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The stepping-stone model is widely used in population genetics to
describe the evolution of a population with mating and geographical
structure. It is typically formulated on a countable set, where each ele-
ment of the set corresponds to a colony. Each colony consists of a popula-
tion of a fixed number of haploid individuals. Individuals undergo random
mating within each colony and migrate to neighboring colonies. In the
model considered here, we are interested in the changes that may occur at
a single locus on a single chromosome at which two alleles are possible.
Changes in the gene frequencies are caused by migration between colonies,
in addition to mutation, selection and random mating within each colony.
It is frequently assumed that local populations persist indefinitely. This,
however, is a reasonable assumption only if the average time until extinc-
tion of a local population is much larger than the time interval over which
the whole population is studied. In this paper, using the framework of
interacting particle systems, we address the question of how extinction
and recolonization affect the spatial distribution of gene frequencies in
both homogeneous and inhomogeneous environments. It turns out that
extinction does not change the qualitative behavior of the model in a
homogeneous environment; that is, in one and two dimensions, the popu-
lation clusters in the absence of mutation (i.e., it consolidates into larger
and larger blocks), whereas in higher dimensions, coexistence is possible.
However, there are quantitative differences. For example, we find that
extinction speeds up clustering in one dimension. In inhomogeneous envi-
ronments, extinction can drastically change the behavior and new phe-
nomena, such as coexistence in d = 2, appear.

1. Introduction. The stepping-stone model was introduced by Malécot
(1948) and, independently, by Kimura and Weiss (1964) to describe the
evolution of the genetic composition of a population with mating and geo-
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graphical structure. It is typically formulated on a countable set, where each
element of the set corresponds to a colony. Each colony consists of a popula-
tion of N haploid individuals. For each such individual, we are interested in
a single locus on a single chromosome at which two alleles (or genes), A; and
A,, can occur. Genetical evolution is caused by migration between colonies, in
addition to mutation, selection and random mating within each colony. The
spatial component permits nontrivial behavior which depends on the spatial
dimension.

Models for the evolution of the genetic composition of populations in
subdivided habitats, such as Wright’s (1931) island model, Levins’ (1970)
metapopulation model or the stepping-stone model, frequently assume that
local populations persist indefinitely. This is only a reasonable assumption as
long as the average time until extinction of a local population is much larger
than the time interval over which the whole population is studied. Several
studies [see, e.g., Simberloff and Wilson (1969) or Crowell (1973)] found that
local extinctions may in fact be quite frequent. Since it is not obvious how
extinction and recolonization may affect the population structure, it is impor-
tant to incorporate these features into theoretical models, as was pointed out
by McCauley (1991). In fact, there are contradicting statements in the
biological literature on whether extinction enhances or diminishes genetic
differentiation. We refer the reader to Neuhauser, Krone and Kang (1994) for
further discussion of the biological issues, as well as references regarding
biological and mathematical work which has been done in this area.

We only mention here some of the mathematical results on the stepping-
stone model. Sawyer (1976, 1977, 1979) investigated the discrete-time step-
ping-stone model on Z%. He was particularly concerned with the rate at which
clusters of individuals of common origin grow in the selectively neutral case
with or without mutation. Clustering rates were also the focus of two articles
by Cox and Griffeath (1987, 1990), who studied a simplified version of the
continuous-time stepping-stone model (the so-called multitype voter model).
Itatsu (1985, 1989) investigated the equilibrium measures of the discrete-time
stepping-stone model with mutation and selection. There are, however, no
rigorous results on the stepping-stone model with extinction and recoloniza-
tion. .

We now carefully define the model we wish to investigate. Let the d-
dimensional integer lattice Z¢ be the set of possible locations of colonies.
Each existing colony has a population of N genes evolving according to a
continuous-time Moran model. (The Moran model is the continuous-time
analog of the usual Wright-Fisher model and will be defined below.) In
addition, we allow for extinction of colonies and migration from neighboring
colonies.

More explicitly, we consider a continuous-time Markov process (7, {,),
" t > 0, where 5,: Z¢ — {0, 1} is the occupancy process and ¢,: Z¢ - {1,2}¥Y U T
gives the allele compositions of the colonies. The colony size N is the same
for all colonies. If 7,(x) = O (resp., 1), then we say that the colony at x €
Z¢ is vacant (resp., occupied) at time ¢. If n(x) =1, then ¢{(x)=
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(Z(x,1),...,¢(x,N)) € {1,2}¥ describes the alleles of the N individuals in
colony x at time ¢, with {,(x, k) = 1 (resp., 2) if the kth individual in colony x
has allele A, (resp., A,) at time ¢; if n,(x) = 0, then set {,(x) = T. (T is just
a symbol to define the state of a vacant site.) The A;-allele frequency at time
¢t in an occupied colony x is denoted p,(x); that is, p,(x) = (1/N)TY_,(2 —
L(x, R If x = (x4, x5,..., x,) € Z%, we set || x|l; = £¢_,|x;|. The dynamics of
the process are as follows:

(i) For each pair (x, y) with ||x — yll; = 1, if x is occupied at time ¢, then
at rate 1 the colony at x sends an exact copy of its gene composition, that is,
{,(x), to y. If y is vacant when this happens, then y becomes occupied and
{(y) = {,_(x). If y is already occupied, then for each &, £ = 1,2,..., N, an
independent coin is tossed with probability 6 € [0, 1] of heads. If heads comes
up, set {,(y, k) = {,_(x, k); if tails comes up, {,(y, k) = {,_(y, k).

(i) If x is occupied, then it becomes vacant at rate y(x). The extinction
rate y(x) may depend on location.

(iii) If x is occupied, then a reproduction event at that location occurs at
rate NA (corresponding to an individual reproduction rate A in a colony of
size N). The relative fitnesses of A; and A, in colony x may depend on x in
general, say 1 + s;(x) and 1 + s,(x), respectively, with s,(x) € [0, «). If the
A,-allele frequency at x is p(x), then, after taking selection into account, its
weighted frequency is

(1 +s(x))p(x)
(1 +sy(x))p(x) + (1 +55(x))(1—p(x))°

Reproduction is defined as follows: at the time ¢ of a reproduction event, a
single individual 2 € {1, ..., N} is randomly chosen and a coin is tossed, with
probability o( p,_(x)) of heads. If heads comes up, the value of {(x,k) is
replaced by 1 at time ¢; if tails comes up, it is replaced by 2 at time ¢. All
other individuals are unaffected.

(L.1)  o(p(x)) =

Step (i) describes migration to neighboring colonies. If a colony is vacant, it
can be recolonized from a neighboring “parent” colony and this new colony
has the same gene composition as the parent colony. Already occupied
colonies can receive genes from neighboring colonies. The parameter 6 is a
measure of how successfully the invading population can replace members of
the original population. Note that the parent colony at x remains unchanged.
One can think of the migration here as a cloning mechanism. Step (ii)
describes the extinction mechanism. Typically, we will have y(x) = § or A,
two constants, with 0 < § < A. Colonies will be called 8-colonies of A-colonies,
depending on this extinction rate. We will treat several different cases. In the
case of a homogeneous environment, we will set y(x) = A for all x. We will
treat the case of a periodic environment in Z by placing §-colonies D units
apart and filling in the remaining lattice sites with A-colonies. The case of a
random environment in Z¢ will be obtained by independently assigning a
value 8 or A to each y(x), with probability p for 6. These values are assigned
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at the beginning and then held fixed forever. Step (iii) describes the selection
and reproduction mechanism of a continuous-time Moran model. Reproduc-
tion here is simply replacement: a single individual chosen at the time of
reproduction is replaced by another individual whose type is determined
according to the weighted frequency distribution at that site. The replaced
individual can be thought of as being killed. In this way, the population size
of a colony is always N. (In discrete-time models, this could be replaced by
the Wright-Fisher model in which all N individuals are replaced at the same
time via binomial sampling.) In the case of an inhomogeneous environment, if
y(x) = 8, then we set s,(x) = s; and s,(x) = 0;if y(x) = A, we set s,(x) = 0
and s,(x) = sy, where s; and s, are nonnegative constants. In other words,
A, has a selective advantage (or, at least no disadvantage) on 8-colonies and
A, has a selective advantage on A-colonies. Note that when p,(x) = 1 (resp.,
0), fixation of allele A, (resp., A,) will have occurred. Since there is no
mutation in our model, this fixation can only be interrupted by gene flow
(migration) from neighboring sites. We call the above process a stepping-stone
model with extinction and recolonization.

Note that (1) and (ii) imply that 7, is a basic contact process (in a
homogeneous, periodic or random environment). Later, we will need the
notion of the critical death rate for a basic contact process in a homogeneous
environment. Consider a contact process in which particles die at rate § and
give birth on neighboring vacant sites at rate 1. Since this process is attrac-
tive [cf. Liggett (1985)], starting from a configuration of all 1’s, there is a
unique stationary measure v,. The all O configuration is a trap. It is known
that there is a unique number, §, > 0, depending on the dimension, for which
v, is the point mass on the configuration of all 0’s when 6 > §,, and is a
nontrivial invariant measure when 8 < §,. It is clear that, to get any interest-
ing behavior in our model, we will need at least one of the two extinction
rates A and & to be less than §,.

Let #(2) (resp., %) denote the set of probability measures (resp., transla-
tion-invariant probability measures) on the space of configurations,

d

z=({L2" v )",
and let pu,; (resp., u,) €P(2Z) be the limit law corresponding to initial
distribution 8, (resp., §,) € 2(2), which puts 1’s (resp., 2’s) at each (x, k) €
Z?% x {1,..., N}. These invariant measures exist because the particle system
starting with all 1’s (resp., all 2’s) is attractive. Note that, due to the absence
of mutation, once the process is void of 1’s or 2’s, it will remain so. In
addition, let 7m; € 2(2) denote the product measure which assigns values
{1,2} in an i.i.d. manner to the coordinates (x, k), with probability g8 for 1 and
1 — B for 2. We write {* for the process ¢, with initial distribution u € 2(2);
when u = 75, we simply write {2, If u, v € 2(2), then we use the notation
¢} = v to denote the weak convergence uS, = v, where uS, is the law of {*.
The first theorem considers the case of a homogeneous environment in
which one of the alleles has a selective advantage. Not surprisingly, the allele

with the selective advantage takes over.
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THEOREM 1. Suppose d > 1 and y(x)=A, 0 <A< §,, for all x € Z°
Further assume that, for each x, s,(x) = s, and sy(x) = s,, with s; < s,. Then
for any 6 €(0,1], A >0 and N >0, the “I’s die out.” That is, if ¢, is
translation invariant and P({,(x, k) = 2) > 0, then {, = u,.

The key to proving Theorem 1 is duality. We will give more details after
the next theorem. Our next result deals with the case of selectivity neutral
alleles in a homogeneous environment.

THEOREM 2. Suppose y(x) = A, 0 <A <§,, and s,(x) = sy(x), for all
x e 74

(a) If d < 2, then clustering occurs: for any 6 € (0,11, A > 0, N > 0 and
any initial configuration {,,

P(4(%,0) =1,4(y,k) =2) >0 ast -,

holds for all (x,j) # (y,k) € Z% x{1,..., N}. Furthermore, if u €%, then
there is a constant q € [0, 1] such that

Gr=qu +(1-q)p,
ast — o,
(b) If d = 3, then coexistence is possible: for any 6 € (0,1], A >0, N> 0
and any B € (0, 1), there is a unique translation-invariant stationary distri-
bution vz, such that

{tB =1

g;s t — ®; v gives zero probability to the set of configurations with no 1’s or no
s.

REMARKS. (a) As in Neuhauser (1992), page 502, one can show that the
set of extreme points of the set of translation-invariant stationary measures
is {vﬁ: B € [0, 1]}. Moreover, starting from any translation-invariant distribu-
tion, the process converges weakly to a mixture of the ,’s.

(b) Comparing this theorem with Sawyer (1976), we see that the di-
chotomy between clustering and coexistence is the same, with and without
extinction. Without extinction, the model closely resembles the voter model
[see, e.g., Liggett (1985) or Durrett (1988)]; with extinction, it can be viewed
as a mixture of the voter model and the multitype contact process [see
Neuhauser (1992) for results on the multitype contact process]. In both
models, this dichotomy between clustering in d < 2 and coexistence in d > 3
can be observed. Duality (which will be explained in the next section) is the
key to the proof. Roughly speaking, a dual process traces the ancestral line of
a particle; here, the duals behave similarly to coalescing random walks. Two

,individuals are of the same type if their duals coalesce and may be of
different types if their duals do not coalesce. The dichotomy can thus be
explained by the recurrence of random walks in d < 2 and transience in
d > 3. The proofs of both theorems are similar to what was done in Neuhauser
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(1992) for the multitype contact process. Therefore, we will only sketch the
proofs and point out the differences.

Even though the model with extinction does not exhibit qualitatively
different behavior compared to the one without extinction, the next result
will show that extinction causes a change in the rate of clustering. We show
that extinction speeds up clustering when d = 1. To do this, we set

8:(x,y;4)
(1.2) =  max PA(Jt([x\/t_],j)=1,

LU k) =2l L) > 0, (L vE) ) > 0

for x,y € Z and A > 0, where the subscript A refers to the extinction
probability in each colony and |-| denotes the integer part. Note that when
A = 0 and the process starts with all sites occupied, this simplifies to

(13) &(x,530) = max Po(4(lx],5) =1, a(lovE] k) = 2).

In the definition of g,(x, y;A), we condition on the survival set because,
without conditioning, the probability would be made smaller simply because
some of the sites are not occupied. Our interest is in showing that the
occupied sites are less likely to be different by a certain time due to extinc-
tion.

THEOREM 3. Assume the neutral setting of Theorem 2, with d = 1 and
initial distribution m;, B € (0,1). Then, for any N > 0, A > 0, A € (0, 8,) and
pair x #+ y in Z, there exists 6, > 0 such that 6 € (0, 6,) implies

8:(%,y;0) >g,(x,y;4)
for all sufficiently large t.

To prove this result, we will again use duality. This time, we will utilize
the fact that increasing the death rate A makes it easier for colonies to
invade neighboring sites since the density of occupied sites is decreasing in A
and it is much easier to colonize a vacant site than an occupied site for small
6. (Recall that 6 is the probability that an allele can successfully invade a
neighboring site that is already occupied.) The scaling in (1.2) is just the
natural Brownian motion scaling used to approximate the one-dimensional
random walk that arises in the dual process. It seems that Theorem 3 should
also be true for the case in which the initial distribution is an ergodic
translation-invariant measure with positive densities of 1’s and 2’s, but we
will not pursue this. ‘

., The main point of this work is to illustrate some of the differences between

stepping-stone models with and without extinction. In a homogeneous envi-
ronment, the differences appear only on a quantitative level; qualitatively,
the systems behave quite similarly. In an inhomogeneous environment, the
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behavior can change drastically as illustrated in the following theorems. We
begin by making a change in the extinction rule.

H1. On A-sites, all colonies die at rate A as before. However, on &-sites,
colonies with p(x) > 0 become extinct at rate < A and colonies with
p(x) = 0 become extinct at rate A.

In other words, 2’s cannot use a &-site as a refuge unless there are 1’s
present.

The first of these theorems concerns the behavior of the above stepping-
stone model in a one-dimensional periodic environment with &-colonies at
x=0,+D,+2D,..., where D is some positive integer, and A-colonies at
the remaining lattice points. The A,; alleles will have a strong selective
advantage on 6-colonies and the A, alleles will have a strong selective
advantage on A-colonies. That is, we will assume the following.

H2. On &-colonies, s;(x) =s; and s,(x) = 0; on A-colonies, s,(x) = 0 and
sg(x) = s,.

The values sy(x) =0 on &-colonies and s;(x) = 0 on A-colonies are not
important; the key is that we have s,(x) > s,(x) on &-colonies, and the
reverse on A-colonies.

THEOREM 4. Consider the one-dimensional stepping-stone model on the
periodic environment defined above. We assume H1 with 6 = 0 and H2.

(i) Let A =0 and fix N = 1. Assume initially that there are infinitely
many A-colonies with p(x) < 1. Then, for any D > 3, s; > 0 and 6 € (0, 1),
the A, alleles die out with probability 1 for sufficiently large A and s,.

(i) Let A>0, D >0 and 0 €(0,1) be fixed. Assume initially that there
are infinitely many 8-colonies with p(x) > 0. There exists N, = N,(6, D, A) so
that, for N > N, fixed and for any s, > 0, the A, alleles die out with
probability 1 for sufficiently large A and s;.

The statement “allele A; dies out” means that any finite interval will
contain A, alleles for only a finite amount of time. The first part of the
theorem is not surprising. Here, there is no extinction on any site, and the
heterogeneous environment gives strong selective advantage to different
alleles on different sites. The A, alleles, however, have a “spatial advantage”
since there are more sites where A, alleles are favored over A, alleles. The
second part says that this “spatial advantage” can be outweighed by a
“survival disadvantage” due to extinction.

Our last theorem states that, in Z2, one can obtain coexistence if the
environment is random. Let pf'*® denote the critical probability for ordinary
two-dimensional site percolation [cf. Durrett (1988)]. The random environ-
‘ment is obtained by choosing y(x) independently at each location with
P(y(x) = 8) = p and P(y(x) = A) = 1 — p, where 1 — p > p£i*®. The environ-
ment, denoted by e, is chosen at the beginning and held fixed for the life of
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the process. The law of the process, given the environment e, is denoted by
P,. By coexistence here we mean that, for any n > 0 and suitably large L
(depending on 7), any L X L square will have both types of alleles with
P,-probability at least 1 — n at all sufficiently large times. This implies that
there exists a nontrivial stationary distribution with positive proportions of
each type.

THEOREM 5. Suppose d =2 and 0 € (0,1), and let the random environ-
ment be defined as above. Assume the extinction rates and selection coeffi-
cients are as in H1, with § = 0, and H2. Then, if N is fixed and sufficiently
large, we have the following. For almost every environment, there exists
A, €(0,8,) such that, if A € (0,A,) and A, s, and s, are sufficiently large, we
get coexistence starting from any initial configuration with infinitely many 1’s
and 2s.

REMARK. The condition 1 — p > pfi*® implies that there is an infinite
connected cluster of A-colonies and the 5-colonies occur only in finite clusters.
The random environment is chosen at the beginning and held fixed for the
life of the process. Also, A; is much smaller than the critical value for the
two-dimensional contact process since we need to ensure the survival of
one-dimensional embedded contact processes in some steps of the proof.

2. Construction and dual process. Proofs of Theorems 1 and 2. We
will now use the standard tool of graphical representation to construct our
process in terms of a collection of independent Poisson processes. This will
also allow us to construct a dual process which will be useful in some of the
proofs. We will give the construction for the homogeneous case in which
Sy = s; only. (It will be obvious how to do it for s, < s; or for the periodic or
random environment cases.) We can think of our particle system as being
constructed on Z¢ X {1,..., N}. A typical element (x,%k) € Z¢ X {1,..., N}
represents the kth position in colony x. Write |lzll; = |z, + -+ +12,| for
z2=(zy,...,24) € Z% For x,y € Z% with ||x — yll; = 1and k €{1,..., N}, let
{U*: n>1}, {VF n=>1} and (W*®: n > 1} be the successive arrival
times of independent Poisson processes with rates 1/(2d), y(x) and A,
respectively. These correspond to times of migration, extinction and reproduc-
tion events. Let {0 *'®: x,y € 74, |lx —yl; =1, k €{1,...,N}, n > 1} be
iid. {0, 1}-valued random variables with P(®{* 2B = 1) = 0 let {<I>(" k) x e
7% kefl,...,N},n>=1,i> 1} be an 1ndependent set of i.i.d. {1,..., N}-val-
ued random varlables with P(®{%* =j) = 1/N for each j €{1,..., N} and
let {AZP: (x,k) € Z¢ x{1,. N} n=>1,i>1}.be an 1ndependent set of
iid. {0 2}-valued random variables with P(A(x B = 2) = (s,(x) — 5,(x)) /(A +
s5(x)). At migration times U{*?), we draw an arrow from (x, k) to (y, k), for
each £ € {1,..., N}. This 1nd1cates that, if (x, k) is occupied, then (y, k) will

"become occupled with the same value if either ny¢.»(y) = 0 or B" = 1.
We refer to these arrows as migration arrows. If ©7® =1 (resp 0), we
label the arrow with a “6” (resp., “1 — 6”) and call the arrow a “f-arrow”
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[resp., “(1 — 6)-arrow”]. At extinction times V,* we put a T at (x, k) for each
k €{1,..., N). The effect of a T is to kill the “particle” at each (x, &) in colony
x, if it is occupied. At reproduction times W ** we choose a sequence of
members /; €{1,..., N} of colony x at random according to ®%; B for
i=12,..., and draw for each i an arrow from (x, ;) to (x, k). We call these
arrows replacement arrows. If APP =2, we put a “2” on the arrow to
indicate that only 2’s can pass through If the particle type at (x, ;) is either
1 or 2 and the arrow from (x, ;) to (x, k) does not have a 2 on it, or if the
arrow from (x, [,) to (x, k) does have a 2 on it and the individual at (x, ;) is a
2, then the individual at (x, k) is replaced by one of the same type as the
individual at (x,l,) and we say that a successful reproduction event has
taken place (and no further [;’s are needed). If the arrow from (x, {,) to (x, k)
has a 2 on it and the individual at (x, /,) is a 1, the replacement is suppressed
and we try the same procedure with i = 2. We continue until the first time a
successful replacement occurs. Note that if s; = s,, the first trial will always
be successful. The effect of this is to replace the particle type at (x, 2) with
that at (x,/;), where [; is the first member of the colony to reproduce
successfully. [Note that we allow for an arrow from (x, k) to (x, k). In the
Moran reproduction scheme, this covers the case where the individual at
(x, k) gives birth and then is killed.] If s, < , the number of trials until the
first successful mating is geometrically distributed and hence, I will be finite
almost surely. (To include the case where s, = ©, we make the convention
that if a colony consists of alleles which are all of the same type, then the
reproduction is suppressed.) It is easy to see that this representation de-
scribes the reproduction scheme defined in the Introduction: let p (resp., p')
be the A;-allele frequency before (resp., after) reproduction, and let a = (s,
— $,)/(1 + s,) be the probability that an arrow is labeled with a 2. Then a
simple calculation shows

> (1-a)p (1+s,)p
p = kZO(l—a)p(ap) T"ap 155, (s, -5

Comparing this with (1.1) shows that p’ = o(p).

With these basic ingredients, it is now standard fare [cf. Harris (1972)] to
construct the process described above, starting from any initial configuration
(&, mo), using the percolation diagram resulting from the graphical repre-
sentation.

To determine the state of some site (x, j) at time ¢, it is convenient to work
backwards in time using the graphical representation. This backward process
is known as the dual process. To construct it, consider first the case in which
s,(x) = sy(x). For each fixed ¢ > 0, define {, by reversing the arrows in the
graphical representation of { and reversing time through the map § = ¢ — s.
© Say there is a path from (x, J,O) to (y, k; f) if there is a sequence of times
0=5,<5 <§,< ++ <§,<§,,,=1% and spatlal locations (x, j) =
(xq, ko), (21, k1),...,(x,, k ) (y,k)suchthat () for i = 1,...,n, thereis an
arrow from (x;_,, ,_1) to (x k) at time §;, and (ii) the vertical segments



1034 H.-C. KANG, S. M. KRONE AND C. NEUHAUSER

{(x;, B} X (5;,8,,1),1=0,1,..., n, do not contain any 1’s. More specifically,
the dual process is a set-valued process whose state at time ¢, starting at the
singleton {(x, j)}, is given by

(21) (&= {(y k): there is a path from (x, j;0) to (, k; t)}

Thus, {*? is the (random) set of sites at time 0 in Z¢ x {1,..., N} that
are capable of determining the state of site (x, j) at time ¢. We refer to the
sites in ¢, 7 (%)) as ancestors of (x, j). To see how the dual determines the type
of a given site at time ¢, we require the notion of an ancestral hierarchy. If we
imagine for a moment that each site at time 0 is occupied by a particle of a
unique “color,” then one of these sites will paint (x,j) its color, if it is
occupied at time ¢. We denote this site by ¢; 7(=7(1) and call it the first ancestor
or distinguished particle. It is the first member of the hierarchy. If we make
£(#9(1) empty, then the color will change to that of some other site 7,(*/X(2),
the second member of the hierarchy (or second ancestor) and so on. (We will
explain below how to obtain the ancestral hierarchy from the graphical
representation.) Now we go back to our process in which there are only two
“colors.” To see which of the ancestors (if any) gives (x, j) its type, it is
necessary to trace the paths from (x, j; ¢) backward to the various ancestors
at time 0. We want to know whether (x, j; t) is occupied and, if so, with what
type of particle. Follow the path from (x, j;0) to ({*9(1); ) in the reversed
percolation diagram; there is exactly one such path. If the initial configura-
tion, {,, has a 1 (resp., 2) at that site, then we know that (x, j; #) is occupied
by a 1 (resp., 2), as well. If the initial configuration has no particle at that
site, we try the second ancestor and so on. Since, for any fixed time ¢, there
are only a finite number of ancestors, we will be done after a finite number of
steps. Either there is an ancestor that can successfully paint (x, j; #) with its
color or there is not. In the latter case, (x, j; ¢) is empty.

We remark that the above construction with the reversed percolation
diagram could be done just as easily by using the original percolation
diagram and traversing the arrows in the reverse direction. In this case, we
would not allow backward paths to go through vertical segments with {’s.
This is how we prefer to look at {, below. It also saves us from having to
draw a separate picture for the dual.

Now let us be more specific about how to read off the ordered set of
ancestors from the percolation diagram. To determine the ancestors of (x, j; ¢)
at time 0, begin at (x, j;¢) and travel backward on the percolation diagram
until time 0 or until the first time a death occurs in the path, due to either a ¥
or the tip of a #-arrow or replacement arrow touching the time line at (x, ;).
In case of a {, we reverse our direction and go forward in time (i.e., retrace
our steps) either until we reach the starting point (x, j: ¢) or until the first
time a tip of an arrow touches our path. In the first case, (x, j;¢) does not
have any ancestors at time 0 and thus the set of ancestors is empty. In the
‘second case, the arrow is necessarily a (1 — 0)-arrow. We follow this arrow in
the reverse direction and then continue down from the new location using the
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same algorithm. In case of a #-arrow, follow the arrow in the reverse direction
and continue down from the new location. In case of a replacement arrow,
follow the arrow from (x, ;) to (x,j) in the reverse direction and continue
down from the new location. Following this recipe, we either land at time 0 at
some location, which is then the location of the first ancestor, or the set of
ancestors is empty. To find the second ancestor, erase the part of the path in
the diagram that ends at {*/X(1) and is not shared by any of the other
ancestors. Using the same procedure as above, we can find the second
ancestor. We continue in this way until there are no more paths between
(x,j;t) and time 0. The resulting ordered set is then the hierarchy of
ancestors.

When s,(x) > s,(x), the set of ancestors is the same. This time, however,
the paths may contain arrows labeled with 2’s. To determine whether (x, j) is
occupied at time ¢, follow the path from (x, j; ¢) to (£*7(1);0) as before. If
the initial configuration has a 2 at that site, then we know that (x, j; ) is
occupied by a 2. If it has a 1 at that site, then (x, j; ¢) is occupied by a 1 only if
there are no 2-arrows in the path. If there are 2-arrows in the path and the
first ancestor lands on a 1, then none of the other ancestors which grow
(down) out of the tail of the lowest such 2-arrow (i.e., the one that the first
ancestor runs into first when going in the direction of increasing ¢) can
succeed. They are blocked by the 1 coming from the first ancestor. So
“remove” these paths from the diagram and check the next remaining ances-
tor, if there is one, as above. Finally, if the first ancestor lands on a vacant
site, move to the second ancestor and so on. Proceeding in this way, we will
either find an ancestor that succeeds in giving (x, j; ¢) its type or we will run
out of ancestors and (x, j; ) will be vacant.

The above dual, over the interval [0, f], is convenient for defining the
ancestral hierarchy. As a function of ¢, however, it is rather badly behaved.
So, as is usually done in particle systems, we will work with a slightly
different dual which has the same ong-dimensional distributions, but nicer
sample paths. This dual, denoted by ¢,, is constructed for all times directly
from its own (dual) percolation diagram. More specifically, we construct ¢
from a graphical representation that has, for each x, a set of arrows from
(x,k)to(y,k), R {1,..., N}, at rate 1 when [[x — y|l; = 1, each such arrow
being independently assigned a label 6 or 1 — 6 with probabilities 6 and
1 — 6, respectively; replacement arrows between a randomly selected pair of
sites (possibly the same) in colony x at rate NA; and {’s at all sites in colony x
at rate y(x). The construction of this dual process from the dual percolation
diagram is as in the construction of ¢,, with paths blocked by 1’s. In particu-
lar,

(2.2) L&) = {(y, k): there is a dual path from ( x, j; 6) to (v, k;f)}.

Note that, even though this dual process is constructed “forward in time,” we
want to think of its time scale as running in the opposite direction as that of
¢, so we label space—time points in the dual percolation diagram with carets
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on the times. It is easy to see that , has the same distribution as £, for each
fixed ¢. For example, in the neutral case, we have P({/(x,j)=1)=
P*({o(g(" Nm)) =1i),i = 1,2, where g“‘ N(m) is the first ancestor to land on
an occupied site, if there is one, and P* = P X P is the joint law of { and {
on a suitably enlarged probability space. In what follows, we will not distin-
guish between the various probability measures. We simply write P for a
generic probability measure; the meaning will be clear from the context.

To prove Theorems 1 and 2, we will need more information on the
structure of the dual {t For the classical voter model on Z¢, the dual process,
starting at a single site, consists of a single particle (ancestor) performing a
random walk in Z¢ Two such duals (corresponding to different starting
points) move independently until they collide, at which point they coalesce
into a single particle. For our stepping-stone model, the dual is much more
complicated. Starting at a single site, it typically consists of many particles
(the hierarchy of ancestors) and thus the sample paths have a tree structure
(cf. Figure 1). The key observation is that embedded in the path of the first
ancestor is a sequence of “renewal points” whose space—time coordinates
perform a random walk. We have enough control over the behavior of the
dual process between such renewal points to show that the distinguished
particles corresponding to two distinct sites may eventually coalesce, similar
to the voter model.

(x,1,)

0
t
"
t
t
0
t
; _l4a
t
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For any starting point (x, j; 0) in the dual percolation diagram, either the
tree growing out of this point will die in finite time (due to 1’s) or it will
survive forever. Since we are dealing with the supercritical case, A < §,, after
a finite (geometric) number of trials we can find a starting point that has an
infinite tree growing out of it. These are the only starting points that Will
affect the asymptotic behavior of the dual and hence the process. Let (),
Q59 be the event that the dual process starting at (x, j; 0) lives forever. In
the translation-invariant case, the probability of this event does not depend
on (x, j; 0).

Let us consider the tree growing out of some initial point (x, j; 0) in the
dual percolation diagram. Suppose for the moment that we can see the whole
tree and that we color all infinite paths in the tree with red; there will be at
least one such path if we are viewing a sample from (.. Growing out of the
red paths will typically be many “dead ends,” branches of the tree that die
due to 1’s. Now follow the path of the first ancestor, §t(" I(1). It will spend
some time in “dead end” branches and, in such a case, it goes all the way to
the end of this branch before jumping to a new branch according to the
algorithm described above. Eventually, the first ancestor will jump back to a
red path and move along this path for a while before moving off to other dead
end branches and so on. We say that the dual process is good while the first
ancestor is on this red path. The random space—time points at which the first
ancestor rejoins a red path (and hence is back on an infinite branch of the
tree) are called renewal points. Conditioned on ()., these renewal points
break up the path of the distinguished particle into ii.d. pieces. When
jumping within a given colony (due to replacement arrows), the distinguished
particle simply selects a new level according to a uniform distribution on
{1,...,N}. To describe jumping between colonies, write X, € Z¢ for the
spatial displacement between the x-coordinates (colonies) of the ith and
(i = Dth renewal points, and 7, for the corresponding temporal displacement.
[The Oth renewal point is (x, j; 0).] Then

n
S,=x+ ZXi and T, = ) 7

i=1 i=1
will be the spatial (colony) and temporal coordinates of the renewal point
after its nth jump. The next result says that this defines a random walk,
embedded in the “colony path” of the distinguished particle, that jumps to
site S, at the random time T,,.

ProposiTioN 2.1 [Neuhauser (1992)]. Conditioned on the event £,
{(X;, 7,));51 form ani.i.d. family of random vectors in Z* X R, . Furthermore,
the tail distributions of X; and 1; have exponential bounds; there are con-
stants C,y € (0,%) such that

P(IXll, >t) <Ce™* and P(7;>t) <Ce™
foralli> 1.
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PrROOF. Proposition 2.1 appears in Neuhauser (1992) in the case of a
multitype contact process. The proof given there is based on an analysis of
the amount of time it takes a dead end to die out due to i’s. In our process we
have #-arrows and replacement arrows in addition to the “contact-type”
recolonization arrows. These new arrows affect the path that the first ances-
tor follows, but do not affect the lengths of the dead ends. For example, the
0’s are assigned to arrows after they are put in the tree. In other words, the
distribution of the (X;, 7;) does not depend on 6. With this in mind, it is easy
to see that the proof of Proposition 1 in Neuhauser (1992) goes through in
this setting. We omit the details. O

We are now ready to prove Theorems 1 and 2.

PROOF OF THEOREM 1. We assume that s; < s, and that {, has a transla-
tion-invariant distribution. Since weak convergence in this setting is just
convergence of finite-dimensional distributions, it clearly suffices to show

(2.3) P({(x,j)=1) =0
as t - o,

This was basically done in Neuhauser (1992), so we just sketch the idea.
We select a subsequence of ancestors that are candidates for painting (x, j)
with the color 2. The first member of the subsequence is £*”(1). Follow the
path this ancestor takes (going up the dual percolation diagram) in order to
paint (x, j) its color. If it encounters any 2-arrows on this path, discard all
but the first ancestor that are “offspring” from the tip of the last 2-arrow
encountered when going up the percolation diagram for the dual process.
(These will be the next few members of the ancestral hierarchy.) The first
ancestor that is left after discarding these ancestors is the second member of
the subsequence. Repeat the above steps for this ancestor, and continue until
there are no more ancestors. Now extract a further subsequence so that all
the candidates are different: start with ¢,(*/)(1) and discard all members that
occupy the same site. Then take the next ancestor that is left and so on. We
are left with a subsequence (a,(1), a,(2),...) of the ordered ancestor vector.
The idea now is-that, for 2 and ¢ suitably large, with probability close to 1
each of the first £ of these ancestors will contain a 2-arrow in its path and
one of these % ancestors will determine the type of (x, j). O

ProOOF OF THEOREM 2. Given Proposition 2.1, the proof follows very closely
the proofs of Theorems 2 and 3 in Neuhauser (1992). For example, all the
random walk estimates are the same. For this reason, we only sketch the
proof.

Proposition 2.1 tells us that, with high probability, the x-coordinate of the
distinguished particle will stay inside a set which grows linearly with time.
. We refer to such a set as a triangle. When a renewal occurs, the current
triangle stops growing and a new triangle starts growing from the renewal
point. The new triangle will begin at a point in the base of the previous
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triangle. We thus get a chain of connected triangles, inside of which the
x-coordinate of the distinguished particle lies.

To prove clustering, one essentially uses the fact that symmetric random
walks are recurrent in dimensions 1 and 2. This is complicated by the fact
that two embedded random walks are independent only as long as their
triangles do not collide (i.e., overlap). To overcome this, one shows that there
is some & > 0, independent of the starting points, such that with probability
at least 6 one can bring any two distinguished particles within a fixed finite
colony distance K without a collision of their triangles. As soon as they are
within distance K, it is easy to see that, with positive probability, one can
glue the two duals together (i.e., the x-coordinates of their distinguished
particles will eventually coincide). After such a “colony coalescence,” there is
positive probability that the two distinguished particles will coalesce within
the colony before being separated. Standard arguments, such as those for
clustering in the voter model, finish the proof of (a).

Two main ingredients are needed to prove coexistence as stated in part (b).
The first is to show convergence of one-dimensional distributions. For this we
use the fact that, going back % renewals, the “tree” growing out of this
renewal point has a limiting distribution. This, together with the continuous
mapping theorem, establishes the convergence of the one-dimensional distri-
butions. For the convergence of higher-dimensional distributions, we exploit
the fact that two dual processes either coalesce or get separated due to the
transience of symmetric random walks with d > 3. When they get separated,
they are asymptotically independent. O

3. Proof of Theorem 3. We must prove g,(x, y;A) < g,(x, y;0) [defined
in (1.2)] for ¢ large, when starting our process with distribution 75, B € (0, 1).
We do this by showing, for sufficiently large ¢,

(3.1) 8:(x,y;0) > B(1 - B)f(0),
where f(6) > 1as 6 > 0, and

where ¢ = ¢(x, y) < 11is a constant which does not depend on 6.

ProoF oF (8.1). We start our process with distribution m;, 8 € (0, 1), and
assume A = 0. This is just a voter model on Z X {1,..., N} in which the voter
at (x, k) adopts the opinion of the voter at (y, k), ||y — x|l = 1, at rate 6 and
adopts the opinion of a voter in its own colony, chosen at random, at rate NA.
Since there is no death or selection, the state of a site is always determined

by the first ancestor of that site. We have

Po(&(l 22 ], J) = 1, &(l3Ve ], k) = 2)
(3.3) =B(1 - B)P(Z‘;(lx‘/‘—l»j)(l) * ft(ly\/t—l,k)(l))
= B(1 = B)P(r, > 1),
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where 7, is the time of the first colony coalescence of the two distinguished
particles (ie., the first time that they occupy the same colony). Since the
difference in the colony variables of the two distinguished particles performs
a simple random walk which jumps at rate 26, this last probability can be
estimated, for.large ¢, with the help of Donsker’s theorem and the reflection
principle. Indeed, letting B, be a standard Brownian motion in R!, we have

limP(r, >t) =P, (B, #0,s < 20)
t—>

_ exp(—z2%/40 exp(—2z2%2/4
(34) _ 2j‘lx yiexp(—z%/40) ds — 2f|x—y|/\/5 p(—2%/4) gz
0 470 0 Vdm
-1 as 66— 0. O

PrOOF OF (3.2). We assume A € (0, §,). The dual particles now jump not
only when they encounter ¢-arrows and replacements arrows, but also when
they encounter {’s. The presence of death events means that the state of a
site will not always be determined by its first ancestor. However, the behavior
of the embedded random walk will be enough for our purposes:

Pu(a(l =] ) = 1. a(l9vel ®) = 2] el =2],5) > 0,
(35) (| »ve |, &) > 0)
=B(1- ﬁ)p(ft(lx\/t_l,j) # LUOVELD | FaavhlD) 2 g5 PAVELD) 2 @)’

where ft(l"‘/t_]’f) * %1 means that the duals have not coalesced yet.
Note that, once two duals have coalesced, the corresponding ancestor vectors
are identical thereafter.

In view of (3.4), the theorem will be proved if we can show that the
conditional probability on the right-hand side of (3.5) is less than 1. In other
words, we must show that the conditional probability that the two duals
coalesce by time ¢ is bounded below by a strictly positive constant (indepen-
dent of 6) for sufficiently large ¢. Now, setting

(36) Q@i = {{hD 2 g fED 2 gl 0 <s <,
we have that Q=¥ 5 Q@ "V and hence the probability of interest is
t
p(fthﬁj,j) = fLb | Q(tx,y)ﬁ)

p(ngx,y)w/t_)

> p(gtaxﬁl,}) - ft(”‘m’k)lﬂﬁo”y)‘ﬁ)m-
PO
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However, P(ng’y)‘/‘_) /P(Q*Y "y > P(Qﬁo"'y)‘/‘_), which can be bounded away
from O as follows. Recall that 7,, the occupancy process defined in the
Introduction, is a one-dimensional supercritical contact process starting with
all sites occupied (since 7, is the initial distribution). Using a correlation
inequality [cf. Griffeath (1979)], we have

P(Qg ) = P(n,(|2VE]) = 1, n(|vE]) = 1)
> P(n,(|xv2]) = 1)P(m(|2¥2]) = 1)
= P(n,(0) = 1)° = ¢)(A)"/2

for sufficiently large s, where c¢,(A) = liminf,_, P(n’(0) = 1) > 0 [cf.
Griffeath (1979), page 42]. (Here, 1, is the contact process starting with a
single particle at the origin.) Now let s — » to get PQ&EPV) > ¢ (A)?/2.
Thus, it suffices to show

(3.7) P(ft(lx\/t_l,j) = Zt(ly\/t_l,k)lﬂgoxyy)l/t-) > const.

holds for sufficiently large ¢, where const.> 0 does not depend on 6. Condi-
tioning on Q MV allows us to use the embedded random walk structure
provided by Proposition 2.1.

Starting with two duals in colonies a distance L(t) = |LxV¢| — Lyt ]| apart,
we will use the first ¢/2 units of time to bring their embedded random walks
within distance (12/7y)log L(¢), requiring all jumps to be less than
(6/v)log L(t) in magnitude (with y as in Proposition 2.1). The latter condi-
tion ensures that the corresponding triangles do not intersect, and hence the
difference of the two random walks is a random walk. The next step is to
bring the random walks within some fixed distance K (independent of ¢) in
less than [(12/y)log L(¢)]® units of time. Since [(12/7y)log L(t)]* < t/2 for
large ¢, it is then easy to see that the duals will coalesce in the remaining
time with positive probability.

To handle the first step, let S, S® be the locations of the embedded
random walks for the two duals at time ¢ and set

12
7L = inf{t: ISP — 8P| < > log L(t)}~

We will show that there is some constant 7 > 0 (depending on |x — y| but not
0) such that

¢ 6 ‘
P(FL <3 mai( )IXiI < -;log L(t)
1<i<N(/2
,(3.8) <i< \ t/

in both processes

ngx,y)\/t_) >n



1042 H.-C. KANG, S. M. KRONE AND C. NEUHAUSER

holds for sufficiently large ¢. Recall that N(¢/2) is the number of jumps of the
embedded random walk by time ¢/2 and |X,] is the size of the ith jump. Now

ngx,y)\/t_)

t 6
P(’?L < -, max |X;| < —log L(t) in both processes
1<i<N(/2) Y

¢ 6
> P(;_L < _‘ng,y)\/t—, max |X;| < —log L(¢) in both processes)
2 1<i<N(t/2) Y

6
(3.9 X P( max |X;| < — log L(¢) in both processes Q&x’y)ﬁ)
Y

1<i<N(t/2)

> P

L(t) ¢ 6 .
< g P| max I[X;| < —logL(t)in
1<i<N(/2) - Y

both processes

ngx,y)\/t_),

where 7§ 1is the first hitting time of 0 for a symmetric random walk starting
at a¢ and jumping at rate 2. Using Donsker’s theorem and the reflection
principle again, it is easy to see that the first probability converges to
2P(B; < |lx —yl) = g(lx — y]) > 0, where B, is standard Brownian motion
starting at 0. The second probability is bounded below by 1 — C /[ E(r,)L(¢)?],
where C is a positive constant [cf. Neuhauser (1992)]. This proves (3.8).

For the second part, we need the following result from Neuhauser (1992),
which extends easily to our process for the same reason that Proposition 2.1
works. We say that a dual process is good at time ¢ if it is still alive at time ¢
and its distinguished particle has not had any offspring since the most recent
renewal.

PropoSITION 3.1 [Neuhauser (1992)]. Consider the one-dimensional step-
ping-stone model with no selection. Let 7£ be the time it takes two embedded
random walks starting distance L apart to come within distance K, and let
A(L, K) be the event {7 < 2L3, the triangles of the corresponding duals do
not collide and both duals are good within one time unit after 7£}. Then there
are constants K < © and a > 0 (independent of 0) such that P*(A(L, K)) > a
forall L > 0.

From the first step, we have that after ¢/2 units of time the embedded
random walks are within distance (12/y)log L(¢). Applying Proposition 3.1,
we see that with probability at least « the embedded random walks will
move within distance K in less than [(12/v)log L(¢)]® < t/2 units of time,
and one unit of time later both duals will be good. It is easy to see that in the
remaining ¢ — ¢/2 — [(12/y)log L(¢)]> — 1 units of time, there is positive
probability that the two duals will coalesce, and hence (3.7) is proved. O

4. Proof of Theorem 4. Recall that in Theorem 4 we have d = 1 and a
periodic environment in which -sites are located at x = +kD, k= 0,1,...,
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where D is a fixed positive integer. At the remaining locations in Z, we have
A-sites. We have s,(x) = s;, s,(x) = 0if x is a -site, and s,(x) = 0, s,(x) = s,
if x is a A-site. Colonies become extinct at rate A on A-sites. On &-sites the

extinction rate is O if there are any 1’s present, and is A if the site contains
only 2’s. We set
(4.1) c(0)=1-(1-96)".

We begin the proof by considering a simpler process. Here we set the
reproduction rate A =, as well as s; =s, = «. That is, on A-colonies
s,(x) = 0 and s,(x) = «; on §-colonies s,(x) = » and s,(x) = 0. In this case,
there will be no “mixed” colonies, only pure colonies of all 1’s or all 2’s. A
8-colony of all 1’s (resp., a A-colony of all 2’s) will be replaced by a colony of all
2’s (resp., all 1’s), due to invasion by a neighboring colony of 2’s (resp., 1’s), at
rate 67; that is, only a “total invasion” will be successful. For example, if
there are any 1’s in a &-colony after the invasion, the infinite reproduction
rate and infinite selective advantage for 1’s will cause the 1’s to immediately
take over that colony. A 8-colony of all 2’s (resp., a A-colony of all 1’s) will be
replaced by a colony of all 1’s (resp., all 2’s), due to invasion by a neighboring
colony of 1’s (resp., 2’s), at rate c(0); that is, it just takes one successful
invader going into a favorable environment to convert the colony into one
containing only the type with the selective advantage. This suggests that we
can reduce this to a model whose state space is {0, 1, 2}%, with 0 = vacant,
1 = pure 1l-colony, 2 = pure 2-colony. We call this the extreme model. Its
dynamics are as follows: 2’s die at rate A regardless of the location; 1’s die at
rate A on A-sites and do not die (6 = 0) on &-sites. A 1 or a 2 will give birth
onto a vacant neighboring site at rate 1. A &-site occupied by a 1 (resp., a
A-site occupied by a 2) will be converted to a 2 (resp., a 1) by a neighbor of
that type at rate %, and a &-site occupied by a 2 (resp., a A-site occupied by a
1) will be converted to a 1 (resp., a 2) by a neighbor of that type at rate c(6).

REMARK. To prove (i) [resp., (ii)], we do not really need s, = « (resp.,
S, = ®) in the corresponding extreme model. However, this added assumption
will simplify the bookkeeping and is easy to remove at the end of the proof.

To prove (i), we begin by showing that the 1’s die out a.s. in the extreme
model for sufficiently large N. More precisely, we use a rescaling argument to
show that a “block” of 2’s spreads out linearly in time. A perturbation
argument will then carry this result over to the stepping-stone model. Clearly,
by monotonicity, it is enough to treat the case D = 3, that is, where there are
two A-sites between the &-sites. Start with 2’s at 0 and to the left, and 1’s to
the right of 0. Since § = A = 0 in (i), that is, there are no deaths, and since
migration is only between nearest neighbors, there is a well-defined edge
between the 1’s and 2’s for all ¢. Let r, be the location of the rightmost 2 at
time ¢. We will need the following lemma.

LEMMA 4.1. There is a positive constant v = v(0, N, D) such that
lim,_ ,,r,/t =va.s.
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PrOOF. Since the environment has period 3, it is natural to keep track of
when the right edge shifts to the left or right by three sites. When it does,
everything looks the same again; that is, the process has a renewal. To see
which way the right edge moves when it jumps, we consider a Markov chain
(X,) with state space {—3,-2,-1,0,1,2,3}. We start with X, =0, and
interpret this to mean that the right edge is currently on a &-site. States —3
and 3 correspond to the right edge moving to the next &-site to the left or
right. For X, to mimic the behavior of the right edge on its way to the next
&-site, we need the following transition probabilities: p(i,j) = 1/2 for all
adjacent pairs, except for p(—2, —1) = p(1,2) = c(8)/(c(8) + 6~) and
p(—=2,-38) =p(1,0) = 6~ /(c(8) + 8%). For 6 € (0,1), c(6) > 8 holds, so

(4.2) Py((X,) hits 3 before —3) =p > 1/2.

Moreover, a gambler’s ruin recursion shows that the mean number of jumps
it takes X, to go from 0 to +3 is some number m € (0, ). Inequality (4.2)
implies that the right edge has positive drift, and hence r, = © as ¢t — «.

Next we show that r, has positive asymptotic speed. Set o, = 0, let
o, =inflt > 0,_;: r, — r, = +D}be the time of the nth renewal, and let N,
be the number of renewals in (0, ¢]. Further, let Z(n) = r, define the random
walk with values in DZ which gives the position of rt on the &-sites at
renewal times. From (4.2), Z(n) jumps to the right by D with probability p
and to the left by D with probability ¢ = 1 — p. Now r, = Z(N,) + e(¢), where
le(¥)| < D, so
(4.3) Lo ZN) N )

t N, ¢ t

We have Z(N,)/N, - (p — q)D as., by the strong law of large numbers, and
N,/t > 1/Eo, as., by the renewal theorem. Now r, jumps at rate 6V or
¢(6), depending on its current state, so it is easy to bound Eo,; by the
expected inter-renewal times when r, is run at constant rate 6% or c(9).
Since the mean number of jumps made by r, between renewals is m, it
follows that

44 = <E -
( * ) c(o) < 0'1 0N ¢
Now we can put all this together in (4.3) to get
r
(4.5) lim —ti =a(6,N)(p —q)D as.,
t—> o
where a(8, N) is a constant satisfying
‘ N c(0)
— <a(0,N) < —. O
m m

Next we show that, in the extreme model, there is a space—time cone of 2’s;
that is, there is an interval of 2’s that grows linearly in time. To prove this,
we will use a rescaling argument together with Lemma 4.1.
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We begin by explaining the rescaling technique. This method was devel-
oped by Bramson and Durrett and is reviewed in Durrett (1991). It is by now
a standard technique and has been applied frequently [see, e.g., Bramson
(1989), Bramson and Durrett (1988) and Bramson and Neuhauser (1994)].
The basic idea is to show that, for appropriate n > 0, the process under
consideration dominates an oriented site percolation process in which sites
are open with probability 1 — 7. (Sites may have some finite range of depen-
dence.) One then shows that 1 can be chosen arbitrarily small. Since percola-
tion occurs when 7 is close enough to 0, this will then imply that the process
has the desired property.

We define K-dependent oriented site percolation with density 1— 17 as
follows. Let # = {(z, k) € Z%: z + k is even} denote the “even—odd lattice,”
where we think of the first coordinate as representing space and the second
as representing time. The oriented site percolation process is a collection of
random variables {w(z, k): (2, k) €%}, with values in {0,1}, that indicate
whether the sites in & are open (1) or closed (0). We say the process is
K-dependent with density 1 — m if, for any collection (21,k1),--.,(2,, k) of
points in .Z, (i) the random variables (2, k), ..., o(2z,, k,) are independent
when, for each i #j, either k; # k; or k; = k; and |z; — z;| > K, and (ii)
P(w(z;,k;) =1) = 1 — n for each i. By an open path from (y, j) to (z, k) we
mean a sequence of points (y, j) = (2, ko), (24, k),...,(2,,k,) =(2,k)in &
such that, for 0 <i <n — 1, (z;, 1, kiyp) = (2, k) + (LD or (2,40, ki1) =
(z;,k;) + (—1,1), and all the (2;, k;)’s are open. Let

WA = {z: there is an open path from (y,0) to (2, k) for some y € A}
and

Q= N (W = 2).
k=0

Think of W2 as the set of wet sites at time % connected to a source A at time
0. We say that percolation occurs starting from x if there is an infinite open
path starting at x, that is, if (0 occurs. Define the right and left edges by

R:=supW® and LI =inf W,

[A detailed exposition of independent oriented site percolation is given in
Durrett (1984).] The following result for K-dependent oriented site percola-
tion appeared in Durrett and Neuhauser (1994), page 327.

LEMMA 4.2 [Durrett and Neuhauser (1994)]. Let {w(z, k). (z,k) E.%’} bea
K-dependent oriented site percolation with density 1 — m, m < 6-8CK+D" Then
P(Q*) >0 and

X

x ]
S 2 a.s. on (2 .

. 1
(4.6) lim inf :" 23 and limsup

n—o

n— oo
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To compare the extreme model with oriented site percolation, let v
a(0, N)(p — g)D denote the asymptotic speed in Lemma 4.1 and set T
3L /v, where L is a large constant to be determined later. Also set

B=[-L,L) x (0,T],
&(z,k) = (2L, kT) for(z,k) €2,
B(z,k) = ¢(2,k) + B for(z,k) €2,
I=[-L,L), I, =zL+1

(4.7

The sets B(z, k), (z, k) €%, are 2L X T squares in space—time “centered” at
¢(z, k) which partition Z X Z ., and I, is an interval of length 2 L centered at
zL.

The idea is to show that, in T units of time, an interval of 2’s of length 2L
will spread at least L units to the left and right. Moreover, during this
interval of time, it will not spread too far, say no more than KL units in
either direction. To make this more precise, for (z, k) €2, let £7* denote the
set of sites occupied by 2’s at time ¢, in the extreme model starting at time 27T
with 2’s at all sites in I, and 1’s elsewhere. We say that the space time box
B(z,k)is good if

I IUIZ+IQ§(7¢’-£1)T and ftz’kg[(z—l)L—I{L,(Z+ 1)L+KL]

for all ¢t € [kT,(k + 1)T]. We relate good space—time boxes for the extreme
model to “open sites” in the oriented percolation process by saying that
(2,k) €2 is open, and setting w(z, k) = 1, if B(z, k) is good. We will show
that the extreme model yields good sites which dominate K-dependent ori-
ented site percolation with density at least 1 — 7, where 7 is as in Lemma
4.2. Then we show that the stepping-stone model, with A and s, sufficiently
large, behaves like the extreme model in enough of the space—time boxes that
we get 2’s taking over.

Let r (resp., ) be the position of the rightmost (resp.; leftmost) 2 in the
extreme model startlng with 2’s at all sites in A, and 1’s at all other sites. Fix
0 < & < 678K+ 1" By the weak law of large numbers, we can choose L, and
hence T, so large that P(IT"'r& % — v| <v/2) > 1 — ¢. In particular, us-
ing the fact that T = 3L/v,we have P(ri=GDU > (z + DL + 30) > 1 — &.
[Note that (z + 1)L is the right edge of I,.] Keeping the left and right edges
from hitting will ensure that ¢>° # &. In fact, by taking L larger if neces-
sary, we can force

P(rtlz >(z+ 1)L — %L, l{z <(z-1)L + sL forall ¢t € [O,T])
>1-—¢6.

_ This follows easily, as in the proof of Lemma 4.1, since the probability that a

random walk with positive drift ever moves L/2 units to the left of its
starting position can be made arbitrarily small by taking L sufficiently large
(depending on the drift). Finally, note that r/- grows like r{~*¢*DLl a5 long

(4.8)
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as ¢7°+ . Similar statements hold for I%. Putting all this together,
we have, for sufficiently large L,

(49) P(rf>(z+1)L+3L)>1-¢,
' P(lk<(z2-1)L-3L)>1-¢.

Next, we show
P(rfs<(z+1)L+KL,Vt<[0,T])>1-&,
P(l{>2(z—- 1)L -KL,Vt€[0,T])>1-&.

By symmetry, it is enough to consider the right edge. Comparing the right
edge to a Poisson process R, which jumps at rate ¢(6), we have, for all « > 0,

P(r{=> (z+ 1)L + KL for some t € [0,T])
(4.11) <Py(R; > KL) < exp(—aKL)E exp(aRy;)
< exp{a(2¢(0)T — KL)}.

The last inequality holds because c(8) € (0,1). Taking K large enough, we
can force this to be less than &, and (4.10) is proved. In summary, (4.9) and
(4.10) show that, by choosing L large enough, each box B(z, %) is good with
probability greater than or equal to 1 — 4e.

Since 4& < 678@K+1D* the open sites in .# dominate K-dependent oriented
site percolation with density greater than 1 — 6 82X+’ Lemma 4.2 implies
that the open sites percolate (equivalently, the good boxes percolate), and,
moreover, if we start with an interval I, occupied by 2’s, then with positive
probability the location of the rightmost (leftmost) 2 will increase (decrease)
linearly. Next, note that all sites between the left and right edges must be
occupied by 2’s as well; to get a 1 between the left and right edges, it would
have to cross one of the edges, which is impossible due to the fact that we
have nearest-neighbor interactions. Thus, we have that an interval I, occu-
pied by 2’s will spread linearly with positive probability. Note that any
A-colony with 2’s has a positive probability of expanding to cover an interval
of length 2L within T units of time; this interval will contain only 2’s. Thus,
because of our choice of {,, there will be infinitely many 2-intervals of length
at least 2L by time T. Thus, we actually get, with probability 1, a linearly
growing interval of 2’s which eventually covers all points in Z. This gives an
expanding cone of 2’s in the space—time setting. Note that this corresponds to
an expanding cone of pure 2-colonies in the stepping-stone model with A = oo,
S; =8y = .

We now return to the stepping-stone model with finite selection coefficients
and reproduction rate. To complete the proof of (i), we employ a perturbation
argument. Say that a site is pure if it contains a colony of all 1’s or all 2’s; it
is mixed if it contains both types. A site is said to be essentially pure during a
time interval [¢,, ¢,] if, whenever the site becomes mixed during the interval,
it purifies to a colony containing only the type with a selective advantage
before trying to invade another site and being invaded by a neighboring site.

(4.10)
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A site is said to become contaminated if it moves from a pure to a mixed
state, due to an invasion from a neighboring colony.

For (z,k) €2, let £¢#* denote the set of sites occupied by pure 2-colonies
at time ¢, in the stepping-stone model starting at time kRT with pure
2-colonies at all sjtes in I, and pure 1l-colonies elsewhere. We say that the
space—time box B(z, k) is good if

I

2

G VL, &yl and E7*c (2 - 1)L -KL,(z+ 1)L + KL]

for all ¢t € [kT,(k + 1T]. We relate good space—time boxes for the stepping-
stone model to “open sites” in the oriented percolation process by saying
(z,k) €2 is open, and setting @(z, k) = 1 if B(z, k) is good. To show that
the good boxes percolate, we need to show that the following hold for
sufficiently large A, s;, s,:

(a) With probability at least 1 — &, there will be no more than cL? contam-
ination events in [(z — 1)L — KL,(z + 1)L + KL] X [T, (k + DT].

(b) With probability at least 1 — £/cL?, when a mixed colony purifies, it
will purify to the type with a selective advantage.

(c) With probability at least 1 — £/cL?, a mixed colony will purify before
attempting to invade another colony and before being invaded.

To prove (a), note that there are (2K + 2)L + 1 sites in [(z — 1)L — KL,
(z + DL + KL] and, since the migration rate is 1, we can choose ¢’ so large
that, with probability at least 1 — &, there will be no more than ¢'T = cL
contamination events per site during a time interval of length T. (Use the
usual exponential bound on the number of jumps made by a rate-1 Poisson
process). Criterion (b) follows from a simple gambler’s ruin calculation.
(Recall that N is fixed.) If a A-site is mixed with pN 1’s and (1 — p)N 2’s,
then the number of 2’s increases by 1 at rate M1 + syX1 — p) X
[p+ (1+s,)1— p)]! and decreases by 1 at rate Ap[ p + (1 + s, X1 — p)]™ 2.
Taking s, sufficiently large gives the desired result. An analogous argument
applies to &-sites and s;. To prove (¢), use a gambler’s ruin recursion to show
that [with s, as in the proof of (b)] the number of reproduction events it takes
to purify the colony is less than some sufficiently large constant M with
probability at least 1 — £/2cL?. Since the migration rate is 1 and the repro-
duction rate is A, we can then take A sufficiently large (depending on N, M
and s,) so that the colony will purify before invading or being invaded with
probability at least 1 — &/2cL?.

Putting (a), (b) and (c) together, we have that, with probability at least
1 — 3¢, all the sites in [(z — 1)L — KL,(z + 1)L + KL] are essentially pure
during [RT,(k + 1)T]. The stepping-stone model behaves like the extreme
model in space—time boxes having all sites essentially pure. In particular,
» there will still be a cone of pure 2-colonies; only the right and left edges of the
space—time cone in the extreme model might be missing from the cone of pure
2-colonies in the stepping-stone model, since these colonies could be mixed.
The important thing is that, when all sites in the space-time box are
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essentially pure, only the edges of the cone are affected since they will purify
before invading another colony. So

P(B(z,k)isgood) = 1 — 3¢ — 4e > 1 — 67 8@K+1?,

when A, s;, s, are sufficiently large. Thus, the good boxes percolate and
Theorem 4(i) is proved, except for the assumption about large s;. However,
smaller values of s; only help the 2’s, so this assumption can be dropped.

The proof of (ii) is very similar to that of (i), so we only give a sketch. Here
we assume A > 0 and show that the 1’s will take over with probability 1.
Start with a modified extreme model with 1’s at all 5-sites at 0 and to the left,
and 2’s at all sites to the right of 0. Recall that 1’s do not die on &-sites and
die at rate A on A-sites; 2’s always die at rate A. Write R, for the position of
the rightmost 1. Whenever R, reaches the next &-site to the left or right,
make all the A-sites to the left of it vacant and put 2’s in all the vacant sites
to the right of it. The 1’s in this process will be contained in the set of 1’s in
the extreme model, so showing the right edge has a positive asymptotic speed
will prove the same for the extreme model. The advantage of this process is
that it has renewals whenever the right edge reaches the next é-site to the
left or right. '

Given that the above system has just had a renewal, we say that a «D-gap
clearing occurs if all the 2’s in the «D sites to the right of the right edge are
killed. If this happens and the rightmost 1 (on a -site) is not replaced by an
invading 2 before the gap is formed, then we ask if the right edge of 1’s can
reach the next 8-site to the right before the left edge of 2’s reaches it. This is
how we will spread the 1’s. Since the 1’s have to travel (at most) distance D
and the 2’s must travel (at least) distance (x — 1) D, we can choose k so large
that with probability at least 1 — & the 1’s will get there first. (For example,
it is enough to consider the right edge r{” of a contact process starting with a
single particle at 0 which never dies, and the left edge /{P} of a contact
process starting with a single particle at kD which never dies, and to ask
which one hits D first, where each contact process has birth rate 1 and death
rate A.)

For this « and fixed 0 € (0, 1), choose N so large that the probability of
getting a «xD-gap clearing before a rate-6" invasion of the &-site with the
rightmost 1 by a neighboring 2 (if there is one) is at least 1 — &. With these
parameter values, it is clear that the Markov chain with state given by the
position of the right edge at renewal times has positive drift and hence goes
to «. It can be shown as in the proof of (i) that the right edge has positive
asymptotic speed. Interchanging the roles of 1’s and 2’s, we can use the same
rescaling argument and perturbation argument as in. (i) to complete the proof
of (ii). O

. 5. Proof of Theorem 5. Reécall that we put an i.i.d. environment on 7>

with 8-sites having probability p and A-sites having probability 1 — p, where
1 — p > pSi*. With probability 1, there will be an infinite connected cluster of
A-sites. We assume we have such an environment and it is fixed forever. We
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will start our proof by showing the coexistence of 1’s and 2’s in the extreme
model (i.e., in a sufficiently large box, we will find both 1’s and 2’s with high
probability) and then finish with a rescaling argument. The extreme model,
for a given environment, is defined in the obvious way.

We will first provide the intuition that goes into the proof. To demonstrate
the survival of 2’s, we will show that the 2’s dominate a supercritical contact
process in a random environment (CPRE) and that a shape theorem holds for
this CPRE (Proposition 5.1). This shape theorem will imply that the CPRE
can spread from one rescaling box to a neighboring rescaling box in the
two-dimensional environment, thus showing that the 2’s can spread in finite
time to neighboring boxes. Actually, we will only be using boxes with a
sufficiently high density of A-colonies contained in the infinite cluster. Thus,
in the rescaling argument, we will have to deal with another random environ-
ment that comes from choosing these boxes. We will therefore need to modify
the standard rescaling argument. This is done in Proposition 5.2. To demon-
strate the survival of 1’s, we will again use a rescaling argument. This time,
the size of the boxes is chosen so that boxes contain &-colonies with high
probability. We then try to spread 1’s from a 8-colony in one box to a 6-colony
in a neighboring box along a path consisting of vacant sites. The rescaling
argument then uses Proposition 5.2 in a similar way as above.

Survival of 2’s. Let & C 7 denote the set of sites occupied by 2’s in the
extreme model starting with a distribution having a positive density of 2’s. In
fact, we will show that the 2’s can survive on the A-sites with sufficiently high
density. If a A-site is occupied by a 2, then the 2 is killed at a rate less than or
equal to A + 4% since a 2 on a A-site can die at rate A and can be changed
to a 1 at rate #Y by any of its nearest neighbors which are 1’s. Write
A, ={ye€ 7% |ly —xl, = 1}. A A-site that does not contain a 2 becomes
occupied by a 2 at a rate greater than or equal to ¢(0) |7, N &,. This process
dominates a CPRE, Et, defined on the same environment as follows. Particles
die on &-sites at rate « (i.e., &-sites cannot be occupied) and on A-sites at rate
A + 46". A particle is born on an empty A-site x at rate c¢(8)|.#;, N &,|. These
processes can be coupled so that ¢, c §, implies ¢, C £,, and hence it is
enough to show the corresponding result for ¢,. For this, we need a shape
theorem for a CPRE.

Let vy, C Z? denote the set of occupied sites at time ¢ for a CPRE, with the
random environment defined by independently designating each site of Z? as
nice with probability 1 — « and not nice with probability «. Suppose the
dynamics of vy, are as follows:

(1) Particles are born on vacant nice sites x at rate |y, N.%|.

(ii) A particle at a nice site x dies at rate 8. The death rate at a site which
is not nice is «; that is, sites which are not nice can never be occupied (except
maybe at time 0).
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Let y# denote the process starting from A C 7%, and write y* if A = {x}.
Let
t(x,z) = inf{¢: z € /)
be the first infection time of z starting at x. Define the “hitting set” and
“coupled region” as follows (| - |l.. denotes the L*-norm in R?):

(5.1) Hf={yeR?*:3z€Zwith|z -yl <1/2and t(x,2) < t}
and
Ki={yeR*:3ze7® with [z -yl

<1/2and v/(2) = Ytzz(z)}

where we have used the coordinate notation yA(z) = 1 (resp., 0) if z € vA
(resp., z & y/). Identifying each z € 7Z? with the unit cube in R? having
center z makes the statement of the shape theorem (below) simpler.

A well-known result from percolation theory states that if 1 — a > p;
the critical value for site percolation on Z2, then there exists a unique 1nﬁn1te
cluster, C,, of nice sites with probability 1, and the origin is contained in this
infinite cluster with positive probability. Let

C

(5.2)

sxte

. = {2 € Z*: 2z can be reached from x by a path of nice sites}

and
C,= {y eR2:3z €7 withl|lz—ylle<1/2and z € Cx}.

Here is the shape theorem we need. We write 5,(Z) for the critical death rate
of a one-dimensional contact process (in a nonrandom environment).

PROPOSITION 5.1.  Let v, be the CPRE defined above and suppose 1 — a >
pste. If § < §,(2), then for almost every realization e of the environment there
exists a (nonrandom) convex subset U of R? such that, for any & > 0,

(5.3) t(1-e)UNC,cHf ct(1+ &)U eventually,
P,-a.s. on {y} # O for all t}. Furthermore,
(5.4) t(1l-e)UNC,cHNK]ct(l+ &)U eventually,

P,-a.s. on {y} #+ O for all t}.

This proposition is the “easy” version of Conjecture 1 in Bramson, Durrett
and Schonmann (1991). Namely, we assume & < §,(Z) rather than the harder
case 8 < §,(CPRE), the critical death rate for the contact process in this
two- dlmensmnal random environment. The set C, is needed for the lower
bound since y,* € C, for ¢ > 0. The most 1mportant part of this proposition is
, the lower bound in (5.4). It says, loosely, that the process is in “contact
equilibrium” inside a convex region that grows linearly in time. We prove
Proposition 5.1 in the Appendix.
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Applying Proposition 5.1, we see that if (A + 40%)/c(9) < 6,(Z), then &7
satisfies the shape theorem. That is, for a.e. environment e,

(5.5) t(1-e)UNC,cH* N K} eventually,

P,-as.on {&* # @ for all t}. Here, H* and K; are the hitting set and coupled
region for £7. If €, has a positive density of 2’s, then P,-a.s. we can find some
x € C, (depending on the environment e) such that £* C ¢, satisfies £* # &
for all ¢.

To prove Theorem 5 with the above result, we must do several rescalings.
For this, we need to consider three-dimensional oriented site percolation (two
dimensions for space and one for time) in a random environment. We begin
by describing this discrete-time process. First, the i.i.d. random environment
on Z? independently designates each site as nice with probability 1 — a and
not nice with probability «. A realization of the environment, denoted by e, is
obtained at the beginning and held fixed. It is on this environment that we
run the process; the law of the process, given the environment e, will be
denoted P,. Let

Ly ={(x,k) €Z2XZ,: 2, +x, + & is even)}

denote the appropriate even-odd lattice. [Here, x = (x;,x,) is a typical
element of Z2.] The three-dimensional oriented site percolation process on the
environment e is a collection of random variables {w(z, k): (2, k) €.%,}, with
values in {0, 1}, that indicate whether the sites in .%#, are open (1) or closed
(0). We say the process is K-dependent with density 1 — n if, for any collec-
tion (2, ky),...,(2,,k,) of points in %, (i) the random variables
o(zy,ky),..., w(z,,k,) are independent with respect to P, when, for each
i #J, either k; # k; or k; = k; and |z; — 2;| > K, and (ii) P(w(z,k) =1) =
1 — n for each & if z is nice in the environment e, and P,(w(z,k) =1) =0
for each £ if z is not nice in e. By an open path from (x, j) to (y, k) we mean
a sequence of points (x, j) = (2, k), (24, ky),...,(2,,k,) = (y,k) in %, such
that, for 0 <i<n -1, (2,4 k;,1) = (2; + u;, k;, + 1), where u; €
{(-1,0),(0, -1),(1,0),(0,1)} and all the (z;, k,;)'s are open. For A c 72, =
{x € Z2%: x, + x, is even), set

W = {z € Z*: there is an open path from (y,0) to (z, k) for some y € A}
and let

Q= N (W = 2).
k=0
Think of W as the set of wet sites at time % connected to a source A at time
0. Note that W& c 72, at even times £ and WA C 7%, = {x € Z2: x, + x,
is odd} when % is odd. We say that percolation occurs starting from x if there
is an infinite open path starting at x, that is, if {* occurs.
" Define

n(x) = min{k: x € W%}
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to be the first time site x gets wet from a source at the origin. [Of course,
n(x) = « if x is not in the connected cluster of nice sites containing the
origin.] Further, let

(5.6) H,={y<R?3xeZ?with|lx —yll; <1and n(x) < n}
and
K,={yeR*:3xeZ?withllx—yli <1

(5.7
and W0 (x) = W= (x)},

where we have used the coordinate notation WA(x) = 1 (resp., 0) if x € WA
(resp., x & WA). Note that we use “diamonds” of side V2, rather than unit
cubes, to fatten up the points here. This is useful because of the even—odd
structure of .%,.

Let C, and C, be defined as before. Here is a shape theorem for oriented
site percolation in a random environment. It will be used several times below.

PrOPOSITION 5.2. Consider the K-dependent oriented site percolation pro-
cess in a random environment defined above, in which 1 — a > p&*®. Then, for
almost every environment e, the following statements hold. If the fraction,
1 — m, of nice sites that are open is sufficiently large, then there exists a
(nonrandom) convex subset U of R? such that, for any £ > 0,

(5.8) n(l-&e)UNnCycH,cn(l+ &)U eventually,
P-a.s. on Q° = (W = & for all n}. Furthermore,

(5.9) n(l—-e)UnCycH,NK,cn(l+ &)U eventually,
P-a.s. on Q°.

For the proof of this proposition, see the Appendix.

We are now ready to begin the rescaling argument, which will consist of
several stages. We start by rescaling the random environment. To do this, tile
Z? into L X L squares such that the square containing the origin is centered
at the origin. Let B; = (—~L/2, L/2]%. We say that B; (or any of its trans-
lates) is G, if it contains at least B; L2 sites that are in the infinite cluster C,.
(Here and below, G; refers to the ith level of “goodness” in the multiple
rescaling.) The following lemma shows that, for any £ > 0, if we choose
B; > 0 small enough and L large enough, an L X L square will be G; with
probability at least 1 — &. '

LEMMA 5.8. If 1 — a > pt; then, as L — o,

lBL N Coal

(5.10) B

-»P(xe€C,)>0 a.s.
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Proor. Our argument follows a similar argument in Grimmett (1989).
First note that {l(x < Cm)} is stationary under translations of the lattice. Hence,
by the ergodic theorem [see Dunford and Schwartz (1958), Theorem 8.6.9], we
have that, as L — o,

1
(5.11) B ZB loccy > El,cc, as.
x€B
That is,
1B, N C.|
(5.12) “L_ " LP(xeC,) as.

1By |
and P(x € C,) > O since 1 — a > pSi*. O

The G,-squares form the random environment in the following rescaling
argument for £,. We say that a G,-square B; is G, at time ¢ if |§, N B, N
C.| = By|B, N C,|.

We want to show that the G,-squares satisfy the shape theorem of Proposi-
tion 5.2. The idea is to try to spread the 2’s from a G,-square B; to its four
neighboring squares, B, + (L,0), B, + (-L,0), B, + (0, L), B, + (0, —L), in
such a way that any of these squares which are G, at time 0 will be G, at
time 7T'. It is enough to treat one neighbor, and this is done in the following
lemma.

LEMMA 5.4. Let B; be any one of the four neighbors of B;. For any ¢ > 0
we can choose L and T large enough and B, small enough that, if B, is G, at
time 0 and B}, is G, at time 0, then with probability at least 1 — &, By will be
G, at time T.

Proor. We denote by P, the law of the process £, in the fixed environ-
ment e. Write H2: and K2t for the hitting set and coupled region corre-
sponding to the process £, starting with a single G,-square B, at time 0 (i.e.,
there are at least B, B,L? sites in B; which are initially occupied by 2’s).
Write H? and K} for the hitting set and coupled region of £*. Let 75t =
inf{¢: £BL = &} and 7* = infl¢: £F = &}, where, abusing notation slightly, £5:
denotes the process starting with a single G,-square B;. We will continue
this abuse of notation below when dealing with B;, but it should be clear
what we mean. Note that {r%2 = ©} = U, {r* =} and HF cH?: if x €
B;. Furthermore, using the fact that £, is attractive, we have K7 ¢ K2:; that
is, if £7(y) = £¥°(y), then £P(y) = £%°(y). Now let By, = (—3L/2,3L /2%
- This is the smallest square that contains B; and its four neighbors. In the
following estimate, we use the fact that P,(75: = «) can be made arbitrarily
close to 1 by starting with sufficiently many sites in B; N C, occupied by 2’s,
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and this can be done by taking L sufficiently large [cf. Durrett (1988), page
285]:

Pe(BaL ﬁ.Cw Z HTBL N KﬁL)
= Pe(B3L NnC, ¢ HgL N KTBL, Bl = oo)
+P,(By, N C. ¢ Hfr 0 Kfir, 7% <)

SﬂﬁuﬂﬁﬁﬂﬁmKﬁ,U{ﬂ=wﬂ+gu&<@

(5.13) x€By,
< )Y P(By.nC, ¢ HE: N Kfr, 7% = ©) + £/2
x€B;,
< Y P(ByyNC,gHENKE, 7% =®) + £/2
x€ By,

<I2Ce "L + £/2,

where the last inequality follows from (A.7) in the Appendix (proof of Proposi-
tion 5.1). [Set I = V¢ in (A.7) and T = CL for C sufficiently large.]

To see that Bj is G, at time T', we use the fact that the distribution of 2’s
in B} is close to the equilibrium measure. Since B; is G, it follows that
it will be G, at time 7' with probability at least 1 — & for B, sufficiently
small. O

Lemma 5.4 and Proposition 5.2 now show that the G, squares satisfy the
shape theorem. A comparison with Richardson’s model shows that we can
find a number K such that, with probability at least 1 — ¢, the squares are
K-dependent. Combining this with the perturbation argument in Section 4
completes the proof.

Survival of 1’'s. The argument resembles somewhat the one we used for
the survival of 2’s. We will again use a rescaling argument to show that the
1’s percolate in the extreme model and then use a perturbation argument to
extend the result to the stepping-stone model.

We begin by describing the idea behind the proof. Since we are assuming
1 — p > pfi*®, the sites on which 1’s have an advantage, that is, &-sites, do not
percolate. Therefore, in order for the 1’s to move from one &-site to another
5-site, they have to go through hostile territory. By choosing N large enough,
we can make the probability that a 1 on a &-site gets replaced by a 2
arbitrarily small. A 1 on a &-site can thus send out enough offspring so that
eventually one of its descendants will be able to colonize a nearby &-site

_successfully.

The setup for the rescaling argument is as follows. As above, we tile 72
into L X L squares. (The square that contains the origin is centered at the
origin.) This time, we say a square is G, if it contains at least one &-site.
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Since the types of sites are assigned in an i.i.d. way, it follows that for any
&> 0 we can choose L large enough so that B, = (—L/2, L/2]? satisfies

(5.14) P(B,isG)21-(1-p)¥>1-e¢.

The G,-squares determine the random environment in which the 1’s will
percolate. If ¢ is small enough, the good squares percolate.

To show that the 1’s percolate in the extreme model, we make the following
definition. We call a square G, if it is G, and at least one of the &-sites in the
extreme model is occupied by a 1. To get enough independence between
neighboring squares, we define the following process: let £ be the extreme
process in which all sites outside of B; U B; remain occupied by 2’s for all
¢t > 0. (Note that ¢, has a different meaning here than in the proof of survival
of 2’s.) The main step is contained in the following lemma.

LEMMA 5.5. Suppose &, is such that B; is G, and its neighbor By, is G,.
Then, for any € > 0, we can find T large enough so that B}, is G, at time T
with probability at least 1 — &.

Proor. We will first show that if B; contains a &-site occupied by a 1 at
time 0, then there exists a time o such that, by time o, at least one of the
&-sites in Bj will be occupied by a 1 with positive probability. To do this,
choose one &-site in B; which is occupied by a 1 at time 0 and one &-site in
B;. Fix a self-avoiding path between these two &-sites consisting of nearest-
neighbor sites contained in B; U Bj. Since the length of the rescaling squares
is L, we can choose the path so that its length is at most 3L. We will spread
the 1’s from one site to a neighboring site in the following way. Suppose the 1
is at x at time 0 and we wish to spread it to y, a nearest-neighbor site on the
path. We say that a successful propagation from x to a nearest neighbor y
occurs if, in the percolation diagram for £,, we have the following:

(i) No deaths or arrows pointing into x occur for 1 unit of time.
(i) A death occurs at y by time 1/2.
(iii) No deaths occur at y during [1/2,1].
(iv) A birth occurs from x to y during [1/2,1].

(v) No other births onto y occur during [1/2, 1].

Since every event in (i)—(v) has positive probability, there exists ¢ > 0 so
that, with probability at least q, (i)—(v) occur. We have to repeat this at most
3L times to get the 1 to the next &-site. If after 3L units of time, the 1 has not
successfully propagated along the path connecting our two designated &-sites,
we try again in the next 3L units of time. In this way, we perform a sequence
of independent trials, each one attempting to spread the 1 to a &-site in the
neighboring square. The probability of success on a given trial is greater than
or equal to g3L. Thus, taking N sufficiently large, the 1 at the original &-site
will remain long enough to allow enough trials to yield a probability of
success greater than or equal to 1 — &£. More specifically, the number of trials
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necessary to get a success is geometric with parameter greater than or equal
to g°L. Therefore, we can choose K (depending on g and L) so large that
P(success by the Kth trial) > 1 — £/3. Now we just need to make sure that
the 1 at the original &-site remains there long enough to allow K trials Gi.e.,
for at least 3LK = T units of time) with probability at least 1 — £/3. How-
ever, this can be done by making N sufficiently large, since the rate at which
2’s invade this &-site is less than or equal to 40”. Of course, once the 1 has
spread from the &-site in B; to the &-site in Bj, this same value of N will
keep the 1 at the new &-site until time 7' with probability at least 1 — £/3.
Hence the result follows. O

Lemma 5.5, together with Proposition 5.2, now shows that the G, boxes
satisfy a shape theorem. Fixing the configuration outside of B; U B}, to be all
2’s for all ¢ < T in the above argument allows us to use independence rather
than K-dependence in the rescaling argument of Section 4. Combining this
with the perturbation argument from Section 4 completes the proof. We omit
the details. O

APPENDIX

PROOF OF PROPOSITIONS 5.1 AND 5.2. Propositions 5.1 and 5.2 are continu-
ous-time and discrete-time versions of the same result. The proofs are very
similar, so we only give the proof of Proposition 5.1.

The upper bound in (5.3), and hence (5.4), is trivial. (Compare the process
with a contact process for which @ = 0.) The proofs of the lower bounds follow
closely those of the shape theorem for the d-dimensional contact process in
Durrett and Griffeath (1982) [see also Durrett (1988), Chapter 11, for some
improvements], so we only sketch the proof.

We must show that radial limits exist and that the process can cover small
balls [cf. (A.6) and (A.7)]. There are two modifications of the proof in Durrett
and Griffeath (1982) that are needed since the process cannot reach sites
which are not nice. First, we cannot show that the process spreads from x to
y within a time proportional to the distance ||x — yll;. Rather, we show that
the process spreads from “close to x” to “close to y” within a time propor-
tional to ||x — yl|l;. This argument is borrowed from first-passage percolation
[see, e.g., Durrett (1988), Chapter 8a]. Second, the proof in Durrett and
Griffeath (1982) uses one-dimensional embedded contact processes which live
on straight lines. Since sites along straight lines might not be nice and might
therefore prevent the embedded one-dimensional contact process from
spreading, we will instead use self-avoiding paths through nice sites whose
length will be proportional to the distance it covers.

We begin by showing how to obtain the radial limits. Since 1 — a > pi*,
for each x € 72, either x is in the infinite cluster or there is an open circuit
that is part of the infinite cluster and contains x in its interior. Let I'(x) = {x}
if x is in the infinite open cluster, and let I'(x) be a minimal open circuit with
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the above properties otherwise. Note that a minimal open circuit is self-avoid-
ing by definition. Let I'°(x) denote the bounded component inside I'(x) and
set

(A1) T(x) =T(x) UT%x).

Let t(x, y) denote the first time that y gets infected if the infection starts at
x; that is,

(A.2) t(x,y) =inf{t: y € y/}.

The quantity ¢(x, y) is subadditive but does not have finite expectation since
y may be closed with positive probability. We will replace #(x, y) with an
almost subadditive quantity which has finite expectation, namely,

(A3) t(x,y) =inf{t(x',y): «’ € [(x), y € T(y)}.

That is, instead of going from x to y, we will go from “close to x” to “close to
y.” This idea is borrowed from first-passage percolation. We write #(x) for
£(0,x) and show that #(x) is almost subadditive. This means

(A4) f(x +y) <i(x) +8(y) +v(x,y),

where §(y) is an appropriately chosen copy of #(y) which is independent of
£(x) and v(x, y) is an error term with

(A.5) E(v(x,y)2 | v # O for all t) =O0(llx — yl1).

A standard argument then shows that radial limits exist. That is, for each x,
there is a number u(x) such that u(x) > 0 if x # 0 and

(A6) B(nx) /n - ()
a.s. on {y? # & for all ¢}. [See, e.g., Durrett (1988), Chapter 11.]

To prove (5.3), we must also be able to cover small balls in the following
sense. Below, B, , = {y € R%: [lx — ylls < r} is the open box in R? with sides
of length 2r and center at «x.

LEMMA A.1. There are constants c,C, B € (0,) such that
P(Bx’ct N Cy & Hyp, 1y+12+; for somet > 0 | v? + Dfor all t)

(A7)
< Ce B!,

This was proved in Durrett and Griffeath (1982) for processes in nonran-
dom environments. The proof in the case of random environments is essen-
tially the same. The only differences occur when we need to find embedded
one-dimensional processes which live forever and move along certain paths.
Instead of using straight lines to connect two sites x and y, we use the
* shortest open path connecting the open circuit around x to the open circuit
around y. It follows from results in first-passage percolation that, for [|x — yll;
large enough, the length of the shortest open path is of order O(|lx — yl1),
and this is enough to complete the proof of the lemma.
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Statements (A.4) and (A.5) follow from exponential estimates similar to (4)
and (5) in Durrett and Griffeath (1982), and the reader is referred to that
paper (cf. pages 543—-544) for the details. The only change is that, whenever
B_ . appears in Durrett and Griffeath (1982), we need to write in its place

x,r

(B, , N Cy) UT(x). In addition, we need to show that there are constants
C, vy € (0,) such that

(A.8) P(I'(x) ¢ B, ,) <Ce .
However, this follows from well-known estimates on the existence of open
circuits in percolation theory.

We can now prove (5.3) by combining (A.6) and (A.7) as in Durrett (1988),
Chapter 1. The idea is to cover #(1 — &)U with open balls of radius §¢ and
then note that there is a finite subcovering {va se; L =1,..., I} of balls of
radius 8¢ centered at x;, i = 1,..., I. Using a covering lemma of Besicovitch
(1927) [cf. Rudin (1974)], we can assume that the smaller balls, B, 5, s,
i = 1,...,1, are pairwise disjoint. Using (A.8) again, we can show that a.s. the
minimal circuits around the points x;, i = 1,..., I, will be contained in their
respective balls B;, 5(x,), i = 1,..., I, eventually.

The proof of (5.4) is the same as in the case when o = 0 (nonrandom
environment) and details can be found in Durrett and Griffeath (1982). O
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