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NONLINEAR FILTERING PROBLEM WITH CONTAMINATION1

By M. L. Kleptsina, R. Sh. Liptser2 and A. P. Serebrovski

Moscow State University of Railway Engineering, Tel Aviv University
and Institute for Information Transmission Sciences, Moscow

We give an approximation for optimal filtering estimates of a diffusion
type signal and its observation under contamination affecting their drifts.
The method of analysis is based on the averaging principle and convergence
in total variation for distributions of signal and observation.

1. Introduction: formulation of main result. There are only a few fil-
tering models for which the “filtering equation” obeys a closed form like the
Kalman or the Kushner–Zakai filters [8] and [17] (see also [16]). A lot of ef-
fort has therefore been put into developing approximation techniques for a
wide class of filtering models, having more complicated structure than those
for which Kalman’s or Kushner–Zakai’s filters are applicable. One approach
in this direction is to consider, instead of the original model, a model where
the underlying processes are replaced by simple ones that make it possible to
construct nearly optimal filters. In the present paper we will consider the fil-
tering problem for a continuous random process �Xε

t �Y
ε
t �t≥0 with Xε

t � Yε
t ∈ R,

where Xε
t represents an unobservable signal and Yε

t is the corresponding ob-
servation, and where ε ≤ ε◦ is a small parameter. Suppose the probabilistic
structure of �Xε

t �Y
ε
t �t≥0 is too complicated to find the optimal (in the mean

square sense) filtering estimate but as ε → 0 �Xε
t �Y

ε
t �t≥0 converges (in some

sense) to the limit �Xt�Yt�t≥0, which is also a continuous random process hav-
ing a simpler description than the prelimit one; for example, it is a Markov
diffusion process or, more specifically, a Gaussian diffusion. Assume some func-
tion of the signal u�Xε

t � has to be filtered by observations Yε
s� s ≤ t. Following

Kushner [9] and Kushner and Runggaldier [10], as a filtering estimate one can
take

πt�Yε� = E
[
u�Xt�	Ys� s ≤ t

]
Ys≡Yε

s

(1.1)

Such a choice of filtering estimate is warranted in [9] by the following argu-
ments. For both the continuous function u = u�x� and the functional πt�Y� =
E�u�Xt�	Ys� s ≤ t�Ys≡Ys

(Ys� s ≥ 0 is a continuous function),

lim
ε→0

E
(
u�Xε

t � − πt�Yε�)2 = E
(
u�Xt� − πt�Y�)2

�(1.2)
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at least for bounded u as in [9] or under uniform integrability conditions,
which allows one to expect that πt�Yε� is a nearly optimal filtering estimate.

The goal of this paper is to investigate asymptotic properties (with ε → 0) of
the filtering estimate πt�Yε� from the point of view of asymptotic optimality.
We compare πt�Yε� with the optimal (in the mean square sense) filtering
estimate πε

t �Yε� = E�u�Xε
t �	Yε

s� s ≤ t�, and so the following definition is
natural.

Definition. Any filtering estimate π̂ε
t (with supε≤ε◦ E�π̂ε

t �2 < ∞) for u�Xε
t �

(with supε≤ε◦ E�u�Xε
t ��2 < ∞) given observations Yε

s� s ≤ t is asymptotically
optimal in the mean square sense if

lim
ε→0

E
(
u�Xε

t � − π̂ε
t

)2 exists and is finite�

lim
ε→0

E
(
πε

t �Yε� − π̂ε
t

)2 = 0
(1.3)

or, equivalently,

lim
ε→0

E
(
u�Xε

t � − πε
t �Yε�)2 = lim

ε→0
E
(
u�Xε

t � − π̂ε
t

)2



Assume (1.2) for πt�Yε�. Then the asymptotic optimality for it, under
supε≤ε◦ E�π�Yε��2 < ∞, is equivalent to

lim
ε→0

E
(
u�Xε

t � − πε
t �Yε�)2 = E

(
u�Xt� − πt�Y�)2


(1.4)

In [9], it was mentioned that πt�Yε� is not necessarily asymptotically op-
timal in sense (1.4) although it might be asymptotically optimal in some re-
stricted class of filtering estimates. Also, an example of �Xε

t �Y
ε
t � is known

(see, e.g., [13]) for which there exists a nonoptimal (!) filtering estimate π̃ε
t

such that

lim
ε→0

E
(
u�Xε

t � − π̃ε
t

)2
< lim

ε→0
E
(
u�Xε

t � − πt�Yε�)2



It is clear that the problem of the asymptotic optimality of filtering esti-
mates is related to the convergence of the conditional expectation. This prob-
lem is effectively studied by Goggin from the theoretical [5] and filtering [4]
points of view, where conditions are given under which πε

t �Yε� converges in
law to πt�Y�:

πε
t �Yε� law→πt�Y�� ε → 0
(1.5)

To compare Kushner’s and Goggin’s results, consider the filtering problem
on a fixed time interval, say �0�T�. Let Qε

T and QT be the distributions of the
processes �Xε

t �Y
ε
t �t≤T and �Xt�Yt�t≤T, respectively. In [9], the validity of (1.2)

is proved by applying the weak convergence:

Qε
T

w→QT� ε → 0�(1.6)
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while in Goggin [5] it was shown that (1.6) does not necessarily imply (1.5);
furthermore (1.5) holds if, parallel to (1.6), a likelihood, involved in the Bayes
formula for πε�Yε�, converges in law to the corresponding likelihood from the
Bayes formula for π�Y�.

Thus, asymptotic optimality of the filtering estimate πt�Yε� requires a dif-
ferent type of convergence than (1.6). Here we use the convergence of Qε

T to
QT in the total variation norm:

lim
ε→0

		Qε
T − QT		 = 0(1.7)

and show that it implies (1.2), (1.4) and (1.5) as well.
To formulate the main result, introduce the uniform integrability condi-

tions: for any t ≤ T and for some δ > 0,

sup
ε≤ε0

E
∣∣u�Xε

t �
∣∣2+δ

< ∞�

E
∣∣u�Xt�

∣∣2+δ
< ∞�

sup
ε≤ε0

E
[
E
(	u�Xt�	2+δ

∣∣Ys� s ≤ t
)
	Y≡Yε

]
< ∞�

(1.8)

Theorem 1.1. Assume (1.7). Then for any measurable function u satisfying
(1.8), the filtering estimate πt�Yε�� t ≤ T, is asymptotically optimal in the
mean square sense and (1.2), (1.4) hold as well.

Let �Xε
t �Y

ε
t �t≤T and �Xt�Yt�t≤T be defined on the same probability space.

In this case, the distribution Q
ε

T of the process �Xt�Y
ε
t �t≤T is well defined.

Suppose (1.7) fails while

P − lim
ε→0

sup
t≤T

	Xε
t − Xt	 = 0
(1.9)

Theorem 1.2. Assume (1.9) and

lim
ε→0

		Qε

T − QT		 = 0
(1.10)

Then for any continuous function u satisfying (1.8), the filtering estimate
πt�Yε�� t ≤ T, is asymptotically optimal in the mean square sense and (1.2)
and (1.4) hold as well.

Corollary. Under the assumptions of Theorems 1
1 and 1
2� (1.5) holds.

Theorems 1.1 and 1.2 apply to two filtering models.

Model 1. The process �Xε
t �Y

ε
t �t≥0 is defined by Itô’s stochastic equations

with respect to independent Wiener processes �Wx
t �t≥0 and �Wy

t �t≥0:

dXε
t = a�Xε

t �Y
ε
t � ηt/ε�dt + dWx

t �

dYε
t = A�Xε

t �Y
ε
t � ηt/ε�dt + dW

y
t �

(1.11)



920 M. L. KLEPTSINA, R. SH. LIPTSER AND A. P. SEREBROVSKI

subject to the initial point �X0�Y0� which is a random vector independent of ε,
where ηt/ε is a contamination (random or deterministic), affecting drifts. The
functions a = a�x�y� z�, A = A�x�y� z� are continuous and Lipschitz continu-
ous in �x�y� uniformly in z and a�0� 0� z��A�0� 0� z� are bounded. In the case
in which �ηt�t≥0 is a random process, it is independent of �Wx

t �t≥0� �Wy
t �t≥0

and �X0�Y0�. The process �ηt�t≥0 is assumed to obey the following ergodic
properties: for any bounded and continuous function f and every t > 0 there
exists a constant cf, depending on f, such that

P − lim
ε→0

∫ t

0
f�ηs/ε�ds = tcf(1.12)

and

P − lim
ε→0

E
(
f�ηt/ε�

∣∣Xε
s�Y

ε
s� s ≤ t

) = cf
(1.13)

Model 2. The process �Xε
t �Y

ε
t �t≥0 is defined by Itô’s stochastic equations

similarly to (1.11):

dXε
t = a�Xε

t � ηt/ε�dt + dWx
t �

dYε
t = A�Xε

t �Y
ε
t �dt + dW

y
t �

(1.14)

subject to the initial point �X0�Y0�. The function a = a�x� z� is continuous
and Lipschitz continuous in x uniformly in z; a�0� z� is bounded. The function
A = A�x�y� is Lipschitz continuous. The process �ηt� satisfies only the ergodic
property (1.12).

For both models, the ergodic property (1.12) is inherited by �Xε
t �Y

ε
t � (see

[7] and also [3]): for each T > 0,

P − lim
ε→0

(
sup
t≤T

	Xε
t − Xt	 + sup

t≤T

	Yε
t − Yt	

)
= 0�(1.15)

where �Xt�Yt� is a Markovian diffusion defined by Itô’s equations. For
Model 1,

dXt = a�Xt�Yt�dt + dWx
t � dYt = A�Xt�Yt�dt + dW

y
t

and for Model 2,

dXt = a�Xt�dt + dWx
t � dYt = A�Xt�Yt�dt + dW

y
t �

subject to the same initial points X0 = X0 and Y0 = Y0, where for x�y ∈ R,

a�x�y� = P − lim
ε→0

∫ 1

0
a�x�y�ηs/ε�ds�

A�x�y� = P − lim
ε→0

∫ 1

0
A�x�y�ηs/ε�ds

(1.16)

and

a�x� = P − lim
ε→0

∫ 1

0
a�x�ηs/ε�ds
(1.17)

Theorems 1.1 and 1.2 imply Theorem 1.3.
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Theorem 1.3. Let �Xε
t �Y

ε
t �t≥0 be defined corresponding to Model 1 or 2.

Let u satisfy (1.8). In the case of Model 2, u is assumed to be continuous. Then
πt�Yε�� t ≥ 0, is an asymptotically optimal (in the mean square sense) filtering
estimate and (1.2), (1.4) and (1.5) hold as well.

It is clear that the ergodic property (1.12) holds for deterministic periodic
functions ηt, stationary processes, ergodic Markov processes, and so on, while
the ergodic property (1.13) is not trivial to verify. Nevertheless, we examine it
for a homogeneous Markov process ηt, having the unique invariant measure
µ such that its transition probability λy�t = λ�y� t� dz� converges in the total
variation norm to µ:

lim
t→∞

		λy� t − µ		 = 0 ∀ y ∈ R
(1.18)

Also in this case we have

a�x�y� =
∫

R
a�x�y� z�µ�dz��

A�x�y� =
∫

R
A�x�y� z�µ�dz��

a�x� =
∫

R
Ra�x� z�µ�dz�


We show in Section 5 that (1.18) implies (1.12) and (1.13) and give two
examples of Markov processes for which (1.18) takes place. Also in this section
an example is given which shows that if (1.13) fails then asymptotic optimality
for πt�Yε� fails too.

Proofs of Theorem 1.1 and 1.2 are given in Section 2. Investigation of Models
1 and 2 appears in Sections 3 and 4, respectively.

2. Proof of Theorems 1.1 and 1.2. The statements of Theorems 1.1 and
1.2 are derived from the following lemma.

Lemma 2.1. Under the assumptions of Theorem 1.1 and 1.2 for any t ≤ T,
we have the following:

lim
ε→0

∫ (
u�Xt� − πt�Y�)2

dQε
T =

∫ (
u�Xt� − πt�Y�)2

dQT�

lim inf
ε→0

∫ (
u�Xt� − πε

t �Y�)2
dQε

T ≥
∫ (

u�Xt� − πt�Y�)2
dQT


In fact, the first statement is nothing but (1.2). Therefore the asymptotic
optimality of πt�Yε� is equivalent to (1.4). On the other hand, since for any ε,
πε

t �Yε� is an optimal (in the mean square sense) filtering estimate we get∫ (
u�Xt� − πε

t �Y�)2
dQε

T ≤
∫ (

u�Xt� − πt�Y�)2
dQT
(2.1)

Thus, (1.4) is implied by the second statement of Lemma 2.1 and (2.1).
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Proof. We consider separately two cases: u is bounded function; u satisfies
(1.8).

Assume there exists a constant, say l, such that

	u	 ≤ l
(2.2)

Hence, bounded versions of the functionals πε
t �·�, πt�·� can be chosen (say,

	πε
t �·�	� 	πt�·�	 ≤ l).
Assume (1.7). Then∣∣∣∣∫ (

u�Xt� − πt�Y�)2
dQε

T −
∫ (

u�Xt� − πt�Y�)2
dQT

∣∣∣∣
≤ 4l2		Qε

T − QT		 → 0� ε → 0


Assume (1.9) and (1.10). Then by the triangle inequality∣∣∣∣∫ (
u�Xt� − πt�Y�)2

dQε
T −

∫ (
u�Xt� − πt�Y�)2

dQT

∣∣∣∣
≤

∣∣∣∣∫ (
u�Xt� − πt�Y�)2

dQε
T −

∫ (
u�Xt� − πt�Y�)2

dQ
ε

T

∣∣∣∣
+

∣∣∣∣∫ (
u�Xt� − πt�Y�)2

dQ
ε

T −
∫ (

u�Xt� − πt�Y�)2
dQT

∣∣∣∣

(2.3)

The last term on the right-hand side of (2.3) is bounded above by 4l2		Qε

T−QT		
and goes to zero as ε → 0 by virtue of (1.10). The second term is nothing
but 	E�u�Xε

t � − πt�Yε��2 − E�u�Xt − πt�Yε��2	. It can be bounded above by
4lE	u�Xε

t � − u�Xt�	. So it converges to zero as ε → 0 by virtue of (1.9) and
the continuity of the function u, which is required by Theorem 1.2.

Thus, the first statement of Lemma 2.1 is proved. Now we prove the second
statement. Write∫ (

u�Xt� − πε
t �Y�)2

dQε
T =

∫ (
u�Xt� − πε

t �Y�)2
dQT

+
∫ (

u�Xt� − πε
t �Y�)2

d�Qε
T − QT�


(2.4)

Since πt�Y� is the optimal (in the mean square sense) filtering estimate for
Xt given observations Ys� s ≤ t we get∫ (

u�Xt� − πε
t �Y�)2

dQT ≥
∫ (

u�Xt� − πt�Y�)2
dQT
(2.5)

Also it is clear that
∫ �u�Xt� − πε

t �Y��2d�Qε
T −QT� ≥ −4l2		Qε

T −QT		. Hence∫ (
u�Xt� − πε

t �Y�)2
dQε

T ≥
∫ (

u�Xt� − πt�Y�)2
dQT − 4l2		Qε

T − QT		

and so, under (1.7), the second statement holds.
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To check the second statement under (1.9) and (1.10) with a continuous
function u, write∫ (

u�Xt� − πε
t �Y�)2

dQε
T =

∫ (
u�Xt� − πε

t �Y�)2
dQT

+
∫ (

u�Xt� − πε
t �Y�)2

d�Qε
T − Q

ε

T�

+
∫ (

u�Xt� − πε
t �Y�)2

d�Qε

T − QT�


(2.6)

Due to (2.5), the first term on the right hand side of (2.6) is bounded below by∫ �u�Xt�−πt�Y��2 dQT; the second is equal to E�u�Xε
t �−πε

t �Yε��2−E�u�Xt�−
πε

t �Yε��2, and so it can be bounded below by −4lE	u�Xε
t � − u�Xt�	; the third

obeys the lower bound −4l2		Qε

T − QT		
 Hence,∫ (
u�Xt� − πε

t �Y�)2
dQε

T ≥
∫ (

u�Xt� − πt�Y�)2
dQT

− 4lE	u�Xε
t � − u�Xt�	 − 4l2		Qε

T − QT		

→
∫ (

u�Xt� − πt�Y�)2
dQT� ε → 0


Thus, for bounded functions u the lemma is proved.
Assume u is an unbounded function for which (1.8) holds. For n ≥ 1, put

un�x� = gn�u�x��, where

gn�x� =
{
x� 	x	 ≤ n�

n sign x� 	x	 > n


Also put π
ε�n
t �Yε� = E�un�Xε

t �	� Yε

t � and πn
t �Y� = E�un�Xt�	� Y

t �. By the
statements of the lemma proved above for bounded u we find, for every fixed n,

lim
ε→0

∫ [
un�Xt� − πn

t �Y�]2
dQε

T =
∫ [

un�Xt� − πn
t �Y�]2

dQT�

lim inf
ε→0

∫ [
un�Xt� − π

ε�n
t �Y�]2

dQε
T ≥

∫ [
un�Xt� − πn

t �Y�]2
dQT


(2.7)

Evidently, the statements of the lemma hold if

lim
n

lim sup
ε→0

E
[
u�Xε

t � − un�Xε
t �
]2 = 0�

lim
n

E
[
u�Xt� − un�Xt�

]2 = 0
(2.8)

and

lim
n

lim sup
ε→0

E
[
πt�Yε� − πn

t �Yε�]2 = 0�

lim
n

lim sup
ε→0

E
[
πε

t �Yε� − π
ε�n
t �Yε�]2 = 0


(2.9)
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An obvious estimate �u�x� −un�x��2 ≤ u2�x�I�	u�x�	 > n� ≤ �1/nδ�	u�x�	2+δ is
used for checking (2.8) and (2.9). Namely,

E
[
u�Xε

t � − un�Xε
t �
]2 ≤ 1

nδ
E	u�Xε

t �	2+δ�

E
[
u�Xt� − un�Xt�

]2 ≤ 1
nδ

E	u�Xt�	2+δ

and

E
[
πt�Yε� − πn

t �Yε�]2 = E
[
E
(
u�Xt� − un�Xt�

∣∣Ys� s ≤ t
)
Y≡Yε

]2

≤ 1
nδ

E
[
E
(
	u�Xt�	2+δ

∣∣∣Ys� s ≤ t
)

Y≡Yε

]
�

E
[
πε

t �Yε� − π
ε�n
t �Yε�]2 ≤ E

[
E
(
u�Xε

t � − un�Xε
t �
∣∣∣Yε

s� s ≤ t
)]2

≤ 1
nδ

E	u�Xε
t �	2+δ�

that is, (2.8) and (2.9) hold due to (1.8).

Proof of the Corollary. It is sufficient to show the convergence of the
characteristic functions

lim
ε→0

E exp�ivπε
t �Yε�� = E exp�ivπt�Y��� v ∈ R� i =

√
−1


To this end, we use the following estimate:∣∣E exp�ivπε
t �Yε�� − E exp�ivπt�Y��∣∣

≤ E
∣∣ exp�ivπε

t �Yε�� − exp�ivπt�Yε��∣∣
+ ∣∣E(

exp�ivπt�Yε�� − exp�ivπt�Y��)∣∣
(2.10)

and note that the first term on the right-hand side of (2.10) is bounded above by√
E�πε

t �Yε� − πt�Yε��2 while the second, under the assumptions of Theorem
1.1, by 		Qε

T−QT		 and, under the assumptions of Theorem 1.2, by 		Qε

T−QT		.

3. Model 1. It is sufficient to show that (1.12), (1.13) imply (1.7) for every
T > 0. Let �%�� �Fε = �� ε

t �t≥0�P� be a stochastic basis with the filtration
Fε generated by paths of �Xε

t �Y
ε
t �t≥0. Denote by aε

s�x�y� �Xε�Yε�� the Fε-
predictable projection of a�x�y�ηs/ε�. It is well known (see, e.g., [11] or [15])
that for each fixed s P-a.s.,

aε
s�x�y� �Xε�Yε�� = E

(
a�x�y�ηs/ε�	� ε

s

)
�

aε
s�Xε

s�Y
ε
s � �Xε�Yε�� = E

(
a�Xε

s�Y
ε
s� ηs/ε�	� ε

s

)



(3.1)

Condition (1.13) implies that for fixed s� x� y� as ε → 0, aε
s�x�y� �Xε�Yε��

converges in probability to a�x�y� defined in (1.16). Due to the assumptions
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on a�x�y� z�, for fixed x�y, a version of aε
s�x�y� �Xε�Yε�� uniformly bounded

in s ≤ T and ε ≤ ε◦ can be chosen. Thus the above convergence implies

P − lim
ε→0

∫ T

0

[
aε

s�x�y� �Xε�Yε�� − a�x�y�]2
ds = 0
(3.2)

Next we show that (3.2) remains true upon replacing x�y by Xε
s�Y

ε
s ; that is,

for each T > 0,

P − lim
ε→0

∫ T

0

[
aε

s�Xε
s�Y

ε
s � �Xε�Yε�� − a�Xε

s�Y
ε
s�
]2

ds = 0
(3.3)

Denote by �x� the greatest integer function and define the following random
processes: X

ε�n
t = Xε

�nt�/n and X
ε�n�m
t = �mX

ε�n
t �/m. Put Xε∗

T = supt≤T 	Xε
t 	.

In the same way define Y
ε�n
t , Y

ε�n�m
t , and Yε∗

T . We show that for every C > 0
and m�n ≥ 1 on the set �Xε� ∗

T + Y
ε� ∗
T ≤ C�,∫ T

0

[
aε

s�Xε�n�m
s �Yε�n�m

s � �Xε�Yε�� − a�Xε�n�m
s �Yε�n�m

s �]2
ds → 0(3.4)

in probability as ε → 0. The proof of (3.4) is based on the fact that the processes
X

ε�n�m
t and Y

ε�n�m
t on the set �Xε� ∗

T +Y
ε� ∗
T ≤ C� have a finite number of paths,

which is independent of ε, and so (3.4) holds if for any continuous functions
xs� ys� 0 ≤ s ≤ T and xn�m

s , yn�m
s , xm

j/n and ym
j/n defined similarly to X

ε�n�m
t ,

Y
ε�n�m
t , X

ε�m
j/n and Y

ε�m
j/n ,

P − lim
ε→0

∫ T

0

[
aε

s�xn�m
s � yn�m

s � �Xε�Yε�� − a�xn�m
s � yn�m

s �]2
ds = 0
(3.5)

In turn the validity of (3.5) follows from a chain of upper bounds:∫ T

0

[
aε

s�xn�m
s � yn�m

s � �Xε�Yε�� − a�xn�m
s � yn�m

s �]2
ds

≤
�nT�∑
j=1

∫ j/n

�j−1�/n

[
aε

s�xn�m
s � yn�m

s � �Xε�Yε�� − a�xn�m
s � yn�m

s �]2
ds

≤ 2
�nT�∑
j=1

∫ T

0

[
aε

s�xm
j/n� y

m
j/n� �Xε�Yε�� − a�xm

j/n� y
m
j/n�

]2
ds


For fixed n�m, each summand in the last sum converges to zero in probability
as ε → 0. Thus, (3.4) holds. Consequently (3.3) takes place if

lim
C→∞

lim sup
ε→0

P�Xε� ∗
T + Y

ε� ∗
T ≥ C� = 0(3.6)

and for every C > 0 on the set �Xε� ∗
T + Y

ε� ∗
T ≤ C�,∫ T

0

[
aε

s�Xε
s�Y

ε
s � �Xε�Yε�� − aε

s�Xε�n�m
s �Yε�n�m

s � �Xε�Yε��]2
ds → 0�

∫ T

0

[
a�Xε

s�Y
ε
s� − a�Xε�n�m

s �Yε�n�m
s �]2

ds → 0

(3.7)
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in probability as the limit limn�m lim supε→0 is taken. It is clear that (3.5)
is implied by (1.15). On the other hand, both functions aε

s�x�y� �Xε�Yε�� and
a�x�y� inherit the Lipschitz property in x�y with an absolute constant, which
implies (3.7) under

P − lim
n�m

lim sup
ε→0

sup
s≤T

(	Xε
s − Xε�n�m

s 	 + 	Yε
s − Yε�n�m

s 	) = 0


The last holds by virtue of (1.15) too.
Thus, the validity of (3.3) is proved. In the same way, for Aε

s�Xε
s�Y

ε
s �

�Xε�Yε�� = E�A�Xε
s�Y

ε
s� ηs/ε�	� ε

s � and A�x�y�, defined in (1.16), we obtain

P − lim
ε→0

∫ T

0

[
Aε

s�Xε
s�Y

ε
s � �Xε�Yε�� − A�Xε

s�Y
ε
s�
]2

ds = 0
(3.8)

For brevity of notation, hereafter aε
s and Aε

s will be used to designate
aε

s�Xε
s�Y

ε
s � �Xε�Yε�� and Aε

s�Xε
s�Y

ε
s � �Xε�Yε��, respectively. It is well known

(see, e.g., Theorem 7.12 in [14]) that

W̃
x� ε
t = Xε

t − X0 −
∫ t

0
aε

s ds� W̃
y� ε
t = Yε

t − Y0 −
∫ t

0
Aε

s ds(3.9)

are independent Wiener processes with respect to the filtration Fε; that is, the
process �Xε

t �Y
ε
t �t≥0 is defined by the past-dependent Itô equations

Xε
t = X0 +

∫ t

0
aε

s ds + W̃
x� ε
t �

Yε
t = X0 +

∫ t

0
Aε

s ds + W̃
y� ε
t 


(3.10)

Hence, by Theorems 7.19 and 7.20 in [14], for every T > 0 the measures Qε
T

and QT are equivalent to the distribution of a pair of independent Wiener
processes on the time interval �0�T�, having initial points X0 and Y0, re-
spectively. Thus, these measures are equivalent (Qε

T ∼ QT) and the density
dQT/dQε

T at a point “Xε�Yε” is given by the formula (see Theorems 7.19 and
7.20 in [14])

dQT

dQε
T

�Xε�Yε� = exp
(∫ T

0

{
�a�Xε

s�Y
ε
s� − aε

s�dXε
s

+
∫ T

0
�A�Xε

s�Y
ε
s� − Aε

s�dYε
s

}

− 1
2

∫ T

0

{��a�Xε
s�Y

ε
s��2 − �aε

s�2�}ds

− 1
2

∫ T

0

{��A�Xε
s�Y

ε
s��2 − �Aε

s�2�}ds

)



(3.11)
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Taking into account that Xε
t and Yε

t satisfy (3.10), one can rewrite (3.11) in
the form

dQT

dQε
T

�Xε�Yε� = exp
(
Mε

T − 1
2
�Mε�T

)
(3.12)

with a continuous martingale �Mε
t �t≤T and its predictable quadratic variation

��Mε�t�t≤T, where

Mε
T =

∫ T

0
�a�Xε

s�Y
ε
s� − aε

s�dW̃x� ε
s +

∫ T

0
�A�Xε

s�Y
ε
s� − Aε

s�dW̃y� ε
s

and where

�Mε�T =
∫ T

0

{�a�Xε
s�Y

ε
s� − aε

s�2 + �A�Xε
s�Y

ε
s� − Aε

s�2
}
ds


Due to (3.3) and (3.8), �Mε�T converges to zero in probability as ε → 0 and so,
by Problem 1.9.2 in [15], the same convergence holds for Mε

T. Consequently,
the density �dQT/dQε

T��Xε�Yε� converges to 1 in probability as ε → 0.
We show that (1.7) holds. Since 		Qε

T −QT		 = E	1 − �dQT/dQε
T��Xε�Yε�	,

(1.7) is implied by Scheffe’s theorem [1].

4. Model 2. Since (1.12) implies (1.15) and so (1.9) holds, it remains to
show that (1.12) implies (1.10) too. Corresponding to Model 2 the process
�Xt�Yt� is defined by the Itô equations

Xt = X0 +
∫ t

0
a�Xs�ds + Wx

t �

Yt = Y0 +
∫ t

0
A�Xs�Ys�ds + W

y
t �

(4.1)

where a�x� is defined in (1.17). By virtue of the independence of �Wy
t � and

�X0�Y0� �Xε
t �� �Xt�� �ηt��, without loss of generality, one can assume that

X0�Y0� �Xε
t �� �Xt�� �ηt� are defined on a probability space �%′�� ′�P′�, while

�Wy
t � is defined on its copy �%′′�� ′′�P′′� (notations E′ and E′′ will be used for

denoting expectations w.r.t. P′ and P′′, respectively). So, the processes �Yε
t �

and �Yt� are both defined on �%′ × %′′�� ′ ⊗ � ′′�P′ × P′′�:

Yε
s�ω′�ω′′� = Y0�ω′� +

∫ s

0
A�Xε

u�ω′��Yε
u�ω′�ω′′��du + Wy

s �ω′′��

Ys�ω′�ω′′� = Y0�ω′� +
∫ s

0
A�Xu�ω′��Yu�ω′�ω′′��du + Wy

s �ω′′�

(4.2)
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Now define a random process

Zε
t �ω�ω′� = exp

(∫ t

0

[
A�Xs�ω′��Yε

s�ω′�ω′′��

− A�Xε
s�ω′��Yε

s�ω′�ω′′��]dWy
s �ω′′�

− 1
2

∫ t

0

[
A�Xs�ω′��Yε

s�ω′�ω′′��

− A�Xε
s�ω′��Yε

s�ω′�ω′′��]2
ds

)
(4.3)

and show that for every T > 0,

�E′ × E′′�Zε
T�ω′�ω′′� = 1
(4.4)

For fixed ω′ and T, the distributions Rε
T�ω′�, R

ε

T�ω′� of the processes
�Yε

t �ω′�ω′′��, �Yt�ω′�ω′′�� on the time interval �0�T�, are equivalent to the
distribution of the Wiener process having initial point Y0�ω′� (see Theorem
7.7 in [14]). Therefore, these distributions are equivalent and obey the density

dR
ε

T

dRε
T

�ω′�Yε�ω′�ω′′�� = Zε
T�ω′�ω′′� ∀ ω′ ∈ %′�

which implies E′′Zε
T�ω′�ω′′� = 1� ω′ ∈ %′ and in turn (4.4).

Denote by � ε
T the σ-algebra generated by �ηt/ε�X

ε
t �Xt�Y

ε
t � t ≤ T�� and by

Pε
T the restriction of P′ × P′′ to � ε

T. Define a new probability measure P
ε

T by

dP
ε

T = Zε
T�ω′�ω′′�dPε

T
(4.5)

The structure of the density Zε
T�ω′�ω′′� implies the following properties for

the processes considered. All of them, defined on �%′�� ′�, have the same dis-
tributions with respect to both measures Pε

T and P
ε

T while the distribution of
�Yε

t �ω′�ω′′��0≤t≤T is changed. In fact, by Theorem 7.12 in [14],

W
ε

t �ω′�ω′′� =W
y
t �ω′′� −

∫ t

0
�A�Xs�ω′��Yε

s�ω′�ω′′��−A�Xε
s�ω′��Yε

s�ω′�ω′′���ds

is a Wiener process with respect to P
ε

T, which implies that the process
�Yε

t �ω′�ω′′��t≤T obeys a new representation with respect to P
ε

T:

Yε
t �ω′�ω′′� = Y0�ω′� +

∫ t

0
A�Xs�ω′��Yε

s�ω′�ω′′��du + W
ε

t �ω′�ω′′�


Comparing this Itô equation with the second equation from (4.2) for Yt�ω′�ω′′�,
one can conclude that the distribution of �Yε

t �ω′�ω′′��0≤t≤T with respect to
P

ε

T coincides with the distribution of �Yt�ω′�ω′′��0≤t≤T with respect to Pε
T


Therefore, repeating arguments from the proof of Theorem 7.1 in [14], we find
that QT ∼ Q

ε

T and

dQT

dQT

ε

(
X�Yε

) = �E′ × E′′�
(
Zε

T�ω′�ω′′�∣∣Xt�Y
ε
t � t ≤ T

)
P′ × P′′-a.s.(4.6)
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We show that (1.10) takes place. From (4.6) and Jensen’s inequality, it follows
that

		Qε

T − QT		
= �E′ × E′′�∣∣�E′ × E′′�(1 − Zε

T�ω′�ω′′�∣∣Xt�ω′��Yε
t �ω′�ω′′�� t ≤ T

)∣∣
≤ �E′ × E′′�∣∣1 − Zε

T�ω′�ω′′�∣∣

(4.7)

On the other hand, the representation for Zε
T�ω′�ω′′� can be rewritten in the

form

Zε
T�ω′�ω′′� = exp

(
Mε

T − 1
2�Mε�T

)
with a continuous martingale �Mε

t �t≤T and its predictable quadratic variation
��Mε�t�t≤T, where

Mε
T =

∫ T

0
�A�Xs�ω′��Yε

s�ω′�ω′′�� − A�Xε
s�ω′��Yε

s�ω′�ω′′���dWy
s �ω′′��

�Mε�T =
∫ T

0

[
A�Xs�Y

ε
s�ω′�ω′′�� − A�Xε

s�ω′��Yε
s�ω′�ω′′��]2

ds


Due to the Lipschitz property of A�x�y� and (1.9),

�Mε�T ≤ const. sup
s≤T

	Xs�ω′� − Xε
s�ω′�	 → 0

in probability as ε → 0, which implies the same convergence for Mε
T (see

Problem 1.9.2 in [15]). Hence, Zε
T�ω′�ω′′� → 1 in probability as ε → 0 and

so, by Scheffe’s theorem [1] the right-hand side of (4.7) converges to 0; that is,
(1.10) holds.

5. Markov process as contamination: examples. In this section, we
consider a Markov process �ηt� as a contamination, especially for Model 1.

Theorem 5.1. Let �ηt� be a Markov process with right-continuous paths
having limits from the left, satisfying (1.18). Then (1.12) and (1.13) hold.

Proof. Without loss of generality, one can assume that the initial point
η0 is fixed: η0 = y; and the function f�z� from (1.12) and (1.13) satisfies the
following conditions:

	f�z�	 ≤ 1�
∫

R
f�z�µ�dz� = 0
(5.1)

It is clear that, to check (1.12), it is sufficient to show that

lim
ε→0

E

(∫ t

0
f
(
ηs/ε

)
ds

)2

= 0
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By direct calculations we find

E

(∫ t

0
f�ηs/ε�ds

)2

= 2
∫ t

0

∫ s

0
E
[
E�f�ηs/ε�	ηs′/ε�f�ηs′/ε�

]
ds′ ds

≤ 2
∫ t

0

∫ s

0
E
∣∣∣E�f�ηs/ε�	ηs′/ε�f�ηs′/ε�

∣∣∣ds′ ds

= 2
∫ t

0

∫ s

0

∫
R

∣∣∣ ∫
R

f�z��λ�x� �s − s′�/ε� dz�f�x�
∣∣∣λ�y� s′/ε� dx�ds′ ds

= 2
∫ t

0

∫ s

0

∫
R

∣∣∣ ∫
R

f�z��λ�x� �s− s′�/ε� dz�−µ�dz��f�x�
∣∣∣λ�y� s′/ε� dx�ds′ ds

≤ 2
∫ t

0

∫ s

0

∫
R
		λx��s−s′�/ε − µ		λ�y� s′/ε� dx�ds′ ds

≤ 2
∫ t

0

∫ s

0

∫
R
		λx��s−s′�/ε − µ		µ�dx�ds′ ds + 4

∫ t

0

∫ s

0
		λy�s′/ε − µ		ds′ ds

→ 0� as ε → 0�
that is, (1.12) holds.

To check the validity (1.13), introduce the filtration �� η
t �t≥0, generated by

the paths of the process �ηt� and satisfying the general conditions. Also, letting

Nε
s = E

(
f�ηt/ε�	� η

s/ε

)
�(5.2)

introduce a square integrable martingale �Nε
s��

η
s/ε�s≤t, t ≤ T, and consider

the filtering problem for Nε
s� s ≤ t, given observations �Xε

s′� Yε
s′� s

′ ≤ s�. By
Theorem 8.5 in [14], we find (recall � ε

s = σ�Xε
s′� Yε

s′� s
′ ≤ s�)

E
[
Nε

t 	� ε
s

] = E
[
Nε

t 	� ε
0 �

+
∫ s

0
E
(
E
[
Nε

t 	� η
s′/ε

][
a�Xε

s′�Y
ε
s′� ηs′/ε� − aε

s′
]∣∣� ε

s′

)
dW̃

x� ε
s′

+
∫ s

0
E
(
E
[
Nε

t 	� η
s′/ε

][
A�Xε

s′�Y
ε
s′� ηs′/ε� − Aε

s′
]∣∣� ε

s′

)
dW̃

y� ε
s′ �

(5.3)

where aε
s ≡ aε

s�Xε
s�Y

ε
s � �Xε�Yε�� and Aε

s ≡ Aε
s�Xε

s�Y
ε
s � �Xε�Yε�� are defined

in Section 3. Since (1.13) is nothing but P − limε→0 E�Nε
t 	� ε

t � = 0, we show
that all terms on the right-hand side of (5.3) with s = t converge to zero in
probability as ε → 0. Due to the second property of the function f [see (5.1)],

E
[
Nε

t 	� ε
0

] = ∫
R

f�z�λ�y� t/ε� dz�

=
∫

R
f�z��λ�y� t/ε� dz� − µ�dz��

≤ 		λy� t/ε − µ		 → 0� as ε → 0
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For brevity of notation, use αε
s′ and W̃s′ for denoting any of a�Xε

s′�Y
ε
s′� ηs′/ε�−aε

s′

or A�Xε
s′�Y

ε
s� ηs′/ε�−Aε

s′ and Wiener processes W̃
x�ε
s′ or W̃

y�ε
s′ respectively. Then,

it remains to show that
∫ t

0 E�Nε
t 	� η

s′/ε�αε
s′ dW̃s′ converges to zero in probability

as ε → 0. The last, due to Problem 1.9.2 in [15], holds provided that

P − lim
ε→0

∫ t

0

{
E
(
E
[
Nε

t 	� η
s′/ε

]
αε

s′
∣∣� ε

s′

)}2
ds′ = 0
(5.4)

Under the assumptions on the functions a�x�y� z�, A�x�y� z�, the random
variable 	αε

s′ 	 is bounded above by the � ε
s′ -measurable random variable βε

s′ =
const. �1 + sups′′≤s′ 	Xε

s′′ 	 + sups′′≤s′ 	Yε
s′′ 	�. By virtue of (1.15), βε

s′ converges in
probability as ε → 0 to βs′ = const. �1+sups′′≤T 	Xs′′ 	+sups′′≤T 	Ys′′ 	�. Therefore,
instead of (5.4) it suffices to check

P − lim
ε→0

∫ t

0

{
E
(
E
[
Nε

t 	� η
s′/ε

]∣∣� ε
s′

)}2
ds′ = 0

or equivalently by virtue of the Markov property:

E
(
E
[
Nε

t 	� η
s′/ε

]∣∣� ε
s′

)
= E

[
Nε

t 	� η
s′/ε

]
= E

[
Nε

t 	ηs′/ε
]

= E
[
f�ηt/ε�	ηs′/ε

]
�

to check only

lim
ε→0

E
∫ t

0

{
E
[
f�ηt/ε�

∣∣ηs′/ε
]}2

ds′ = 0
(5.5)

On the other hand, due to (5.1) and the Markovian property of the process
�ηt�, we get

E
[
f�ηt/ε�

∣∣ηs′/ε
] = ∫

R
f�z�λη�t−s′ �/ε� s′/ε�dz�

=
∫

R
f�z��λη�t−s′ �/ε� s′/ε�dz� − µ�dz��

≤ 		λη�t−s′ �/ε� s′/ε − µ		
and so

E
∫ t

0

{
E
[
f�ηt/ε�	ηs′/ε

]}2
ds′ ≤

∫ t

0

∫
R
		λz� �t−s′�/ε − µ		2λy� s′/ε�dz�ds′

≤ 2
∫ t

0

∫
R
		λz� �t−s′�/ε − µ		µ�dz�ds′

+ 4
∫ t

0
		λy� s′/ε − µ		ds′

→ 0 as ε → 0�
that is, (5.5) holds.

Now we give two examples of ergodic Markov processes for which the as-
sumptions of Theorem 5.1 hold.
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Example 1. Let ηt be a diffusion Markov process defined by Itô’s equation
(with respect to the Wiener process W

η
t ):

dηt = a�ηt�dt + b�ηt�dW
η
t �

where the drift a�z� and the diffusion parameter b�z� are assumed to be contin-
uously differentiable, having bounded derivatives, and to satisfy the following
conditions: there exist constants l and L such that

0 < l ≤ b2�z� ≤ L� lim inf
	z	→∞

a�z�sign z < 0
(5.6)

It is well known that the transition probability λ�y� t� dz� of �ηt� obeys a
density p�y� t� z� (with respect to Lebesgue measure dz) being a solution of
the forward Fokker–Planck–Kolmogorov equation

∂p�y� t� z�
∂t

= � 4p�y� t� z��(5.7)

where

� 4�·� = − ∂

∂z
�a�z��·�� + 1

2
∂2

∂z2
�b2�z��·��

(for references for existence of the unique solution of (5.7), see [12]). Under as-
sumptions (5.6) the invariant measure µ�dz� exists and obeys a density m�z�
(with respect to dz) which is a solution of an ordinary differential equation
� 4m�z� = 0. It is well known (see Chapter 4, Section 9, Lemma 9.5; Chap-
ter 3, Section 8, Example 2 from [6]) that the solution of Cauchy’s problem for
the partial differential equation (5.7) is stabilized in the sense that for every
fixed y� z we have limt→∞ p�y� t� z� = m�z�. Then, taking into account that∫

R p�y� t� z�dz = 1,
∫

Rm�z�dz = 1, by virtue of Scheffe’s theorem [1],

lim
t→∞

∫
R
	p�y� t� z� − m�z�	dz = 0�

which is nothing but (1.18).

Example 2. Let the homogeneous Markov process ηt take values in the
finite space �α1� 
 
 
 � αN� with η0 = aj. Denote by � its matrix of the transi-
tion intensities, and by pj�t� = �p1� j�t�� 
 
 
 � pN�j�t�� the vector of transition
probabilities: pi�j�t� is the transition probability from αj to αi over time t.
The vector pj�t� is defined by the Fokker–Planck–Kolmogorov equation

dpj�t�
dt

= pj�t�� �(5.8)

subject to pj�0� being the vector with zero components, excepting the compo-
nent indexed by j which is one. Assume that 0 is a simple eigenvalue of the
matrix � 
 Then there exists a unique invariant distribution, p = �p1� 
 
 
 � pN�
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satisfying p� = 0. Due to the uniqueness of the invariant distribution we have
limt→∞ pj�t� = p� j = 1� 
 
 
 �N, which implies (1.18) since

		λy� t − µ		 =
N∑

j=1

	pj�t� − p	


Also we give an example which shows that if condition (1.13) fails then the
asymptotic optimality for Model 1 fails too.

Example 3. Take a deterministic contamination, say ηt = sin�t�, and put

dXε
t = dWx

t �

dYε
t = sin�t/ε�Xε

t dt + dW
y
t �

subject to X0 = 0� Y0 = 0. Evidently assumption (1.13) fails. In contrast,
(1.12) remains true: limt→∞

1
t

∫ t
0 sin�s�ds = 0 and so (1.15) holds with

dXt = dWx
t and dYt = dW

y
t �

which implies πt�Yε� ≡ 0. Hence E�Xε
t − πt�Yε��2 ≡ t. On the other hand,

πε
t �Yε�, defined by the Kalman filter, has the mean square error Pε�t� =

E�Xε
t − πε

t �Yε��2, which is given by the Riccati equation

Ṗε�t� = 1 − sin2�t/ε��Pε�t��2�t��
subject to Pε�0�=0. Due to the Bogolubov averaging principle [2], limε→0 Pε�t�
= P◦�t�, where P◦�t� is a solution of Riccati’s differential equation

Ṗ◦�t� = 1 − c2�P◦�t��2�t��
subject to P◦�0� = 0, where c2 = limε→0

∫ 1
0 sin2�s/ε�ds = 1

2 
 Evidently, for any
t > 0, P◦�t� < t; that is, the asymptotic optimality for the filtering estimate
πt�Yε� is lost.
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