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CRITICAL PRICE NEAR MATURITY FOR AN AMERICAN
OPTION ON A DIVIDEND-PAYING STOCK

BY DAMIEN LAMBERTON AND STÉPHANE VILLENEUVE

Université de Marne-la-Vallée and Université d’Evry Val d’Essonne

We study the behavior of the critical price of an American put option
near maturity when the underlying stock pays dividends at a continuous rate.
The results also apply to foreign currencies American options.

1. Introduction. In the Black–Scholes model, under the risk-neutral proba-
bility measure, the stock price process satisfies the following stochastic differential
equation:

dSt

St

= (r − δ) dt + σ dBt

where the interest rate r , the volatility σ are positive constants, the dividend
rate δ is a nonnegative constant and (Bt )0≤t≤T is a standard Brownian motion.
We will denote by (Ft )0≤t≤T the natural filtration of (Bt )0≤t≤T . Here we focus
on the Black–Scholes model with continuous-dividend payment. However, this
model can also be viewed as the classical Garman–Kohlhagen model for foreign
currencies, when r stands for the domestic interest rate and δ stands for the foreign
interest rate.

In this setting, the price of an American put option with exercise price K and
date of maturity T can be written as P (t, St ) where the function P (t, x) is defined
for every (t, x) ∈ [0, T ] × R+ by

P (t, x) = sup
τ∈T0,T −t

E
[
e−rτ (

K − xe(r−δ−(σ 2/2))τ+σBτ
)
+

]
,

where T0,T −t is the set of all (Ft )-stopping times with values in [0, T − t]. We refer
the reader to [8, 12, 13] for basics on American options. For t ∈ [0, T ), define the
critical price at time t as

s(t) = sup{x ≥ 0 | P (t, x) = K − x}.
The graph of s(t) is called the exercise boundary or the free boundary in the
terminology of optimal stopping.

It is well known that the function t → s(t) is nondecreasing (indeed strictly
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increasing, as proved in [16]), C∞ over [0, T ) (see [6, 14]) and that limt→T s(t) =
min(rK/δ,K) (see [14, 9]). Analogues of the latter result for American options
on several assets have been obtained in [15].

In the pionneering work of van Moerbeke [14], the behavior of s(t) as
t approaches T was investigated. Although the statements of [14] are given
for call options, they can easily be transferred to American puts (see, e.g.,
Proposition 10.3.4 of [12]). The conclusion seems to lead to a parabolic behavior,
without restrictions on the parameters. However, the results of Barles, Burdeau,
Romano and Sansoen [2] (see also [11]) show that a parabolic behavior cannot
occur in some situations. Indeed, they proved the following estimate for the case
δ = 0:

lim
t→T

K − s(t)

σK
√

(T − t) log( 1
T −t

)
= 1.

The above estimate remains valid whenever 0 ≤ δ < r , as can be proved by the
methods of either [2] (see [1]) or [11] (see [16]).

The purpose of the present paper is to give rigorous results for the cases
r < δ and r = δ. Namely, we will show that the parabolic behavior stated by
van Moerbeke does hold in the case r < δ (see Theorem 2 below). We note that
this result is also stated in [17] but with a heuristic proof which does not clarify
the role of the condition r < δ. It will appear from our proof that the regularity
of the pay-off function near limt→T s(t) is crucial for the parabolic behavior. Our
method relies on a rather general expansion of the value function of an optimal
stopping problem along parabolas (see Theorem 1).

We will also prove (see Theorem 3) that, if r = δ, the critical price satisfies the
following estimate:

lim
t→T

K − s(t)

σK
√

(T − t) log( 1
T −t

)
= √

2.

This result had been conjectured by Aït-Sahlia in [1], where some partial results
were given. Note that when r = δ, the pay-off is not smooth near limt→T s(t) and
therefore, Theorem 1 of Section 2 does not apply and we use another approach,
similar to that of [11]. The paper is organized as follows. In Section 2, we study
the behavior of the value function of an optimal stopping problem along parabolas.
In Section 3, we prove the parabolic behavior of the critical price when r < δ

(cf. Theorem 2). In Section 4, we deal with the case r = δ (cf. Theorem 3).

REMARK 1. After submitting this paper, we were informed by P. Laurence
that Evans, Kuske and Keller had obtained similar results (see [5]). However, their
methods are quite different and their proofs are somewhat heuristic.
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2. The value function of an optimal stopping problem along parabolas.

2.1. An auxiliary optimal stopping problem. We first introduce an auxiliary
optimal stopping problem, the value function of which will appear naturally in the
expansion of the value function of a general stopping problem along parabolas. We
consider the real function φ defined on R by

φ(y) = sup
τ∈T0,1

E

∫ τ

0
(y + Bs) ds.

Recall that (Bt )t≥0 is a standard Brownian motion and that T0,1 is the set of all
stopping times with values in [0,1]. It is easy to check that φ is a continuous,
nondecreasing function on R. We will be interested in the largest zero of φ.

LEMMA 1. There exists y∗ ∈ [−1,0) such that

∀y ≤ y∗, φ(y) = 0 and ∀y > y∗, φ(y) > 0.

PROOF. It follows from [14], Lemma 2 that φ(0) > 0 (see also [15],
Lemma 3.1). Therefore, it suffices to prove that φ(−1) ≤ 0. First, notice that for
all stopping times τ ∈ T0,1,

∫ τ
0 Bs ds = τBτ − ∫ τ

0 s dBs . Therefore,

E

∫ τ

0
Bs ds = EτBτ (since τ is bounded)

≤ E

(
τ 2 + B2

τ

2

)
.

Now, if τ ∈ T0,1, we have τ 2 ≤ τ and, consequently,

E

∫ τ

0
Bs ds ≤ E

(
τ + B2

τ

2

)
= Eτ,

which proves that, for all τ ∈ T0,1,

E

∫ τ

0
(−1 + Bs) ds ≤ 0. �

A more precise characterization of the optimal threshold y∗ can be given as
follows. Define, for θ ≥ 0 and y ∈ R,

u(θ, y) = sup
τ∈T0,θ

E(y + Bτ )
3.

We deduce from Itô’s formula that

u(θ, y) = y3 + 3 sup
τ∈T0,θ

E

∫ τ

0
(y + Bs) ds.
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By the scaling property of Brownian motion, we also have

u(θ, y) = θ3/2u

(
1,

y√
θ

)
.

Hence

u(θ, y) = y3 + 3θ3/2φ

(
y√
θ

)
.

On the other hand, we know from the standard theory of optimal stopping (see [3],
Chapter 3, Section 2, for a detailed presentation) that u satisfies the following
variational inequality:

max
(
−∂u

∂θ
+ 1

2

∂2u

∂x2
,ψ − u

)
= 0,

u(0, ·) = ψ,

where ψ(y) = y3. Therefore, u(θ, y) ≥ y3 and, for y ≤ y∗√θ , u(θ, y) = y3.
Moreover, u satisfies

∂u

∂θ
(θ, y) = 1

2

∂2u

∂x2
(θ, y) for y > y∗√θ

and for t ∈ [0, θ], ∣∣∣∣∂u

∂y
(t, y)

∣∣∣∣ ≤ 3(y2 + θ),

therefore, the process Mt = ∫ t
0

∂u
∂y

(θ − s, y + Bs) dBs is a square integrable
martingale. Applying the generalized Ito formula (see [10], Theorem 1, page 122)
to (u(θ − s, y + Bs))0≤s≤θ , we get, after taking expectations,

E
(
u(0, y + Bθ)

) = u(θ, y) + E

∫ θ

0

(
−∂u

∂θ
+ 1

2

∂2u

∂x2

)
(θ − s, y + Bs) ds.

Thus,

E(y + Bθ)
3 = u(θ, y) + 3E

∫ θ

0
(y + Bs)1{y+Bs≤y∗√θ−s} ds.

We take y = y∗√θ in the previous equality to obtain

(y∗√θ)3 + 3y∗θ3/2 = (y∗√θ)3 + 3E

∫ θ

0
(y∗√θ + Bs)1{y∗√θ+Bs≤y∗√θ−s} ds.

We set v = s
θ

in the last integral thus

E

∫ θ

0
(y∗√θ + Bs)1{y∗√θ+Bs≤y∗√θ−s} ds

= θ3/2
E

∫ 1

0
(y∗ + Bv)1{y∗+Bv≤y∗√1−v} dv.
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After some rearrangement, we find that −y∗ solves the equation G(x) = 0 where

G(x) = E

∫ 1

0
(x − √

vB1)1{B1≥x(1−√
1−v)/

√
v} dv.

It is proved in the Appendix that G admits a unique root in the interval (0,1/
√

2]
and this can be found numerically to be 0.638748. We note that this numerical
value agrees with the one given in [17] for a related problem.

2.2. Expansion of the value function. The main result of this section is the
following.

THEOREM 1. Let (t0, x0) ∈ R
+ × R, h > 0 and f : [t0, t0 + h] × R → R

satisfy:

(1) f is continuous on [t0, t0 + h] × R and

∀ ε > 0, ∃Mε > 0, ∀ (t, x) ∈ [t0, t0 + h] × R, |f (t, x)| ≤ Mεe
εx2

.

(2) f admits continuous derivatives ∂f
∂t

,
∂f
∂x

and ∂2f

∂x2 near (t0, x0) and the

function Df = ∂f
∂t

+ 1
2

∂2f

∂x2 is differentiable at (t0, x0).

Assume that Df (t0, x0) = 0 and ∂Df
∂x

(t0, x0) > 0 and define, for (θ, x) ∈
[0, h] × R,

f̂ (θ, x) = sup
τ∈T0,θ

Ef (t0 + τ, x + Bτ).

For any fixed y ∈ R, we have

f̂ (θ, x0 + y
√

θ) = f (t0, x0 + y
√

θ) +
(

∂Df

∂x
(t0, x0)φ(y)

)
θ3/2 + o(θ3/2),

where φ is defined by Lemma 1.

Using the fact that, if y > y∗, φ(y) > 0, we immediately deduce the following
corollary from Theorem 1.

COROLLARY 1. Under the assumptions and with the notation of Theorem 1,
if y > y∗, there exists θy > 0 such that:

∀ θ ∈ (0, θy], f̂ (θ, x0 + y
√

θ) > f (t0, x0 + y
√

θ).

PROOF OF THEOREM 1. First, we have (scaling property of Brownian
motion)

f̂ (θ, x) = sup
τ∈T0,1

Ef (t0 + θτ, x + √
θBτ ).
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We can assume, without loss of generality, f to be a C1,2 function on [t0, t0 +h]×
[x0 − h,x0 + h].

Fix x in (x0 − (h/2), x0 + (h/2)) and 0 < θ < h. Define the function F

on [0,1] × R by

F(s, z) = f (t0 + θs, x + √
θz).

F is a C1,2 function on [0,1] × [− h

2
√

θ
, h

2
√

θ
] and

(
∂F

∂s
+ 1

2

∂2F

∂z2

)
(s, z) = θDf (t0 + θs, x + √

θz).

Introduce the following stopping time:

ρθ = inf
{
s ≥ 0

∣∣∣ |Bs | ≥ h

2
√

θ

}
.

Notice that P(ρθ < 1) = o(θn) for every n ∈ N (see [4], page 172). We then have,
for all τ ∈ T0,1,

Ef (t0 + θτ, x + √
θBτ )

= EF(τ,Bτ ) = EF
(
τ ∧ ρθ ,Bτ∧ρθ

) + E
(
F(τ,Bτ ) − F

(
ρθ ,Bρθ

))
1{ρθ<τ }.

Now, assumption (1) of Theorem 1 yields |F(s, z)| ≤ Mεe
2ε(x2+θz2), therefore,

E
∣∣F(τ,Bτ ) − F

(
ρθ ,Bρθ

)∣∣1{ρθ<τ }

≤ 2Mεe
2εx2

E exp
(

2εθ sup
0≤s≤1

B2
s

)
1{ρθ<τ }

≤ 2Mεe
2εx2

√√√√E exp
(

4εh sup
0≤s≤1

B2
s

)√
P(ρθ < 1).

Therefore, E|F(τ,Bτ ) − F(ρθ ,Bρθ
)|1{ρθ<τ } = o(θn) ∀n ∈ N.

Moreover, Ito’s formula yields

EF
(
τ ∧ ρθ,Bτ∧ρθ

) = F(0,0) + E

∫ τ∧ρθ

0
θDf (t0 + θs, x + √

θBs) ds

= f (t0, x) + θE

∫ τ∧ρθ

0
Df (t0 + θs, x + √

θBs) ds.

Choose x = x0 + y
√

θ with θ small enough to ensure that x0 − h
2 < x0 + y

√
θ <

x0 + h
2 . We obtain, for τ ∈ T0,1,

EF
(
τ ∧ ρθ ,Bτ∧ρθ

)

= f (t0, x0 + y
√

θ) + θE

∫ τ∧ρθ

0
Df

(
t0 + θs, x0 + √

θ(y + Bs)
)
ds.
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Since Df is differentiable at (t0, x0) and satisfies Df (t0, x0) = 0, we have

Df
(
t0 + θs, x0 + √

θ(y + Bs)
) = ∂Df

∂t
(t0, x0)θs + ∂Df

∂x
(t0, x0)

√
θ(y + Bs)

+ ∥∥(
θs,

√
θ(y + Bs)

)∥∥R(
θs,

√
θ(y + Bs)

)
where R is a bounded function satisfying lim(u,v)→(0,0) R(u, v) = 0. Thus,

EF
(
τ ∧ ρθ ,Bτ∧ρθ

)

= f (t0, x0 + y
√

θ) + θ3/2
E

∫ τ

0
(y + Bs) ds

∂Df

∂x
(t0, x0) + R1(θ, τ ),

with

|R1(θ, τ )| ≤ I1(θ, τ ) + θ2

2

∣∣∣∣∂Df

∂t
(t0, x0)

∣∣∣∣ + I2(θ, τ ),

where we have sets

I1(θ, τ ) = θ3/2
E

∫ τ

τ∧ρθ

|y + Bs |ds

∣∣∣∣∂Df

∂x
(t0, x0)

∣∣∣∣
and

I2(θ, τ ) = θE

∫ τ∧ρθ

0

∥∥(
θs,

√
θ(y + Bs)

)∥∥∣∣R(
θs,

√
θ(y + Bs)

)∣∣ds.

We shall prove that supτ∈T0,1
|R1(θ, τ )| = o(θ3/2). For I1, we have

E

∫ τ

τ∧ρθ

|y + Bs |ds ≤ E

∫ 1

0
|y + Bs |ds1{ρθ<1} = o(θn) for all n ∈ N.

For I2, we have

I2(θ, τ ) ≤ θ3/2
E

∫ 1∧ρθ

0
(1 + |y| + |Bs |)

∣∣R(
θs,

√
θ(y + Bs)

)∣∣ds.

The integral on the right-hand side goes to zero as θ goes to 0 by the dominated
convergence theorem.

Finally, we conclude that, for τ ∈ T0,1, we have

Ef
(
t0 + θτ, x0 + √

θ(y + Bτ)
)

= f (t0, x0 + y
√

θ) + θ3/2 ∂Df

∂x
(t0, x0)E

∫ τ

0
(y + Bs) ds + R̄(θ, τ ),

(1)

where supτ∈T0,1
|R̄(θ, τ )| = o(θ3/2) and the theorem follows easily. �

REMARK 2. If ∂Df
∂x

(t0, x0) ≤ 0, we deduce from (1) that

f̂ (θ, x0 + y
√

θ) = f (t0, x0 + y
√

θ) +
∣∣∣∣∂Df

∂x
(t0, x0)

∣∣∣∣φ(−y)θ3/2 + o(θ3/2).
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3. The case r < δ. Throughout this section, we assume r < δ. We will prove
the following theorem:

THEOREM 2. If r < δ, as t approaches T , the critical stock-price satisfies the
following:

lim
t→T

s(T ) − s(t)

σ s(T )
√

T − t
= −y∗,

where s(T ) = rK
δ

and y∗ is given by Lemma 1.

PROOF. We will apply Theorem 1 to the following situation. Set t0 = 0,
x0 = 1

σ
log rK

δ
and

f (t, x) = e−rt
(
K − e(r−δ−(σ 2/2))t+σx

)
+.

Notice that f (0, x) = (K − eσx)+.
Observe that f satisfies conditions (1) and (2) of Theorem 1. Near (0, x0), we

have

Df (t, x) = −rKe−rt + δe−(δ+(σ 2/2))t+σx

and thus Df (0, x0) = 0 and ∂Df
∂x

(t0, x0) = rKσ > 0.
With the notation of Section 1, we have, for 0 ≤ θ ≤ T , P (T − θ, eσx) =

f̂ (θ, x). Theorem 1 yields

P
(
T − θ, eσ(x0+y

√
θ)

) = (
K − eσ(x0+y

√
θ)

)
+ + θ3/2rKσφ(y) + o(θ3/2).(2)

We deduce from Corollary 1 that if y > y∗, we have, for θ small enough,

P
(
T − θ, eσ(x0+y

√
θ)

)
>

(
K − eσ(x0+y

√
θ)

)
+.

Therefore, eσ(x0+y
√

θ) > s(T − θ). Since x0 = 1
σ

log rK
δ

, we obtain

log
rK

δ
− log s(T − θ) > −yσ

√
θ.

Thus, for y > y∗,

lim inf
θ→0

s(T ) − s(T − θ)

σ s(T )
√

θ
≥ −y

and letting y go to y∗,

lim inf
θ→0

s(T ) − s(T − θ)

σ s(T )
√

θ
≥ −y∗.

Now, take y ≤ y∗. Theorem 1 gives

f̂ (θ, x0 + y
√

θ) = f (0, x0 + y
√

θ) + o(θ3/2).
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Thus,

P
(
T − θ, eσ(x0+y

√
θ)

) = (
K − eσ(x0+y

√
θ)

)
+ + g(θ)

with limθ→0
g(θ)

θ3/2 = 0. Moreover, if s(t) < x < (rK/δ), we have, using Taylor’s
formula and the smooth fit property (see, e.g., [12], Corollary 10.3.10),

P (t, x) − (K − x) = (x − s(t))2

2

∂2P

∂x2 (t, ζ ) for some ζ ∈ (
s(t), x

)
.

As ζ > s(t), we get

σ 2ζ 2

2

∂2P

∂x2
(t, ζ )

= −∂P

∂t
(t, ζ ) − (r − δ)ζ

∂P

∂x
(t, ζ ) + rP (t, ζ )

≥ (δ − r)ζ
∂P

∂x
(t, ζ ) + rP (t, ζ ) [since P (·, x) is nondecreasing]

≥ (δ − r)ζ(−1) + r(K − ζ ) [since P (t, ·) is convex]

= rK − δζ

≥ rK − δx (since ζ < x).

Whence, for x < rK
δ

,

((
x − s(t)

)
+

)2 ≤ σ 2x2

rK − δx

(
P (t, x) − (K − x)

)
.

We apply the last inequality with x = eσ(x0+y
√

θ) to obtain

(
eσ(x0+y

√
θ) − s(T − θ)

)2
+ ≤ σ 2e2σ(x0+y

√
θ)

rK − δeσ(x0+y
√

θ)
g(θ) = σ 2e2σ(x0+y

√
θ)

rK(1 − eσy
√

θ )
g(θ)

≤ C

rKσy

g(θ)√
θ

.

Thus,
(
s(T )eσy

√
θ − s(T − θ)

)
+ ≤ o(

√
θ).

Hence,

s(T )(1 + σy
√

θ) − s(T − θ) ≤ o(
√

θ)

or equivalently,

s(T ) − s(T − θ)

σ s(T )
√

θ
≤ −y + o(1),
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from which we deduce

lim sup
θ→0

s(T ) − s(T − θ)

σ s(T )
√

θ
≤ −y∗,

which completes the proof. �

4. The case r = δ. This section is devoted to the proof of the following
estimate:

THEOREM 3. If r = δ, the critical price satisfies the following:

lim
t→T

K − s(t)

σK
√

(T − t) log( 1
T −t

)
= √

2.

Observe that if r = δ, we have s(T ) := limt→T s(t) = K , so that the payoff
function is not smooth near s(T ), and we cannot apply Theorem 1. Our method
will follow some ideas of [11]. We introduce the European put price function. The
price of a European put option with exercise price K and date of maturity T can
be written as Pe(t, St ) where the function Pe(t, x) is defined for every (t, x) ∈
[0, T ] × R+ by

Pe(t, x) = E
[
e−rt

(
K − xe(r−δ−(σ 2/2))(T −t)+σB(T −t)

)
+

]
.

It is straightforward to check that the equation

Pe(t, x) = (K − x)

admits a unique solution in the interval (0,K), if t < T (see [11]). This solution
will be denoted by se(t) in the sequel. Since the function Pe can be given in closed
form, the behavior of se(t) is fairly easy to study and we have the following lemma.

LEMMA 2. If r = δ, the function t �→ se(t) is nondecreasing near T and
satisfies

lim
t→T

K − se(t)

σK
√

(T − t) log( 1
T −t

)
= √

2.(3)

Theorem 3 will follow immediately from (3) and the next lemma.

LEMMA 3. There exists a constant C > 0 such that, for t < T ,

0 ≤ se(t) − s(t) ≤ C
√

T − t .
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PROOF OF LEMMA 2. The estimate (3) has been observed by Aït-Sahlia in [1]
and by Barles (private communication) (see also [16]). We sketch the proof for
completeness. Recall that se(t) is the unique solution in (0,K) of the equation

Pe(t, x) = (K − x).

The inequality s(t) ≤ se(t) follows from Pe ≤ P and yields limt→T se(t) = K . For
notational simplicity, we set θ = T − t and

α = α(θ) = log(K/se(t)) + (σ 2/2)θ

σ
√

θ
.

We have limθ→0 α(θ) = 0 and (with the same argument as in [11], Lemma 2.2)
limθ→0

√
θα(θ) = +∞. From

K − se(t) = e−rθ
E

(
K − se(t)e

σBθ−(σ 2/2)θ
)
+

= e−rθ
(
K − se(t)

) + e−rθ
E

(
se(t)e

σBθ−(σ 2/2)θ − K
)
+,

we derive

(1 − e−rθ )
(
eσ

√
θα(θ)−(σ 2/2)θ − 1

) = e−rθ
E

(
eσBθ−(σ 2/2)θ − eσ

√
θα(θ)−(σ 2/2)θ)

+.

Now, with the notation f1(θ) ∼ f2(θ) for limθ→0
f1(θ)
f2(θ)

= 1, we have, following
the lines of the proof of Proposition 2.1 of [11],

rσθ3/2α(θ) ∼ E(eσBθ − eσ
√

θα(θ))+
∼ σ

√
θE(B1 − α)+

∼ σ
√

θ
1√

2πα2eα2/2
.

Hence,

α3eα2/2 ∼ 1

r
√

2πθ
.(4)

This yields α(θ) ∼ √
2 log(1/θ) and (3) follows easily.

We now prove that se is nondecreasing near T . Note that this property does not
follow as easily as in the case of s(t) because we do not have ∂Pe

∂t
≤ 0. We have

F(t, se(t)) = 0, with

F(t, x) = Pe(t, x) − (K − x).

The function F is of class C∞ on (0, T ) × (0,K) and satisfies

∂F

∂x
(t, x) = ∂Pe

∂x
(t, x) + 1 > 0.
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We deduce from the implicit function theorem that se is differentiable on (0, T )

and that

∂Pe

∂t

(
t, se(t)

) +
(

∂Pe

∂x

(
t, se(t)

) + 1
)
s′
e(t) = 0.

It follows from this equality that s′
e(t) and − ∂Pe

∂t
(t, se(t)) have the same sign.

Moreover, we know that Pe satisfies the following PDE:

∂Pe

∂t
(t, x) = rPe(t, x) − σ 2x2

2

∂2Pe

∂x2 (t, x).

Thus, using the definition of se,

∂Pe

∂t

(
t, se(t)

) = r
(
K − se(t)

) − σ 2s2
e (t)

2

∂2Pe

∂x2

(
t, se(t)

)
.(5)

With the same notation as above, we can derive from the Black–Scholes formula

∂2Pe

∂x2

(
t, se(t)

) = e−rθ

se(t)σ
√

θ
√

2π
exp

(
−1

2
(α − σ

√
θ)2

)
.

Using (4), we have

∂2Pe

∂x2

(
t, se(t)

) ∼ 1

σK
√

2πθ
exp

(
−α2

2

)

∼ 1

σK
√

2πθ
α3r

√
2πθ

∼ r

Kσ
α3

√
θ

∼ r

Kσ
23/2( log(1/θ)

)3/2√
θ.

Hence,

σ 2s2
e (t)

2

∂2Pe

∂x2

(
t, se(t)

) ∼ σrK
√

2θ
(

log(1/θ)
)3/2

.

Therefore, for t close to T ,

r
(
K − se(t)

)
<

σ 2s2
e (t)

2

∂2Pe

∂x2

(
t, se(t)

)
,

and we have from equality (5),

∂Pe

∂t

(
t, se(t)

)
< 0

which completes the proof of Lemma 2. �
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PROOF OF LEMMA 3. Recall the early exercise premium formula (cf. [13],
Corollary 3.1) and use r = δ to have

P (t, x) − Pe(t, x) = rE

∫ T −t

0
e−ru(K − Sx

u)1{Sx
u≤s(t+u)} du

where Sx
u = xeσBu−(σ 2/2)u. Therefore,

P (t, x) − Pe(t, x) ≤ r

∫ T −t

0
E[e−ru(K − Sx

u)+]du

= r

∫ T −t

0
Pe(T − u,x) du

= r

∫ T −t

0
Pe(t + s, x) ds.

In particular,

P
(
t, se(t)

) − Pe

(
t, se(t)

) ≤ r

∫ T −t

0
Pe

(
t + s, se(t)

)
ds.

Using Lemma 2, we have for t close to T , se(t) ≤ se(t + s) and thus

Pe

(
t + s, se(t)

) ≤ K − se(t),

whence,

P
(
t, se(t)

) − Pe

(
t, se(t)

) ≤ r(T − t)
(
K − se(t)

)
.(6)

Using Taylor’s formula and the smooth fit property, we have

P
(
t, se(t)

) − Pe

(
t, se(t)

) = P
(
t, se(t)

) − (
K − se(t)

) = (se(t) − s(t))2

2

∂2P

∂x2 (t, ζ )

for some ζ in the interval [s(t), se(t)]. Now, since ζ > s(t), we have

σ 2ζ 2

2

∂2P

∂x2
(t, ζ ) = −∂P

∂t
(t, ζ ) + rP (t, ζ )

≥ rP (t, ζ )

≥ r(K − ζ )

≥ r
(
K − se(t)

)
[because ζ ≤ se(t)].

We then deduce that

(se(t) − s(t))2

2

(
K − se(t)

)

≤ 2r

σ 2ζ 2

(
P

(
t, se(t)

) − Pe

(
t, se(t)

))
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≤ 2r2

σ 2ζ 2 (T − t)
(
K − se(t)

)
[using equality (6)]

≤ C(T − t)
(
K − se(t)

)

which completes the proof of Lemma 3. �

APPENDIX

Let us denote by g a standard normal random variable. We shall prove that the
function

G(x) = E

∫ 1

0
(x − √

vg)1{g≥x(1−√
1−v)/

√
v} dv

admits a unique root in (0,1/
√

2]. First, a straightforward calculus leads to G(0) =
−2

3
1√
2π

. Set φ(v) = 1−√
1−v√
v

=
√

v

1+√
1−v

and notice that φ is a nondecreasing

function satisfying φ(0) = 0, φ(1) = 1 and vφ
′
(v) = φ(v)

2
√

1−v
. We shall proceed

in two steps.
Step 1. For every x ≥ 1√

2
, we have G(x) ≥ 0. We write

G(x) = x

∫ 1

0
P

(
g ≥ xφ(v)

)
dv −

∫ 1

0

√
vE(g1{g≥xφ(v)}) dv.

Integrating by parts the first integral above, we obtain

G(x) = xP(g ≥ x) + x2
∫ 1

0
vφ

′
(v)e−(x2/2)φ2(v) dv√

2π

−
∫ 1

0

√
ve−(x2/2)φ2(v) dv√

2π
.

But, integrating by parts again gives
∫ 1

0

√
ve−(x2/2)φ2(v) dv√

2π

= 2

3

(
1√
2π

e−(x2/2) + x2
∫ 1

0
vφ

′
(v)(1 − √

1 − v)e−(x2/2)φ2(v) dv√
2π

)
.

Finally,

G(x) = xP(g ≥ x) − 2

3

1√
2π

e−(x2/2)

+ x2

3

∫ 1

0
h(v)e−(x2/2)φ2(v) dv√

2π
,

(7)
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where h(v) = (1 + 2
√

1 − v)vφ
′
(v) is a nonnegative function on [0,1] satisfying∫ 1

0 h(v) dv = 1. Since e−(x2/2)φ2(v) ≥ e−x2/2, we get

G(x) ≥ xP(g ≥ x) + 1√
2π

e−x2/2
(

x2

3
− 2

3

)
.

At this stage, we need to recall Komatsu’s lemma (see [7]): we have, for x > 0,

P(g ≥ x) ≥ 2

x + √
x2 + 4

e−x2/2
√

2π
.

Thus,

G(x) ≥ p(x)
e−x2/2
√

2π
,

with

p(x) =
(

x2

3
− 2

3
+ 2x

x + √
x2 + 4

)
.

We close the first step since p is a nondecreasing function on [0,+∞[ satisfying
p(1/

√
2) = 0.

Step 2. For every x ∈]0,1/
√

2], G
′
(x) > 0. Using equality (7), we have

G
′
(x) = P(g ≥ x) − x

3

1√
2π

e−x2/2

+ 2x

3

∫ 1

0
(1 + 2

√
1 − v)vφ

′
(v)e−(x2/2)φ2(v) dv√

2π

+ x

3

∫ 1

0
k(v)(−x2)φ

′
(v)φ(v)e−(x2/2)φ2(v) dv√

2π
,

where k(v) = vφ(v)(1 + 2
√

1 − v). Integrating by parts the last integral and using
equality vφ

′
(v) = φ(v)

2
√

1−v
, we get

G
′
(x) = P(g ≥ x) + x

∫ 1

0
v(2v − 1)φ

′
(v)e−(x2/2)φ2(v) dv√

2π

≥ P(g ≥ x) − x

8

∫ 1

0
φ

′
(v)e−(x2/2)φ2(v) dv√

2π

= P(g ≥ x) − 1

8

∫ x

0
e−t2/2 dt√

2π
[we set t = xφ(v)]

= 9

8
P(g ≥ x) − 1

16
.
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We close this second step by noting that the function f (x) = 9
8P(g ≥ x) − 1

16 is
nonincreasing on ]0,+∞[ and satisfies f ( 1√

2
) > 0.
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