.4. Poisson C. Another important special case, when C has a Poisson
distribution, could be obtained by considering the above negative binomial
case in the limit as £ — «. Clearly taking this limit requires care and the
resulting expressions are not particularly simple. The alternative is to return
to the general solutions obtained in Section 2.2 and substitute the Poisson
probability generating function 4(z) = exp(—(1 — z)m,), thus deriving solu-
tions expressed in terms of the exponential integral function Ei(w) (which
has derivative w~'e”). For example, in equilibrium, the probability generat-
ing function Q(c, 2), of the parasite load M(x), is given by

.. ¢ —amg
R ) = ™ {(awM)}
(3.3) { ; (a+ MMi"_Zc:M_ /-"MmC)

(a+ pmy)z — uy
a

+1n

|

Of course the moment expressions are much simpler, as can be seen, for
example, by making the substitution for the function 4 directly in (2.10) and
(2.11).

3.5. Some numerical results. Perhaps the simplest way to make some
comparisons of the effect of the distribution of the parasite input, C, on the
behavior of the parasite load, M(a), as a function of age, is to show some
numerical results. We shall assume that C has a negative binomial distribu-
tion and consider three cases: (1) the limiting Poisson case, where the index
k — =, (2) the geometric case, where 2 = 1, and (3) the case % = 0.5, to
represent the situation when 2 < 1.

In Figures 1-3 the means and indices of dispersion of M(a) as functions of
age are plotted for several sets of parameter values. For the sake of example,
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300,
Mean
2504 k=00
k=1
k=0.5
200
1501
100
Index of
dispersion
k=0.5
50 k=1
k=o00
0 } } } } |
0.2 0.4 0.6 0.8 i

age

Fic. 1. Exact mean and index of dispersion for the Poisson distribution (k = ©), the geometric
distribution (k = 1) and the negative binomial distribution (k = 0.5) using parameter values
© ¢ =52, a=0.02, uy =10 and mo = 50.
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Fic. 2. Exact mean and index of dispersion for the Poisson distribution (k = ), the geometric
distribution (k = 1) and the negative binomial distribution (k = 0.5) using parameter values
¢ =52, a =0.02, uy = 10 and my = 5.
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Fic. 8. Exact mean and index of dispersion for the negative binomial distribution (k = 0.5)
using parameter values ¢ = 52, a = Q.Ol, ty =10, mc =50 and ¢ = 52, a = 0.02, My = 10,
mc = 50. The function with a = 0.01 is the upper curve of each pair.
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we imagine time to be measured in years and have kept the parasite death
rate, u,s, fixed at a biologically plausible value of 10, and varied the values of
the other parameters, ¢,  and m; see Grenfell, Dietz and Roberts (1995)
with regard to the choice of these numerical values.

We see (e.g., Figures 1 and 2) that for such cases the system rapidly
approaches equilibrium over just a few parasite lifetimes. The mean of M(a)
decreases gradually with %, so that the curve for geometric input lies slightly
below that for Poisson input, while that for £ = 0.5 is a little lower again. In
contrast, the index of the dispersion increases substantially as 2 decreases,
reflecting the greater variability of the input distribution (the index of
dispersion of C is 1 + m/k).

The mean and variance of M(a) are both proportional to ¢, so that making
a change in ¢ simply rescales the curves for the mean, while leaving those
for the index of dispersion unchanged. The effect of changing m, is less
straightforward algebraically, but by comparing Figures 1 and 2 we see that
the overwhelming effect (at least at these parameter values) is a correspond-
ing rescaling of both the mean and the index by the same factor (10 for these
figures). The effect of changing o is again complicated algebraically, but, for
the sorts of parameter values considered here, there is little effect on the
mean of M(a), while the variance increases slightly when « is decreased. Of
the three values of & considered, these effects are most pronounced when
k = 0.5 and this case is illustrated in Figure 3.

It is perhaps worth noting that various approximating expansions to these
exact results are possible, perhaps the most obvious being when o < u,,, as
in these numerical calculations. For example, if in the limiting mean given in
(2.10), the generating function & is expanded about the point 1, we find that

sy - 22 o325 1)

confirming the limiting spacing between the mean curves shown in Figures 1
and 2, and the remarks of the previous paragraph. Similar results apply for
the index of dispersion curves.

4. Approximations.

4.1. Theoretical results. It can easily be deduced from (2.4) that the mean,
m,,(a), and variance, o2(a), of M(a) satisfy the following differential equa-
tions:

dmy(a) 2
(4.1) e " oh' (1) — aoy(a) — uyymy(a),

d_a'_ﬁ(a) = ¢{h' (1) + (1)} + wyymy(a) — 2uy02(a)
42) T MMy MM

+ a<3mM(a)0A3(a) + my(a) — E(M(a)3)},



732 V. ISHAM

where, as usual, #'(1) = m; = E(C) and A"(1) = E(C(C — 1)). If M(a) has a
normal distribution, then the term multiplying « in (4.2) is identically zero
for all a, since the third-order moment is expressible in terms of the mean
and variance, and therefore the pair of equations can be solved to determine
my(a) and o52(a). The normal approximation to the moments is obtained by
setting this term in (4.2) to zero and solving

=¢{h' (1) + K (D)} + uyymy(a) — 2uy,0a(a)

in conjunction with (4.1). The explicit form of the solution of these equations
is given in the Appendix.

An extremely widely used method of approximating a stochastic population
process is to use a deterministic model. This entails ignoring all random
variation in the process and treating integer-valued variables as continuous.
For the present model, the deterministic approximation to the mean is
obtained by setting o;2(a) = 0 in (4.1), which then has solution

daz(a
2O

my(a) = ¢me(1 — exp(—uy a))/ ity -
The normal approximation improves upon this by using the correct differen-
tial equation (4.1) for the mean, although its solution is not exact because it is
used in conjunction with an approximating equation (4.3) for the variance.

Any theoretical justification for using the normal distribution as an ap-
proximation to the true distribution, for processes of this sort, would have to
be an asymptotic one, based on an assumption that the parameters of the
model are such that a host surviving sufficiently long will acquire a large
parasite load which can be approximated by a continuous variable, and that
the host does survive long enough to escape the constraint of the boundary
(whereby the host is parasite-free at birth). The method of normal approxima-
tion was first proposed by Whittle (1957), and was rigorously explored in a
series of papers by Kurtz (1970, 1971, 1981), who proved conditions under
which a general class of Markov jump processes converge to Gaussian pro-
cesses. For an application of the technique of normal approximation as a
means of getting approximate moments in the context of particular epidemic
models, and especially in relation to the AIDS epidemic, see Isham (1991,
1993). Further work would be needed to extend Kurtz’s results to processes of
the sort being considered in this paper.

It is emphasized that there is no suggestion in this paper that M(a) is,
even approximately, normally distributed. However, it is possible for the
approximate moments obtained by solving the differential equations for the
normal approximation, to be good even in cases where the normal distribu-
tion is a wholly inappropriate approximation to the true distribution. For
example, if a = 0, the model for parasite load is linear and the normal
approximation equations are exact in the sense that their solution gives the
exact mean and variance of M(a). This does not mean that M(a) is normally
distributed. The parasite load is a nonnegative integer-valued random vari-
able and has initial value M(0) = 0, so that a normal approximation to its



HOST-MACROPARASITE INTERACTION 733

distribution can never be justified for small a, although it may be reasonable
when a is relatively large and ¢m > u,,. In general, for a # 0 the validity
of the approximation to the moments will depend entirely on the relative size
of the term set to zero in (4.2). In the next section, numerical examples will be
given to show that-(for a # 0) the method of normal approximation does give
surprisingly good approximations to the mean and variance of M(a), even
close to the boundary, when M(a) is zero or very small.

The practical justification for using approximate moments obtained by
solving normal approximation equations like (4.1) and (4.3) is a pragmatic
one: that such sets of simultaneous differential equations are very easy to
solve (at least numerically) in many cases where exact moments are alge-
braically intractable and have to be obtained by simulation. Of course, ease of
calculation by itself is not a sufficient reason for their use and it is necessary
to ascertain how good these approximate moments are, in cases where an
asymptotic justification cannot apply. One nice feature of the model formu-
lated in this paper is that exact results are available, and therefore it
presents an opportunity to compare exact and approximate moments in a
variety of situations. This will be discussed further in the numerical compar-
isons of the next section.

Note that, if required, approximations could be obtained by assuming other
two parameter distributions for M(a), by substituting the appropriate form
for E(M(a)?) in (4.2); the negative binomial distribution is an obvious possi-
bility and details for this will be given in a forthcoming paper, which will
explore the adequacy of the distributional approximation as well as that of
the first and second moments.

4.2. Numerical comparisons. As in Section 3.5, it is simplest to concen-
trate on some particular special cases, and again we shall assume that C has
a negative binomial distribution with three particular values for the index k:
k — o (Poisson), & = 1 (geometric) and £ = 0.5. As before, we imagine time to
be measured in years and have kept the parasite death rate, u,,, fixed at the
value of 10 while varying the values of the other parameters, ¢, a and m,.

We shall access the approximations directly in terms of the mean and
standard deviation of the distribution of parasite load, rather than using the
index of dispersion derived from these. In Figure 4, we compare the exact
means and standard deviations for the same set of parameter values as used
in Figure 1, with the normal approximation to these moments and with the
deterministic approximation to the mean.

We see that deterministic approximation overestimates the true mean, the
approximation being best when k£ = «, and getting worse as k decreases. The
normal approximations come much closer to the true means, although the
effect is to overcorrect the deterministic curves so that the approximate
'means slightly underestimate the exact means. On the other hand, the
normal approximations to the standard deviations overestimate the true
values. Again the approximations are best when %k = «, so that C has a
Poisson distribution, and become more pronounced as % decreases and the
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Fic. 4. Exact and approximate mean and standard deviation for the Poisson distribution
(k = ), the geometric distribution (k = 1) and the negative binomial distribution (k = 0.5) using
parameter values ¢ =52, a =0.02, u, = 10 and m¢g = 50, with deterministic and normal
approximations. The normal approximations to the means lie below the true curves. The normal
approximations to the standard deviations lie above the true curves. The deterministic approxima-
"tion to the means lies above the true curves.
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distribution of C becomes increasingly overdispersed. Thus, while the normal
approximations are probably good enough for most purposes when k£ > 1, it
may be necessary to exercise more care when k£ < 1 and the variability of C
is relatively large.

In this connection, it is useful to return to (4.1) and (4.2) and consider
briefly their exact solution in the limiting case when a — ». Denote the
limiting mean, variance and third moment about the mean, by m, o2 and s,
respectively, and the corresponding moments for the normal approximation
by m, and o (and 0). Then it is straightforward to show that

als ) , as
m=my+ —————— and o?=o0f -

par (o + 2 ) a+ 2py’

so that if the limiting distribution of M(a) has a positive skewness (s > 0),
then the normal approximation will underestimate the limiting mean and
overestimate the limiting variance. While it is not immediately obvious,
generally, that the limiting distribution does have s > 0, it is straightforward
to show by expansion that this is the case when, as in the numerical
examples, o < u,,. We also note that, as mentioned in the Introduction, the
negative binomial distribution, which is often suggested by comparison with
empirical data as providing a good fit to the distribution of parasite load, has
positive skewness.

Our original motivation for looking at the normal approximations to the
moments of the stochastic process was an asymptotic one. Except soon after
the birth of the host, the parasite load for the parameter values used for
Figure 4 is reasonably large and one might therefore expect the approxima-
tions to be close to the true values. However, it is interesting to note that the
approximations do well even at small ages. To investigate this further, we
repeat the same comparisons with a different set of parameter values, for
which the equilibrium parasite load is only a little over 2. The results are
shown in Figure 5, from which the same qualitative conclusions can be drawn
as from Figure 4. It is important to repeat that in such cases, the normal
distribution will not be a good approximation to the distribution of parasite
load.

5. Extensions for host heterogeneity.

5.1. Random ¢. Probably the most tractable way of modeling between-
host variability is to suppose that the rate at which hosts encounter parasites
varies from one host to another, that is, to allow the parameter ¢ for each
host to be an independent observation on a random variable ®. Within a
particular host, all the results are as already derived, although they must
now be interpreted as properties of the conditional distribution of the para-
site load M(a) given ® = ¢.

Suppose that ® has moment generating function Gy(s) := E(e*®) with
index of dispersion I,. Then it follows immediately from (2.5), (2.6) and (2.7)
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Fic. 5. Exact and approximate mean and standard deviation for the Poisson distribution
(k = ), the geometric distribution (k = 1) and the negative binomial distribution (k = 0.5) using
parameter values ¢ =52, a =0.02, uy =10 and m¢ =5, with deterministic and normal
approximations. The normal approximations to the means lie below the true curves. The normal
" approximations to the standard deviations lie above the true curves. The deterministic approxima-
tion to the means lies above the true curves.
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that, unconditionally, M(a) has probability generating function

1 o(a; 0] [1—A(u)] du
Gq)([/o(a;l)—l_fz ](MM"'(I)U_P«M ’

with mean and index of dispersion given by

E(M(a)) = E(®){1 - h(6(a;1))}/a,
(5.1) Iy(a) = Iye(a) + 1e{1l — h(6(a;1))}/a,

where the first term on the right-hand side of (5.1) is the corresponding index
for a single host (i.e., for fixed ® = ¢) given in (2.8), which is independent of
. The effect of allowing for between-host variability is thus that the popula-
tion index of dispersion is increased over that for a single host by an amount
that can be expressed as

E(M(a))var(®)/[E(P)]".

5.2. Alternative randomizations. An alternative strategy would be to al-
low the parameter a, which represents the effect of a single parasite on the
rate of mortality of the host, to vary randomly over the population. It is clear
from the way that o enters into the expressions for properties of M(a) for a
single host, derived in Section 2.2, that while it is perfectly possible, such
randomization does not lead to algebraically simple and easily interpretable
results.

Another possible scenario is the following. Suppose that the number of
parasites initially picked up by the host in a single encounter is a random
variable K, and that each parasite independently survives and becomes
established in the host with a probability 7, where 7 varies from one host to
another as a random variable II. Then for a particular host, given K = k&, the
number C of surviving parasites per encounter has a binomial distribution
with index %2 and 7. Unconditionally, if K has probability generating func-
tion hg, then the corresponding function for C is given by ho(2) = hx(1 — =
+ @z). The previous expressions for the properties of M(a) for a single host
can now be modified by substituting this form for %4, and then randomizing
with respect to 7 to obtain population values. The resulting expressions for
these properties are straightforward although a little unwieldy. In the special
(and not especially interesting) case when a = 0, for example, we find

E(M(a)) = ¢E(INE(K)(1 — exp(—pmpa))/ k'
Iy(a) =1+ {qSIHE(K)_/p,M + (IH + E(H))(IK + E(K) - 1)/2}
X (1 — exp(—pya)),

where I; and I, are the indices of dispersion for IT and K, respectively.
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6. Discussion. The model discussed above allows for interaction be-
tween the host and parasite populations only through the additional mortal-
ity that the parasites present induce in their host. We now consider very
briefly how various sorts of immune reactions might be incorporated.

Perhaps the simplest possibility is to suppose that, rather than being a
constant u,,, the rate at which a parasite dies is increased by the presence of
other parasites within the host. Such an effect could also result from competi-
tion between parasites. It is straightforward to extend the methods of this
paper to a more general model in which, given M(a) = m, the parasite death
rate has the form u,, + k(m — 1). The factor m — 1 is chosen in preference
to m for mathematical convenience and without any loss of generality. In this
case, there does not appear to be a simple closed form for the probability
generating function of M(a), as there is when « = 0, but properties can still
be obtained by expansions, numerical solutions and other approximations as
appropriate.

In this modification of the basic model, the immune reaction to the
parasite load is envisaged as a simple sort of density dependence, but it is of
more interest to model host immunity as a stochastic variable. Thus, we
might replace the univariate model by a bivariate one, in which the host’s
immunity is represented by a nonnegative, integer-valued stochastic process
I(a) at age a. For example, a natural assumption is that the immunity level
increases at a rate proportional to the current parasite load M(a), and decays
at a rate proportional to I(a), so that {I(a)} is a particular birth and linear
death process. We can now use the immunity variable to increase the parasite
death rate from pu, to u, + BI, so incorporating an additional form of
nonlinearity into the model. Host death depends on parasite load as before.
The effects of both of these modifications will be described in more detail in a
forthcoming paper.

This latter modification of the basic model can be extended further by
allowing parasites to exist in two forms within the host: as larvae and as
mature parasites. Such a model has already been investigated (mostly nu-
merically) by Grenfell, Dietz and Roberts (1995) as described in Section 1 of
this paper. In their model, Grenfell, Dietz and Roberts assume that, at an
encounter, the C parasites ingested are in larval form, and each parasite
independently remains in this stage for an exponentially distributed time
before either dying (at a rate that depends on the immunity level) or
maturing. The stochastic immunity process is a birth and linear death
process where the birth rate depends on the current total number of larvae
present in the host. ,

In all of this we have only considered the evolution of a parasite population
within a single host. A challenge for the future must be the question of how
such stochastic models can be embedded within a suitable model for the
dynamics of the host population; see, for example, Anderson and May (1978),
.who demonstrate the regulation of a host population by a macroparasite,
using a deterministic model in which the parasite load is assumed to have a
negative binomial distribution over the population, where the mean of this
distribution is age-dependent, but where the shape is assumed to be fixed.
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APPENDIX

The explicit solution to (4.1) and (4.3), for the normal approximation to the
moments of the distribution of the parasite load M(a), is as follows:

my(a) =A — (A/2 + BB)exp(—(3uy — B)a/2)
—(A/2 — BB)exp(—(3uy + B)a/2),

o3 (a) = C — (C/2 + BD)exp(—(3uy — B)a/2)
—(C/2 — BD)exp(—(3py + B)a/2),

where

B=Vuyu(my —4a),

A= ¢{2MMmc - a(m% + vc)}/{ﬂM(“ +2u)}

B = ¢{2(py — a)mc — 3a(mg + vc)} /(2m (@ + 2py0) (pyy — 40)},
C=¢(mc+mé +vc)/(a+2pny),

D = ¢{Buyme — (2a + py ) (mE + ve)} /{2y (@ + 2u40) ( 1y — 4a)}.
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