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LIMIT THEOREMS FOR RANDOM NORMALIZED DISTORTION

BY PIERRE COHORT

INRIA–CERMICS

We present some convergence results about the distortion Dν
µ,n,r related

to the Voronoï vector quantization of a µ-distributed random variable using
n i.i.d. ν-distributed codes. A weak law of large numbers for nr/dDν

µ,n,r is
derived essentially under a µ-integrability condition on a negative power of
a δ-lower Radon–Nikodym derivative of ν. Assuming in addition that the
probability measure µ has a bounded ε-potential, we obtain a strong law
of large numbers for nr/dDν

µ,n,r . In particular, we show that the random
distortion and the optimal distortion vanish almost surely at the same rate.
In the one-dimensional setting (d = 1), we derive a central limit theorem for
nrDν

µ,n,r . The related limiting variance is explicitly computed.

Introduction. Quantization is a classical discretization procedure introduced
in 1948 to solve some signal processing problems. This procedure consists of
approximating an R

d -valued random variable X defined on a probability space
(�,A,P) by a finite range random variable fn(X) : (�,A) → {y1, . . . , yn} where
{y1, . . . , yn} ⊂ R

d and where fn : Rd → {y1, . . . , yn} is a Borel map. The above
approximation induces a discretization error usually modeled by E(‖X−fn(X)‖r )

for some r > 0, provided that X ∈ Lr(�,A,P). The preceding mean error is
called the distortion and fn is called an n-quantizer. The set of n-quantizers will
be denoted Qn. Using the quantization procedure requires knowledge of a good
quantizer along with the related distortion. So it is useful to estimate (at least for
large n) the optimal distortion

inf
fn∈Qn

E
(‖X − fn(X)‖r )(1)

and to study the n-quantizers inducing a distortion close to (1). In this setting, we
can confine our attention to the set Vn of the quantizers taking values according to
the nearest neighbor rule: fn(x) := yi(x) where i(x) is the smallest index satisfying
‖x − yi(x)‖ = min1≤j≤n ‖x − yj‖. Indeed, one obtains easily that

inf
fn∈Vn

E
(‖X − fn(X)‖r

) = inf
fn∈Qn

E
(‖X − fn(X)‖r

)
.

The quantizers that belong to Vn are called Voronoï n-quantizers. The name
Voronoï comes from the fact that the closures of the constancy sets of fn are the
so-called Voronoï cells of {y1, . . . , yn}, defined by the polyhedras,

Ci(y1, . . . , yn) :=
{
z ∈ R

d; ‖x − yi‖ = min
1≤j≤n

‖x − yj‖
}
, 1 ≤ i ≤ n.(2)
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When restricted to Vn, the distortion writes

E
(‖X − fn(X)‖r

) =
∫

Rd
min

1≤i≤n
‖u − yj‖rµ(du),

where µ is the law of X and where {y1, . . . , yn} = fn(R
d). So the distortion is

usually considered as a function on (Rd)n and the set Vn is usually identified
to (Rd)n [at fn ∈ Vn then n! n-tuples correspond in (Rd)n]. The distortion will be
denoted Dµ,n,r(y1, . . . , yn). The coordinates of a Voronoï quantizer (y1, . . . , yn)

are called the codes.
This paper is devoted to the study of the asymptotics (as n → +∞) of the

distortion when the codes are random, drawn from an i.i.d. sequence Y1, . . . , Yn.
There is indeed a lack of probabilistic results about the related random distortion
since only the mean E(Dµ,n,r(Y1, . . . , Yn)) has been investigated in the past by
Zador [21], who obtained the convergence of nr/d

E(Dµ,n,r(Y1, . . . , Yn)) (see
also [10]).

Our goal is then to get more information about the asymptotic behavior of
Dµ,n,r(Y1, . . . , Yn), in particular to see more precisely how the random distortion
differs from the optimal one (1). To this end, we will show in a quite general setting
the following new results.

Laws of large numbers (Theorems 1 and 2).

nr/dDµ,n,r(Y1, . . . , Yn)
Lp→ l,

nr/dDµ,n,r(Y1, . . . , Yn)
a.s. and L2−−−−−→ l,

where l (defined in Theorem 1) is deterministic, depending on r , d , µ and law(Y1).

Central limit theorem ( for d = 1) (Theorem 3).

n1/2(nrDµ,n,r(Y1, . . . , Yn) − l
) L→ N (0, σ 2

f,g),

where σf,g is defined in Theorem 3.

Before stating these results, it will be helpful to give some background on
quantization theory, including the basics of optimal quantization.

The optimizing problem related to Dµ,n,r is known as the optimal quantization
problem of the probability measure µ. This question arises in various fields
of applied mathematics (information theory, statistical clustering, stochastic
algorithm theory, etc.) and has been extensively investigated during the past fifty
years. Recently, Graf and Luschgy [10] have completed a comprehensive book
containing a rigorous mathematical treatment of the classical theory along with
some investigation on new topics such as optimal quantization for continuous
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singular probability measures. The survey by Gray and Neuhoff [11] provides
a detailed account of the information-theoretic aspects of quantization (coding
problems and links with Shannon’s theory) along with a historical review.
The deterministic optimizing algorithms of Dµ,n,r are described in [11] and the
stochastic optimizing algorithms are investigated in [1, 2, 7, 16]. Let us recall the
following basic facts.

Existence of an optimal quantizer. For every probability measure µ on R
d and

every r > 0, there exists a quantizer (y∗
1 , . . . , y∗

n) ∈ conv(supp(µ))n such that

Dµ,n,r(y
∗
1 , . . . , y∗

n) = inf
(y1,...,yn)∈(Rd)n

Dµ,n,r(y1, . . . , yn) =: D∗
µ,n,r.

Such a quantizer is called an optimal quantizer and D∗
µ,n,r is called the optimal

distortion.

Asymptotics of the optimal distortion. If there exists ε > 0 such that∫
Rd ‖u‖r+εµ(du) < +∞. Then (Bucklew and Wise’s theorem [5]; see [10] for

a correct proof )

nr/dD∗
µ,n,r → Jr,d‖f ‖d/(d+r),

where f is the density function of the absolutely continuous part of µ, where
‖f ‖d/(d+r) = (

∫
f d/(d+r))(d+r)/d and where Jr,d is some constant depending

only on r and d (see Gersho’s conjecture [8] for a geometrical interpretation
of Jr,d ). Note that from the moment assumption and Hölder’s inequality, one has
‖f ‖d/(d+r) < +∞.

Asymptotic structure of optimal quantizers. Some features of the asymptotic
structure of optimal quantizers can be derived or reasonably conjectured. For
instance, Graf and Luschgy [10] have shown that the codes of an optimal sequence

(y∗
1 , . . . , y∗

n)n≥1 fulfill (
d→ denotes narrow convergence)

1

n

n∑
i=1

δy∗
i

d→ f d/(d+r)∫
f d/(d+r)

λ(3)

as soon as µ is absolutely continuous and fulfills
∫ ‖u‖r+εµ(du) < +∞. In [8],

Gersho conjectured the following asymptotic geometrical regularity of Voronoï
cells Ci(y

∗
1 , . . . , y∗

n) [see (2)]: As n → +∞, the cell Ci(y
∗
1 , . . . , y∗

n) becomes
congruent to a polyhedron P ∗ satisfying

1

λ(P ∗)1+r/d

∫
P ∗

‖u − c(P ∗)‖r du = inf
P∈P

1

λ(P )1+r/d

∫
P

‖u − c(P )‖r du,(4)

where P is the set of polyhedras generating a tesselation {Pi}i≥1 which is Voronoï
with respect to the r-inertia centroids of the Pi’s. Moreover, the constant Jr,d in
the Bucklew and Wise theorem equals the right-hand term in (4).
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Optimization algorithms. The optimal quantizers are in general unknown. So
one has to use some deterministic [14, 19, 20] or stochastic algorithms [16]
that make a local optimization of Dµ,n,r and provide numerical approximations
of some locally optimal quantizers. For instance, the CLVQ algorithm reads as
follows: assume that supp(µ) is a convex set. Let (y0

1 , . . . , y0
n) ∈ (Rd)n, let (Yk)k≥1

be a µ-distributed i.i.d. sequence and let (εk)k≥1 be a real sequence in (0,1).
Define then (yk ∈ (Rd)n)k≥0 by

yk+1
i :=

{
yk
i − εk+1(y

k
i − Yk+1), if Yk+1 ∈ Ci(y

k),

yk
i , otherwise,

1 ≤ i ≤ n,(5)

where Ci(y
k) is the ith Voronoï cell of yk . If εk ≡ ε, the sequence (5) is known as

the constant gain CLVQ algorithm. It is, under some assumptions on µ, a Doeblin
recurrent Markov chain whose invariant probability measure “concentrates” on
the set {∇Dµ,n,2 = 0} as ε → 0 (see [3]). If εk ↓ 0, the sequence (5) is known
as a decreasing gain CLVQ algorithm and, under some assumptions on µ and
on (εk)k≥1, is almost surely converging toward an element of Argminloc(Dµ,n,2)

(see [7]).

In practice, some problems arise when using the above results. For instance,
even if the optimization algorithm does not get trapped into some suboptimal local
optima, the resulting distortion is difficult to estimate from Bucklew and Wise’s
theorem even for large n since the constant Jr,d is in general unknown as soon
as d > 1. So in order to give some upper bounds on Jr,d , numerous sequences
(yn

1 , . . . , yn
n)n≥1 of deterministic suboptimal quantizers have been investigated (for

instance, the lattice quantizers, [10, 11]). From some geometrical considerations,
these sequences are shown to provide the convergence

nr/dDλ[0,1]d ,n,r (y
n
1 , . . . , yn

n) → Wr,d,

where Wr,d is a known constant depending on (yn
1 , . . . , yn

n)n≥1 and then yields
the upper bound Jr,d ≤ Wr,d (the introduction of such suboptimal sequences also
originated in the fact that they allow the reduction of coding and algorithmic
complexity problems in some applications; see [11], Section II.E, page 2338 and
Section V, page 2361).

Another kind of quantizer has been introduced: a random quantizer (see
[10, 21]). Let ν be an absolutely continuous probability measure on R

d such that
supp(ν) ⊃ supp(µ) and let (Yi)i≥1 be an i.i.d. sample from ν. One can consider
a sample path (Y1(ω), . . . , Yn(ω)) as a Voronoï quantizer. At this time, random
quantizers have been used only to get an upper bound on Jr,d and only the
mean distortion E(Dµ,n,r(Y1, . . . , Yn)) has been studied. In [21], Zador showed
(unfortunately under quite unrealistic assumptions) that

E
(
nr/dDµ,n,r(Y1, . . . , Yn)

) → B
−r/d
d �

(
1 + r

d

)∫
Rd

µ(du)

g(u)r/d
,(6)
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where Bd is the volume of the d-dimensional unit ball and g is the density
function of ν. Using the inequality D∗

µ,n,r ≤ E(Dµ,n,r(Y1, . . . , Yn)) and letting

µ = ν := λ[0,1], the author obtained the bound Jr,d ≤ B
−r/d
d �(1 + r/d). More

recently, Graf and Luschgy [10] derived rigorously convergence (6) when ν is the
uniform distribution on some compact set of R

d satisfying a uniform repartition
mass principle (e.g., convex).

Here we note that in some situations it may be interesting to have a better
knowledge of the random distortion Dµ,n,r(Y1, . . . , Yn). In particular, we have
in mind the initializing problem of the competitive learning vector quantization
algorithm (5). A good initialization of (5) requires at least that (y0

1 , . . . , y0
n) ∈

supp(µ)n. But, the probability measure µ [and in particular supp(µ)] is in general
known only through the data (Yk)k≥1. So an a priori choice of (y0

1 , . . . , y0
n), not

depending on the data, could lead to y0
i /∈ supp(µ) for some i. Such y0

i could then
be frozen since an excessively large d(y0

i , supp(µ)) implies Yk+1 /∈ Ci(y
k
1 , . . . , yk

n)

for every k and then yk
i = y0

i for every k.
Subsequently, it has been natural to set (y0

1 , . . . , y0
n) = (Y1, . . . , Yn) and then

run the algorithm with the remaining data. The above random self-initialization
ensures that (y0

1 , . . . , y0
n) ∈ supp(µ)n, but one can ask if it provides a good

initial distortion Dµ,n,2(Y1, . . . , Yn). To answer this question, the only knowledge
of E(Dµ,n,2(Y1, . . . , Yn)) is not very satisfactory and we need some additional
features of the (specifically pathwise) behavior of Dµ,n,2(Y1, . . . , Yn).

Returning to the general case, the fact that supp(ν) ⊃ supp(µ) is equivalent to
Dµ,n,r(Y1, . . . , Yn)

a.s.→ 0. The goal of this paper is to investigate the Lp and the
almost sure rate in the preceding convergence and, in the case d = 1, to derive
a central limit theorem for nrDµ,n,r(Y1, . . . , Yn). Using a method based on the
estimation of the integral moments and of the variance of the random distortion,
we derive an Lp and a strong law of large numbers for nr/dDµ,n,r(Y1, . . . , Yn)

(Section 1) which answer our question in a quite general setting and yield the
result that the random and the optimal distortion vanish almost surely at the same
rate (with different constants). When d = 1, the CLT is derived from an extension
of the Pyke–Hall method for spacing statistics (see [12]). In Sections 2 and 3, we
give some comments on these results. The proofs are derived in Section 4.

1. Results. For notational convenience, we set Dν
µ,n,r := Dµ,n,r(Y1, . . . , Yn)

where ν is the common law of the i.i.d. random variables Y1, . . . , Yn. The random
distortion normalized at the optimal rate nr/d will be called the random normalized
distortion. The main object used to derive our results is the function

R
d × R

∗+ → R+,

(u, δ) → gδ(u) := inf
s∈(0,δ]

ν(B(u, s))

λ(B(u, s))
,
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where λ is the Lebesgue measure on R
d and where B(u, s) is the open ball with

center u ∈ R
d and radius s ≥ 0.

For a fixed δ > 0, we will call u → gδ(u) the δ-lower Radon–Nikodym
derivative of the probability measure ν. This terminology is justified by the fact
that if δ is small, one can hope to have gδ � dν/dλ under some mild regularity
assumption on g := dν/dλ.

In the following sections, Bd denotes λ(B(0,1)) and ‖ · ‖ denotes the Euclidean
norm on R

d .

1.1. Lp convergence. Our first result is an Lp law of large numbers for the
random normalized distortion.

THEOREM 1. Let d ∈ N
∗, p ∈ N \ {0,1} and r ∈ R

∗+. Let µ and ν be some
absolutely continuous probability measures on R

d with supp(µ) ⊂ supp(ν). Let
g be the density function of ν. Assume that:

T1.1. There exists ρ > 0 such that
∫
Rd

µ(du)

g‖u‖+ρ(u)pr/d < +∞.

T1.2.
∫
Rd ‖u‖pr(µ + ν)(du) < +∞.

Then

nr/dDν
µ,n,r

Lp→ B
−r/d
d �

(
1 + r

d

)∫
Rd

µ(du)

g(u)r/d
.

If the quantized probability measure µ has a greater moment order than the
quantizing probability measure ν, we can derive the Lp convergence under a more
tractable version of assumption T1.1.

COROLLARY 1. Let d ∈ N
∗, p ∈ N \ {0,1} and r ∈ R

∗+. Let µ and ν be some
absolutely continuous probability measures on R

d with supp(µ) ⊂ supp(ν). Let
g be the density function of ν. Assume that there exists some η ∈ (0,1) such that:

C1.1. There exists δ > 0 such that
∫
Rd

µ(du)

gδ(u)pr/(d(1−η)) < +∞.

C1.2.
∫
Rd ‖u‖pr/ηµ(du) < +∞;

∫
Rd ‖u‖prν(du) < +∞.

Then assumptions T1.1 and T1.2 hold; in particular,

nr/dDν
µ,n,r

Lp→ B
−r/d
d �

(
1 + r

d

)∫
Rd

µ(du)

g(u)r/d
.

1.2. Almost sure convergence. Here, we provide a strong law of large numbers
for the random normalized distortion. The result is obtained under a mild
strengthening of the assumptions ensuring the L2 convergence along with the
existence of a bounded ε-potential for the quantized probability measure.
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THEOREM 2. Let d ∈ N
∗ and r ∈ R

∗+. Let µ and ν be some absolutely
continuous probability measures on R

d with supp(µ) ⊂ supp(ν). Let g be the
density function of ν. Assume that there exists ε > 0 such that:

T2.1. The function c → ∫
Rd

µ(du)
‖u−c‖ε is bounded on R

d .

T2.2. There exists ρ > 0 such that
∫
Rd

µ(du)

g‖u‖+ρ(u)(2r+ε)/d < +∞.

T2.3.
∫
Rd ‖u‖2r+ε(µ + ν)(du) < +∞.

Then

nr/dDν
µ,n,r

a.s. and L2−−−−−→ B
−r/d
d �

(
1 + r

d

)∫
Rd

µ(du)

g(u)r/d
.

As for the Lp law, if the quantized probability measure µ has a greater moment
order than the quantizing probability measure ν, we can improve T2.2.

COROLLARY 2. Let d ∈ N
∗ and r ∈ R

∗+. Let µ and ν be some absolutely
continuous probability measures on R

d . Let g be the density function of ν. Assume
that there exist η ∈ (0,1) and ε > 0 such that:

C2.1. The function c → ∫
Rd

µ(du)
‖u−c‖ε is bounded on R

d .

C2.2. There exists δ > 0 such that
∫
Rd

µ(du)

gδ(u)(2r+ε)/(d(1−η)) < +∞.

C2.3.
∫
Rd ‖u‖(2r+ε)/ηµ(du) < +∞;

∫
Rd ‖u‖2r+εν(du) < +∞.

Then assumptions T2.1, T2.2 and T2.3 hold; in particular,

nr/dDν
µ,n,r

a.s. and L2−−−−−→ B
−r/d
d �

(
1 + r

d

)∫
Rd

µ(du)

g(u)r/d
.

1.3. Central limit theorem. In the one-dimensional setting (d = 1), we show
that the rate of convergence in Theorem 2 is governed by the following central

limit theorem. We write
L→ to denote the usual convergence in law for R-valued

random variables.

THEOREM 3. Let r > 1. Let µ and ν be some absolutely continuous
probability measures on [0,1] with respective density functions f and g. Assume
that f and g are continuously differentiable on [0,1] and bounded away from zero.
Then

n1/2
(
nrDν

µ,n,r − 1

2r
�(1 + r)

∫ 1

0

f (u)

g(u)r
du

)
L→ N (0, σ 2

f,g),
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where

σ 2
f,g := 1

22r(1 + r)2

∫ 1

0
dzg(z)B(z)

with

B(z) := (
(r + 1)�(r + 2)

)2
((

A(z)

1 − G(z)

)2

+ 2
A(z)f (z)

g(z)1+r(1 − G(z))

)

+ (
�(2r + 3) − �(r + 2)2)( f (z)

g(z)1+r

)2

,

A(z) :=
∫ 1

z
dy

[
f ′(y)(1 − G(y))

(r + 1)g(y)1+r
− f (y)

g(y)r

(
1 + (1 − G(y))g′(y)

g(y)2

)]
,

G(z) :=
∫ z

0
g(t) dt.

2. Comments. Lp convergence. Theorem 1 and Corollary 1 are derived in a
rather general setting. They involve only some moment conditions on µ and ν and,
roughly speaking, a µ-integrability condition on a negative power of the density g.
Indeed, from Lemma 8 (see Section 4.7) the value of δ in assumption C1.1 can
be chosen small enough so that one can hope to obtain gδ � g. Moreover, under
some mild additional regularity property of ν (e.g., ν(B(u, s)) ≥ c(g(u)∧ 1)sd for
s ∈ (0, δ]), the condition C1.1 becomes∫

Rd

µ(du)

g(u)pr/(d(1−η))
< +∞.(7)

Assumption (7) seems satisfactory since it is close (at least for η close to 0) to the
assumption

∫
µ/gr/d < +∞ which ensures the existence of the limiting constant

in Theorem 1. Assumption T1.1 is less intuitive than (7), but, if η is close to 1, it
would be better to use T1.1 instead of (7).

Almost sure convergence. Theorem 2 shows that the optimal distortion
D∗

µ,n,r and the random distortion Dν
µ,n,r vanish almost surely at the same rate.

Assumptions T2.2 and T2.3 are similar to T1.1 and T1.2 with p = 2. Hence,
this result is obtained from the L2 convergence essentially under the additional
assumption of a bounded ε-potential for the quantized measure µ, where ε can
be chosen small enough. Therefore, T2.1 is not very stringent; for instance, every
bounded probability density function satisfies T2.1.

A practical consequence of Theorem 2 is that one can hope to obtain a good
initial distortion in the CLVQ algorithm, at least for large n. Nevertheless, we
point out that the corresponding deterministic limiting constant lim nr/dD

µ
µ,n,r is
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not the best achievable by random quantization. Indeed, from the reverse Hölder’s
inequality, one can show that the infimum infg

∫
g−r/d dµ is attained for the

probability density function

g = gopt := f d/(d+r)∫
f d/(d+r)

(see [21]; note that from the assumption
∫ ‖u‖r+εµ(du) < +∞ and from Hölder’s

inequality, one has
∫

f d/(d+r) < +∞). The corresponding limiting constant is
then B

−r/d
d �(1 + r/d)‖f ‖d/(d+r). Hence, from (3) and from the Bucklew and

Wise theorem, the asymptotic suboptimality of the “random optimal” quantization
is only due to the geometric unstability of the related Voronoï tesselation. The
self-quantization procedure induces a second source of suboptimality, due to the
suboptimal f -repartition of the codes.

Central limit theorem. We proved the CLT in a more stringent setting for a
technical reason: assuming d = 1 along with some regularity on f and g allowed
us to use and extend some spacing statistics techniques, namely, the Pyke–Hall
method (see Section 4.6.1). The limiting variance σ 2

f,g appears as a generalization

of Hall’s, which equals 22r(r + 1)2σ 2
1,g .

In the following section, we show that the assumptions of Theorems 1 and 2
satisfy two interesting robustness properties.

3. Two robustness properties for T1 and T2. Here we investigate the
robustness of the assumptions of Theorems 1 and 2 under the convex combination
and the tensor product of the codes laws.

3.1. Convex combination. Let µ, ν1, ν2 be some absolutely continuous
probability measures on R

d such that supp(ν1) ∪ supp(ν2) ⊃ supp(µ) and let
µi := µ|supp(νi), i = 1,2.

We check that for every α ∈ (0,1), the couple (µ,αν1 +(1−α)ν2) satisfies T1.1
(resp., T1.2, T2.1, T2.2, T2.3) as soon as (µ1, ν1) and (µ2, ν2) satisfy T1.1 (resp.,
T1.2, T2.1, T2.2, T2.3).

ASSUMPTION T1.1. Assume that (µ1, ν1), (µ2, ν2) satisfy T1.1.
Let

gδ(u) := inf
s∈(0,δ]

λ(B(0, s))

αν1 + (1 − α)ν2(B(0, s))
,

g
(i)
δ (u) := inf

s∈(0,δ]
λ(B(0, s))

νi(B(0, s))
, i = 1,2,
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and let ρ > 0. Since supp(ν1) ∪ supp(ν2) ⊃ supp(µ), one has µ ≤ µ1 + µ2 and
then ∫

Rd

(
sup

s∈(0,‖u‖+ρ)

λ(B(u, s))

αν1 + (1 − α)ν2(B(u, s))

)pr/d

µ(du)

≤
∫

Rd

(
sup

s∈(0,‖u‖+ρ)

λ(B(u, s))

αν1 + (1 − α)ν2(B(u, s))

)pr/d

(µ1 + µ2)(du)

= 1

αpr/d

∫
Rd

µ1(du)

g
(1)
‖u‖+ρ(u)pr/d

+ 1

(1 − α)pr/d

∫
Rd

µ2(du)

g
(2)
‖u‖+ρ(u)pr/d

< +∞
from Lemma 8 and the fact that (µ1, ν1) and (µ2, ν2) satisfy T1.1.

Assumption T2.2 is similar to Assumption T1.1 and Assumption T1.2 are
straightforward. As a consequence, one obtains the following robustness prop-
erty for the random quantization: If (µ1, ν1) and (µ2, ν2) satisfy T1.1 and T1.2
(which implies that nr/dDνi

µi,n,r →Lp lr,d,µi,νi
), then, nr/dDαν1+(1−α)ν2

µ,n,r →Lp

lr,d,µ,αν1+(1−α)ν2 . A similar result holds for the almost sure convergence.

3.2. Tensor product. Let d1, d2 ∈ N
∗ such that d1 + d2 = d and let ν1 (resp.,

ν2, µ) be an absolutely continuous probability measure on R
d1 (resp., R

d1 , R
d ).

Let µ1 (resp., µ2) be the margin distributions of µ over R
d1 (resp., R

d2). We derive
that (µ, ν1 ⊗ν2) satisfies the assumptions of Theorem 1 (resp., Theorem 2) as soon
as (µ1, ν1) and (µ2, ν2) satisfy the assumptions of Theorem 1 (resp., Theorem 2).

ASSUMPTIONS T1.1 and T1.2. Let C(u, r) denote the open cube with center
u ∈ R

d and half-side r ≥ 0. First, one has

g−1
‖u‖+ρ(u) ≤ sup

s∈(0,‖u‖+ρ]
λ(C(u, s))

ν(C(u, d−1/2s))
(8)

≤ dd/2
∏

i=1,2

sup
s∈(0,‖u‖+ρ]

λi(C
(i)(u(i), d−1/2s))

νi(C(i)(u(i), d−1/2s))
,

where (u(1), u(2)) ∈ R
d1 × R

d2 = u ∈ R
d and C(1) × C(2) = C. Second, from

Hölder’s inequality,∫
Rd

( ∏
i=1,2

sup
s∈(0,‖u‖+ρ]

λi(C
(i)(u(i), d−1/2s))

νi(C(i)(u(i), d−1/2s))

)pr/d

µ(du)

≤ ∏
i=1,2

(∫
Rd

(
sup

s∈(0,‖u‖+ρ]
λi(C

(i)(u(i), d−1/2s))

νi (C(i)(u(i), d−1/2s))

)pr/di

µ(du)

)di/d

.
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However,

sup
s∈(0,‖u‖+ρ]

λi(C
(i)(u(i), d−1/2s))

νi(C(i)(u(i), d−1/2s)

≤ sup
s∈(0,d1/2(‖u(i)‖+ρ)]

λi(C
(i)(u(i), d−1/2s))

νi(C
(i)(u(i), d−1/2s))

(9)

+ λi(C
(i)(u(i), d−1/2(‖u‖ + ρ)))

νi(C(i)(u(i), (‖u(i)‖ + ρ)))
.

Therefore, from Lemma 3 (see Section 4.7) there exists ξνi
> 0 such that

sup
s∈(0,‖u‖+ρ]

λi(C
(i)(u(i), d−1/2s))

νi (C(i)(u(i), d−1/2s))
(10)

≤ d
di/2
i sup

s∈(0,‖u(i)‖+ρ]
λi(B

(i)(u(i), s))

νi(B
(i)(u(i), s))

+ λi(B
(i)(u(i), (‖u‖ + ρ)))

ξνi

.

From (8), (9) and (10), one finally gets that∫
Rd

µ(du)

g‖u‖+ρ(u)pr/d

≤ M
∏

i=1,2

[∫
R

di

µi(du(i))

g
(i)

‖u(i)‖+ρ
(u)pr/di

+
∫

Rd
(‖u‖ + ρ)prµ(du)

]di/d

< +∞.

Hence (µ, ν1 ⊗ ν2) satisfies Assumption T1.1. The case of Assumption T1.2 is
straightforward and Assumptions T2.1, T2.2 and T2.3 are similar to Assumptions
T1.1 and T1.2.

As a consequence, one obtains the following robustness property for the random
quantization: if (µ1, ν1) and (µ2, ν2) satisfy T1.1 and T1.2 (which implies that
nr/diDνi

µi,n,r →Lp lr,di ,µi,νi
) then, nr/dDν1⊗ν2

µ,n,r →Lp lr,d,µ,ν1⊗ν2 . A similar result
holds for the almost sure convergence.

4. Proofs.

4.1. Notation. In the following items, f denotes a nonnegative Borel function
on (Rd)p × R

p
+ and (u,v) denotes (u1, . . . , up, v1, . . . , vp) ∈ (Rd)p × R

p
+.

1. Iµ,p[f (u,v)] :=
∫
(Rd )p

µ(du1) · · ·µ(dup)

∫
R

p
+

dv1 · · · dvp f (u,v).
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2. ϒn,p(u,v) :=
(

1 − ν

( p⋃
j=1

B

(
uj ,

v
1/r
j

n1/d

)))n

.

3. lr,d,µ,ν :=
∫

Rd
µ(du)

∫
R+

dv exp
(−Bdg(u)vd/r)

= B
−r/d
d �

(
1 + r

d

)∫
Rd

µ(du)

g(u)r/d
.

4. A
(p)
n,ρ :=

{
(u,v) ∈ (Rd)p × R

p
+;

max
1≤i≤p

v
1/r
i

n1/d
≤ max

1≤i≤p
‖ui‖ + ρ

}
⊂ (Rd)p × R

p
+.

The convergence in probability (resp., the mean, the variance) with respect to P

will be denoted
P→, (resp., E, V).

4.2. Proof of Theorem 1. One has (Lemma 1)

E(nr/dDν
µ,n,r)

p = Iµ,p

[
1A

(p)
n,ρ

ϒn,p

] + Iµ,p

[
1�A

(p)
n,ρ

ϒn,p

]
.(11)

However, (Lemma 2), for every (u,v) ∈ (Rd)p × R
p
+,

1A
(p)
n,ρ

ϒn,p(u,v) ≤
p∑

j=1

exp
(
−Bdgmax1≤i≤p ‖ui‖+ρ(uj ) max

1≤i≤p
v

d/r
i

)
(12)

and (Lemma 4)

Iµ,p

[ p∑
j=1

exp
(
−Bdgmax1≤i≤p ‖ui‖+ρ(uj ) max

1≤i≤p
v

d/r
i

)]
< +∞.(13)

Since A
(p)
n,ρ ↑ (Rd)p × R

p
+ as n ↑ +∞, Lemma 5 yields

1A
(p)
n,ρ

ϒn,p
µ⊗p⊗λ⊗p - a.e.−−−−−−−−→ exp

(
−Bd

p∑
j=1

g(uj )v
d/r
j

)
.(14)

So (12), (13), (14) and the Lebesgue dominated convergence theorem yield

Iµ,p

[
1A

(p)
n,ρϒn,p

] → Iµ,p

[
exp

(
−Bd

p∑
j=1

g(uj )v
d/r
j

)]
= l

p
r,d,µ,ν.(15)

However (Lemma 6),

Iµ,p

[
1�A

(p)
n,ρ

ϒn,p

] → 0.(16)

Therefore (15), (16) and (11) yield

E(nr/dDν
µ,n,r)

p → l
p
r,d,µ,ν.(17)
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Now, observe that Assumptions T2.1 and T2.2 hold for every q ∈ {1, . . . , p}
and the fact that p ≥ 2 has not been used to derive (17). As a consequence,
(17) holds for every 1 ≤ q ≤ p, E(nr/dDν

µ,n,r)
q → l

q
r,d,µ,ν and, in particular,

nr/dDν
µ,n,r →P lr,d,µ,ν . Finally, Lemma 7 yields nr/dDν

µ,n,r →Lp lr,d,µ,ν which
completes the proof.

4.3. Proof of Corollary 1. We have to show that C1.1 and C1.2 imply
T2.1 and T2.2.

First, C1.2 straightforwardly implies T1.2.
Second, one has for every u ∈ supp(g),

g‖u‖+ρ(u)−1 ≤ gρ(u)−1 + λ
(
B(u,‖u‖ + ρ)

)
/ν

(
B(u,ρ)

)
.

Hence,∫
Rd

µ(du)

g‖u‖+ρ(u)pr/d
≤

∫
Rd

µ(du)

gρ(u)pr/d
+

∫
Rd

µ(du)

(
λ(B(u,‖u‖ + ρ))

ν(B(u,ρ))

)pr/d

.

So, from Hölder’s inequality [recall that η ∈ (0,1)],
∫
Rd g‖u‖+ρ(u)−pr/dµ(du) is

less than∫
Rd

µ(du)

gρ(u)pr/d

+
(∫

Rd
µ(du)

(
λ
(
B(u,‖u‖ + ρ)

))pr/dη
)η(∫

Rd

µ(du)

ν(B(u,ρ))pr/(d(1−η))

)1−η

.

Therefore,∫
Rd

µ(du)

g‖u‖+ρ(u)pr/d

≤
∫

Rd

µ(du)

gρ(u)pr/d

+ B
pr/d
d

ρpr

(∫
Rd

µ(du)(‖u‖ + ρ)pr/η

)η(∫
Rd

µ(du)

gρ(u)pr/(d(1−η))

)1−η

.

Assumptions C1.1 and C1.2 along with Lemma 8 then ensure that∫
Rd

µ(du)

g‖u‖+ρ(u)pr/d < +∞. Lemma 8 completes the proof.

4.4. Proof of Theorem 2. First, we show that the assumptions of Lemma 9 are
fulfilled with En := A

(2)
n,ρ and

ψ(u,v) :=
2∑

j=1

exp
(−Bdg‖u1‖∨‖u2‖+ρ(uj )v

d/r
1 ∨ v

d/r
2

)
.
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ASSUMPTION L9.1. Lemma 2 with p = 2 yields for every n ∈ N
∗ and every

(u,v) ∈ (Rd)2 × R
2+, 1A

(2)
n,ρ

ϒn,2 ≤ ψ(u,v). Assumption L9.1 then holds.

ASSUMPTION L9.2. From Lemma 4, we already know that Iµ,2[ψ] < +∞.
So, by Lemma 11, one obtains Iµ,2[(1 + δε)ψ] < +∞. Assumption L9.2 then
holds.

ASSUMPTION L9.3. From Lemma 12, one has Iµ,2[1�A
(2)
n,ρ

δεϒn,2] → 0.

In addition, since A
(2)
n,ρ ↑ (Rd)2 × R

2+, one has Iµ,2[1�A
(2)
n,ρ

ϒn,2] → 0. Hence,
Iµ,2[1�A

(2)
n,ρ

(1 + δε)ϒn,2] → 0. In particular, Assumption L9.3 holds.

Then we get from Lemma 9 that for every k ≥ d/ε,

n2kr/dDν
µ,n2k,r

− E
(
n2kr/dDν

µ,n2k,r

) a.s.→ 0.(18)

However, Assumptions T2.2 and T2.3 imply Assumptions T1.1 and T1.2 (with
p = 2). Hence, from Theorem 1, one has nr/dDν

µ,n,r →L2 lr,d,µ,ν . In particular,

E(n2kr/dDν
µ,n2k,r

) → lr,d,µ,ν and from (18), one obtains n2kr/dDν
µ,n2k,r

a.s.→ lr,d,µ,ν .
Finally Lemma 10 applied with an := Dν

µ,n,r completes the proof.

4.5. Proof of Corollary 2. As in the proof of Corollary 1, one can show,
using Hölder’s inequality, that Assumptions C2.2 and C2.3 entail Assumptions
T2.2 and T2.3. The details are then omitted.

4.6. Proof of Theorem 3. In this section, M (resp., P ) denotes the set of the
absolutely continuous positive finite (resp., probability) measures having a density
function g such that g ∈ C1([0,1]) and infg > 0.

4.6.1. The Pyke–Hall method. Let (Z1,n, . . . ,Zn,n) be the order statistics
of (Y1, . . . , Yn). Then the normalized uniform distortion nrDν

λ[0,1],n,r can be
approximated by Kimball’s type spacing statistics

S(1)
n := 1

n

n−1∑
k=1

(
n(Zk+1,n − Zk,n)

)r+1
,

where (Z1,n, . . . ,Zn,n) is the order statistics of (Y1, . . . , Yn). Indeed, one can prove
that (e.g., if ν ∈ P )

n1/2
(
nrDν

λ[0,1],n,r − 1

2r(r + 1)
S(1)

n

)
P→ 0.(19)

So, CLT for nrDν
λ[0,1],n,r reduces to CLT for S

(1)
n .

In [18], Pyke introduced a method based on Rényi’s version of order statistics
(see the Appendix for the related notation) to derive some limit theorems for S

(1)
n .

This method has been extended to general statistics of m-spacings by Hall [12].
For 1-spacings, Hall’s CLT reads as follows.
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THEOREM 4. With the preceding notation,

n1/2
(
S(1)

n −
∫ 1

0
dx g(x)2

∫ 1

0
dz zr+1 exp

(−zg(x)
)) L→ N (0, σ 2).

(See [12] for the explicit computation of σ 2.)
The key to the proof of Theorem 4 is first to assume that (Z1,n, . . . ,Zn,n) is

Rényi’s version of order statistics (see the Appendix), that is,

Zk,n = Kg

(
k∑

j=1

Xj

n − j + 1

)
,(20)

where (Xj )j≥0 is an i.i.d. exponential sequence with parameter 1, where Kg :=
G−1(1 − exp(·)) and where G is the distribution function of ν. Second, the key
approximation is as follows.

PROPOSITION 1. Let r > 1; let ν ∈ P with density function g. Then

n1/2((S(1)
n − S

) − (
S(2)

n − E
(
S(2)

n

))) P→ 0,

where

S(1)
n := 1

n

n−1∑
k=1

(
n(Zk+1,n − Zk,n)

)r+1
,

(21)

S :=
∫ +∞

0
dz exp(−z)

∫ 1

0
dx

(
z

1 − x
K ′

g

(− log(1 − x)
))r+1

and

S(2)
n = 1

n

n−1∑
k=1

n

n − k

(
k∑

j=1

Xj − 1

n − j + 1

)
K ′′

g

(
− log

(
1 − k

n

))

× �(r + 2)(r + 1)

(
n

n − k
K ′

g

(
− log

(
1 − k

n

)))r

(22)

+
(

n

n − k
Xk+1K

′
g

(
− log

(
1 − k

n

)))r+1

.

Reordering the terms in (22) according to the Xj ’s, one obtains a sum of
independent random variables to which the Lindeberg central limit theorem
applies. The related CLT for S

(2)
n together with Proposition 1 finally yield

Theorem 4.
Our goal is to extend Proposition 1 in order to deal with the nonuniform

distortion nrDν
µ,n,r .
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4.6.2. Proof (of Theorem 3). We observe that if d = 1, the distortion Dν
µ,n,r

is a function of (Z1,n, . . . ,Zn,n). So, in order to derive a CLT for nrDν
µ,n,r , we can

deal with a specific version of order statistics (Z1,n, . . . ,Zn,n); in particular, we
assume without loss of generality that (Z1,n, . . . ,Zn,n) is Rényi’s version of order
statistics defined by (20).

For 1 ≤ k ≤ n − 1, let ζk,n ∈ [Zk,n,Zk+1,n]. Then (Lemma 13)

n1/2
(
nrDν

µ,n,r − 1

2r (r + 1)
Wn

)
P→ 0.(23)

Hence, the CLT for nrDν
µ,n,r reduces to the CLT for Wn.

The next step is to apply Lemma 14 to Wn.
From the mean value theorem, there exists for 1 ≤ k ≤ n − 1 a [0,1]-valued

random variable θk,n such that

Xk+1

n − k
K ′

g

(
k∑

j=1

Xj

n − j + 1
+ θk,n

Xk+1

n − k

)
= Zk+1,n − Zk,n.

Since the function Kg is increasing, one has

Kg

(
χk,n + θk,n

Xk+1

n − k

)
∈ [Zk,n,Zk+1,n] where χk,n :=

k∑
j=1

Xj

n − j + 1
.

Therefore, we can set ζk,n := Kg(χk,n + θk,nXk+1/(n − k)). Subsequently,
Wn writes

1

n

n−1∑
k=1

(
n

n − k
Xk+1

(
(f ◦ Kg)

1/(1+r) exp(−·)
g ◦ Kg

)(
χk,n + θk,n

Xk+1

n − k

))r+1

.

However, since f,g ∈ P , one has gf −1/(1+r) ∈ M. Therefore, in order to apply
Lemma 14 we can set ϕ := gf −1/(1+r) and ψ := g. With this choice,

(f ◦ Kg)
1/(1+r) exp(−·)

g ◦ Kg

= Hgf −1/(1+r),g

and the sum S
(1)
n defined in Lemma 14 equals Wn. Consequently, Lemmas 14, 15

and 13 yield

n1/2
(
nrDν

µ,n,r − 1

2r (r + 1)
S

)
L→ N

(
0,

1

22r(r + 1)2 S
2
gf −1/(1+r),g

)
and an elementary computation shows that

1

22r(r + 1)2
S2

gf −1/(1+r),g
= σ 2

f,g and
1

2r
�(1 + r)

∫ 1

0

f (u)

g(u)r
du = 1

2r (r + 1)
S,

which completes the proof of Theorem 3.
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4.7. Lemmas.

4.7.1. Lemmas for Theorems 1 and 2.

LEMMA 1. Let µ,ν be two probability measures on R
d . Then, for every

n ∈ N
∗ and every p ∈ N

∗, one has E(nr/dDν
µ,n,r)

p = Iµ,p[ϒn,p].

PROOF. One easily writes that

E(nr/dDν
µ,n,r)

p = E

(∫
(Rd)p

p∏
j=1

nr/d min
1≤i≤n

‖Yi − uj‖rµ(du1) · · ·µ(dup)

)

= Iµ,p

[
P

(
n⋂

i=1

p⋂
j=1

{
nr/d‖Yi − uj‖r ≥ vj

})]
.

Using that the Yi ’s are i.i.d. finally yields the needed result. �

LEMMA 2. Let d ∈ N
∗, p ∈ N

∗, r > 0 and ρ > 0. For every δ > 0 and
every u ∈ R

d , set gδ(u) := infs∈(0,δ] ν(B(u,s))
λ(B(u,s))

. Then for every n ∈ N
∗ and every

(u,v) ∈ (Rd)p × R
p
+,

1A
(p)
n,ρ

ϒn,p(u,v) ≤
p∑

j=1

exp
(
−Bdgmax1≤i≤p ‖ui‖+ρ(uj ) max

1≤i≤p
v

d/r
i

)
.

PROOF. One has

ϒn,p(u,v) ≤
p∑

j=1

ϒn,1

(
uj , max

1≤i≤p
v

d/r
i

)
.(24)

Let j ∈ {1, . . . , p}. One gets

ϒn,1

(
uj , max

1≤i≤p
v

d/r
i

)
≤ exp

(
−Bd

ν(B(uj ,max1≤i≤p v
1/r
i /n1/d))

λ(B(uj ,max1≤i≤p v
1/r
i /n1/d))

max
1≤i≤p

v
d/r
i

)
.

By the definition of the set A
(p)
n,ρ , one finally obtains

1A
(p)
n,ρ

ϒn,1

(
uj , max

1≤i≤p
v

d/r
i

)
(25)

≤ exp
(
−Bd inf

s∈(0,max1≤i≤p ‖ui‖+ρ]
ν(B(uj , s))

λ(B(uj , s))
max

1≤i≤p
v

d/r
i

)
.

Summing (25) over j and using (24) completes the proof. �
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LEMMA 3. Let ν be a probability measure on R
d and let ρ > 0. Then

inf
u∈supp(ν)

ν
(
B(u,‖u‖ + ρ)

)
> 0.

PROOF. Assume that there is a sequence (un)n≥0 in supp(ν) such that
ν(B(un,‖un‖ + ρ)) → 0. Seeing that the function u → ν(B(u,‖u‖ + ρ)) is lower
semicontinuous and does not vanish on every compact subset of supp(ν), one can
assume w.l.g. that ‖u − un‖ < ‖un‖ for every n for some u ∈ supp(ν). Then one
has B(u,ρ) ⊂ lim inf B(un,‖un‖ + ρ), and, from Fatou’s lemma,

lim inf ν
(
B(un,‖un‖ + ρ)

) ≥ ν
(
lim inf B(un,‖un‖ + ρ)

) ≥ ν
(
B(u,ρ)

)
> 0

giving a contradiction. �

LEMMA 4. Under the assumptions of Theorem 1, one has

Iµ,p

[ p∑
j=1

exp
(
−Bdgmax1≤i≤p ‖ui‖+ρ(uj ) max

1≤i≤p
v

d/r
i

)]
< +∞.

PROOF.

Iµ,p

[ p∑
j=1

exp
(
−Bdgmax1≤i≤p ‖ui‖+ρ(uj ) max

1≤i≤p
v

d/r
i

)]

≤ M1

p∑
j=1

∫
(Rd )p

µ(du1) · · ·µ(dup)gmax1≤i≤p ‖ui‖+ρ(uj )
−pr/d

≤ M1

p∑
j=1

p∑
i=1

∫
(Rd )2

µ(duj)µ(dui)g‖ui‖+ρ(uj )
−pr/d

≤ M2

∫
(Rd )2

µ(du)µ(dw)

(
g‖u‖+ρ(u)−1 + λ(B(u,‖w‖ + ρ))

ν(B(u,‖u‖ + ρ))

)pr/d

≤ M3

∫
Rd

µ(du)
(
g‖u‖+ρ(u)−pr/d + (‖u‖ + ρ)pr ) (Lemma 3)

and the preceding term is finite. �

LEMMA 5. Let d ∈ N
∗, p ∈ N

∗ and r ∈ R
∗+. Let µ and ν be some absolutely

continuous probability measures on R
d . Then

ϒn,p → exp

(
−Bd

p∑
j=1

g(uj )v
d/r
j

)
, µ⊗p ⊗ λ⊗p-a.e.(26)

The proof is sraightforward.



136 P. COHORT

LEMMA 6. Let d ∈ N
∗, p ∈ N

∗, r > 0 and ρ > 0. Assume that
∫
Rd ‖u‖pr(µ +

ν)(du) < +∞.
Then Iµ,p[1�A

(p)
n,ρ

ϒn,p] → 0.

PROOF. The change of variable w := v/nr/d yields

Iµ,p

[
1�A

(p)
n,ρ

ϒn,p

] = Iµ,p

[
1Bρn

pr/d�n
p,r

]
,(27)

where

Bρ :=
{
(u,w) ∈ supp(µ)p × R

p
+; max

1≤i≤p
w

1/r
i > max

1≤i≤p
‖ui‖ + ρ

}
and where �p,r(u,w) is the function defined on (Rd)p × R

p
+ by

�p,r(u,w) := 1 − ν

( p⋃
j=1

B(uj ,w
1/r
j )

)
.

On the set Bρ , one has

p⋃
j=1

B(uj ,w
1/r
j ) ⊃ B

(
uj0, max

1≤j≤p
‖uj‖ + ρ

)
⊃ B

(
uj0,‖uj0‖ + ρ

)
,

where the index j0 satisfies wj0 = max1≤j≤p wj .
Since supp(µ) ⊂ supp(ν), Lemma 3 then yields the existence of ξν > 0 such

that for every (u,w), 1Bρ�p,r(u,w) ≤ 1 − ξν . Consequently,

1Bρn
pr/d�n

p,r (u,w) → 0 as n ↑ +∞.(28)

In addition, one can easily show that the sequence (1Bρn
pr/d�n

p,r)n≥1 is
decreasing for n ≥ −pr/(d log(1 − ξν)). Subsequently, since �p,r ≤ 1, one
obtains

1Bρn
pr/d�n

p,r ≤
(
− pr

d log(1 − ξν)
∨ 1

)pr/d

�p,r(29)

for every n ≥ − pr
d log(1−ξν)

∨ 1.

Now, from
∫
Rd ‖u‖pr(µ+ν)(du) < +∞, one easily obtains Iµ,p[�p,r ] < +∞.

Then from (28), (29) and from the Lebesgue dominated convergence theorem,
one finally gets that Iµ,p[1Bρn

pr/d�n
p,r] → 0 which, from (27), completes the

proof. �

LEMMA 7. Let p ≥ 1 and (Xn)n≥0, X be random variables on a probability
space (�,A,P) such that Xn →P X and E|Xn|p → E|X|p . Then Xn →Lp X.

The proof follows easily from Fatou’s lemma.
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LEMMA 8. Let ϕ : Rd → R+ and α > 0. Then(
∃ρ > 0 such that

∫
Rd

µ(du)

gϕ(u)+ρ(u)α
< +∞

)

⇐⇒
(
∀ρ > 0,

∫
Rd

µ(du)

gϕ(u)+ρ(u)α
< +∞

)
.

PROOF. This follows from the fact that for every ρ,ρ′ > 0, u ∈ R
d ,

gϕ(u)+ρ(u)−1 ≤
(

1 +
(

ϕ(u) + ρ

ϕ(u) + ρ′
)d)

gϕ(u)+ρ′(u)−1. �

In the following lemmas, we use the following notation: for u1, u2 ∈ R
d

(u1 �= u2) and v1, v2 ≥ 0,

δε(u1, u2, v1, v2) :=
(

v
1/r
1 + v

1/r
2

‖u1 − u2‖
)ε

.

LEMMA 9. Let d ∈ N
∗ and r ∈ R

∗+. Let (En)n≥1 be a sequence of Borel sets of
(Rd)2 × R

2+ and let µ and ν be some absolutely continuous probability measures
on R

d . Assume that there exists a function ψ : (Rd)2 × R
2+ → R+ and ε > 0 such

that:

L9.1. 1Enϒn,2(u,v) ≤ ψ(u,v) µ ⊗ µ ⊗ λ ⊗ λ-a.e. for every n ∈ N
∗.

L9.2. Iµ,2[(1 + δε)ψ] < +∞.
L9.3. lim sup Iµ,2[1�En

(1 + δε)ϒn,2] < +∞.

Then, for every integer k ≥ d/ε,

n2kr/dDν
µ,n2k,r

− E
(
n2kr/dDν

µ,n2k,r

) a.s.→ 0.(30)

PROOF. Let k ∈ N such that k ≥ d/ε. To obtain (30), we show that∑
n≥1

V
(
n2rk/dDν

µ,n2k,r

)
< +∞.(31)

To this end, write

nV
(
nrk/dDν

µ,nk,r

)
= n

(
Iµ,2

[
ϒnk,2

] − (
Iµ,1

[
ϒnk,1

])2)
= nIµ,2

[
ϒnk,2(u1, u2, v1, v2) − ϒnk,1(u1, v1)ϒnk,1(u2, v2)

]
.

Let Dd,2 := {u ∈ R
d × R

d ; u1 = u2}. Assume that (u,v) ∈ �Dd,2 × R
2+ and that

n > δd/k(u,v).
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We have B(u1, v
1/r
1 /nk/d) ∩ B(u2, v

1/r
2 /nk/d) = ∅ and then

ϒnk,2(u1, u2, v1, v2)

=
(

1 − ν

(
B

(
u1,

v
1/r
1

nk/d

))
− ν

(
B

(
u2,

v
1/r
2

nk/d

)))nk

.

Therefore, ϒnk,2(u1, u2, v1, v2) − ϒnk,1(u1, v1)ϒnk,1(u2, v2) ≤ 0, which entails
that

n
(
ϒnk,2(u1, u2, v1, v2) − ϒnk,1(u1, v1)ϒnk,1(u2, v2)

)
(32) ≤ δd/kϒnk,2(u1, u2, v1, v2).

If on the contrary, n ≤ δd/k(u1, u2, v1, v2), then the inequality (32) straightfor-
wardly holds. Since µ ⊗ µ(Dd,2) = 0, one then obtains

nV
(
nrk/dDν

µ,nk,r

) ≤ Iµ,2
[
δd/kϒnk,2

]
≤ Iµ,2

[
1E

nk
δd/kϒnk,2

] + Iµ,2
[
1�E

nk
δd/kϒnk,2

]
.

Assumption L9.1 then yields

nV
(
nrk/dDν

µ,nk,r

) ≤ Iµ,2[δd/kψ] + Iµ,2
[
1�E

nk
δd/kϒnk,2

]
.(33)

Therefore, for sufficiently large n,

nV
(
nrk/dDν

µ,nk,r

) ≤ Iµ,2[δd/kψ] + lim sup Iµ,2
[
1�E

nk
δd/kϒnk,2

] + 1.(34)

However, since ε ≥ d/k, Assumptions L9.2 and L9.3 easily yield that
Iµ,2[δd/kψ] < +∞ and that lim sup Iµ,2[1�E

nk
δd/kϒnk,2] < +∞.

Then, from (34), one obtains lim supnV(nrk/dDν
µ,nk,r

) < +∞ which im-
plies (31) and completes the proof. �

LEMMA 10. Let α > 0, l ∈ R, k ∈ N
∗ and let (an)n>0 be a decreasing

sequence of real numbers such that nkαank −→
n→+∞ l. Then nαan −→

n→+∞ l.

The proof is straightforward.

LEMMA 11. Under the assumptions of Theorem 2, one has

Iµ,2

[
δε(u1, u2, v1, v2)

2∑
j=1

exp
(−Bdg‖u1‖∨‖u2‖+ρ(uj )v

d/r
1 ∨ v

d/r
2

)]
< +∞.

For the proof, the only difference with Lemma 4 is the additional term
δε(u1, u2, v1, v2), which is easily handled by the existence of a bounded ε-potential
for µ.
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LEMMA 12. Let d ∈ N
∗, r > 0, ε > 0, ρ > 0. Assume that:

L12.1. The function c → ∫
Rd

µ(du)
‖u−c‖ε is bounded over R

d .
L12.2.

∫
Rd‖u‖2r+ε (µ + ν)(du) < +∞.

Then

Iµ,2
[
1�A

(2)
n,ρ

δεϒn,2
] → 0.

The proof is similar to the proof of Lemma 6.

4.7.2. Lemmas for Theorem 3.

LEMMA 13. Let r > 1, let µ,ν ∈ P and let f denote the density function of
the probability measure µ. For every n ≥ 1 and every 1 ≤ k ≤ n − 1, let ζk,n be a
random variable taking values in [Zk,n,Zk+1,n]. Then

n1/2

(
nrDν

µ,n,r − 1

2r(r + 1)

1

n

n−1∑
k=1

f (ζk,n)
(
n(Zk+1,n − Zk,n)

)r+1
)

P→ 0.

The proof follows immediately from the fact that f is Lipschitz and from the
elementary extreme values and spacings theory.

The following lemma is the extension of the Pyke–Hall method used in
Theorem 3. We use the notation

�k,n :=
k∑

j=1

1/(n − j + 1),

χk,n :=
k∑

j=1

Xj/(n − j + 1),

λk,n := − log(1 − k/n).

LEMMA 14. Let r > 1 and let ν ∈ P with density function g. For every n ≥ 1
and every 1 ≤ k ≤ n − 1, let θk,n be the [0,1]-valued random variable satisfying

Xk+1

n − k
K ′

g

(
χk,n + θk,n

Xk+1

n − k

)
= Zk+1,n − Zk,n.(35)

Let ϕ ∈ M, let ψ ∈ P and define

Hϕ,ψ := exp(−·)
ϕ ◦ Kψ

.

Then

n1/2((S(1)
n − S

) − (
S(2)

n − E
(
S(2)

n

))) P→ 0,(36)
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where

S =
∫ +∞

0
dz exp(−z)

∫ 1

0
dx

(
z

1 − x
Hϕ,ψ

(− log(1 − x)
))r+1

,(37)

S(1)
n := 1

n

n−1∑
k=1

(
n

n − k
Xk+1Hϕ,ψ

(
χk,n + θk,n

Xk+1

n − k

))r+1

(38)

and

S(2)
n = 1

n

n−1∑
k=1

n

n − k
(χk,n − �k,n)H

′
ϕ,ψ (λk,n)

× �(r + 2)(r + 1)

(
n

n − k
Hϕ,ψ(λk,n)

)r

(39)

+
(

n

n − k
Xk+1Hϕ,ψ(λk,n)

)r+1

.

PROOF. A careful reading of Hall’s proof of Proposition 1 (derived in [12]
in a more complex technical setting) reveals that the only properties of K ′

g =
exp(−·)/g ◦ Kg required to prove this result are those of the functions belonging
to the set {exp(−·)/ϕ ◦ Kψ,ϕ ∈ M,ψ ∈ P } (in particular, the fact that K ′

g is the
derivative of Kg is not used).

However, the statement of Lemma 14 is precisely obtained by replacing mutatis
mutandis the function K ′

g in Proposition 1 by a function Hϕ,ψ . So the proof of
Lemma 14 is very similar to the proof of Proposition 1 and we give only a brief
sketch of it.

The function Hϕ,ψ is continuously differentiable on R+. So applying twice the
mean value theorem, one can check that

S(1)
n = 1

n

n−1∑
k=1

A
(1)
n,k + 1

n

n−1∑
k=1

A
(2)
n,k,

where

A
(1)
n,k :=

(
n

n − k
Xk+1Hϕ,ψ(�k,n)

)r+1

,

A
(2)
n,k := (r + 1)

n

n − k
Xk+1�n,k

(
n

n − k
Xk+1[Hϕ,ψ(�k,n) + ξn,k�n,k]

)r

with

�n,k :=
(
χk,n − �k,n + θn,k

Xk+1

n − k

)
× H ′

ϕ,ψ

(
�k,n + ηn,kχk,n − �k,n + ηn,kθn,k

Xk+1

n − k

)
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and where ηn,k and ξn,k are some [0,1]-valued random variable [defined on
(�,A,P)].

Then one can prove the following approximations:

n−1/2
n−1∑
k=1

A(2)
n −

[
n

n − k
Xk+1(χk,n − �k,n)H

′
ϕ,ψ(λk,n)

(40)

× (r + 1)

(
n

n − k
Xk+1Hϕ,ψ(λk,n)

)r]
P→ 0,

n−1/2
n−1∑
k=1

(χk,n − �k,n)H
′
ϕ,ψ (λk,n)

×
[

n

n − k
Xk+1

(
n

n − k
Xk+1Hϕ,ψ(λk,n)

)r

(41)

− E

(
n

n − k
Xk+1

(
n

n − k
Xk+1Hϕ,ψ(λk,n)

)r)]
P→ 0,

n−1/2
n−1∑
k=1

A
(1)
n,k −

(
n

n − k
Xk+1Hϕ,ψ(λk,n)

)r+1
P→ 0,(42)

n1/2

(
S − 1

n

n−1∑
k=1

E

((
n

n − k
Xk+1Hϕ,ψ(λk,n)

)r+1))
→ 0.(43)

Finally, combining (40)–(43), one obtains

n1/2((S(1)
n − S

) − (
S(2)

n − E
(
S(2)

n

))) P→ 0,

which completes the proof. �

LEMMA 15. Under the notation and assumptions of Lemma 14,

n1/2(S(2)
n − E

(
S(2)

n

)) L→ N (0,S2
ϕ,ψ),

where

S
2
ϕ,ψ =

∫ 1

0
dx

(
1

1 − x

)2(∫ 1

x
�(t) dt

)2

+ (
�(2r + 3) − �(r + 2)2)

�(x)2

+ 2

1 − x

(
�(r + 3) − �(r + 2)

)
�(x)

∫ 1

x
�(t) dt

with

�(t) := 1

1 − t
H ′

ϕ,ψ

(− log(1 − t)
)
�(r + 2)(r + 1)

(
1

1 − t
Hϕ,ψ

(− log(1 − t)
))r
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and

�(t) :=
(

1

1 − t
Hϕ,ψ

(− log(1 − t)
))r+1

.

For the proof, reordering the summation in S
(2)
n and Lindeberg’s theorem for

triangular arrays (see, e.g., [13]) yield the result.

APPENDIX

Rényi’s version of order statistics. Let ν be a probability measure on R,
let (Yi)1≤i≤n be a ν-distributed i.i.d. sample and let (Ŷk,n)1≤k≤n be the related
order statistics. Rényi’s version of order statistics is a version of the vector
(Ŷk,n)1≤k≤n constructed from an i.i.d. standard exponential sequence (Xj )1≤j≤n.
More precisely, letting (X̂k,n)1≤k≤n be the order statistics of (Xj )1≤j≤n, it is
classical that

(X̂j )1≤j≤n
L=

(
k∑

j=1

Xj

n − j + 1

)
1≤k≤n

.

Then one obtains (Rényi’s version of order statistics)

G−1

(
1 − exp

(
k∑

j=1

Xj

n − j + 1

))
1≤k≤n

L= (Ŷk,n)1≤k≤n,(44)

where G denotes the distribution function of the probability measure ν. In this
paper, for notational convenience, we set Kg := G−1(1 − exp(·)).
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