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ALGEBRAIC CONVERGENCE OF MARKOV CHAINS

BY MU-FA CHEN AND YING-ZHE WANG1

Beijing Normal University

Algebraic convergence in the L2-sense is studied for general time-
continuous, reversible Markov chains with countable state space, and
especially for birth–death chains. Some criteria for the convergence are
presented. The results are effective since the convergence region can be
completely covered, as illustrated by two examples.

1. Introduction. This paper is devoted to studying algebraic (or polynomial)
L2-convergence for reversible Markov chains. Roughly speaking, we are looking
for slower than exponential convergence, for which there are a great many
publications (see, e.g., [1, 5, 12] and the references within). However, the work
on algebraic convergence is still limited; readers are urged to refer to [5, (II);
8, 13] for background and the present status of study on the topic. Additionally, a
referee provided the recent preprints [10, 11] in which the same topic is studied
using a different approach for time-discrete Markov processes with general state
space.

Consider a reversible Markov process on a complete separable metric space
(E,E) with probability measure π . The process corresponds in a natural way to a
strongly continuous semigroup (Pt) on L2(π) with generator L and domain D(L).
It is said that the process has algebraic convergence in L2-sense if there exists a
functional V :L2(π) → [0,∞] and constants C > 0, q > 1 so that

‖Ptf − π(f )‖2 ≤ CV (f )/tq−1, t > 0, f ∈ L2(π),(1.1)

where ‖ · ‖ denotes the L2-norm and π(f ) = ∫
f dπ .

The starting point of our study is the following result, taken from [13] which
provides some necessary and sufficient conditions for algebraic L2-convergence.

THEOREM A (Liggett–Stroock). Let 1 < p,q < ∞ such that 1/p + 1/q = 1
and let V :L2(π) → [0,∞] satisfy V (cf +d) = c2V (f ) for all constants c and d .
Consider the following two statements:

(a) There exists a constant C′ > 0 such that

‖f − π(f )‖2 ≤ C′D(f )1/pV (f )1/q for all f ∈ D(D),(1.2)

where D(f ) := D(f,f ) is the Dirichlet form of L with domain D(D).
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(b) There exists a constant C > 0 so that (1.1) holds.

We have the following conclusions:

(i) If (a) holds and V satisfies the contraction

V (Ptf ) ≤ V (f ), f ∈ L2(π), t > 0,(1.3)

then (b) holds.
(ii) If (b) holds, then so does (a) if the process is reversible with respect to π .

REMARK. (i) In condition (a), we use D(f ) instead of − ∫
f Lf appeared

in [13]. The advantage of this was explained in [2], Sections 6.7 and 9.1.
(ii) If p = 1, then the process is in fact exponentially convergent. Hence we

restrict ourselves to the case of p > 1 (⇔ q < ∞).
(iii) If (a) is satisfied with

V (f ) = ‖f − π(f )‖2 or V (f ) = −
∫

f Lf dπ,

then the algebraic L2-convergence is indeed exponential. Thus, none of these
choices for V is useful in the present context. We will adopt several different types
of V , given in (2.1), (2.4), (2.6) and Theorem C below.

(iv) Actually, what we are doing is to find some q > 1 such that V (f ) :=
supt>0 tq−1‖Ptf − π(f )‖ is bounded within a class of functions. Then this
V should satisfy (1.3) and V (cf + d) = c2V (f ) for all constants c and d .

The main purpose of the paper is to work out some more explicit conditions for
the Liggett–Stroock theorem in the context of Markov chains.

To have some feeling for what is going on in the paper, let us look at the
following example, which will be treated in detail in the last section.

EXAMPLE 5.1. Consider an irreducible birth–death process with birth rates
bi = ir and death rates ai = ir for some r > 0 and large i. Then the process is
ergodic iff r > 1:

(i) Let r > 1. Then the process is L2-exponential convergent iff r ≥ 2 (cf. [4]).
That is, with respect to V (f ) = ‖f − π(f )‖, the process has L2-algebraic decay
iff r ≥ 2.

(ii) (Proposition 5.4) Let r ∈ (1,2). Then, with respect to V1 :V1(f ) =
supk≥0[(k + 1)s |fk+1 − fk|]2 with 0 < s ≤ r − 1, the process has L2-algebraic
decay iff r ∈ (5/3,2).

(iii) (Proposition 5.3) Let r ∈ (1,2). Then, with respect to V0 :V0(f ) =
supi 	=j (fi − fj )

2, the process has L2-algebraic decay for all r ∈ (1,2).
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This example shows that algebraic convergence depends heavily on the
functional V . Note that V0(f ) is meaningful only for bounded f . This is rather
restrictive but still enough to deduce the ergodicity of the process under (1.1).
Clearly, for different V , the inequalities (1.1), (1.2) and the contraction (1.3) are
all essentially different. Therefore the criteria developed in the paper are quite
technical and depend on V case by case.

2. Main results. Let Q = (qij ) be a regular and irreducible Q-matrix on
a countable set E: qij ≥ 0 (i 	= j), 0 < qi := −qii = ∑

j 	=i qij < ∞. Assume
that the corresponding Q-process P (t) = (pij (t) : i, j ∈ E) is stationary having
distribution (πi), and πiqij = πjqji for all i, j ∈ E. Then the corresponding
operator �f (i) := ∑

j qij (fj − fi), i ∈ E, becomes symmetric on L2(π). Denote

by (D,D(D)) the Dirichlet form D(f ) = D(f,f ) = 1
2

∑
i,j πiqij (fj − fi)

2. Its
domain is assumed to be D(D) = {f ∈ L2(π) :D(f ) < ∞}.

We adopt the path technique developed in [9]. First, we define a graph structure
associated with the matrix Q = (qij ). We call 〈i, j〉 an edge if qij > 0 (i 	= j). The
adjacent edges 〈i, i1〉, 〈i1, i2〉, . . . , 〈in, j〉 (i, j and ik’s are different) constitute a
directional path from i to j . Due to the irreducibility of the Q-matrix, for each pair
i 	= j , there exists a directional path from i to j . Choose and fix such a path γij .
Then fix all the selected paths, denoted by � = {γij }. We have linear order for
the vertices on each path. Then, for e ∈ γij , we may write e = 〈e�, er〉, where e�

and er are the left and right vertices of e, respectively. Certainly, an edge may
belong to several paths in �. Note that for birth–death processes, 〈i, j〉 is an edge
if and only if |i − j | = 1. Then, for each pair {k, �}, k < �, there is exactly one path
from k to �: 〈k, k + 1〉, 〈k + 1, k + 2〉, . . . , 〈� − 1, �〉. Define

β = sup
i

#{e : e is contained in a path in � and e� = i}.

For birth–death processes, we have β = 1.
Next, choose a symmetric function φ: φij ≡ φ(i, j) ≥ 0 and φij = 0 if and

only if i = j . For instance, one may take φij to be the geodesic distance between
i and j on the graph. Then define

Vδ(f ) = sup
i 	=j

(fj − fi)
2/φ2δ

ij ,(2.1)

where δ = 0 or 1. Note that V0(f ) is independent of φ. As we will prove in
Section 3, the contraction (1.3) is automatic for V0. A sufficient condition for (1.3)
with V = V1 is the following: There exists a coupling operator �̃ so that

�̃φ(i, j) ≤ 0 for all i 	= j and �̃φ(i, i) = 0 for all i.(2.2)

For the reader’s convenience, we recall the definition of coupling operators.
Because of the one-to-one correspondence of a Q-matrix and its operator just
mentioned above, we need only define the coupling Q-matrices [of course, in the
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present discrete situation, one may simply use a coupling Q-matrix instead of the
coupling operator used in (2.2)]. For a given Q-matrix Q = (qij ), a coupling Q-
matrix (q(ij),(k�) : (ij), (k�) ∈ E × E) is described by the following marginality:∑

� q(ij ),(k�) = qik for all i, j, k and
∑

k q(ij ),(k�) = qj� for all i, j, �. We refer to
[2], Chapters 0 and 5, and [3] for various coupling operators.

Set

σ1(e) = ∑
i

πiφ
2
i,e�

π2
e�

qe�er

( ∑
j : γije

πj

φ2
ij

)2

, σ2(e) = 1

πe�
qe�er

∑
{i,j } : γije

πiπj

φ2
ij

,

where {i, j} denotes the disordered pair of i and j . We remark that the summation
appearing in the first formula varies only over the pairs {i, j} :γij  e. In [9],
a geometric quantity κ , somehow like supe[σ1(e)+σ2(e)], was introduced in terms
of the path length |γij |P = ∑

e∈γij
(πe�

pe�,er )
−1 to estimate the lower bound of

the Poincaré constant [equivalently, the second largest eigenvalue of a transition
probability matrix P = (pij )]. As pointed out in [9], the quantity κ is a measure of
bottlenecks. It will be small if it is possible to choose paths which do not traverse
any edge too often. On the other hand, it was shown in [4, 6] that one has to use the
weight function w(e) = w(er) − w(e�), where w is a mimic (varies case by case)
of the eigenfunction corresponding to the eigenvalue, instead of (πe�

pe�,er )
−1 used

above to obtain sharp estimates of the eigenvalue. Thus, even though the present
situation is unrelated to the eigenvalues, the test function φij (and its variants
introduced below) plays a role similar to |γij |w = ∑

e∈γij
w(e) used in [6], and then

supe[σ1(e)+σ2(e)] plays a similar role as κ used in [9]. Certainly, the expressions
of σ1(e) and σ2(e), and also the proof of Theorem 2.1 below, are much more
complicated than those papers quoted above.

To state our result we need further notation. The technical conditions below
are used only for the necessary part of our results. We say that the process has a
finite range R if qij = 0 whenever |j − i| > R. We will use some function ρ on
E = {0,1,2, . . .} having the following property:

ρ is increasing, ρ0 = 0 and there exists a constant c such that
either (i) or (ii) holds:

(i) ρN ≤ cρN/2 for all N ≥ 1;
(ii) ρi+R ≤ cρi for all i ≥ 1 but still

∑
N≥1 ρ−ε

NR < ∞ for all ε > 0.

(2.3)

A typical choice of ρ is as follows: There exist constants α > 0, c1 > 0 and c2 < ∞
such that c1 ≤ ρi/iα ≤ c2 for all i ≥ 1. Then the condition “ρN ≤ cρN/2 for all
N ≥ 1” holds. Otherwise, let ρ satisfy the following: There exist constants α > 1,
c1 > 0 and c2 < ∞ such that c1 ≤ ρi/α

i ≤ c2 for all i ≥ 1. Then we do have
“ρi+R ≤ cρi for all i ≥ 1” and “

∑
N≥1 ρ−ε

NR < ∞ for all ε > 0.”
Now, we can state our first criterion as follows:

THEOREM 2.1. (0) If (2.2) is satisfied, then (1.3) holds with V = V1.
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(i) Let (1.3) hold. If β < ∞, supe{σ1(e) + σ2(e)} < ∞ and
∑

i,j πiπj ×
φ

2(q+δ−1)
ij < ∞ for some constant q > 1, then the Markov chain has algebraic

decay with V = Vδ (δ = 0 or 1) and the same q .
(ii) Conversely, let E = {0,1,2, . . .} and suppose that the process has al-

gebraic decay with respect to Vδ (δ = 0,1) and φij = |ρj − ρi | for some
function ρ satisfying (2.3). If moreover supi supj≥i+1 qijφ

2
ij /ρ

α
i ≤ c for some con-

stants c < ∞ and α ∈ [0,2), then we have
∑

j ρk
j πj < ∞ for all k < (2 − α) ×

(q − 1) + 2δ.

The next result is a straightforward consequence of, but more practical than,
Theorem 2.1.

COROLLARY 2.2. Theorem 2.1(1) holds if σ1(e) and σ2(e) are replaced by

σ ′
1(e) = sup

i

φi,e�

πe�

√
qe�er

∑
j : γije

πj

φ2
ij

and σ ′
2(e) = 1

πe�
qe�er

sup
i

∑
j : γije

πj

φ2
ij

,

respectively.

We now introduce a different choice of V . Fix a reference point in E, say 0 for
simplicity. For each j ∈ E \ {0}, choose a directional path, without loop, from 0
to j , denoted by γ0j . Fix the family �0 = {γ0j : j 	= 0} and define β as above. Next,
choose φ :φi > 0 for i 	= 0 and φ0 = 0. Define

Ṽδ(f ) = sup
i 	=0

(
f (i) − f (0)

)2
/φ2δ

i .(2.4)

When E = {0,1,2, . . .} and φ is increasing, for φij := |φj −φi |, it is easy to check
that Ṽδ(f ) ≤ Vδ(f ) for each δ = 1 or 0. Finally, set

σ̃1(e) = φe�

πe�

√
qe�er

∑
j : γ0j e

πj

φ2
j

, σ̃2(e) = 1

πe�
qe�er

∑
j : γ0j e

πj

φ2
j

.

THEOREM 2.3. (i) Let

β < ∞, sup
e

{σ̃1(e) + σ̃2(e)} < ∞ and
∑
j

πjφ
2(q+δ−1)
j < ∞(2.5)

for some q > 1 and δ = 0 or 1. When δ = 1, suppose additionally that (1.3) holds
with V = Ṽ1. Then the Markov chain has algebraic decay with V = Ṽ1 when δ = 1
and V = V0 when δ = 0.

In particular, if E = {0,1,2, . . .} and φ is increasing, whenever (2.2) holds for
φij := |φi −φj |, then condition (2.5) with δ = 1 implies the algebraic decay of the
Markov chain with respect to V1 defined by (2.1).

(ii) Conversely, if E = {0,1,2, . . .}, φ is increasing and ρ = φ satisfies (2.3),
the Markov chain has algebraic decay with respect to Ṽδ (δ = 0, 1) and
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supi supj≥i+1 qij (φi −φj)
2/φα

i ≤ c for some constants c < ∞ and α ∈ [0,2), then

we have
∑

j φk
jπj < ∞ for all k < (2 − α)(q − 1) + 2δ.

Next, we consider positive recurrent birth–death processes. Then we have
E = {0,1,2, . . .}, birth rate bi > 0 (i ≥ 0), death rate ai > 0 (i ≥ 1) and reversible
measure πi . Each edge has the form e = 〈k, k + 1〉, k ≥ 0. Obviously, β = 1 and
R = 1. Let un be a positive sequence and set φij = |∑k<j uk − ∑

k<i uk|. Then
we have

Vδ(f ) = sup
i 	=j

|f (i) − f (j)|2/φ2δ
ij = sup

k≥0
|f (k + 1) − f (k)|2/u2δ

k(2.6)

and, for e = 〈k, k + 1〉,

σ1(e) = 1

π2
k bk

∑
i≤k−1

πiφ
2
ik

( ∑
j≥k+1

πj

φ2
ij

)2

, σ2(e) = 1

πkbk

∑
i≤k

πi

∑
j≥k+1

πj

φ2
ij

,

σ ′
1(e) = 1

πk

√
bk

sup
i≤k−1

φik

∑
j≥k+1

πj

φ2
ij

, σ ′
2(e) = 1

πkbk

sup
i≤k

∑
j≥k+1

πj

φ2
ij

.

As a consequence of Theorem 2.1, we have the following result.

COROLLARY 2.4. (i) Suppose that supe{σ1(e) + σ2(e)} < ∞ (or sufficiently,

supe{σ ′
1(e)+σ ′

2(e)} < ∞) and
∑

i,j πiπjφ
2(q+δ−1)
ij < ∞ for some constant q > 1.

For V1, suppose additionally that bnun −anun−1 is nonincreasing (u−1 = 0). Then
the birth–death process has algebraic decay with respect to Vδ .

(ii) Conversely, suppose that the process has algebraic decay with respect
to Vδ and φij := |ρi − ρj | for some ρ satisfying (2.3) with R = 1. If moreover
supi bi(ρi+1 − ρi)

2/ρα
i ≤ c for some constants c < ∞ and α ∈ [0,2), then we

have
∑

j ρk
j πj < ∞ for all k < (2 − α)(q − 1) + 2δ.

As a direct consequence of Theorem 2.3, we have the following result.

COROLLARY 2.5. Let φn = ∑
i<n ui for some positive sequence (ui) and

define θ1(n) = φnπ
−1
n b

−1/2
n

∑∞
k=n+1 πk/φ

2
k .

(i) Suppose that the following conditions hold:

(a) sup
n

θ1(n) < ∞;
(b) lim inf

k→∞ φk

√
bk > 0;

(c)
∑
n

πnφ
2(q+δ−1)
n < ∞.

Then (1.2) holds with V = Ṽδ . For V1, suppose additionally that bnun − anun−1 is
nonincreasing (u−1 = 0). Then the process has algebraic decay with respect to Vδ .
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(ii) Conversely, suppose that the process has algebraic decay with respect
to Ṽδ and ρ = φ satisfies (2.3) with R = 1. If moreover supi biu

2
i /φ

α
i ≤ c for

some constants c < ∞ and α ∈ [0,2), then we have
∑

j φk
jπj < ∞ for all

k < (2 − α)(q − 1) + 2δ.

REMARK. (i) Let θ2(n) = (
∑∞

k=n+1 πk/φ
2
k )/(πnbn). Note that θ1(n) and

θ2(n) play the some role as σ̃1(e) and σ̃2(e) used in Theorem 2.3. We mention
that conditions (a) and (b) in Corollary 2.5 imply that supn θ2(n) < ∞.

In fact,

lim inf
k→∞ φk

√
bk > 0 ⇐⇒ sup

k

1

φk

√
bk

< ∞ ⇐⇒ sup
n

θ2(n)

θ1(n)
< ∞.

This plus condition (a) implies that supn θ2(n) < ∞.
(ii) Obviously, when e = 〈n,n + 1〉, we have θ1(n) ≤ σ ′

1(e) and θ2(n) ≤ σ ′
2(e).

Hence, supn{θ1(n) + θ2(n)} ≤ supe{σ ′
1(e) + σ ′

2(e)}.

The next result is a special case of Corollary 2.5.

COROLLARY 2.6. The birth–death process has algebraic decay with respect
to V0 provided

lim inf
n→∞ n

(
an+1

bn

− 1
)

> 1,

lim inf
n→∞

1

πn

∑
k≥n+1

πk > 0
(

or lim inf
n→∞ nα

√
bn > 0

)
and

sup
n

1√
bnnαπn

∑
k≥n+1

πk < ∞

for some α > 0.

For birth–death chains, the algebraic convergence was studied by Liggett [13],
as a tool to deal with the critical case of attractive reversible nearest particle
systems. To compare our results with known ones, we introduce two theorems
taken from [13] as follows. The first result below was mentioned in the quoted
paper without a proof. For completeness, we present a proof at the end of Section 4.

THEOREM B. Let φij = |∑k<j uk − ∑
k<i uk| for some positive sequence

(uk) and define V1 as (2.1). Let σn = ∑∞
k=n πk/πn. If the following conditions

hold:

(i) bnun − anun−1 is nonincreasing (u−1 = 0);
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(ii) infi≥0 bi > 0;
(iii) supn σn/n < ∞;
(iv)

∑∞
n=0 u2

nn
2qπn < ∞;

then the process has algebraic decay with respect to V1.

The next result is due to Liggett [13], Theorem 2.10 and Proposition 2.15:

THEOREM C. Define V̄ (f ) = supi 	=j (|fi − fj |/|i − j |)2 = supk |f (k + 1) −
f (k)|2, which is nothing new but V1 with φij = |i − j |. If the following conditions
hold:

(i) infi bi > 0, ai ≥ bi ;
(ii) supi i(ai − bi) < ∞;

(iii) supn σ (n)/n < ∞;
(iv)

∑
n(log(n + 2))3/2n2qπn < ∞;

then the process has algebraic decay with respect to V̄ .
Conversely, suppose that the process has algebraic decay with respect to V̄ and

supi bi < ∞, then we have
∑

k kαπk < ∞ for all α < 2q .

In general, the conditions of Theorem C is stronger than those of Corollary 2.5,
as shown by Example 5.1, for which Theorem C is not available [since

∑
n(log(n+

2))3/2n2qπn = ∞ for any q > 1 when r ∈ (1,2)] but Corollary 2.5 is exact.
Roughly speaking, the conditions of Corollary 2.5 (resp., Theorem 2.3) is stronger
than those of Theorem B (resp., Theorem 2.1) since Ṽδ ≤ Vδ . However, the
same example shows that, in some situation, Corollary 2.5 gives us the power
q ∈ (1,∞), which can be much larger than q ∈ (1, 3/2) provided by Theorem B.
Among the corollaries, the conditions of Corollary 2.6 are the weakest but the
corresponding conclusion (1.1) holds for a smaller class of functions. Besides,
the two examples discussed in Section 5 are always (resp., partially) algebraically
convergent with respect to V0 (resp., V1 or V̄ ). We refer to Section 5 for details.

Finally, we examine a special birth–death process: ai = bi = i2 for even
number i and ai = bi = i3/2 for odd i. It is easy to check that Corollary 2.6 fails
for such an oscillation model. To handle it, we adopt the following comparison
theorem: comparing the original process with the new one having ãi = b̃i = i3/2.
The next result is parallel to Theorem 4.1.1 in [14].

THEOREM 2.7. Let Q = (qij ) and Q̃ = (q̃ij ) be two Q-matrices, re-
versible with respect to the distributions πi and π̃i , respectively. Suppose that
supi 	=j π̃i q̃ij /(πiqij ) < ∞ and supi πi/π̃i < ∞. If moreover the Q̃-process has
algebraic decay with respect to Vδ (resp., Ṽδ), then so does the Q-process pro-
vided it is Vδ (resp., Ṽδ)-contractive.
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An immediate consequence of Theorem 2.7 is as follows. With respect to V0

or Ṽ0, any local perturbation does not interfere with the algebraic convergence.
Theorem 2.1 is proved in the next section. The other results are proved in

Section 4. In Section 5, two examples are discussed to illustrate the power of the
results obtained in the paper.

3. Proof of Theorem 2.1. (A) First, we prove (1.3) under (2.2). Obviously,
Vδ(cf + d) = c2Vδ(f ) holds for all constants c and d .

Let (xt , yt ) be the Markov chain determined by the coupling operator �̃,
starting from (i, j). Because �̃φ(i, j) ≤ 0 for all i 	= j and �̃φ(i, i) = 0 for all i,
we have E(i,j)φxt ,yt ≤ φij (for more details of couplings, refer to [2, 3, 5, 7]). Then

∣∣∣∣Ptf (i) − Ptf (j)

φij

∣∣∣∣2 =
∣∣∣∣Eif (xt) − Ejf (yt )

φij

∣∣∣∣2 =
∣∣∣∣E(i,j)(f (xt ) − f (yt))

φij

∣∣∣∣2

=
∣∣∣∣E(i,j)

[
f (xt) − f (yt )

φxt ,yt

φxt ,yt

φij

]∣∣∣∣2

≤ sup
k,�∈E

∣∣∣∣f (k) − f (�)

φk�

∣∣∣∣2(
E(i,j)φxt ,yt

φij

)2

≤ V1(f ), i 	= j.

Taking the supremum over all i 	= j on the left-hand side yields V1(Ptf ) ≤ V1(f ).
Next, we prove that (1.3) always holds for V0. Actually, for any coupled process

(xt , yt ), we have

V0(Ptf ) = sup
i 	=j

|Ptf (i) − Ptf (j)|2 = sup
i 	=j

|Eif (xt ) − Ejf (yt)|2

≤ sup
i 	=j

E(i,j )|f (xt ) − f (yt)|2 ≤ sup
i 	=j

E(i,j )V0(f ) = V0(f ), t ≥ 0.

However, the proof does not work when V0 is replaced by Ṽ0 and so we do not
consider the contraction for Ṽ0 in the study on the sufficient part of our results.

(B) Next, we prove part (i) of the theorem. Some ideas of the proof are taken
from [6, 9, 13]. Let f satisfy π(f ) = 0 and ‖f ‖2 = 1. Then we have

Varπ (f ) = 1

2

∑
i,j

πiπj (fj − fi)
2 = ∑

{i,j }
πiπj (fj − fi)

2

(3.1) ≤
{ ∑

{i,j }
πiπj

(
fj − fi

φij

)2}1/p{ ∑
{i,j }

πiπj

(
fj − fi

φδ
ij

)2

φ
2(q+δ−1)
ij

}1/q

=: I1/p · II1/q.
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Put f (e) = fer − fe�
. Then

I = ∑
{i,j }

πiπj

φ2
ij

( ∑
e∈γij

f (e)

)2

= ∑
{i,j }

πiπj

φ2
ij

∑
e∈γij

f (e)

( ∑
b∈γi,e�

f (b) + ∑
d∈γe�,j

f (d)

)

= ∑
{i,j }

πiπj

φ2
ij

( ∑
e∈γij

f (e)
∑

b∈γi,e�

f (b) + ∑
e∈γij

f (e)
∑

d∈γe�,j

f (d)

)

= ∑
{i,j }

πiπj

φ2
ij

( ∑
e∈γij

f (e)
∑

b∈γi,e�

f (b) + ∑
d∈γij

f (d)
∑

e∈γi,dr

f (e)

)

= ∑
{i,j }

πiπj

φ2
ij

( ∑
e∈γij

f (e)
∑

b∈γi,e�

f (b) + ∑
d∈γij

f (d)
∑

e∈γi,d�

f (e)

+ ∑
d∈γij

f (d)
∑

e=〈d�,dr 〉
f (e)

)
(3.2)

= ∑
{i,j }

πiπj

φ2
ij

(
2

∑
e∈γij

f (e)
∑

b∈γi,e�

f (b) + ∑
e∈γij

f (e)2

)

= 2
∑
e

f (e)
√

πe�
qe�er

∑
{i,j } : γije

πiπj

φ2
ij

√
πe�

qe�er

∑
b∈γi,e�

f (b)

+ ∑
{i,j }

πiπj

φ2
ij

∑
e∈γij

f (e)2

≤ 2

(∑
e

πe�
qe�er f (e)2

)1/2

×
(∑

e

[ ∑
{i,j } : γije

πiπj

φ2
ij

√
πe�

qe�er

∑
b∈γi,e�

f (b)

]2)1/2

+ ∑
e

πe�
qe�er f (e)2 1

πe�
qe�er

∑
{i,j } : γij e

πiπj

φ2
ij

.

Here, we have used Schwarz’s inequality in the last step. Note that
∑

{i,j } : γij e =∑
i∈E

∑
j : γije.
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By using Schwarz’s inequality again, we obtain

∑
e

[ ∑
{i,j } : γij e

πiπj

φ2
ij

√
πe�

qe�er

∑
b∈γi,e�

f (b)

]2

= ∑
e

[∑
i

(√
πiπe�

φi,e�

∑
b∈γi,e�

f (b)

)( √
πiφi,e�

πe�

√
qe�,er

∑
j : γij e

πj

φ2
ij

)]2

≤ ∑
e

[∑
i

πiπe�

φ2
i,e�

( ∑
b∈γi,e�

f (b)

)2 ∑
i

πiφ
2
i,e�

π2
e�

qe�,er

( ∑
j : γije

πj

φ2
ij

)2]
(3.3)

≤
{

sup
e

σ1(e)

}∑
e,i

πiπe�

φ2
i,e�

[fe�
− fi]2

≤
{

sup
e

σ1(e)

}
β · I.

Here in the last step we have used the fact that a point e� occurs in
∑

e,i at most β

times. Combining (3.2), (3.3) with definition of σ2(e), we see that

I ≤ 2
√

sup
e

σ1(e)
√

βD(f )I + D(f ) sup
e

σ2(e)

=: 2C1

√
I · D(f ) + D(f )C2,

where C1,C2 < ∞ by assumption. Solving the inequality, we get I ≤ D(f )[C1 +√
C2

1 + C2]2. Next,

II = ∑
{i,j }

πiπj

(
fj − fi

φδ
ij

)2

φ
2(q+δ−1)
ij ≤ Vδ(f )

∑
i,j

πiπjφ
2(q+δ−1)
ij .

Hence

Varπ(f ) ≤ CD(f )1/pVδ(f )1/q,

where

C = (
C1 +

√
C2

1 + C2
)2/p

(∑
i,j

πiπjφ
2(q+δ−1)
ij

)1/q

< ∞

by assumption. By the Liggett–Stroock theorem, the process has algebraic decay.
(C) We now prove part (ii) of the theorem. We remark that condition “ρi+R ≤

c′ρi for all i ≥ 1” holds whenever ρN ≤ c′ρN/2 for all N ≥ 1. To see this, let i ≥ R

and N = i + R. Then ρi+R = ρN ≤ c′ρ(i+R)/2 ≤ c′ρi since ρi is increasing in i.
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On the other hand, since the set {i : i < R} is finite, the inequality “ρi+R ≤ c′′ρi

for all i < R” is automatic for some constant c′′ ≤ c′. However, to simplify the
notation, we will use the same c in these inequalities.

Assume that the process has algebraic decay. Let m,N ∈ N so that∑
i ρ

m
i πi = ∞ and let f (k) = ρm

k∧N . Then we have

Vδ(f ) = max
0≤i,j≤N, i 	=j

(ρm
i − ρm

j )2/(ρi − ρj )
2δ

= max
0≤i<j≤N

{
ρm−1

j

(
1 + ρi/ρj + (ρi/ρj )

2 + · · · + (ρi/ρj )
m−1)}2

× (ρj − ρi)
2(1−δ)

≤ m2ρ
2(m−δ)
N .

We now consider D(f ):

D(f ) = 1
2

∑
0≤i,j≤N

πiqij (ρ
m
j − ρm

i )2 + ∑
i<N, j>N

πiqij (ρ
m
N − ρm

i )2.

For the first term on the right-hand side, we have

1
2

∑
0≤i,j≤N

πiqij (ρ
m
j − ρm

i )2

= ∑
0≤i<j≤N

πiqij (ρ
m
j − ρm

i )2 =
N∑

i=0

πi

N∑
j=i+1

qij (ρ
m
j − ρm

i )2

=
N∑

i=0

πi

N∑
j=i+1

qij (ρj − ρi)
2[ρm−1

j + ρm−2
j ρi + · · · + ρm−1

i ]2

=
N∑

i=1

πi

N∧(i+R)∑
j=i+1

qij (ρj − ρi)
2[ρm−1

j + ρm−2
j ρi + · · · + ρm−1

i ]2

+ π0

N∧R∑
j=1

q0jρ
2m
j

≤ c1m
2

N∑
i=1

πiρ
2m−2
i

N∧(i+R)∑
j=i+1

qij (ρj − ρi)
2 + π0

N∧R∑
j=1

q0jρ
2m
j

≤ c1cRm2
N∑

i=1

πiρ
2m−2+α
i + c2m

2
N∧R∑
j=1

πjρ
2m−2+α
j

= m2(c1cR + c2)

N∑
i=1

πiρ
2m−2+α
i ,
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where c1 = c1(m) = ∑m−1
k=0 c2k = (c2m − 1)/(c − 1), c2 = c2(m) = m−2π0 ×

max1≤j≤R q0jρ
2−α
j /πj < ∞ by assumption.

As for the second term, because of finite range, by condition (2.3) and the
remark at the beginning of this part (C), we have

∑
j>N q0j = 0 for N > R and

ρN ≤ cρi for all 1 ∨ (N − R) ≤ i ≤ N − 1. Then∑
i,j : i<N<j

πiqij (ρ
m
N − ρm

i )2

=
N−1∑
i=1

πi(ρ
m−1
N + ρm−2

N ρi + · · · + ρm−1
i )2(ρN − ρi)

2
∑
j>N

qij

+ π0
∑
j>N

q0jρ
2m
N

≤
N−1∑

i=1∨(N−R)

πi · c1 · m2ρ
2(m−1)
i

i+R∑
j=N+1

qij (ρj − ρi)
2

≤ c1cRm2
N∑

i=1

πiρ
2m−2+α
i , N > R.

Finally, we get

D(f ) ≤ C1(m)

N∑
i=1

πiρ
2(m−1)+α
i ,(3.4)

where C1(m) = m2[2cRc1(m) + c2(m)] < ∞ for all m by assumption.
Before moving further, we need an elementary result about the estimation of

variation.

LEMMA 3.1. Let f be an increasing function and define h = f ◦ g for some
function g. Next, let W > 0 be a constant and set hW = h ∧ W . Choose γM large
enough so that π(g > γM) ≤ 1/M . Then we have

Var(hW) ≥
(∫

[h≤W ]
h2 dπ

){
1 −

(
1√
M

+ f (γM)

(
∫
[h≤M] h2 dπ)1/2

)}2

.(3.5)

PROOF. Note that

π(hW) − π
(
I[g≤γM ]hW

) = π
(
I[g>γM ]hW

) =
∫
[g>γM ]

hW dπ ≤ ‖hW‖
√

1/M.

We have π(hW) ≤ ‖hW‖/√M + π(I[g≤γM ]hW) ≤ ‖hW‖/√M + f (γM). Hence

Var(hW ) = ‖hW‖2 − π(hW)2 ≥ ‖hW‖2 −
(‖hW‖√

M
+ f (γM)

)2

= ‖hW‖2
{

1 −
(

1√
M

+ f (γM)

‖hW‖
)}2

.
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On the other hand, ‖hW‖2 = ∫
[h≤W ] h2 dπ + W 2π [h > W ] ≥ ∫

[h≤W ] h2 dπ. From

these two facts, we obtain (3.5). �

Now, let gk = ρk, f (x) = xm and W = ρm
N. Then we come back to hW(k) =

ρm
k∧N . The estimate (3.5) yields that(

N∑
i=1

πiρ
2m
i

){
1 −

[
1√
M

+ γ m
M√∑∞

i=1 πiρ
2m
i∧N

]}2

≤ Var(f ).

Take M = 16. Since π(ρ2m) = ∞, there exists N0 = N0(m) such that

1
2

N∑
i=1

πiρ
2m
i ≤ Var(f ) for all N ≥ N0.(3.6)

By Theorem A(ii), (1.2) holds with V = Vδ . Combining (3.4), (3.6) with (1.2), we
get

N∑
j=1

πjρ
2m
j ≤ C2(m)

(
N∑

j=1

πjρ
2m−2+α
j

)1/p

ρ
2(m−δ)/q
N

≤ C2(m)

(
N∑

j=1

πjρ
2m
j

)(m−1+α/2)/(mp)

ρ
2(m−δ)/q
N ,

where in the last step, we have used the Schwarz’s inequality. Therefore,
N∑

j=1

πjρ
2m
j ≤ C3(m)ρ

2(m−δ)mp/(q(mp−m+1−α/2))
N .(3.7)

Now, we consider separately the two cases listed in (2.3). First, assume that
there is ε < 1 such that infN ρN/2/ρN ≥ ε. Then, by (3.7), we have

N∑
j=N/2

πjρ
k
j =

N∑
j=N/2

πjρ
2m+k−2m
j ≤ ρk−2m

N/2

N∑
j=N/2

πjρ
2m
j

≤ εk−2mρk−2m
N

N∑
j=N/2

πjρ
2m
j(3.8)

≤ C4(m)ρ
k−2m+2(m−δ)mp/(q(mp−m+1−α/2))
N .

When m → ∞, the power of ρN on the right-hand side converges to k − (2 −α)×
(q − 1) − 2δ. Thus, when k < (2 − α)(q − 1) + 2δ, we can choose and then fix m

large enough so that the power just mentioned becomes negative, denoted by −γ .
Since (ρN/ρN/2)

−γ ≤ εγ < 1, by (3.8) and ratio test, we get

∑
j

ρk
j πj = 1 +

∞∑
�=0

∑
j∈{2�≤ρj ≤2�+1−1}

ρk
j πj < ∞.
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Second, by assumption, we have ρ(N+1)R ≤ cρNR and
∑∞

N=1 ρ−ε
NR < ∞ for all

ε > 0. Hence, by (3.7), we have

(N+1)R∑
j=NR

πjρ
k
j =

(N+1)R∑
j=NR

πjρ
2m+k−2m
j ≤ ρk−2m

NR

(N+1)R∑
j=NR

πjρ
2m
j

≤ ck−2mρk−2m
(N+1)R

(N+1)R∑
j=NR

πjρ
2m
j(3.9)

≤ C4(m)ρ
k−2m+2(m−δ)mp/(q(mp−m+1−α/2))
(N+1)R .

So by (3.9), we get

∑
j

ρk
j πj =

∞∑
N=0

(N+1)R−1∑
j=NR

πjρ
k
j ≤

∞∑
N=0

(N+1)R∑
j=NR

πjρ
k
j < ∞.

Now, the proof of Theorem 2.1 is complete. �

4. Proofs of Theorem 2.3 and other results.
PROOF OF THEOREM 2.3. Let f satisfy π(f ) = 0 and ‖f ‖2 = 1. Then we

have

Varπ (f ) = inf
c

∑
j

πj (fj − c)2 ≤ ∑
j

πj (fj − f0)
2 = ∑

j

πj

(
fj − f0

φj

)2

φ2
j

≤
{∑

j

πj

(
fj − f0

φj

)2}1/p{∑
j

πj

(
fj − f0

φδ
j

)2

φ
2(q+δ−1)
j

}1/q

=: I1/p · II1/q.

The remainder of the proof is similar to that of Theorem 2.1. The key point
is replacing

∑
i used there by the single point i = 0. For instance, put f (e) =

fer − fe�
. Then we have

I = ∑
j

πj

φ2
j

( ∑
e∈γ0j

f (e)

)2

= ∑
j

πj

φ2
j

∑
e∈γ0j

f (e)

( ∑
b∈γ0,e�

f (b) + ∑
d∈γe�,j

f (d)

)

= ∑
j

πj

φ2
j

{
2

∑
e∈γ0j

f (e)
∑

b∈γ0,e�

f (b) + ∑
e∈γ0j

f (e)2

}

= 2
∑
e

f (e)
√

πe�
qe�er

∑
j : γ0j e

πj

φ2
j

√
πe�

qe�er

∑
b∈γ0,e�

f (b)

(4.1)
+ ∑

j

πj

φ2
j

∑
e∈γ0j

f (e)2
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≤ 2

(∑
e

πe�
qe�er f (e)2

)1/2(∑
e

[ ∑
j : γ0j e

πj

φ2
j

√
πe�

qe�er

∑
b∈γ0,e�

f (b)

]2)1/2

+ ∑
e

πe�
qe�er f (e)2 1

πe�
qe�er

∑
j : γ0j e

πj

φ2
j

.

Moreover,

∑
e

[ ∑
j,γ0je

πj

φ2
j

√
πe�

qe�er

∑
b∈γ0,e�

f (b)

]2

= ∑
e

[(√
πe�

φe�

∑
b∈γ0,e�

f (b)

)(
φe�

πe�

√
qe�,er

∑
j : γ0j e

πj

1

φ2
j

)]2

(4.2)

≤
{

sup
e

σ̃1(e)

}2 ∑
e

πe�

φ2
e�

( ∑
b∈γ0,e�

f (b)

)2

≤
{

sup
e

σ̃1(e)

}2

β · I.

Combining (4.1) with (4.2), we see that

I ≤ 2
{

sup
e

σ̃1(e)

}√
βD(f ) · I + D(f ) sup

e
σ̃2(e) =: 2C1

√
I · D(f ) + D(f )C2.

Next,

II = ∑
j

πj

(
fj − f0

φδ
j

)2

φ
2(q+δ−1)
j ≤ Ṽδ(f )

∑
j

πjφ
2(q+δ−1)
j .

In the particular case mentioned in Theorem 2.3(i), one may replace Ṽ1 by V1 on
the right-hand side since Ṽ1(f ) ≤ V1(f ). The remainder of the proof is almost
the same as that of Theorem 2.1, the only place which needs a slight change is
estimating Ṽδ instead of Vδ at the beginning of the proof for Theorem 2.1(ii). �

To prove Corollaries 2.4 and 2.5, recall that for a positive recurrent birth–death
process with birth rate bi > 0 (i ≥ 0) and death rate ai > 0 (i ≥ 1), the reversible
measure (πi) is πi = µi/µ, µ0 = 1, µi = b0b1 · · ·bi−1/a1a2 · · ·ai, i ≥ 1, where
µ = ∑

i µi .

LEMMA 4.1 ([3], Theorem 3.3). Let (uk) be a positive sequence on Z+
and set F(k) = ∑

j<k uj . Define ρ(m,n) = |F(m) − F(n)|. Then there exists a
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coupling operator �̃ (the classical Doeblin’s coupling, for instance) such that, for
all j > i ≥ 0,

�̃ρ(i, j) = bjuj − ajuj−1 − biui + aiui−1, u−1 := 1.(4.3)

PROOF OF COROLLARIES 2.4 AND 2.5. First, we prove V1(Ptf ) ≤ V1(f ).
By Lemma 4.1, we know that there exists coupling operator �̃ satisfying (4.3). By
the additional assumption in part (i) of the corollaries, we have �̃ρ(i, j) ≤ 0 for
all i, j ∈ E. Then applying part (A) of the proof of Theorem 2.1 gives the required
assertion.

The other assertions of Corollary 2.4 follow from Theorem 2.1. The first
assertion in Corollary 2.5(i) follows from the proof of Theorem 2.3. The other
assertions of Corollary 2.5 are direct consequence of Theorem 2.3. We omit the
details here. �

PROOF OF COROLLARY 2.6. To apply Corollary 2.5, take φn = nα ; then

πnφ
2(q−1)
n

πn+1φ
2(q−1)
n+1

= an+1

bn

(
1 − 1

n + 1

)2α(q−1)

=
(

1 + 1

n
n

(
an+1

bn

− 1
))(

1 − 1

n + 1

)2α(q−1)

.

By the Gauss test, we have
∑

n πnφ
2(q−1)
n < ∞ once lim infn→∞ n(an+1/bn −1)−

2α(q − 1) > 1, which is fulfilled for sufficiently small q − 1 > 0 by assumption.
Condition (c) of Corollary 2.5 holds. Next,∑

k≥n+1

πkk
−2α ≤ (n + 1)−2α

∑
k≥n+1

πk ≤ n−2α
∑

k≥n+1

πk.

Hence

θ1(n) = nα

√
bnπn

∑
k≥n+1

πkk
−2α ≤ 1√

bnnαπn

∑
k≥n+1

πk.

By assumption, we have supn θ1(n) < ∞ and so condition (a) of Corollary 2.5
holds. Moreover,

lim sup
n→∞

1

φn

√
bn

≤ sup
n

{∑
k≥n+1 πk√
bnn

απn

}
lim sup
m→∞

πm∑
k≥m+1 πk

< ∞.

By assumption, condition (b) of Corollary 2.5 also holds. The required conclusion
now follows from Corollary 2.5(i). �

PROOF OF THEOREM B. We have already proved that V1(Ptf ) ≤ V1(f ) in
the proof of Theorem 2.1.
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(a) Obviously,

D(f ) = ∑
k≥0

(fk+1 − fk)
2bkπk ≥

(
inf
i≥0

bi

) ∑
k≥0

(fk+1 − fk)
2πk.

(b) Let f ∈ L2(π). Then

∞∑
n=0

πn

{
n∑

k=0

|fk+1 − fk|
}2

≤ 2
∞∑

n=0

πn

∑
0≤j≤k≤n

|fj+1 − fj | |fk+1 − fk|

= 2
∞∑

n=0

n∑
k=0

k∑
j=0

= 2
∞∑

k=0

k∑
j=0

∞∑
n=k

= 2
∞∑

k=0

|fk+1 − fk|σkπk

k∑
j=0

|fj+1 − fj |

≤ 2

{ ∞∑
k=0

|fk+1 − fk|2σ 2
k πk

∞∑
k=0

(
k∑

j=0

|fj+1 − fj |
)2

πk

}1/2

.

That is,

∞∑
n=0

πn

{
n∑

k=0

|fk+1 − fk|
}2

≤ 4
∞∑

k=0

|fk+1 − fk|2σ 2
k πk.

On the other hand,

‖f − π(f )‖2 = 1
2

∞∑
j,k=0

πjπk(fk − fj )
2 ≤ ∑

0≤j<k

πjπk

{
k−1∑
i=j

(fi+1 − fi)

}2

≤
∞∑

k=1

πk

k−1∑
j=0

πj

{
k−1∑
i=j

(fi+1 − fi)

}2

≤
∞∑

k=0

πk

{
k∑

i=0

|fi+1 − fi |
}2

.

Collecting the above two inequalities together, it follows that

‖f − π(f )‖2 ≤ 4
∞∑

k=0

|fk+1 − fk|2σ 2
k πk.

(c) By Schwarz’s inequality, we get

‖f − π(f )‖2 ≤ 4

{ ∞∑
k=0

|fk+1 − fk|2πk

}1/p{ ∞∑
k=0

|fk+1 − fk|2σ 2q
k πk

}1/q

≤ CD(f )1/pV (f )1/q,

where C = 4(infi bi)
−1/p(supk σk/k)2{∑∞

k=0 u2
kk

2qπk}1/q < ∞ by assump-
tion. �
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PROOF OF THEOREM 2.7. Let V denote either Vδ or Ṽδ appearing in the
theorem. Because the Q̃-process has algebraic decay with respect to V , we have
for some constants p, q and C that

Varπ̃ (f ) ≤ CD̃(f )1/pV (f )1/q, f ∈ D(D̃).

Next, by the assumptions of the theorem, we have L2(π̃) ⊂ L2(π) and, moreover,

D(f )1/pV (f )1/q

Varπ (f )
= [1

2
∑

i,j πiqij (fj − fi)
2]1/pV (f )1/q

infc∈R

∑
i πi(fi − c)2

≥ infk 	=�{πkqk�/(π̃kq̃k�)}1/p

supk{πk/π̃k}
D̃(f )1/pV (f )1/q

Varπ̃ (f )
(4.4)

≥ infk 	=�{πkqk�/(π̃kq̃k�)}1/p

supk{πk/π̃k} C, f ∈ L2(π̃) ∩ D(D).

The proof will be complete once we remove “L2(π̃)” appearing at the end of (4.4).
To do so, let f ∈ D(D) and set fM = (−M) ∨ f ∧ M for constant M > 0. Then,
by [2], Lemma 6.47, we have fM ∈ D(D), ‖fM − f ‖ → 0 and D(fM) → D(f )

as M → ∞. Hence Varπ(fM) →Varπ (f ) as M → ∞. The assertion now follows
by replacing f with fM ∈ L2(π̃) ∩ D(D) in (4.4) and then letting M → ∞, since
V (fM) ≤ V (f ). �

5. Two examples. In this section, we examine two examples of irreducible
birth–death processes.

EXAMPLE 5.1. ai = bi = ir , i � 1.

EXAMPLE 5.2. ai = 1, bi = 1 − c/i, i � 1.

It is easy to check that the process of Example 5.1 (resp., Example 5.2) is
positive recurrent iff r > 1 (resp., c > 1). As was proved in [4], the first example
has L2-exponential convergence iff r ≥ 2. However, the second example is never
L2-exponentially convergent for any c.

PROPOSITION 5.3. With respect to V0, Example 5.1 (resp., 5.2) has algebraic
decay for all r ∈ (1,2) [resp., c ∈ (1,∞)].

PROOF. Simply take α = 1/2 and α = 2, respectively, for Examples 5.1
and 5.2 and then apply Corollary 2.6. �

For the remainder of this section, we study the region of algebraic convergence
with different V .
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PROPOSITION 5.4. With respect to V1 defined by (2.6) in terms of the
sequence un = (n + 1)−s for some s ∈ (0, r − 1], Example 5.1 with r > 1 has
algebraic decay iff r > 5/3.

PROOF. Clearly, we need only prove the assertion for r ∈ (1,2) since the
process has L2-exponential convergence for all r ≥ 2.

We should justify the power of the different results for this typical example.

The first proof of sufficiency. Use Corollary 2.5(i).
(i) Recall that un = (n + 1)−s , s > 0. We show that the upper bound s ≤ r −1

listed in Proposition 5.4 comes from the additional condition in Corollary 2.5(i).

bkuk − akuk−1 = kr

(
1

(k + 1)s
− 1

ks

)
= kr−s

[(
1 − 1

k + 1

)s

− 1
]
.

Let f (x) = xr−s[1 − (1 − 1
x+1)s], x ≥ 1. Then

f ′(x) = (r − s)xr−s−1
[
1 −

(
1 − 1

x + 1

)s]
− sxr−s

(
1 − 1

x + 1

)s−1 1

(1 + x)2
.

It is easy to prove that f ′(x) ≥ 0 if and only if r − s ≥ 1. So, when s ≤ r − 1, the
additional condition is satisfied with un = (n + 1)−s .

(ii) We prove that condition (a) of Corollary 2.5 is satisfied for all s ≤ r/2.
Since s < 1, we have φn = ∑n−1

k=0 uk = ∑n−1
k=0

1
(k+1)s

∼ n1−s . Then

θ1(k) ∼ k1−s

k−rkr/2

∞∑
n=k+1

n−r

n2−s
∼ 1

kr/2−s
.

So, when s ≤ r/2, we get (a).
(iii) Because φk

√
bk ∼ k1−skr/2 = k1−s+r/2, condition (b) follows for all s ≤

1 + r/2.
(iv) Because

∑
n πnφ

2q
n ∼ ∑

n n−rn2q(1−s), if 2q < (r − 1)/(1 − s) (s < 1),
then we have

∑
n πnφ

2q
n < ∞. Combining this with condition q > 1, we get

(r − 1)/(1 − s) > 2, that is, s > (3 − r)/2.

Because of (i)–(iv), the process has algebraic decay whenever (3 − r)/2 < s ≤
r − 1, namely r > 5/3. Choosing s = r − 1, we obtain q < (r − 1)/[2(2 − r)]. It
is clear that, when r → 2, q is allowed to tend to ∞.

The second proof of sufficiency. Use Corollary 2.4(i).
(i) It is proved above that bnun−anun−1 is nonincreasing whenever s ≤ r −1.

Set α = 1 − s > 0. Then 1 > α ≥ 2 − r .
(ii) Note that φij = ui +ui+1 +· · ·+uj−1 = (i + 1)−s +· · ·+ j−s , and hence

1

α

[
(j + 1)α − (i + 1)α

] =
∫ j+1

i+1

dx

x1−α
≥ φij ≥

∫ j

i

dx

x1−α
= 1

α
(jα − iα).
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Consider condition
∑

i,j πiπjφ
2q
ij = 2

∑
i<j πiπjφ

2q
ij < ∞. Choose i = 0. We

have ∑
j>0

πjφ
2q
0j < ∞ ⇐⇒ ∑

j>0

j−r jα·2q < ∞

⇐⇒ r − 2qα > 1

⇐⇒ r > 1 + 2α (since q > 1)

⇐⇒ α <
r − 1

2
.

Combining this with (i), we get r > 5/3. Then∑
i<j

πiπjφ
2q
ij ≤ ∑

i<j

πiπj [(j + 1)α − (i + 1)α]2q

≤ ∑
i

πi

∑
j≥1

πj(j + 1)2qα = ∑
j≥1

πj(j + 1)2qα.

The last sum is finite if and only if q < (r − 1)/(2α).
(iii) Now, we consider condition supe σ ′

2(e) < ∞. Let e = 〈k, k + 1〉. Then

σ ′
2(e) = sup

i≤k

∑
j≥k+1

πj

πkbkφ
2
ij

∼ sup
i≤k

∑
j≥k+1

πj

φ2
ij

= ∑
j≥k+1

πj

φ2
j

∼
∫ ∞
k+1

dx

xr[xα − kα]2
∼ −

∫ ∞
k+1

1

xr+α−1
d

(
1

xα − kα

)
= 1

(k + 1)r+α−1[(k + 1)α − kα] − (r + α − 1)

∫ ∞
k+1

dx

xr+α[xα − kα]
∼ 1

kr+α−1+α−1
+

∫ ∞
k+1

dx

xr+α+α−1
∼ k−r−2α+2.

Because r + 2α ≥ r + 4 − 2r = 4 − r ≥ 2, the last term is bounded.
(iv) Finally, consider condition supe σ ′

1(e) < ∞.

σ ′
1(e) = sup

i≤k−1

φik

πk

√
bk

∑
j≥k+1

πj

φ2
ij

∼ sup
i≤k−1

φik√
πk

∑
j≥k+1

πj

φ2
ij

.

On the other hand,

φik√
πk

∑
j≥k+1

πj

φ2
ij

≤ const · (k + 1)α − (i + 1)α

k−r/2

∑
j≥k+1

1

jr [jα − iα]2
.
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We now adopt the continuous approximation. Note that supk f (k)/g(k) ≤
supk f ′(k)/g′(k). For x ≤ k − 1, we get

(k + 1)α − (x + 1)α

k−r/2

∫ ∞
k+1

dy

yr(yα − xα)2

≤ 1

(−r/2)k−r/2+1

×
[
α(k + 1)α−1

∫ ∞
k+1

dy

yr(yα − xα)2
− (k + 1)α − (x + 1)α

(k + 1)r ((k + 1)α − xα)2

]
.

Note that

(k + 1)α − (x + 1)α

(k + 1)r((k + 1)α − xα)2
≤ 1

(k + 1)r [(k + 1)α − xα]
≤ 1

(k + 1)r [(k + 1)α − (k − 1)α] ∼ k−r−α+1

= k−r+s < ∞
and α(k + 1)α−1 ∫ ∞

k+1
dy

yr (yα−xα)2 ≤ k−r−α+2. When r < 2, we have k−r−α+2

k−r/2+1 =
k−r/2−α+1 < ∞ and so supe σ ′

1(e) < ∞. Because supe(σ
′
1(e) + σ ′

2(e)) < ∞ �⇒
supe(σ1(e) + σ2(e)) < ∞, by Corollary 2.4, the process has algebraic decay for
r > 5/3.

The third proof of sufficiency. Use Theorem B.
As in the first proof, take un = (n+1)1−r . In order for

∑∞
n=0 u2

nn
2qπn < ∞, we

need r > (2q + 3)/3 > 5/3. Namely, q < (3r − 3)/2. When r ∈ (5/3,2), we get
q ∈ (1, 3/2), which is obviously not good.

Proof of necessity. Finally, we prove that, when r ≤ 5/3, the process is not
algebraic-convergent with respect to the functional V1 given in the proposition.

Suppose that the process has algebraic decay when 1 < r ≤ 5/3 and the conver-
gence power is q − 1 > 0. Let ρn = ∑n−1

k=0 uk. We now apply Corollary 2.4(ii). Be-
cause bn = nr , ρn+1 − ρn = un = n−s and ρn ∼ n1−s , we have bn(ρn+1 − ρn)

2 =
nr−2s ∼ ρ

(r−2s)/(1−s)
n . Hence there exists a constant c such that bn(ρn+1 − ρn)

2 ≤
cρ

(r−2s)/(1−s)
n for all n. Moreover, (r − 2s)/(1 − s) < 2 since r < 2. Then, by

Corollary 2.4(ii), we have
∑

n πnρ
k
n < ∞ for all k < 2q −α(q −1) = (2−α)q +α,

where α = (r − 2s)/(1 − s). Because q > 1, we have
∑

n πnρ
k
n < ∞ for all k ≤ 2.

Since
∑

n πnρ
2
n ∼ ∑

n n−r+2(1−s) < ∞, this implies that −r +2(1− s) < −1. That
is, s > (3 − r)/2. Combining this with s < r − 1 gives us r > 5/3. �

PROPOSITION 5.5. With respect to V̄ defined in Theorem C, Example 5.2 with
c > 1 has algebraic decay iff c > 3.
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PROOF. First we use Theorem B to prove sufficiency.
Choose un ≡ 1. Then φij = ∣∣∑

k<j uk − ∑
k<i ui

∣∣ = |j − i| and V̄ =
supj 	=i(|fj − fi |/|j − i|)2, which is the same as V1 given in Theorem B.

Now we check the conditions in Theorem B. First, it is quite obvious that
conditions (i) and (ii) are satisfied when c > 0. Second, consider condition (iii):
supn σn/n < ∞. Fix n. Let c > 1 and xk = πk/πn, k ≥ n. Then xk+1/xk = bk =
1 − c/k < (1 −1/k)s = (1/k)s/[1/(k −1)]s for all s ∈ (1, c). Thus, xk = xk/xn ≤
(n − 1)s/(k − 1)s , k ≥ n. Therefore, we get

σn =
∞∑

k=n

xk ≤
∞∑

k=n

(
n − 1

k − 1

)s

≤ (n − 1)s
∫ ∞
n−1

dx

xs
= n − 1

s − 1
.

Hence supn σn/n ≤ 1/(s − 1) < ∞.
Finally, we check condition (iv). Apply the Kummer test to

∑
n n2qπn. Set

xn = n2qπn and yn = n. Then

yn

xn

xn+1
− yn+1 = n · n2q

(n + 1)2q(1 − c/n)
− (n + 1) ∼ (c − 2q − 1)n2q+1

n2q+1

= c − 2q + 1,

where “∼” comes from (n+ 1)2q+1 ∼ n2q+1 + (2q + 1)n2q +· · · . So
∑

n n2qπn is
finite whenever c > 2q + 1. That is, the process is algebraic-convergent whenever
c > 3.

Now we prove the process is not algebraic-convergent when c ≤ 3. Suppose
that the process has algebraic decay. Since supk bk ≤ 1 < ∞, by Theorem C
[or Corollary 2.4(ii)], we must have

∑
k kαπk < ∞ for all α < 2q . However, q > 1;

the conclusion should hold for α = 2, that is,
∑

k k2πk < ∞. We prove that this is
impossible when c ≤ 3. Let xn = n2πn and apply the Gauss test. We have

xn

xn+1
= n2

(n + 1)2(1 − c/n)
= 1 + c − 2

n
+ 1

n2

3(c − 1) + (3c − 1)/n + c/n2

(1 + 1/n)2(1 − c/n)

∼ 1 + c − 2

n
+ M

n2
.

So,
∑

n xn is finite if and only if c − 2 > 1 ⇐⇒ c > 3. �
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