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MAXIMUM LIKELIHOOD ESTIMATION OF
HIDDEN MARKOV PROCESSES

BY HALINA FRYDMAN AND PETER LAKNER

New York University

We consider the process dYt = ut dt + dWt , where u is a process
not necessarily adapted to F Y (the filtration generated by the process Y)

and W is a Brownian motion. We obtain a general representation for the
likelihood ratio of the law of the Y process relative to Brownian measure.
This representation involves only one basic filter (expectation of u conditional
on observed process Y). This generalizes the result of Kailath and Zakai
[Ann. Math. Statist. 42 (1971) 130–140] where it is assumed that the process u

is adapted to F Y . In particular, we consider the model in which u is a
functional of Y and of a random element X which is independent of the
Brownian motion W. For example, X could be a diffusion or a Markov chain.
This result can be applied to the estimation of an unknown multidimensional
parameter θ appearing in the dynamics of the process u based on continuous
observation of Y on the time interval [0, T ]. For a specific hidden diffusion
financial model in which u is an unobserved mean-reverting diffusion, we
give an explicit form for the likelihood function of θ. For this model we also
develop a computationally explicit E–M algorithm for the estimation of θ. In
contrast to the likelihood ratio, the algorithm involves evaluation of a number
of filtered integrals in addition to the basic filter.

1. Introduction. Let (�,F ,P ), {Ft , t ≤ T } be a filtered probability space
and W = {Wt, t ≤ T } a standard Brownian motion. We assume that filtration
{Ft , t ≤ T } is complete and right continuous. We consider process Y with the
decomposition

dYt = ut(θ) dt + dWt,(1)

where u is a measurable, adapted process, and θ is an unknown, vector-valued
parameter. We assume that Y is observed continuously on the interval [0, T ], but
that neither u = {ut, t ≤ T } nor W are observed. The purpose of this work is to
develop methods for the maximum likelihood estimation of θ. Our interest in this
work was motivated by the following model from finance. Suppose that we observe
continuously a single security with the price process {St; t ≤ T } which follows the
equation

dSt = µtSt dt + σSt dWt,(2)
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where σ > 0 is a known constant, but the drift coefficient µ = {µt, t ≤ T } is an
unobserved mean-reverting process with the dynamics

dµt = α(υ − µt) dt + β dW 1
t .(3)

Here α > 0, β > 0 and υ are unknown parameters, and W 1 is a standard Brownian
motion independent of W. The initial value of the security S0 is an observable
constant whereas the initial value of the drift, µ0, is an unknown constant. The
model in (2) and (3) has been recently found to be very flexible in modeling of
security prices. Its versions have been used extensively in the area of dynamic
asset management [see, e.g., Bielecki and Pliska (1999), Lakner (1998), Kim and
Omberg (1996) and Haugh and Lo (2001)]. We now transform the model defined
by (2) and (3) to the form in (1) by introducing the following changes of variables.
The reason for the transformation is that we want the law of {Yt, t ≤ T } to be
equivalent to that of a Brownian motion. Let

Xt = 1

β
µt − 1

β
µ0,

Yt = 1

σ
log

(
St

S0

)
+ σ

2
t.

Then the hidden process is

dXt = α(δ − Xt) dt + dW 1
t ,(4)

where δ = υ/β, and the observed process is

dYt = (λXt + ν) dt + dWt,(5)

where λ = β/σ and ν = µ0/σ. Let θ = (α, δ, λ, ν). We note that X0 = 0 and
Y0 = 0, and that (5) is in the form (1) with ut(θ) = λXt + ν.

We summarize our results. Our main result is a new formula for the likelihood
ratio of the law of the process Y, specified in (2), with respect to the Brownian
measure. Naturally, the likelihood ratio is a function of θ . This result generalizes a
result in Kailath and Zakai (1971) that gives a formula for the likelihood ratio
in the case when u is adapted to F Y = {F Y

t , t ≤ T }, the filtration generated
by the observed process Y. Here we extend this result to the case when u is
not adapted to F Y . We note that in our financial model example (5) u is not
adapted to F Y . We establish the new formula under a stronger (Proposition 1)
and a weaker (Theorem 2) set of sufficient conditions. These conditions allow u

to be a functional of Y, and of a random element X which is independent of a
Brownian motion W. For example, X could be a diffusion or a Markov chain.
The likelihood ratio involves only one basic filter, that is, the expectation of u

conditional on the observed data. The new formula makes it possible to directly
maximize the likelihood function with respect to the parameters. It may also be
useful in developing the likelihood ratio tests of various hypotheses about the
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parameters of hidden Markov processes. For the financial model in (4) and (5)
we give an explicit form of the likelihood function.

We also consider the Expectation–Maximization (E–M) algorithm approach
to the maximization of the loglikelihood function for the model in (4) and (5).
Dembo and Zeitouni (1986) extended the E–M algorithm to the parameter
estimation of the hidden continuous time random processes and in particular to
the parameter estimation of hidden diffusions. The financial model in (4) and (5)
generalizes an example in Dembo and Zeitouni (1986). For this model we develop
a computationally explicit E–M algorithm for the maximum likelihood estimation
of θ. The expectation step of this algorithm requires evaluation of filtered integrals,
that is, evaluation of the expectations of stochastic integrals conditional on
observed data. As remarked by Elliott, Aggoun and Moore [(1997), page 203],
Dembo and Zeitouni (1986) express the filtered integrals in the form of nonadapted
stochastic integrals which are not well defined. In our development we express a
required filtered integral in terms of adapted stochastic integrals (Proposition 4). In
contrast to the likelihood function, the E–M algorithm involves a number of filters
in addition to the basic filter.

The asymptotic properties of the maximum likelihood estimator of θ when u

is adapted to F Y have been studied by Feygin (1976) and Kutoyants (1984). The
asymptotic inference for θ when u is not adapted to F Y has been considered by
Kutoyants (1984) and Kallianpur and Selukar (1991) in a special case of our model
obtained by setting δ = ν = 0. (This special model is known as the Kalman filter.)
The extension of these results to a more general linear filtering model, in particular,
to our model in which hidden process has a mean-reverting drift, is an interesting
topic for the future investigation. Whereas Kutoyants (1984) and Kallianpur and
Selukar (1991) were concerned with the asymptotic properties of the estimators
in a similar model to ours, the objective of this paper is to derive an explicit form
of the likelihood function and a computationally explicit E–M algorithm for the
maximum likelihood estimation of the model parameters.

This paper is organized as follows. The new formula for the likelihood ratio is
established in Section 2. Section 3 presents the extended E–M algorithm and some
of its properties. In Sections 4 and 5 we apply the E–M algorithm to the estimation
of θ in model in (4) and (5). The Appendix contains proofs of two propositions.

2. The likelihood ratio. In this section we generalize a result of Kailath
and Zakai (1971), which also can be found in Kallianpur [(1980), Theorems
7.3.1 and 7.3.2]. We consider the process in (1), but to simplify notation, we
suppress the dependence of u on θ, so that

dYt = ut dt + dWt.(6)

Our standing assumption is ∫ T

0
u2

t dt < ∞.(7)
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Let Py be the measure induced by Y on B(C[0, T ]) and Pw be the Brownian
measure on the same class of Borel sets. We know from Kailath and Zakai (1971)
that (7) implies Py � Pw . The same authors give a formula for the likelihood

ratio dPy

dPw
for the case when u is adapted to F Y . Here we are going to extend this

result to the case when u is not adapted to F Y .
Let {υt, t ≤ T } be the F Y -optional projection of u, thus

E
[
ut |F Y

t

] = υt a.s.(8)

whenever

E|ut | < ∞.

The following proposition is closely related to the result stated already in Lakner
(1998). For the sake of the exposition we restate it here in the form most suitable
for our purposes and include its proof in the Appendix.

PROPOSITION 1. Additionally to assumption (7), we assume that

E|ut | < ∞ for all t ∈ [0, T ],(9)

∫ T

0
v2
s ds < ∞ a.s.(10)

and

E

[
exp

{
−

∫ T

0
us dWs − 1

2

∫ T

0
u2

s ds

}]
= 1.(11)

Then Py is equivalent to Pw and

dPy

dPw

= exp
{∫ T

0
vs dYs − 1

2

∫ T

0
v2
s ds

}
.(12)

REMARK. The formula on the right-hand side is an F Y
T -measurable random

variable, thus it is also a path-functional of {Yt , t ≤ T }. Thus this expression
represents a random variable and a functional on C[0, T ] simultaneously, and
in (12) it appears in its capacity as a functional on the space of continuous
functions.

In the rest of this section we are going to strengthen Proposition 1 by eliminating
condition (11). This will be a generalization again of a result by Kailath and Zakai
(1971), where u is assumed to be F Y -adapted. Our objective here is to have a
result which applies to a situation when u depends on Y and possibly on another
process which is independent of W . This other process may be a Brownian motion,
or possibly a Markov chain. In order to achieve this generality we assume that X is
a complete separable metric space and X :� �→ X is an F �→ B(X)-measurable
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random element, independent of the Brownian motion W . We denote by PX the
measure induced by X on B(X). We assume that

us = 
(Y s
0 , s,X), s ∈ [0, T ],(13)

where Y s
0 represents the path of Y up to time s. Before spelling out the exact

conditions on 
 we note that X may become a Brownian motion if X = C[0, T ],
or a Markov chain if X = D[0, T ] (the space of right-continuous functions with
left limits) with the Skorohod topology. Other examples are also available.

The conditions for 
 are the following. First, we give a notation that for every
f ∈ C([0, T ]) and s ∈ [0, T ] we denote by f s ∈ C[0, s] the restriction of f

to [0, s]. We assume the following:
For every s ∈ [0, T ] fixed, 
(·, s, ·) is a mapping from C[0, s] × X to � such

that:

(i) The C[0, T ]× [0, T ]× X �→ � mapping given by (f, s, x) �→ 
(f s, s, x)

is measurable with respect to the appropriate Borel-classes.
(ii) For every s ∈ [0, T ] and f ∈ C[0, s] the random variable 
(f, s,X) is

Fs-measurable.
(iii) The following “functional Lipschitz” condition [Protter (1990)] holds: for

every f,g ∈ C([0, T ]) and PX-almost every x ∈ X there exists an increasing
(finite) process Kt(x) such that∣∣
(f t, t, x) − 
(gt, t, x)

∣∣ ≤ Kt(x) sup
u≤t

|f (u) − g(u)|

for all t ∈ [0, T ].
Our basic setup now is Y with a decomposition (6), u of the form (13), where

X is a random element independent of W and 
 a functional satisfying (i)–(iii).

THEOREM 2. Suppose that (7) holds, that is, in our case∫ T

0

2(Y s

0 , s,X)ds < ∞(14)

and also ∫ T

0

2(Ws

0 , s,X)ds < ∞.(15)

Then

E

[
exp

{
−

∫ T

0
us dWs − 1

2

∫ T

0
u2

s ds

}]
= 1.(16)

REMARK. It is interesting to observe that if 
 does not depend on Y , that is,
u is independent of W then (16) follows from (7) only.
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REMARK. Conditions (14) and (15) are obviously satisfied if the mapping

s �→ 
(f s, s, x)

is continuous for every (f, x) ∈ C[0, T ] × X.

PROOF OF THEOREM 2. The main idea of the proof is to derive our
theorem from the results of Kailath and Zakai by conditioning on X = x. Let
Q(x; ·), x ∈ X, be a regular conditional probability measure on F given X. The
existence of such regular version is well known in this situation. It is shown in
Proposition A.1 in the Appendix that the independence of the Brownian motion W

and X implies that {(Wt,F
W
t ), t ≤ T } remains a Brownian motion under Q(x; ·)

for PX-almost every x ∈ X. We also show in the Appendix that if A is a zero
probability event under P then for PX-almost every x ∈ X we have Q(x;A) = 0.

[The “PX-almost every” is important here; obviously Q(x; ·) is not absolutely
continuous with respect to P .] Accordingly, for PX-almost every x ∈ X∫ T

0

2(Y s

0 , s, x) ds < ∞, Q(x; ·)-a.s.

and ∫ T

0

2(Ws

0 , s, x) ds < ∞, Q(x; ·)-a.s.

Since X is assumed to be a complete measurable metric space, we have

Q
(
x; {ω ∈ � :X(ω) = x}) = 1

for PX-almost every x ∈ X [Karatzas and Shreve (1988), Theorem 5.3.19]. What
follows is that under Q(x; ·) our equations (6) and (13) become

dYt = 
(Y t
0, t, x) dt + dWt.

It follows from Theorem V.3.7 in Protter (1990) and our condition (iii) that the
above equation has a unique (strong) solution. Thus the process Y must be adapted
to the Q(x; ·)—augmentation of F W. However, now we are back in the situation
studied by Kailath and Zakai (1971). For every x ∈ X let PY (x; ·) be the measure
induced by Y on B(C[0, T ]) under the conditional probability measure Q(x; ·).
Kailath and Zakai, Theorems 2 and 3 imply that for PX-almost every x ∈ X we
have PY (x; ·) ∼ Pw and

dPw

dPY (x; ·) = exp
{
−

∫ T

0

(Y t

0, t, x) dYt + 1

2

∫ T

0

2(Y t

0, t, x) dt

}
.

This implies that the integral of the right-hand side with respect to the measure
PY (x; ·) is 1, which can be expressed as

E

[
exp

{
−

∫ T

0
ut dYt + 1

2

∫ T

0
u2 dt

}∣∣∣X = x

]
= 1
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for PX-almost every x ∈ X. Formula (16) now follows. �

We summarize the results of Proposition 1 and Theorem 2 in the following
corollary.

COROLLARY 3. Let X :� �→ X be a measurable mapping taking values in the
complete separable metric space X. Assume that X is independent of the Brownian
motion W , Y has the form (6) and u is as specified in (13) where 
 satisfies
conditions (i)–(iii). Additionally we assume

E[
(Y s
0 , s,X)] < ∞,∫ T

0
v2
s ds < ∞ a.s.,

∫ T

0

2(Y s

0 , s,X)ds < ∞ a.s.,

∫ T

0

2(Ws

0 , s,X)ds < ∞ a.s.,

where v is the optional projection of u to F Y . Then Py ∼ Pw and

dPy

dPw

= exp
{∫ T

0
vs dYs − 1

2

∫ T

0
v2
s ds

}
.

Furthermore,

E

[
exp

{
−

∫ T

0
us dWs − 1

2

∫ T

0
u2

s ds

}]

= E

[
exp

{
−

∫ T

0
vs dWs − 1

2

∫ T

0
v2
s ds

}]
= 1.

REMARK. For the security price model in (4) and (5) the required optional
projection is of the form υt = λE(Xt |F Y

t ) + ν. We compute E(Xt |F Y
t ) explicitly

in Section 5.

3. E–M algorithm. We briefly describe the extended E–M algorithm pre-
sented in Dembo and Zeitouni (1986). In the next section we apply this algorithm
to the estimation of θ in the model defined in (4) and (5). Let F X

T be the filtration
generated by {Xt,0 ≤ t ≤ T }, F Y

T the filtration generated by {Yt,0 ≤ t ≤ T },
and F X,Y

T the filtration generated by {Xt,0 ≤ t ≤ T } and {Yt,0 ≤ t ≤ T }.
We identify � as C[0, T ] × C[0, T ] and F as the Borel sets of �. Let X be
the first coordinate mapping process and Y be the second coordinate mapping
process, that is, for (ω1,ω2) ∈ C[0, T ]×C[0, T ] we have Xt(ω1,ω2) = ω1(t) and
Yt (ω1,ω2) = ω2(t). Let Pθ be a family of probability measures such that Pθ ∼ Pφ
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for all θ,φ ∈ , where  is a parameter space. Also let Eθ denote the expectation
under the measure Pθ . We denote by P Y

θ the restriction of Pθ to F Y
T . Then obvi-

ously

dP Y
θ

dP Y
φ

= Eφ

(
dPθ

dPφ

∣∣∣F Y
T

)
.(17)

The maximum likelihood estimator θ̂ of θ is defined as

θ̂ = arg max
θ

(
dP Y

θ

dP Y
φ

)
for some constant φ ∈ .

It should be clear that this definition does not depend on the choice of φ. The
maximization of dP Y

θ /dP Y
φ is equivalent to the maximization of the log-likelihood

function

Lφ(θ) � log
dP Y

θ

dP Y
φ

.(18)

Now by (17) and (18),

Lφ(θ ′) − Lφ(θ) = log
dP Y

θ ′

dP Y
θ

= logEθ

(
dPθ ′

dPθ

∣∣∣F Y
T

)
,

and from Jensen’s inequality,

Lφ(θ ′) − Lφ(θ) ≥ Eθ

(
log

dPθ ′

dPθ

∣∣∣F Y
T

)
,(19)

with equality if and only if θ ′ = θ. The E–M algorithm is based on (19) and
proceeds as follows. In the first step we select an initial value θ0 for θ . In the
(n + 1)st iteration, n ≥ 0, the E–M algorithm is applied to produce θn+1. Each
iteration consists of two steps: the expectation, or E, step and the maximization,
or M, step. In the E-step of the (n + 1)st iteration the following quantity is
computed

Q(θ, θn) � Eθn

(
log

dPθ

dPθn

∣∣∣F Y
T

)
.

In the M-step Q(θ, θn) is maximized with respect to θ to obtain θn+1. Iterations
are repeated until the sequence {θn} converges. It is clear from (19) that

Lφ(θn+1) ≥ Lφ(θn),(20)

with equality if and only if θn+1 = θn. Thus at each iteration of the E–M algorithm
the likelihood function increases. In the M-step the maximizer of θ is obtained as
the solution of

∂

∂θ
Q(θ, θn) = ∂

∂θ
Eθn

(
log

dPθ

dPθn

∣∣∣F Y
T

)
= 0,(21)
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or, if we can interchange the differentiation and expectation operations, the
maximizer of θ is the solution of

Eθn

(
∂

∂θ
log

dPθ

dPθn

∣∣∣F Y
T

)
= 0.

A corollary of (20) is that the maximum likelihood estimator is a fixed point
of the E–M algorithm. It is stated in Dembo and Zeitouni (1986) that under
some additional technical conditions all limit points of the sequence (θn)n≥0 are
stationary points of the log-likelihood function. In particular, if the log-likelihood
function is concave in the parameter then it follows that (θn)n≥0 converges to
the unique maximum likelihood estimator. For a more detailed discussion of the
convergence properties of the E–M algorithm and additional references we refer
the reader to Dembo and Zeitouni (1986).

4. Estimation of the drift of the security price process with the E–M
algorithm. We develop the E–M algorithm for the estimation of θ = (α, δ, λ, ν)

in the security price model in (4) and (5). By Girsanov’s theorem, if also X process
is completely observed, the log-likelihood function of θ is given by

dPθ

dPW

= exp
{∫ T

0
α(δ − Xs)dXs − 1

2

∫ T

0
α2(δ − Xs)

2 ds

}

× exp
{∫ T

0
(λXs + ν) dYs − 1

2

∫ T

0
(λXs + ν)2 ds

}
,

where W = (W 1,W) is a two-dimensional Brownian motion and PW is the
associated Brownian measure on ß(C[0, T ] × C[0, T ]). Hence

log
dPθ

dPθn

=
{∫ T

0
α(δ − Xs)dXs − 1

2

∫ T

0
α2(δ − Xs)

2 ds

}

+
{∫ T

0
(λXs + ν) dYs − 1

2

∫ T

0
(λXs + ν)2 ds

}

+ f (θn),

where f (θn) is a term which does not depend on θ. Since, for our problem, we can
interchange the operations of differentiation and integration, the equations in (21)
take the form

Eθn

[
∂

∂α
log

dPθ

dPθn

∣∣∣F Y
T

]
(22)

= Eθn

[∫ T

0
(δ − Xs)dXs − α

∫ T

0
(δ − Xs)

2 ds
∣∣∣F Y

T

]
= 0,
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Eθn

[
∂

∂δ
log

dPθ

dPθn

∣∣∣F Y
T

]
(23)

= Eθn

[
αXT −

∫ T

0
α2(δ − Xs)ds

∣∣∣F Y
T

]
= 0,

Eθn

[
∂

∂λ
log

dPθ

dPθn

∣∣∣F Y
T

]
(24)

= Eθn

[∫ T

0
Xs dYs −

∫ T

0
(λXs + ν)Xs ds

∣∣∣F Y
T

]
= 0,

Eθn

[
∂

∂υ
log

dPθ

dPθn

∣∣∣F Y
T

]
(25)

= Eθn

[
YT −

∫ T

0
(λXs + ν) ds

∣∣∣F Y
T

]
= 0.

Let

m(t, T , θn) = Eθn(Xt |F Y
T ),

n(t, T , θn) = Eθn(X
2
t |F Y

T ).

Then, recalling that
∫ T

0 Xs dXs = 1
2X2

T − T
2 , (22) becomes

δm(T ,T , θn) − 1

2
n(T ,T , θn) + T

2
− αδ2T

+ 2αδ

∫ T

0
m(s,T , θn) ds − α

∫ T

0
n(s, T , θn) ds = 0.

(26)

Equation (23) takes the form

m(T,T , θn) − αδT + α

∫ T

0
m(s,T , θn) ds = 0.(27)

Multiplying (27) by δ and subtracting the result from (26) gives

−1

2
n(T ,T , θn) + T

2
+ αδ

∫ T

0
m(s,T , θn) ds − α

∫ T

0
n(s, T , θn) ds = 0.(28)

From equations (27) and (28) we obtain the following updated values of α and δ:

αn+1 = −1
2T n(T ,T , θn) + T 2/2 + m(T,T , θn)

∫ T
0 m(s,T , θn) ds

T
∫ T

0 n(s, T , θn) ds − [∫ T
0 m(s,T , θn) ds]2

,(29)

δn+1 = m(T,T , θn)

T αn+1
+

∫ T
0 m(s,T , θn) ds

T
.(30)
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Similarly we write (25) as

YT − λ

∫ T

0
m(s,T , θn) ds − νT = 0(31)

and (24) as

Eθn

[∫ T

0
Xs dYs

∣∣∣F Y
T

]
− λ

∫ T

0
n(s, T , θn) ds − ν

∫ T

0
m(s,T , θn) ds = 0.(32)

We compute the first term of (32) in the following proposition. Let

ms(θn) = Eθn(Xs |F Y
s ),

and to simplify notation we will write

m(t, T ) = m(t, T , θ),

n(t, T ) = n(t, T , θ),

ms = ms(θ).

PROPOSITION 4.

Eθ

[∫ T

0
Xs dYs

∣∣∣F Y
T

]
=

∫ T

0
ms dYs −

∫ T

0
ms(ν + λms) ds

+ ν

∫ T

0
m(s,T ) ds + λ

∫ T

0
m(s,T )ms ds

(33)

PROOF. Let

W̃t = Yt − νt − λ

∫ T

0
ms ds.(34)

It is known that the process (W̃t ,F
Y
t ),0 ≤ t ≤ T , is a Brownian motion [see, e.g.,

Lemma 11.3 in Lipster and Shiryayev (1978)]. By Theorem 12.1 of Lipster and
Shiryayev (1978), mt satisfies the following equation:

dmt = α(δ − mt) dt − λγt (ν + λmt) dt + λγt dYt , m0 = 0,(35)

where γt = V (Xt |F Y
t ) is a deterministic function satisfying

dγt

dt
= −λ2γ 2

t − 2αγt + 1, γ0 = 0.(36)

From (34)

dW̃t = dYt − (ν + λmt) dt,(37)

and thus

dmt = α(δ − mt) dt + λγt dW̃t .(38)
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We see from (38) that mt is F W̃
t -adapted. Then Yt is F W̃

t -adapted by (34). Hence,

Eθ

[∫ T

0
Xs dYs

∣∣∣F Y
T

]

= Eθ

[∫ T

0
Xs dYs

∣∣∣F W̃
T

]

= Eθ

[∫ T

0
Xs dW̃s +

∫ T

0
Xs(ν + λms) ds

∣∣∣F W̃
T

]

= Eθ

[∫ T

0
Xs dW̃s

∣∣∣F W̃
T

]
+ ν

∫ T

0
m(s,T ) ds + λ

∫ T

0
m(s,T )ms ds.

(39)

Now, since the assumptions of Theorem 5.14 in Lipster and Shiryayev [(1977),
page 185] hold in our case, it follows by this theorem that

Eθ

[∫ T

0
Xs dW̃s

∣∣∣F W̃
T

]
=

∫ T

0
ms dW̃s.(40)

Thus by (40), (39) and (37),

Eθ

[∫ T

0
Xs dYs

∣∣∣F Y
T

]

=
∫ T

0
ms dW̃s + ν

∫ T

0
m(s,T ) ds + λ

∫ T

0
m(s,T )ms ds

=
∫ T

0
ms dYs −

∫ T

0
ms(ν + λms) ds + ν

∫ T

0
m(s,T ) ds

+ λ

∫ T

0
m(s,T )ms ds. �

By substituting (33) into (32) and using (31), we obtain the updated values for
λ and ν:

λn+1 = T

∫ T

0
ms(θn) dYs − YT

∫ T

0
ms(θn) ds

×
(
T

∫ T

0

[
m2

s (θn) + n(s, T , θn) − m(s,T , θn)ms(θn)
]
ds

−
∫ T

0
m(s,T , θn) ds

∫ T

0
ms(θn) ds

)−1

(41)

and

νn+1 = YT − λn+1
∫ T

0 m(s,T , θn) ds

T
.(42)

To implement the E–M algorithm using equations (29), (30), (41) and (42) we need
the expressions for ms,m(s, T ) and n(s, T ). These expressions are obtained in the
next section.
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5. Expressions for filters. We obtain mt as the solution of (35). Letting


t = exp
(
−αt − λ2

∫ t

0
γs ds

)
,(43)

the solution is

mt = 
t

[
λ

∫ t

0
γs


−1
s (dYs − ν ds) + αδ

∫ t

0

−1

s ds

]
.(44)

The function γt is obtained as the solution of (36) and is given by

γt = b

λ2

exp(2at) − d

exp(2at) + d
− α

λ2
,(45)

where b = √
α2 + λ2, d = (b − a)/(b + a).

For evaluation of mt it is useful to note the following expressions. Substituting
(45) into (43), after some algebra, gives 
t = 2b/[(b + α) exp(bt) + (b − α) ×
exp(−bt)], and also γs


−1
s = sinh(bs)/b.

Application of Lemma 12.3 and Theorem 12.3 in Lipster and Shiryayev [(1978),
pages 36 and 37] to our model shows that

m(s, t) = (ϕt
s)

−1mt − αδ

∫ t

s
(ϕu

s )−1 du

− λ

∫ t

s
(ϕu

s )−1γ (u, s)(dYu − ν du), s ≤ t

and

γ (s, t) =
[
1 + λ2γs

∫ t

s
(ϕu

s )2 du

]−1

γs, s ≤ t,(46)

respectively, where ϕt
s, t ≥ s, is the solution of

dϕt
s

dt
= (−α − λ2γ (t, s)

)
ϕt

s, ϕ
s
s = 1,(47)

and for t > s, γ (t, s) = V (Xt |F Y
t ,Xs) satisfies

dγ (t, s)

dt
= −2αγ (t, s) + 1 − λ2γ (t, s)2, γ (s, s) = 0.(48)

It can be easily verified that the solution to (48) is

γ (t, s) = b

λ2

exp[2b(t − s)] − d

exp[2b(t − s)] + d
− α

λ2
, t ≥ s.(49)

Using (49), the solution to (47) is

ϕt
s = exp

[
−b

∫ t

s

exp[2b(u − s)] − d

exp[2b(u − s)] + d
du

]
= (1 + d)

exp[b(t − s)]
exp[2b(t − s)] + d

.
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For evaluation of m(s, t) it is useful to note that (ϕt
s)

−1γ (t, s) = sinh(b(t − s))/b,
and to evaluate γ (s, t) we compute the integral∫ t

s
(ϕu

s )2 du = exp[2b(t − s)] − 1

(b + α) exp[2b(t − s)] + b − α
.

Clearly n(s, t) = γ (s, t) + m(s, t)2,0 ≤ s ≤ t.

APPENDIX

PROOF OF PROPOSITION 1. We define the process

Zt = exp
{
−

∫ t

0
us dWs − 1

2

∫ t

0
u2

s ds

}
, t ∈ [0, T ],

and the probability measure P0 by

dP0

dP
= ZT ,

which is a bona fide probability measure by condition (11). We are going to
repeatedly use the following form of “Baye’s theorem”: for every Ft -measurable
random variable V we have

E0[V |F Y
t ] = 1

E[Zt |F Y
t ]E[ZtV |F Y

t ], t ∈ [0, T ],(50)

where E0 is the expectation operator corresponding to the probability measure P0.

According to Girsanov’s theorem Y is a Brownian motion under P0. Also, one can
see easily that

dPy

dPw

= E0

[
1

ZT

∣∣∣F Y
T

]
= (

E[ZT |F Y
T ])−1

.

The equivalence of Py and Pw already follows, since ZT > 0 (under P and P0)
thus also

E0

[
1

ZT

∣∣∣F Y
T

]
> 0,

hence the same expression, as a path-functional of {Yt, t ≤ T } is Py -almost
everywhere positive. We still need to show (12). We start with the identity

1

Zt

= 1 +
∫ t

0

1

Zs

us dYs.

Theorem 5.14 in Lipster and Shiryayev (1977) implies that

E0

[
1

Zt

∣∣∣F Y
t

]
= 1 +

∫ t

0
E0

[
1

Zs

us

∣∣∣F Y
s

]
dYs,(51)
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as long as the following two conditions hold:

E0

[
1

Zs

|us |
]

< ∞,(52)

∫ T

0

(
E0

[
1

Zs

us

∣∣∣F Y
s

])2

ds < ∞ a.s.(53)

However, (52) follows from condition (9). In order to show (53) we use the
rule (50) and compute∫ T

0

(
E0

[
1

Zs

us

∣∣∣F Y
s

])2

ds =
∫ T

0

(
E[Zs |F Y

s ])−2
v2
s ds

=
∫ T

0

(
E0

[
1

Zs

∣∣∣F Y
s

])2

v2
s ds.

Now we observe that by (51), (s,ω) �→ E0[ 1
Zs

|F Y
s ] is a P0-local martingale (and

also a martingale but this is not important at this point), adapted to the filtration
generated by the P0-Brownian motion Y , thus it must be continuous [Karatzas
and Shreve (1988), Problem 3.4.16]. This fact and condition (10) imply (53). Now
using (51) and (50), we get

E0

[
1

Zt

∣∣∣F Y
t

]
= 1 +

∫ t

0

1

E[Zs |F Y
s ]vs dYs = 1 +

∫ t

0
E0

[
1

Zs

∣∣∣F Y
s

]
vs dYs,

which implies (12). �

PROPOSITION A.1. Suppose that {(Wt,Ft ), t ≤ T } is a Brownian motion,
X is a complete separable metric space, X :� → X is a measurable mapping,
and {Q(x; ·), x ∈ X} is a family of regular conditional probability measures for F
given X. Let PX be the measure induced by X on B(X). Then:

(a) for every A ∈ F such that P (A) = 0 we have Q(x;A) = 0 for PX-almost
every x ∈ X,

(b) for PX-almost every x ∈ X, the process {(Wt,F
W
t ), t ≤ T } is a Brownian

motion under the probability measure Q(x; ·).
PROOF. Statement (a) is an obvious consequence of the definition of regular

conditional probability measure. Indeed, for every A ∈ F we have

Q(x;A) = P (A|X = x), PX-a.e., x ∈ X

and thus

Q(X;A) = P (A|X), P -a.s.

This implies that if A is a P -zero event then E[Q(X;A)] = P (A) = 0 and (a) now
follows. Next we are going to prove (b). It follows from (a) that the process W
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has Q(x; ·)-almost surely continuous paths for PX-almost every x ∈ X. We need
to show that the finite dimensional distributions of W under Q(x; ·) coincide with
those under the probability measure P. Let us fix a positive integer n and time
points 0 ≤ t1 ≤ · · · ≤ tn ≤ T . We denote by Q the set of rational numbers. For
every q = (q1, . . . , qn) ∈ Qn there exists a set Bq ∈ B(X), PX(Bq) = 1 such that
for all x ∈ Bq ,

Q
(
x;W(t1) ≤ q1, . . . ,W(tn) ≤ qn

)
= P

(
W(t1) ≤ q1, . . . ,W(tn) ≤ qn|X = x

)
= P

(
W(t1) ≤ q1, . . . ,W(tn) ≤ qn

)
,

where the last step follows from independence of X and W under P. Now we
define

B = ⋂
q∈Qn

Bq,

and note that PX(B) = 1 since Qn is countable. It follows that the equation above
holds for every x ∈ B which completes the proof. �

Acknowledgments. Halina Frydman completed part of this work while
visiting the Department of Biostatistics at the University of Copenhagen. She
thanks the department for the hospitality. We also thank the anonymous referee
for the comments which substantially improved the paper.

REFERENCES

BIELECKI, T. R. and PLISKA, S. R. (1999). Risk sensitive dynamic asset management. J. Appl. Math.
Optim. 39 337–360.

DEMBO, A. and ZEITOUNI, O. (1986). Parameter estimation of partially observed continuous time
stochastic processes. Stochastic Process. Appl. 23 91–113.

ELLIOTT, R. J., AGGOUN, L. P. and MOORE, J. B. (1997). Hidden Markov Models. Springer, Berlin.
FEYGIN, P. D. (1976). Maximum likelihood estimation for continuous-time stochastic processes.

Adv. in Appl. Probab. 8 712–736.
HAUGH, M. B. and LO, A. W. (2001). Asset allocation and derivatives. Quant. Finance 1 45–72.
KAILATH, T. and ZAKAI, M. (1971). Absolute continuity and Radon–Nikodym derivatives for

certain measures relative to Wiener measure. Ann. Math. Statist. 42 130–140.
KALLIANPUR, G. (1980). Stochastic Filtering Theory. Springer, New York.
KALLIANPUR, G. and SELUKAR, R. S. (1991). Parameter estimation in linear filtering. J. Multivari-

ate Anal. 39 284–304.
KARATZAS, I. and SHREVE, S. E. (1988). Brownian Motion and Stochastic Calculus. Springer, New

York.
KIM, T. and OMBERG, E. (1996). Dynamic nonmyopic portfolio behavior. Rev. Financial Studies 9

141–161.
KUTOYANTS, Y. A. (1984). Parameter Estimation for Stochastic Processes. Helderman, Berlin.
LAKNER, P. (1998). Optimal trading strategy for an investor: The case of partial information.

Stochastic Process. Appl. 76 77–97.



1312 H. FRYDMAN AND P. LAKNER

LIPSTER, R. S. and SHIRYAYEV, A. N. (1977). Statistics of Random Processes 1. Springer, New
York.

LIPSTER, R. S. and SHIRYAYEV, A. N. (1978). Statistics of Random Processes 2. Springer, New
York.

PROTTER, P. (1990). Stochastic Integration and Differential Equations. Springer, New York.

DEPARTMENT OF STATISTICS

AND OPERATIONS RESEARCH

STERN SCHOOL OF BUSINESS

NEW YORK UNIVERSITY

44 WEST 4TH STREET

NEW YORK, NEW YORK 10012
E-MAIL: hfrydman@stern.nyu.edu

plakner@stern.nyu.edu


