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The recent increasing interplay between actuarial and financial mathe-
matics has led to a surge in risk theoretic modeling. Especially actuarial ruin
models under fairly general conditions on the underlying risk process have
become a focus of attention. Motivated by applications such as the modeling
of operational risk losses in financial risk management, we investigate the
stability of classical asymptotic ruin estimates when claims are heavy, and
this under variability of the claim intensity process. Various examples are
discussed.

1. Introduction. Over the recent years, we have seen an increasing interest in
the finer analysis of actuarial risk models. One of the main reasons is the growing
importance of integrated risk management (IRM) and the resulting stochastic
modeling of financial solvency; see, for instance, Doherty (2000), Briys and de
Varenne (2001) and Kaufmann, Gadmer and Klett (2001). One important class
of such models concerns ruin theory as it is known in the actuarial literature;
see Rolski, Schmidli, Teugels and Schmidt (1999) for a detailed overview of
risk theory in general, and Asmussen (2000) for an up-to-date account of ruin
theory. A further motivation for the results presented here stems from the area
of operational risk as, for instance, discussed in Crouhy, Mark and Galai (2000)
and Medova (2000). The loss process over the time period [0, t] will be denoted
by (Y (t), t ≥ 0). Typically, in insurance or for the modeling of operational risk
losses, Y (t) will have the form

Y (t) =
N(t)∑
k=1

Yk, t ≥ 0,

for some counting process (N(t), t ≥ 0) and claim process (Yk, k = 1,2, . . .).
Depending on the application, one could then think of some premium rate system
that compensates the expected losses; that is, we are looking at the process
(Y (t) − ct, t ≥ 0). For such a process, a risk capital uε can be defined as that
initial capital that associates a given, small probability ε to the event “over a given
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accounting period, Y (t) − ct will be larger than uε.” How does one estimate
such uε? How can one use classical ruin theoretic estimates assuming that the loss
intensity is random, only satisfying some very mild conditions? The results given
in this paper mainly address the latter question. We now make the mathematical
setup more precise.

Let (Y (t), t ≥ 0) be a general separable stochastic process, which, as, for
instance, in the insurance example above, we view as a claim process. That is,
for t ≥ 0 we view Y (t) as the total amount of claims received in the time interval
[0, t]. Let c > 0 be the premium rate. We assume that

P

(
lim

t→∞
(
Y (t) − ct

)= −∞
)

= 1.(1.1)

The ruin probability

ψ0(u) = P

(
sup
t≥0

(
Y (t) − ct

)
> u

)
(1.2)

and its modifications are the main objects of interest in risk theory; ψ0(u)

describes the likelihood of eventual ruin when the initial capital is u > 0. The
assumption (1.1) means that the ruin is not certain if the initial capital is large
enough. Most often this assumption is implied by the assumption that the long-run
claim intensity is smaller than the premium rate (positive loading). That is, for
some 0 < µ < c,

lim
t→∞

Y (t)

t
= µ a.s.(1.3)

In various applications one has to deal, for instance, with losses that occur in
a nonhomogeneous way over time. To understand the effect of this phenomenon
on the likelihood of ruin, we introduce a stochastic process (�(t), t ≥ 0), which is
a right-continuous nondecreasing stochastic process, satisfying �(0) = 0 almost
surely, defined on the same probability space as (Y (t), t ≥ 0). We view (�(t),

t ≥ 0) as a time change; if time runs faster, then losses occur faster as well.
We will assume that

lim
t→∞

�(t)

t
= 1 a.s.(1.4)

This assumption says that, in the long run, the clock given by �(t) runs at the same
speed as the natural clock. Clearly, any positive limit different from 1 in (1.4) can
be made to fit into our discussion by a suitable modification of the claim process.

Consider the modified ruin probability

ψ(u) = P

(
sup
t≥0

(
Y
(
�(t)

)− ct
)
> u

)
.(1.5)
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Certain assumptions will have to be imposed to make sure that ψ(u) → 0 as
u → ∞ and, hence, that the ruin is not certain in this modified situation.

An important question is: what is the effect of the time change � on the ruin
probability? Is the modified ruin probability ψ(u) asymptotically equivalent to the
original ruin probability ψ0(u)? Are the two of the same order as u goes to ∞? We
will see that the answers to these questions [as well as the actual behavior of ψ(u)

for large u if the answers to the preceding questions are negative] depend heavily
on certain mixing properties of the time change �. Specifically, how fast is the
convergence of �(t)/t in (1.4) to 1? We will see that if �(t)/t converges to 1
fast enough, then the effect of the time change on the ruin probability is negligible
for large values of initial capital u. On the other hand, if �(t)/t converges to 1
sufficiently slowly, then the modified ruin probability ψ(u) may be of a different
order of magnitude than ψ0(u).

In this article we deal with the so-called heavy-tailed case, which arises
when the claim process (Y (t), t ≥ 0) is heavy tailed. The literature on the ruin
probability in the heavy-tailed case is vast; see Embrechts, Klüppelberg and
Mikosch (1997) for a discussion of the situation with iid heavy-tailed claims,
as well as for numerous additional references, and Asmussen, Schmidli and
Schmidt (1999) and Mikosch and Samorodnitsky (2000a, b) for more complicated
heavy-tailed claim processes. For our purposes in this paper it is not particularly
important, most of the time, what kind of a heavy-tailed claim process we are
dealing with, and our main assumption of heavy-tailedness is in terms of the ruin
probability itself. Specifically, we will assume that

ψ0(u) ∈ Reg(−β) as u → ∞(1.6)

for some β ≥ 0, where Reg(−β) is the collection of all functions of the type
f (u) = u−βL(u), with L slowly varying at ∞.

2. Fast and slow mixing of the time change. One way to measure how fast
the average clock rate �(t)/t converges to its limit is by studying the probability

gε(u) = P

(∣∣∣∣�(t)

t
− 1

∣∣∣∣> ε for some t > u

)
(2.1)

as u → ∞ for fixed ε > 0. The main point of our first result, Theorem 2.1, is that if
gε(u) is of a smaller order than the original ruin probability ψ0(u), then the effect
of the change is negligible. To state the result precisely, we need to introduce some
new notation. For ε ∈ R let

ψ0,ε(u) = P

(
sup
t≥0

(
Y (t) − cεt

)
> u

)
;(2.2)

clearly, ψ0,1(u) = ψ0(u). We assume that

lim
ε↓1

lim sup
u→∞

ψ0(u)

ψ0,ε(u)
= lim

ε↑1
lim inf
u→∞

ψ0(u)

ψ0,ε(u)
= 1.(2.3)
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We also need to assume that ruin does not happen too soon. Specifically, assume
that

lim
δ↓0

lim sup
u→∞

P (sup0≤t≤δu(Y (t) − ct) > u)

ψ0(u)
= 0.(2.4)

Conditions (2.3) and (2.4) turn out to hold in virtually all examples of interest
when the ruin probability ψ0(u) is regularly varying. See the following examples.

THEOREM 2.1. Assume that (2.3) and (2.4) hold. Under the assumption of
heavy tails (1.6), assume that, for every ε > 0 and δ > 0,

lim
u→∞

gε(δu)

ψ0(u)
= 0.(2.5)

Assume, further, either that � is continuous on a set of probability 1, or that, for
some a ≥ 0, on a set of probability 1,

the process
{
Y (t) + at, t ≥ 0

}
is eventually nondecreasing.(2.6)

Then

lim
u→∞

ψ(u)

ψ0(u)
= 1.(2.7)

PROOF. For t ≥ 0 let

�−1(t) := inf
{
s ≥ 0 : �(s) ≥ t

}
.

It is elementary to check that (2.5) implies that, for every ε > 0 and δ > 0,

lim
u→∞

P (|�−1(t)/t − 1| > ε for some t > δu)

ψ0(u)
= 0.(2.8)

Suppose first that � is continuous on a set of probability 1. Then, for every δ > 0
and ε > 0,

ψ(u) ≥ P

(
sup
t≥δu

(
Y (t) − c�−1(t)

)
> u

)

≥ P

(
sup
t≥δu

(
Y (t)− c(1 + ε)t

)
> u

)
−P

(
�−1(t) > (1 + ε)t for some t > δu

)
,

and, hence, using (2.8), we conclude that

lim inf
u→∞

ψ(u)

ψ0(u)
≥ lim inf

u→∞
P (supt≥δu(Y (t) − c(1 + ε)t) > u)

ψ0(u)
.

On the other hand,

P

(
sup
t≥δu

(
Y (t) − c(1 + ε)t

)
> u

)
≥ ψ0,1+ε(u) − P

(
sup

0≤t≤δu

(
Y (t) − ct

)
> u

)
,
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and so, by (2.4),

lim inf
u→∞

ψ(u)

ψ0(u)
≥ lim inf

u→∞
ψ0,1+ε(u)

ψ0(u)
.

Letting ε ↓ 0 and using (2.3), we see that

lim inf
u→∞

ψ(u)

ψ0(u)
≥ 1.(2.9)

On the other hand, suppose that (2.6) holds. Write, for δ > 0 and 0 < ε < 1,

ψ(u) ≥ P

(
sup
t≥δu

((
Y
(
�(t)

)+ a�(t)
)− a�(t) − ct

)
> u

)

≥ P

(
sup
t≥δu

(
Y
(
(1 − ε)t

)+ a(1 − ε)t − a(1 + ε)t − ct
)

> u

)

− P

(∣∣∣∣�(t)

t
− 1

∣∣∣∣> ε for some t > u

)

= P

(
sup

t≥(1−ε)δu

(
Y (t) − c + 2εa

1 − ε
t

)
> u

)
− gε(δu),

and using once again (2.8) and (2.4), we conclude that, for every ε > 0,

lim inf
u→∞

ψ(u)

ψ0(u)
≥ lim inf

u→∞
ψ0,(1+2εac−1)/(1−ε)(u)

ψ0(u)
,

and, letting once again ε ↓ 0 and using (2.3), we see that (2.9) still holds.
In the other direction, for every δ > 0,

ψ(u) ≤ P

(
sup
t≥0

(
Y (t) − c�−1(t)

)
> u

)

≤ P

(
sup

0≤t≤δu

(
Y (t) − c�−1(t)

)
> u

)
+ P

(
sup
t≥δu

(
Y (t) − c�−1(t)

)
> u

)
.

(2.10)

Observe that

P

(
sup

0≤t≤δu

(
Y (t) − c�−1(t)

)
> u

)
≤ P

(
sup

0≤t≤δu

Y (t) > u

)

≤ P

(
sup

0≤t≤δu

(
Y (t) − ct

)
> u(1 − δc)

)
,

and so, using (2.4) and regular variation of ψ0, we conclude that

lim
u→∞

P (sup0≤t≤δu(Y (t) − c�−1(t)) > u)

ψ0(u)
= 0.(2.11)
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On the other hand, for every ε ∈ (0,1),

P

(
sup
t≥δu

(
Y (t) − c�−1(t)

)
> u

)

≤ P

(
sup
t≥δu

(
Y (t) − c(1 − ε)t

)
> u

)
+ P

(
�−1(t) < (1 − ε)t for some t > δu

)
and, hence, using (2.8), we conclude that

lim sup
u→∞

ψ(u)

ψ0(u)
≤ lim sup

u→∞
ψ0,1−ε(u)

ψ0(u)
.

Letting ε ↓ 0 and using (2.3), we see that

lim sup
u→∞

ψ(u)

ψ0(u)
≤ 1.(2.12)

Finally, comparing the bounds (2.9) and (2.12), we obtain the statement of the
theorem. �

One may suspect that the assumption of continuity of the time change �

in Theorem 2.1 is superfluous and is only an artifact of our proof. In fact,
this assumption can be removed in a variety of situations; the alternative
assumption (2.6) provides a naturally occurring situation where this is possible.
However, Example 2.2 shows that Theorem 2.1 is, in general, false without the
assumption of continuity of the time change �. We also note that the asymptotic
upper bound on the ruin probability ψ(u) in Theorem 2.1 does not require the
continuity assumption.

EXAMPLE 2.2. Let X > 0 be a random variable such that P (X > u) ∈
Reg(−β) as u → ∞ for some β > 0. Define

Y (t) =



0, for 0 ≤ t < X,
2X, for X ≤ t < X + 1,
0, for t ≥ X + 1.

Let c = 1. Then

ψ0(u) = P (2X − X > u) = P (X > u) ∈ Reg(−β)

as u → ∞, while, for ε ∈ (0,2),

ψ0,ε(u) = P (2X − εX > u) = P
(
X > (2 − ε)−1u

)
,

and so (2.3) holds. Moreover, for every 0 < δ < 1,

P

(
sup

0≤t≤δu

(
Y (t) − ct

)
> u

)
≤ P (X ≤ δu, X > u) = 0,

and so (2.4) holds as well.
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Define

�(t) =
{

t, for 0 ≤ t < X,
t + 1, for t ≥ X.

Obviously, (1.4) holds. Moreover, for every ε > 0,

gε(u) ≤ P

(
1

t
> ε for some t ≥ max(X,u)

)
≤ P

(
1

u
> ε

)
= 0

for all u large enough. Therefore, (2.5) holds as well. However, Y (�(t)) = 0 for
all t , so that ψ(u) = 0 for all u > 0 and (2.7) fails.

Roughly speaking, Theorem 2.1 shows that if the rate of “mixing” of the time
change � is fast enough, meaning that �(t)/t is not “very far” from 1, measured
with respect to the original ruin probability ψ0, then the ruin probability is not
much affected by the time change. The next result can be viewed as a counterpart
of this statement: if the time change “mixes” slowly enough, once again, in
the context of the original ruin probability, then the ruin probability is affected
significantly by the time change. Of course, technical conditions are required in
both cases. The speed of mixing in the latter result is measured differently than in
the former result, and the way we measure it turns out to be naturally related to the
ruin probability after the time change.

Assume the positive loading condition (1.3) and define

ψ1(u) = P

(
sup
t≥0

(
µ�(t) − ct

)
> u

)
.(2.13)

One can view ψ1 as a version of the ruin probability ψ in which the stream of the
claims (Y (�(t)), t ≥ 0) is replaced by its long-run average stream (µt, t ≥ 0).
Let us introduce the ε-modification of ψ1. Let

ψ1,ε(u) = P

(
sup
t≥0

(
µε�(t) − ct

)
> u

)
.(2.14)

Assume that

lim
ε↓1

lim inf
u→∞

ψ1(u)

ψ1,ε(u)
= lim

ε↑1
lim sup
u→∞

ψ1(u)

ψ1,ε(u)
= 1.(2.15)

We also assume that, for every ε > µ/c,

lim sup
u→∞

ψ0,ε(u)

ψ0(u)
< ∞.(2.16)

As before, conditions (2.15) and (2.16) turn out to hold in virtually all cases when
the ruin probabilities we are dealing with are regularly varying. See the following
examples.

We define

hε(u) = P

((
Y (t)

t
− µ

)
< −ε for some t > u

)
.(2.17)
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THEOREM 2.3. Assume that (2.15) and (2.16) hold. Assume, further, either
that the processes (Y (t), t ≥ 0) and (�(t), t ≥ 0) are independent or that, for any
ε > 0 and δ > 0,

lim
u→∞

hε(δu)

ψ1(u)
= 0.(2.18)

If

lim
u→∞

ψ0(u)

ψ1(u)
= 0,(2.19)

then

lim
u→∞

ψ(u)

ψ1(u)
= 1.(2.20)

PROOF. Define, for 0 < ε < 1,

Tε,u = inf
{
t ≥ 0 : µε�(t) − ct > u

}
.

It is clear that Tε,u → ∞ with probability 1 as u → ∞. We have

ψ(u) ≥ P

(
Tε,u < ∞, Y (s) − εµs ≥ 0 for all s ≥ u

εµ

)
.(2.21)

If (Y (t), t ≥ 0) and (�(t), t ≥ 0) are independent, then it follows from (2.21) that

ψ(u) ≥ ψ1,ε(u)
(
1 − h(1−ε)µ

(
u/(εµ)

))
,

and we conclude by (1.3) that

lim inf
u→∞

ψ(u)

ψ1,ε(u)
≥ 1.

Letting ε → 1 and using (2.15), we conclude that

lim inf
u→∞

ψ(u)

ψ1(u)
≥ 1.(2.22)

On the other hand, it also follows from (2.21) that

ψ(u) ≥ ψ1,ε(u) − h(1−ε)µ

(
u/(εµ)

)
,

and now (2.22) follows as before, using (2.18) (instead of independence)
and (2.15).
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In the other direction, for ε > 1 we obtain, from (2.21),

ψ(u) ≤ P

(
sup
t≥0

(
µε�(t) − ct

)
> u

)

+ P

(
sup
t≥0

(
Y
(
�(t)

)− ct
)
> u, µε�(t) − ct ≤ u for all t ≥ 0

)

≤ ψ1,ε(u) + P

(
sup
t≥0

(
Y
(
�(t)

)− ε1/2µ�(t)
)
>

(
1 − 1

ε1/3

)
u

)

≤ ψ1,ε(u) + ψ0,ε1/2µc−1

((
1 − 1

ε1/3

)
u

)
.

(2.23)

To check the second inequality above, note the simple fact that, for ε > 1,
A,B,u > 0, the inequality εA ≤ B+u implies the inequality B ≥ ε1/2A−ε−1/3u.
Hence, if for some t > 0 we have Y (�(t)) − ct > u and µε�(t) − ct ≤ u, then,
denoting A = µ�(t) and B = ct , we see that

u + ct = u + B ≥ u + ε1/2A − ε−1/3u = ε1/2µ�(t) + u

(
1 − 1

ε1/3

)
.

Using (2.16) and (2.19), we see that, for all ε > 1,

lim sup
u→∞

ψ(u)

ψ1,ε(u)
≤ 1.

Finally, letting ε ↓ 1, we conclude that

lim sup
u→∞

ψ(u)

ψ1(u)
≤ 1,

which, together with (2.22), completes the proof of the theorem. �

EXAMPLE 2.4. For 0 < H < 1 let {WH(t), t ≥ 0} be fractional Brownian
motion with parameter H—the H -self-similar Gaussian process with stationary
increments; see, for example, Samorodnitsky and Taqqu (1994). Define, for
a σ > 0,

�(t) = t + σ sup
0≤x≤t

|WH(x)|, t ≥ 0.(2.24)

This time change is continuous on a set of probability 1, and (1.4) holds. Moreover,
this time change mixes very fast. Indeed, we have, for ε > 0 by the H -self-
similarity of WH ,

gε(u) = P

(∣∣∣∣�(t)

t
− 1

∣∣∣∣> ε for some t > u

)

= P

(
sup

0≤x≤t

|WH(x)| >
ε

σ
tu1−H for some t > 1

)

≤ P

(
sup

0≤x≤1
|WH(x)| >

ε

σ
u1−H

)
+ P

(
sup
x≥1

|WH(x)|
x

>
ε

σ
u1−H

)
.
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However, both {WH(t), 0 ≤ t ≤ 1} and {WH(t)/t, t ≥ 1} are bounded Gaussian
processes. Hence, for some C1, C2 > 0,

gε(u) ≤ C1 exp
{
− ε2

2C2σ 2
u2(1−H)

}

[see Adler (1990)] and so (2.5) holds for every δ > 0 under the assumption (1.6) of
heavy tails. This fast mixing of WH is somewhat surprising for H > 1/2 because
the increments of fractional Brownian motion are long range dependent in that
range of H . See, for example, Beran (1994).

EXAMPLE 2.5. Let

Y (t) = Y0(t) + µt, t ≥ 0,(2.25)

where (Y0(t), t ≥ 0) is an H -self-similar symmetric α-stable (SαS) process with
stationary increments with 0 < H < 1 and 1 < α < 2. We refer the reader to
Samorodnitsky and Taqqu (1994) for more details on both α-stable processes, their
representations discussed below and self-similarity. We assume that (Y0(t), t ≥ 0)

can be represented in the form

Y0(t) =
∫
S
ft (x)M(dx), t ≥ 0,(2.26)

where (S,S) is a measurable space, M an SαS random measure on this space with
control measure m and ft ∈ Lα(m) for all t ≥ 0, such that∫

S
sup
t≥0

∣∣∣∣ft (x)

1 + t

∣∣∣∣
α

m(dx) < ∞.(2.27)

It is known that (2.26) with (2.27) holds for all H -self-similar SαS process
with stationary increments with 1 < α < 2 if 1/α < H < 1, whereas, in the case
0 < H ≤ 1/α, (2.26) with (2.27) is an assumption that holds in some cases and
does not hold in other cases; see Section 12.4 in Samorodnitsky and Taqqu (1994).

Observe that, by the self-similarity of Y0,

ψ0(u) = P

(
sup
t≥0

Y0(t)

1 + (c − µ)t
> u1−H

)
∼ CαKu−α(1−H)

as u → ∞, where Cα is a finite positive constant that depends only on α and

K =
∫
S

sup
t≥0

∣∣∣∣ ft (x)

1 + (c − µ)t

∣∣∣∣
α

m(dx),

and so (1.6) holds. Similarly, for all ε > µ/c,

ψ0,ε(u) ∼ CαKεu
−α(1−H)
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as u → ∞, with

Kε =
∫
S

sup
t≥0

∣∣∣∣ ft (x)

1 + (εc − µ)t

∣∣∣∣
α

m(dx),

demonstrating that (2.3) holds as well. Furthermore, for any δ > 0,

P

(
sup

0≤t≤δu

(
Y (t) − ct

)
> u

)
= P

(
sup

0≤t≤δ

Y0(t)

1 + (c − µ)t
> u1−H

)

∼ Cαk(δ)u−α(1−H),

where

k(δ) =
∫
S

sup
0≤t≤δ

∣∣∣∣ ft(x)

1 + (c − µ)t

∣∣∣∣
α

m(dx).

Since k(δ) → 0 as δ → 0, the assumption (2.4) holds.
No nondegenerate processes Y of this kind will satisfy (2.6) so in order to apply

Theorem 2.1 one will have to assume continuity of the time change � as, say, in
Example 2.4.

EXAMPLE 2.6. Let Y be as in (2.25), but this time (Y0(t), t ≥ 0) is a zero
mean Lévy process with Lévy measure ρ. We assume that

ρ
(
(u,∞)

) ∈ Reg(−α) as u → ∞(2.28)

for some α > 1, and that, for some C > 0,

ρ
(
(−∞, u])≤ Cρ

(
(u,∞)

)
(2.29)

for all u ≥ 1. It follows from Theorem 5.3 in Braverman, Mikosch and Samorod-
nitsky (2000) that, for all ε > µ/c,

ψ0,ε(u) ∼ Kεuρ
(
(u,∞)

)
as u → ∞, where

Kε = 1

(α − 1)(εc − µ)
.

Therefore, (1.6) holds with β = α − 1, and (2.3) holds as well. On the other hand,
for all δ > 0,

P

(
sup

0≤t≤δu

(
Y (t) − ct

)
> u

)
≤ P

(
sup

0≤t≤δu

Y0(t) > u

)

≤ P

( 	u
∑
j=1

sup
(j−1)δ≤t≤jδ

(
Y0(t) − Y0

(
(j − 1)δ

)
> u

))
.
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Here 	a
 is the smallest integer greater than or equal to a. Since

P

(
sup

0≤t≤δ

Y0(t) > u

)
∼ δρ

(
(u,∞)

)
as u → ∞ [see, e.g., Embrechts, Goldie and Veraverbeke (1979)], we can then
apply the usual large-deviation results [see, e.g., Nagaev (1979)] to see that

P

( 	u
∑
j=1

sup
(j−1)δ≤t≤jδ

(
Y0(t) − Y0

(
(j − 1)δ

)
> u

))

∼ uP

(
sup

0≤t≤δ

Y0(t) > u

)
∼ δuρ

(
(u,∞)

)
as u → ∞. Therefore, the assumption (2.4) holds.

3. Mixing of Markov chain switching models. A very important and widely
used class of stochastic models in almost every area of application is that of
Markov switching (Markov modulated, Markov renewal) models. We refer the
reader to Çinlar (1975) for a general theory of such models. In the context of
insurance, it is natural to consider a class of time change processes � in which
time runs at different rates in different time intervals, depending on the state of
a certain Markov chain, and the Markov chain stays in each state a random amount
of time, with a distribution that depends on the state. It turns out that this class
of models is very flexible and mixing in this class of models can be either fast or
slow. The speed of mixing in this class of models is our subject in this section.

Here is the formal setup. Let (Zn, n ≥ 0) be an irreducible Markov chain with
a finite state space {1, . . . ,K}, transition matrix P and stationary probabilities
π1, . . . , πK . Let Fj , j = 1, . . . ,K , be probability distributions on (0,∞). Note
that Fj is the law of the holding time the system spends in state j , whose mean µj

is assumed to be finite for j = 1, . . . ,K . We denote µ =∑K
j=1 µjπj .

Let (H
(j)
i , i ≥ 1), j = 1, . . . ,K , be K independent sequences of iid random

variables such that H
(j)
i has the distribution Fj and describes the length of the

ith sojourn in state j . Transitions from state to state are governed by the transition
matrix P , and, given the present state of the Markov chain, its next state is
independent of the sojourn times sequences.

Let r1, r2, . . . , rK be nonnegative numbers such that∑K
j=1 rjµjπj∑K
j=1 µjπj

= 1.(3.1)

We define the time change � to be an absolutely continuous process with

�(0) = 0,
d�

dt
(t) = rj if at time t the Markov chain is in state j .(3.2)
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Clearly, a complete definition of the time change � requires a specification of
the initial distribution p1, . . . , pK of the Markov chain. This initial distribution,
however, has no effect on the speed of mixing of the time change.

A simple renewal argument shows that (3.1) guarantees (1.4). It is our goal to
show how the holding time distributions Fj , j = 1, . . . ,K , and the parameters of
the Markov chain affect the rate at which the average clock �(t)/t converges to 1.

Our main assumption is that of heavy-tailed holding times. Specifically, we
assume that there is a distribution F on (0,∞) such that

F(x)∈ Reg(−γ ) as x →∞ and lim
x→∞

Fj (x)

F(x)
= θj for j =1, . . . ,K(3.3)

for some γ > 1 and some θ1, . . . , θK ∈ [0,∞), not all of which are equal to 0.
Let ε > 0. The following theorem addresses the rate of decay of the probabil-

ity gε(u) in (2.1) as u → ∞. We mention that ideas similar to those we use in
the proof of this theorem can also be used to obtain the asymptotic behavior of
various other probabilities related to the time change process �, for example, the
probabilities ψ1(u) and ψ1,ε(u) in (2.13) and (2.14). We put some of the auxiliary
statements as lemmas at the end of this section.

THEOREM 3.1. Let ε > 0 be such that {j = 1, . . . ,K : |rj − 1| = ε} = ∅ and
let

J+(ε) = {
j = 1, . . . ,K : rj > 1 + ε

}
,

J−(ε) = {
j = 1, . . . ,K : rj < 1 − ε

}
.

(3.4)

Then

lim
u→∞

gε(u)

uF(u)
= 1

εγ µ

[ ∑
j∈J+(ε)

θjπj (rj − 1 − ε)(rj − 1)γ−1

+ ∑
j∈J−(ε)

θjπj (1 − rj − ε)(1 − rj )
γ−1

]
.

(3.5)

REMARK 3.2. If θj > 0 for at least one j such that rj �= 1, then it follows
immediately from Theorem 3.1 that gε(u) is regularly varying with exponent γ −1
as u → ∞ for all ε > 0 small enough.

REMARK 3.3. The conclusion of the theorem is independent of the initial
state or, indeed, of the initial distribution of the underlying Markov chain. Where
it is convenient, we will denote in the following proof by j0 the initial state of the
Markov chain and assume it to be nonrandom. In most cases we will not use the
explicit notation Pj0 , Ej0 ; the initial state will be kept implicit in most cases.
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REMARK 3.4. The proof of Theorem 3.1 is fairly technical. Its idea is,
however, very simple. Under the assumption (3.3) of heavy tails, the event
{|�(t)/t − 1| > ε for some t > u}, if it occurs for a large u, is caused, most likely,
by a single long holding time, either with a state j ∈ J+(ε) or with j ∈ J−(ε).
The reader can easily realize what is happening by checking two possibilities: the
long holding time can end either before time u or after time u. In both cases one
figures out just how long this long holding time has to be by pretending that before
the start of the long holding time and its end all the random quantities are about
equal to their averages. The technical details in the proof are required to justify the
above statements. We provide most of the details, but try to avoid duplication of
the argument.

PROOF OF THEOREM 3.1. Denote

E+
ε (u) =

{
�(t)

t
− 1 > ε for some t > u

}

and

E−
ε (u) =

{
�(t)

t
− 1 < −ε for some t > u

}

and let, for τ > 0 small enough (we will specify just how small τ has to be later),

Bτ (u) =
{
for at most one pair (i, j) ∈ {1,2, . . .} × {1, . . . ,K}, H

(j)
i > (u + i)τ

}
⊃ (

Bτ (u) ∩ B(ε,+)
τ (u)

)∪ (Bτ(u) ∩ B(ε,−)
τ (u)

)
,

where

B(ε,+)
τ (u) =

{
for exactly one pair (i, j) ∈ {1,2, . . .} × J+(ε), H

(j)
i > (u+)τ

}
and

B(ε,−)
τ (u) =

{
for exactly one pair (i, j) ∈ {1,2, . . .} × J−(ε), H

(j)
i > (u+)τ

}
.

We will show first that

lim inf
u→∞

P (E+
ε (u) ∩ Bτ (u) ∩ B

(ε,+)
τ (u))

uF(u)

≥ 1

εγ µ

∑
j∈J+(ε)

θjπj (rj − 1 − ε)(rj − 1)γ−1
(3.6)

and that

lim inf
u→∞

P (E−
ε (u) ∩ Bτ (u) ∩ B

(ε,−)
τ (u))

uF(u)

≥ 1

εγ µ

∑
j∈J−(ε)

θjπj (1 − rj − ε)(1 − rj )
γ−1.

(3.7)



RUIN PROBLEM AND MIXING 15

Since the sets Bτ(u)∩B
(ε,+)
τ (u) and Bτ (u)∩B

(ε,−)
τ (u) are disjoint, this will imply

that

lim inf
u→∞

gε(u)

uF(u)
≥ 1

εγ µ

[ ∑
j∈J+(ε)

θjπj (rj − 1 − ε)(rj − 1)γ−1

+ ∑
j∈J−(ε)

θjπj (1 − rj − ε)(1 − rj )
γ−1

]
.

Note also that the statements (3.6) and (3.7) are of the same nature, and so we
really need to prove only one of the two. We choose to prove (3.6), and this is what
we proceed to do now.

For j = 1, . . . ,K and i = 1,2, . . . , let T
(j)
i be the starting time of the ith sojourn

in state j of the underlying process. For j ∈ J+(ε) and i = 1,2, . . . , consider the
events

E
(1)
ε,τ,i,j (u) =

{
T

(j)
i + H

(j)
i ≥ u, rjH

(j)
i + �

(
T

(j)
i

)
>
(
T

(j)
i + H

(j)
i

)
(1 + ε), H

(j)
i > (u + i)τ

}(3.8)

and

E
(2)
ε,τ,i,j (u) =

{
T

(j)
i + H

(j)
i < u, rjH

(j)
i + �

(
T

(j)
i

)
+
(
�(u) − �

(
T

(j)
i + H

(j)
i

))
> (1 + ε)u, H

(j)
i > (u + i)τ

}
.

(3.9)

Notice that

E+
ε (u) ∩ Bτ(u) ∩ B(ε,+)

τ (u) ⊃
( ⋃

j∈J+(ε)

∞⋃
i=1

(
E

(1)
ε,τ,i,j (u) ∩ Bτ(u)

))

∪
( ⋃

j∈J+(ε)

∞⋃
i=1

(
E

(2)
ε,τ,i,j (u) ∩ Bτ (u)

))

:= E1,+
ε,τ (u) ∪ E2,+

ε,τ (u).

(3.10)

Note that all the events in the above unions are disjoint and, in particular, the events
E1,+

ε,τ (u) and E2,+
ε,τ (u) are disjoint.

We start by estimating the probability of the event E
(1)
ε,τ,i,j (u) ∩ Bτ (u). Assume

that θj > 0. For δ > 0 we have

P
(
E

(1)
ε,τ,i,j (u) ∩ Bτ (u)

)
≥ P

(
E

(1)
ε,τ,δ,i,j (u) ∩ Bτ (u)

)
,(3.11)
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where

E
(1)
ε,τ,δ,i,j (u) =

{
H

(j)
i > max

(
u− i

(
µ

πj

− δ

)
, i

ε(µ/πj ) + εδ + 2δ

rj − 1 − ε
, (u+ i)τ

)
,

i

(
µ

πj

− δ

)
≤ T

(j)
i ≤ i

(
µ

πj

+ δ

)
, �

(
T

(j)
i

)
> i

(
µ

πj

− δ

)}
,

j ∈ J+(ε), i = 1,2, . . . . We now estimate the probability in the right-hand side
of (3.11) in different ranges of i. Denote, for j ∈ J+(ε),

s+
j (ε) = ε

rj − 1 − ε
> 0(3.12)

and

D
+,ε
j (δ) = δ

(
2ε + 3 − rj

rj − 1 − ε

)
.(3.13)

We consider only δ > 0 so small that

(
1 + s+

j (ε)
) µ

πj

+ D
+,ε
j (δ) >

(
1 + 1

2
s+
j (ε)

)
µ

πj

> 0.

Let λ > 0 be a small positive number. The first range of i we consider is

λu ≤ i ≤
(

1

(µ/πj )(1 + s+
j (ε)) + D

+,ε
j (δ)

)
u.(3.14)

Notice that, for some τ1(ε) > 0, if 0 < τ < τ1(ε), then, in our range of i,

u − i

(
µ

πj

− δ

)
≥ max

(
i
ε(µ/πj ) + εδ + 2δ

rj − 1 − ε
, (u + i)τ

)
.

Therefore,

P
(
E

(1)
ε,τ,δ,i,j (u) ∩ Bτ(u)

)

≥ P

(
H

(j)
i > u − i

(
µ

πj

− δ

))

− P

(
T

(j)
i ≤ i

(
µ

πj

− δ

))
− P

(
�
(
T

(j)
i

)≤ i

(
µ

πj

− δ

))

− P

(
T

(j)
i > i

(
µ

πj

+ δ

)
, H

(j)
i > (u + i)τ

)

− P
({

H
(j)
i > (u + i)τ

}∩ (Bτ (u)
)c)

:= Fj

(
u − i

(
µ

πj

− δ

))
−

4∑
l=1

el,i,j (u).

(3.15)
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By Lemma 3.5 and (3.14), we have

el,i,j (u) ≤ C
(j)
1 e−C

(j)
2 i ≤ C

(j)
1 e−C

(j)
2 λu(3.16)

for l = 1,2. Now, by the ergodic theorem, for every j = 1, . . . ,K ,

T
(j)
i

i
→ µ

πj

a.s. as i → ∞.

Therefore, for all u large enough and, hence, i large enough,

e3,i,j (u) = P

(
T

(j)
i > i

(
µ

πj

+ δ

))
P
(
H

(j)
i > (u + i)τ

)

≤ δF

(
u − i

(
µ

πj

− δ

))
,

(3.17)

where we have used regular variation of F , which also shows that, for all u large
enough,

e4,i,j (u) ≤ P
(
H

(j)
i > (u + i)τ

) ∞∑
m=1

K∑
k=1

P
(
H(k)

m > (u + m)τ
)

≤ δF

(
u − i

(
µ

πj

− δ

))
.

(3.18)

We conclude by (3.16)–(3.18) that, for all u large enough and all i in the
range (3.14),

P
(
E

(1)
ε,τ,δ,i,j (u) ∩ Bτ(u)

)
≥ (θj − 5δ)F

(
u − i

(
µ

πj

− δ

))
.(3.19)

We next consider i in the range

i >

(
1

(µ/πj )(1 + s+
j (ε)) + D

+,ε
j (δ)

)
u.(3.20)

Notice that, for some τ2(ε) > 0, if 0 < τ < τ2(ε), then, in our range of i,

i
ε(µ/πj ) + εδ + 2δ

rj − 1 − ε
≥ max

(
u − i

(
µ

πj

− δ

)
, (u + i)τ

)
.

Therefore, we can write, as in (3.15),

P
(
E

(1)
ε,τ,δ,i,j (u) ∩ Bτ (u)

)
≥ Fj

(
i
ε(µ/πj ) + εδ + 2δ

rj − 1 − ε

)
−

4∑
l=1

el,i,j (u),

and the same argument as above shows that, for all u large enough and all i in the
range (3.20),

P
(
E

(1)
ε,τ,δ,i,j (u) ∩ Bτ (u)

)
≥ (θj − 5δ)F

(
i
ε(µ/πj ) + εδ + 2δ

rj − 1 − ε

)
.(3.21)
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We conclude that, for all u large enough,

P
(
E1,+

ε,τ (u)
)

≥ ∑
j∈J+(ε)

∑
i≥λu

P
(
E

(1)
ε,τ,i,j (u) ∩ Bτ (u)

)

≥ ∑
j∈J+(ε)

(θj −5δ)


 ∑

λu≤i≤u((µ/πj )(1+s
+
j (ε))+D

+,ε
j (δ))−1

F

(
u− i

(
µ

πj

−δ

))

+ ∑
i>u((µ/πj )(1+s+

j (ε))+D
+,ε
j (δ))−1

F

(
i
ε(µ/πj ) + εδ + 2δ

rj − 1 − ε

)
:= ∑

j∈J+(ε)

(θj − 5δ)
(
S1,j (u) + S2,j (u)

)
.

(3.22)

Notice that, for u large enough,

S1,j (u) ≥
∫ u(µ(1+s+

j (ε))π−1
j +D

+,ε
j (δ))−1−1

λu+2
F

(
u − x

(
µ

πj

− δ

))
dx

≥
(

µ

πj

− δ

)−1 ∫ u(1−λ(µ/πj−2δ))

u(1−(µ/πj−2δ)(µ(1+s+
j (ε))π−1

j +D
+,ε
j (δ))−1)

F (x) dx

∼
(

µ

πj

− δ

)−1 1

γ −1

[
u

(
1 −

(
µ

πj

− 2δ

)(
µ

πj

(
1 + s+

j (ε)
)+ D

+,ε
j (δ)

)−1)

× F

(
u

(
1 −

(
µ

πj

− 2δ

)

×
(

µ

πj

(
1 + s+

j (ε)
)+ D

+,ε
j (δ)

)−1))
(3.23)

− u

(
1 − λ

(
µ

πj

− 2δ

))
F

(
u

(
1 − λ

(
µ

πj

− 2δ

)))]

∼
(

µ

πj

− δ

)−1 1

γ − 1
uF(u)

×
[(

1 −
(

µ

πj

− 2δ

)(
µ

πj

(
1 + s+

j (ε)
)+ D

+,ε
j (δ)

)−1)−(γ−1)

−
(

1 − λ

(
µ

πj

− 2δ

))−(γ−1)
]
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as u → ∞, by the regular variation of F , where we used Karamata’s theorem [see,
e.g., Theorem 0.6 in Resnick (1987)]. Similarly, for u large enough,

S2,j (u) ≥
∫ ∞
u(µ(1+s+

j (ε))π−1
j +D

+,ε
j (δ))−1+2

F

(
x

ε(µ/πj ) + εδ + 2δ

rj − 1 − ε

)
dx

≥ rj − 1 − ε

ε(µ/πj ) + εδ + 2δ

×
∫ ∞
u(µ(1+s+

j (ε))π−1
j +D

+,ε
j (δ))−1(εµπ−1

j +εδ+3δ)(rj−1−ε)−1
F(x) dx

∼ rj − 1 − ε

ε(µ/πj ) + εδ + 2δ

1

γ − 1
u

(
µ

πj

(
1 + s+

j (ε)
)+ D

+,ε
j (δ)

)−1

× ε(µ/πj ) + εδ + 2δ

rj − 1 − ε

× F

(
u

(
µ

πj

(
1 + s+

j (ε)
)+ D

+,ε
j (δ)

)−1
ε(µ/πj ) + εδ + 2δ

rj − 1 − ε

)

∼ rj − 1 − ε

ε(µ/πj ) + εδ + 2δ

1

γ − 1
uF(u)

×
((

µ

πj

(
1 + s+

j (ε)
)+ D

+,ε
j (δ)

)−1
ε(µ/πj ) + εδ + 2δ

rj − 1 − ε

)−(γ−1)

(3.24)

as u → ∞, once again by the regular variation of F and Karamata’s theorem.
We conclude by (3.22)–(3.24) that, for all δ > 0 and λ > 0 small enough,

lim inf
u→∞

P (E1,+
ε,τ (u))

uF(u)

≥ 1

γ − 1

∑
j∈J+(ε)

(θj − 5δ)

×
{(

µ

πj

− δ

)−1[(
1 −

(
µ

πj

−2δ

)(
µ

πj

(
1 + s+

j (ε)
)+D

+,ε
j (δ)

)−1)−(γ−1)

−
(

1 − λ

(
µ

πj

− 2δ

))−(γ−1)]
+ rj − 1 − ε

ε(µ/πj ) + εδ + 2δ

×
((

µ

πj

(
1 + s+

j (ε)
)+ D

+,ε
j (δ)

)−1
ε(µ/πj ) + εδ + 2δ

rj − 1 − ε

)−(γ−1)}
.
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Letting δ → 0 and λ → 0, we conclude that

lim inf
u→∞

P (E1,+
ε,τ (u))

uF(u)
≥ 1

µ(γ − 1)

∑
j∈J+(ε)

θjπj

(( s+
j (ε)

1 + s+
j (ε)

)−γ

− 1
)
.(3.25)

Notice that (3.25) has been proved under the assumption that θj > 0 for every
j ∈ J+(ε), but it is entirely obvious that if θj = 0 for some j ∈ J+(ε) then (3.25)
still follows, with the sum on its right-hand side having appropriately fewer
nonzero terms.

We proceed with estimating, in a similar manner, the probability of E
(2)
ε,τ,i,j (u)

in (3.10). Concentrating on the event E
(2)
ε,τ,i,j (u) ∩ Bτ(u) for j ∈ J+(ε), we still

may and will assume that θj > 0. For δ > 0 we have, as before,

P
(
E

(2)
ε,τ,i,j (u) ∩ Bτ (u)

)
≥ P

(
E

(2)
ε,τ,δ,i,j (u) ∩ Bτ (u)

)
,(3.26)

where

E
(2)
ε,τ,δ,i,j (u) =

{
H

(j)
i ≤ u − i

(
µ

πj

+ 2δ

)
,

H
(j)
i > max

(
u

ε + δ

rj − 1 + δ
+ iD+

j (δ), (u + i)τ

)
,

T
(j)
i ≤ i

(
µ

πj

+ δ

)
, �

(
T

(j)
i

)
> i

(
µ

πj

− δ

)
,

�(u) − �
(
T

(j)
i + H

(j)
i

)
> (1 − δ)

(
u − T

(j)
i − H

(j)
i

)}
,

where

D+
j (δ) = δ

2 − δ − µ/πj

rj − 1 + δ
.(3.27)

Let once again λ > 0 be a small positive number. Consider i in the range

λu ≤ i ≤
(

rj − 1 − ε

(rj − 1 + δ)(µ/πj + 3δ + D+
j (δ))

)
u.(3.28)

As before, for some τ3(ε) > 0, if 0 < τ < τ3(ε), then, in our range of i,

u
ε + δ

rj − 1 + δ
+ iD+

j (δ) > (u + i)τ
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as long as δ > 0 is small enough. Therefore,

P
(
E

(2)
ε,τ,δ,i,j (u) ∩ Bτ(u)

)

≥ P

(
u

ε + δ

rj − 1 + δ
+ iD+

j (δ) < H
(j)
i ≤ u − i

(
µ

πj

+ 2δ

))

− P

(
T

(j)
i > i

(
µ

πj

+ δ

)
, H

(j)
i > (u + i)τ

)

− P

(
�
(
T

(j)
i

)≤ i

(
µ

πj

− δ

))

− P
(
�(u) − �

(
T

(j)
i + H

(j)
i

)≤ (1 − δ)
(
u − T

(j)
i − H

(j)
i

)
,

T
(j)
i + H

(j)
i ≤ u − iδ, H

(j)
i > (u + i)τ

)

:= Fj

(
u

ε + δ

rj − 1 + δ
+ iD+

j (δ)

)
− Fj

(
u − i

(
µ

πj

+ 2δ

))
−

3∑
l=1

el,i,j (u).

(3.29)

Notice that el,i,j (u) with l = 1,2 was handled in (3.16) and (3.17). Similarly, by
the strong Markov property,

e3,i,j (u) ≤ P
(
�(t) ≤ (1 − δ)t for some t > iδ

)
P
(
H

(j)
i > (u + i)τ

)
.(3.30)

By the ergodic theorem,

�(t)

t
→ 1 as t → ∞.

Therefore, the first term on the right-hand side in (3.30) goes to 0 as u → ∞
uniformly in i in the range (3.28). Using, once again, the regular variation of F ,
we conclude that, for all u large enough,

el,i,j (u) ≤ δuF(u) for l = 1,2,3(3.31)

for all i in the range (3.28) and j ∈ J+(ε). Letting

d = rj − 1 − ε

(rj − 1 + δ)(µ/πj + 3δ + D+
j (δ))

,

we have, therefore, for all u large enough,

P
(
E2,+

ε,τ (u)
)

≥ ∑
j∈J+(ε)

(
(θj − δ)

∑
λu≤i≤du

(
F

(
u

ε + δ

rj − 1 + δ
+ iD+

j (δ)

)

− F

(
u − i

(
µ

πj

+ 2δ

)))
− 3δuF(u)

)
(3.32)
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≥ ∑
j∈J+(ε)

(θj − δ)

( ∑
λu≤i≤du

F

(
u

ε + δ

rj − 1 + δ
+ iD+

j (δ)

)

− ∑
λu≤i≤du

F

(
u − i

(
µ

πj

+ 2δ

)))
− 3

∑
j∈J+(ε)

θj δuF(u)

:= ∑
j∈J+(ε)

(θj − δ)
(
S3,j (u) − S4,j (u)

)− 3
∑

j∈J+(ε)

θj δuF(u).

Clearly, if δ > 0 is small enough, then

S3,j (u) ≥ ((d − λ)u − 2
)
F

(
u

ε + δ1/2

rj − 1 + δ

)
(3.33)

for all u large enough. Observe, further, that as in (3.23) and (3.24), as u → ∞,

S4,j (u) ≤
∫ du+1

λu
F

(
u − x

(
µ

πj

+ 2δ

))
dx

∼
(

µ

πj

+2δ

)−1 1

γ −1

[
u

(
1 − d

(
µ

πj

+ 2δ

))
F

(
u

(
1 − d

(
µ

πj

+ 2δ

)))
(3.34)

− u

(
1 −λ

(
µ

πj

+2δ

))
F

(
u

(
1 − λ

(
µ

πj

+2δ

)))]
.

We conclude by (3.32)–(3.34) that, for all δ > 0 and λ > 0 small enough,

lim inf
u→∞

P (E2,+
ε,τ (u))

uF(u)

≥ ∑
j∈J+(ε)

(θj − δ)

[
(d − λ)

(
ε + δ1/2

rj − 1 + δ

)−γ

−
(

µ

πj

+ 2δ

)−1 1

γ − 1

((
1 − d

(
µ

πj

+ 2δ

))−(γ−1)

−
(

1 − λ

(
µ

πj

+ 2δ

))−(γ−1))]
− 3

∑
j∈J+(ε)

θj δ.

Letting δ → 0 and λ → 0, we conclude that

lim inf
u→∞

P (E2,+
ε,τ (u))

uF(u)
≥ 1

µ

∑
j∈J+(ε)

θjπj

[
1

1 + s+
j (ε)

( s+
j (ε)

1 + s+
j (ε)

)−γ

− 1

γ − 1

(( s+
j (ε)

1 + s+
j (ε)

)−(γ−1)

− 1
)]

.

(3.35)
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Now (3.6) follows from (3.10), (3.25) and (3.35). As mentioned above, this is
enough to establish the asymptotic lower bound in our statement.

We will prove now the corresponding asymptotic upper bound. We will actually
prove that

lim sup
u→∞

P (E+
ε (u))

uF(u)
≤ 1

εγ µ

∑
j∈J+(ε)

θjπj (rj − 1 − ε)(rj − 1)γ−1.(3.36)

Since the corresponding result for the event E−
ε (u) can be established in the same

way, this will be enough to finish the proof of the theorem.
For τ > 0 we define the event

Aτ(u) =
{
H

(j)
i ≤ τ (u + i) for all pairs (i, j) ∈ {1,2, . . .} × {1, . . . ,K}

}
.(3.37)

Our first goal is to check that, for all τ small enough,

lim
u→∞

P (E+
ε ∩ Aτ(u))

uF(u)
= 0.(3.38)

Observe that

E+
ε (u) = E(1)

ε (u) ∪ E(2)
ε (u),(3.39)

where

E(1)
ε (u) =

{
T

(j)
i + H

(j)
i ≥ u, rjH

(j)
i + �

(
T

(j)
i

)
>
(
T

(j)
i + H

(j)
i

)
(1 + ε)

for some (i, j) ∈ {1,2, . . .} × J+(ε)
}

and

E(2)
ε (u) =

{
T

(j)
i + H

(j)
i < u, rjH

(j)
i + �

(
T

(j)
i

)+ (�(u) − �
(
T

(j)
i + H

(j)
i

))
> (1 + ε)u for some (i, j) ∈ {1,2, . . .} × J+(ε)

}
.

Therefore, (3.38) will follow once we show that

lim
u→∞

P (E
(i)
ε ∩ Aτ(u))

uF(u)
= 0(3.40)

for i = 1,2. Since the arguments for i = 1 and i = 2 are very similar, we only
prove (3.40) for i = 1.

Let λ be a positive number satisfying(
1 + 1

λ

)
τ ≤ εµ

4
min

j=1,...,K

(
1

πj rj

)
,(3.41)

and write

E(1)
ε = E(11)

ε ∪ E(12)
ε ,(3.42)
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where

E(11)
ε (u) =

{
T

(j)
i + H

(j)
i ≥ u, rjH

(j)
i + �

(
T

(j)
i

)
>
(
T

(j)
i + H

(j)
i

)
(1 + ε)

for some i ≤ λu and j ∈ J+(ε)
}

and

E(12)
ε (u) =

{
T

(j)
i + H

(j)
i ≥ u, rjH

(j)
i + �

(
T

(j)
i

)
>
(
T

(j)
i + H

(j)
i

)
(1 + ε)

for some i > λu and j ∈ J+(ε)
}
.

Let us introduce some notation. For a state j let I
(j)
1 , I

(j)
1 , . . . be the times between

subsequent returns of the underlying Markov chain to state j . Similarly, let I
(j0,j )
1

be the time of the first visit to state j starting at the initial state j0. Note that

P
(
E(11)

ε ∩ Aτ(u)
)

≤ ∑
j∈J+(ε)

[
P
({

I
(j0,j )
1 ≥ 1

2u
(
1 − τ (1 + λ)

)}∩ Aτ(u)
)

+ ∑
i≤λu

P
({

I
(j)
1 + · · · + I

(j)
i−1 ≥ 1

2u
(
1 − τ (1 + λ)

)}∩ Aτ(u)
)]

.

(3.43)

Let N
(j)
1 ,N

(j)
1 , . . . be the numbers of steps it takes the underlying Markov

chain to return to state j and let N
(j0,j )
1 be the number of steps it takes the

underlying Markov chain to visit the state j starting at the initial state j0. Since the
Markov chain is finite and irreducible, the random variables N

(j)
1 and N

(j0,j )
1 have

exponentially decaying tails. Note, further, that, by Lemma 3.6, for every i ≤ λu,

P
({

I
(j)
1 + · · · + I

(j)
i−1 ≥ 1

2u
(
1 − τ (1 + λ)

)}∩ Aτ(u)
)

≤ P




N
(j)
1 +···+N

(j)
i−1∑

k=1

(
H ∗

k ∧ τ (1 + λ)u
)≥ 1

2u
(
1 − τ (1 + λ)

) ,

(3.44)

where H ∗
1 ,H ∗

2 , . . . are iid random variables independent of N
(j)
k , k ≥ 1, with

distribution F ∗ (described in that lemma). An exponential Markov inequality
immediately tells us that there is a θ1 > 0 such that, for all i ≤ λu,

P
(
N

(j)
1 + · · · + N

(j)
i−1 > 2λuEN

(j)
1

)
≤ e−θ1λu.(3.45)
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Furthermore,

P


 ∑

k≤2λuEN
(j)
1

(
H ∗

k ∧ τ (1 + λ)u
)≥ 1

2
u
(
1 − τ (1 + λ)

)



≤ P


 ∑

k≤2λuEN
(j)
1

((
H ∗

k ∧ τ (1 + λ)u
)− E

(
H ∗

k ∧ τ (1 + λ)u
))

>
u

8




(3.46)

as long as

λ ≤ 1

2EN
(j)
1

∧ 1 and τ ≤ 1

8
.

Applying Lemma 3.7 with c = τ (1+λ)u, we immediately conclude that, for some
θ2 > 0,

P


 ∑

k≤2λuEN
(j)
1

((
H ∗

k ∧ τ (1 + λ)u
)− E

(
H ∗

k ∧ τ (1 + λ)u
))

>
u

8




≤ θ2u
−1/8τ .

(3.47)

Bounding in a similar way the first term under the sum on the right-hand side
of (3.43), we immediately conclude from the above that, for all λ > 0 and τ > 0
small enough and such that (3.41) holds,

lim
u→∞

P (E
(11)
ε ∩ Aτ (u))

uF(u)
= 0.(3.48)

Before proceeding to treat P (E
(12)
ε ∩Aτ (u)), we note, for future use, that the same

argument as the one used above to establish (3.48) also shows the following. For
a fixed τ > 0, let

T∗ = inf
{
T

(j)
i : j = 1, . . . ,K, i = 1,2, . . . and H

(j)
i > τ(u + i)

}
.(3.49)

Then, for all τ > 0 small enough,

lim
u→∞

P (sup0≤t≤T∗(�(t) − (1 + ε)t) > u)

uF(u)
= 0.(3.50)
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We now switch to estimating P (E
(12)
ε ∩ Aτ(u)). Note that, for any λ > 0,

P
(
E(12)

ε ∩ Aτ(u)
)

≤ ∑
j∈J+(ε)

∑
i≥λu

P
({

T
(j)
i + H

(j)
i ≥ u, rjH

(j)
i + �

(
T

(j)
i

)

>
(
T

(j)
i + H

(j)
i

)
(1 + ε)

}
∩ Aτ(u)

)
:= ∑

j∈J+(ε)

∑
i≥λu

P
(
E

(3)
ε,i,j (u) ∩ Aτ(u)

)
.

(3.51)

Let G be the σ -field generated by the process (Zn, n ≥ 0), that is, by the sequence
of states the system goes through. Note that, for every j ∈ J+(ε) and i ≥ λu,

P
(
E

(3)
ε,i,j (u) ∩ Aτ(u)

)
≤ P

({
τ (rj − 1 − ε)(u + i) + �

(
T

(j)
i

)− (1 + ε)T
(j)
i > 0

}
∩ Aτ(u)

)
:= P

(
E

(3)
ε,i,j,τ (u)

)
= E

(
P
(
E

(3)
ε,i,j,τ (u)|G

))
.

(3.52)

For l, j = 1, . . . ,K and i ≥ 1, let Jl,j (i) be the number of visits to state l until the
ith visit to state j . Obviously, Jl,j (i) is measurable with respect to G for all l, j, i.
Notice that

E
(
Jl,j (2) − Jl,j (1)

)= πl

πj

,

and so, since the Markov chain is finite and irreducible, for any given ρ > 0 there
is θ3 > 0 such that

P

(∣∣∣∣Jl,j (i)

i
− πl

πj

∣∣∣∣> ρ

)
≤ θ3e

−i/θ3(3.53)

for all l, j = 1, . . . ,K and i ≥ 1.
For ρ > 0 so small that

K∑
l=1

µl

(
πl

πj

− ρ

)
(1 + ε − rl) ≥ εµ

2πj

(3.54)

for all j ∈ J+(ε), we let

Ai,j (ρ) =
{
w :

∣∣∣∣Jl,j (i)

i
− πl

πj

∣∣∣∣≤ ρ for all l = 1, . . . ,K

}
∈ G.

It follows from (3.53) that, for some θ3 = θ3(ρ) > 0,

P
(
E

(3)
ε,i,j,τ (u)

)
≤ θ3e

−i/θ3 + E
(
1
(
Ai,j (ρ)

)
P
(
E

(3)
ε,i,j,τ (u)|G)).(3.55)
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Denote

W
(j)
i =

(
�
(
T

(j)
i

)− (1 + ε)T
(j)
i

)
− E

(
�
(
T

(j)
i

)− (1 + ε)T
(j)
i

)

=
(
�
(
T

(j)
i

)− (1 + ε)T
(j)
i

)
−

K∑
l=1

µlJl,j (i)(rl − 1 − ε).

We then have

P
(
E

(3)
ε,i,j,τ (u)|G)= P

({
τ (rj − 1 − ε)(u + i) + W

(j)
i

>

K∑
l=1

µlJl,j (i)(1 + ε − rl)

}
∩ Aτ (u)

∣∣∣G
)

≤ P

({
W

(j)
i > i

εµ

4πj

}
∩ Aτ(u)

∣∣∣G)
(3.56)

by (3.54) and (3.41).
Let Sn be the sojourn time the system spends in the nth state it visits (i.e., in

state Zn); then the total increase of the time � during that sojourn is rZnSn. Then

W
(j)
i =

∑K
l=1 Jl,j (i)−1∑

n=0

Un,

where

Un = (
(rZn − 1 − ε)Sn

)− E
(
(rZn − 1 − ε)Sn

)
, n ≥ 1.

We conclude that

P

({
W

(j)
i > i

εµ

4πj

}
∩Aτ(u)

∣∣∣G)≤P



∑K

l=1 Jl,j (i)−1∑
n=0

Un1
(
Sn ≤ τ (u+n)

)
>i

εµ

4πj

∣∣∣G

 .

Denote

U∗
n = Un1

(
Sn ≤ τ (u + n)

)− E
(
Un1

(
Sn ≤ τ (u + n)

)|G), n ≥ 0,

and observe that

E
(
Un1

(
Sn ≤ τ (u + n)

)|G)→ 0

as u → 0 uniformly over ω ∈ Ai,j (ρ) and n ≥ 0. Furthermore, U∗
0 ,U∗

1 , . . . are,
conditionally on G, independent zero mean random variables, and for some
absolute constant C > 0, for all ω ∈ Ai,j (ρ) and n ≥ 0, |U∗

n | ≤ Cτ(u + n). For
all u large enough, all ω ∈ Ai,j (ρ) and all i ≥ λu, we then have

P

({
W

(j)
i > i

εµ

4πj

}
∩ Aτ (u)

∣∣∣G)≤ P



∑K

l=1 Jl,j (i)−1∑
n=0

U∗
n > i

εµ

8πj

∣∣∣G

 .(3.57)
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We are now in a position to apply Lemma 3.7 with c = Cτ(u + ∑K
l=1 Jl,j (i))

to conclude that there is a θ3 > 0 and τ0 > 0 such that, for all 0 < τ ≤ τ0, all
ω ∈ Ai,j (ρ), all i ≥ λu and all u > 0 large enough,

P

({
W

(j)
i > i

εµ

4πj

}
∩ Aτ(u)

∣∣∣G)≤ θ3i
−τ/θ3 .(3.58)

Therefore, we conclude by (3.51), (3.52), (3.55), (3.56) and (3.58) that, for all
λ > 0 and τ > 0 small enough,

lim
u→∞

P (E
(12)
ε ∩ Aτ(u))

uF(u)
= 0.(3.59)

Now the statement (3.40) with i = 1 follows from (3.48) and (3.59).
Next for τ > 0 define the event

Bτ (u) =
{
H

(j)
i > τ(u + i)

for at least two different pairs (i, j) ∈ {1,2, . . .} × {1, . . . ,K}
}
.

(3.60)

It is an immediate consequence of Lemma 3.8 that, for any τ > 0,

lim
u→∞

P (E+
ε (u) ∩ Bτ(u))

uF(u)
= 0.(3.61)

Therefore, it follows from (3.38) and (3.61) that to establish (3.36) it is enough to
prove that

lim
τ↓0

lim sup
u→∞

P (E+
ε (u) ∩ Cτ (u))

uF(u)

≤ 1

εγ µ

∑
j∈J+(ε)

θjπj (rj − 1 − ε)(rj − 1)γ−1,

(3.62)

where

Cτ (u) =
{
H

(j)
i > τ(u + i) for exactly one pair

(i, j) ∈ {1,2, . . .} × {1, . . . ,K}
}
.

(3.63)

To this end, let

C+
τ (u) =

{
H

(j)
i > τ(u + i) for exactly one pair

(i, j) ∈ {1,2, . . .} × {1, . . . ,K}, and the corresponding j ∈ J+(ε)
}

(3.64)

⊂ Cτ (u).
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We will first check that, for all τ > 0 small enough,

lim
u→∞

P (E+
ε (u) ∩ (Cτ (u) \ C+

τ (u)))

uF(u)
= 0.(3.65)

Let T∗, H∗ and r∗ be, correspondingly, the starting time, the length of the holding
time satisfying H

(j)
i > τ(u + i) and the corresponding rate rj ; see also (3.49).

Note that on the event Cτ (u) these are well-defined random variables. Moreover,
for some 0 < ε′ < ε, r∗ < 1 + ε′ on the event Cτ(u) \ C+

τ (u). Consider the events

S1(u) = {T∗ > u}, S2(u) =
{
T∗ + H∗ ≤ u

2

}
,

S3(u) =
{
T∗ ≤ u, T∗ + H∗ >

u

2

}
.

Notice that replacing any holding time H
(j)
i with j /∈ J+(ε) and such that T

(j)
i > u

by min(H
(j)
i , τ (u + i)) cannot take a realization in E+

ε (u) to the complement of
this event. Therefore, replacing H∗ with min(H∗, τ (u + i)), we can use the same
argument as that used in the proof of (3.48) to see that, for any τ > 0, δ1 > 0 and
δ2 > 0,

lim
u→∞

P (E+
ε (u) ∩ (Cτ (u) \ C+

τ (u)) ∩ S1(u))

uF(u)
= 0,(3.66)

and that same argument we used to prove (3.48) also gives us that

lim
u→∞

P (E+
ε (u) ∩ (Cτ (u) \ C+

τ (u)) ∩ S3(u))

uF(u)
= 0.(3.67)

Now, with 0 < ε′ < ε as above, write

P
(
E+

ε (u) ∩ (Cτ(u) \ C+
τ (u)

)∩ S2(u)
)

≤ P
(
E+

ε (u) ∩ (Cτ(u) \ C+
τ (u)

)∩ S2(u)

∩{�(T∗ + H∗) ≤ (1 + ε)(T∗ + H∗) + (ε − ε′)u
})

+ P
(
E+

ε (u) ∩ (Cτ (u) \ C+
τ (u)

)∩ S2(u)

∩{�(T∗ + H∗) > (1 + ε)(T∗ + H∗) + (ε − ε′)u
})

:= P
(
D1(u)

)+ P
(
D2(u)

)
.

Observe that, on the event D2(u), �(T∗)− (1 + ε)T∗ > (ε − ε′)u, and so it follows
from (3.50) that, for all τ > 0 small enough,

lim
u→∞

P (D2(u))

uF(u)
= 0.
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On the other hand, on the event D1(u), we have

sup
t≥u/2

(
�(t + T∗ + H∗) − �(T∗ + H∗) − (1 + ε′)t

)
> 0,

and then the strong Markov property and the argument leading to (3.67) give us

lim
u→∞

P (D1(u))

uF(u)
= 0

for all τ > 0 small enough. In conclusion, for all τ > 0 small enough,

lim
u→∞

P (E+
ε (u) ∩ (Cτ (u) \ C+

τ (u)) ∩ S2(u))

uF(u)
= 0,(3.68)

and now (3.65) follows from (3.66)–(3.68).
Summing up, to finish the proof of the theorem, we need to show that

lim
τ↓0

lim sup
u→∞

P (E+
ε (u) ∩ C+

τ (u))

uF(u)

≤ 1

εγ µ

∑
j∈J+(ε)

θjπj (rj − 1 − ε)(rj − 1)γ−1.

(3.69)

Let T∗, H∗ and r∗ be, as above, the starting time, the length of the holding
time satisfying H

(j)
i > τ(u + i) and the corresponding rate rj , and let I∗ be the

corresponding i (= 1,2, . . .). For δ > 0 write

P
(
E+

ε (u) ∩ C+
τ (u)

)= P
(
E+

ε (u) ∩ C+
τ (u) ∩ {T∗ + H∗ ≥ u(1 − δ)})

+ P
(
E+

ε (u) ∩ C+
τ (u) ∩ {T∗ + H∗ < u(1 − δ)})

:= P
(
D3(u)

)+ P
(
D4(u)

)
.

(3.70)

We have

P
(
D3(u)

)

≤ ∑
j∈J+(ε)

∞∑
i=1

P

(
H

(j)
i > max

(
u(1 −δ)− i

(
µ

πj

+ δ

)
, i

ε(µ/πj )−εδ −2δ

rj − 1 − ε

))

(3.71)

+ P

(
D3(u) ∩

{
H

(j)
i ≤ u(1 − δ) − i

(
µ

πj

+ δ

)

for all j ∈ J+(ε) and i = 1,2, . . .

})
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+ P

(
D3(u) ∩

{
H

(j)
i ≤ i

ε(µ/πj ) − εδ − 2δ

rj − 1 − ε

for all j ∈ J+(ε) and i = 1,2, . . .

})
.

Now, a computation entirely analogous to the one in (3.22)–(3.24) gives us

lim
δ↓0

lim sup
u→∞

( ∑
j∈J+(ε)

∞∑
i=1

P

(
H

(j)
i > max

(
u(1 − δ) − i(µ/πj + δ),

i
(
ε(µ/πj ) − εδ − 2δ

)
/(rj − 1 − ε)

))) 1

uF(u)

≤ 1

µ(γ − 1)

∑
j∈J+(ε)

θjπj

(( s+
j (ε)

1 + s+
j (ε)

)−γ

− 1
)
.

(3.72)

We now check that the last two probabilities on the right-hand side of (3.71) are,
asymptotically, small. Denote the events measured by these two probabilities by
D31(u) and D32(u), correspondingly. Observe that, for a λ > 0,

P
(
D31(u)

)≤ P

( ⋃
j∈J+(ε)

⋃
i>λu

{
�
(
T

(j)
i

)
> i

(
µ

πj

+ δ

)}
∩ Ai,j ;τ(u)

)

+ P

( ⋃
j∈J+(ε)

⋃
i≤λu

{
H

(j)
i + T

(j)
i > u(1 − δ)

})

:= P
(
D311(u)

)+ P
(
D312(u)

)
,

(3.73)

where, for j = 1, . . . ,K and i = 1,2, . . . ,

Ai,j ;τ(u) =
{
H

(k)
l ≤ τ (u + l) for all pairs (l, k) ∈ {1,2, . . .} × {1, . . . ,K}

such that T
(k)
l < T

(j)
i

}
.

Now the same application of Lemma 3.7 as we used to prove (3.40) shows that

lim
τ↓0

lim sup
u→∞

P (D311(u))

uF(u)
= 0(3.74)

for all δ > 0 and λ > 0. On the other hand, it is clear that

lim
λ↓0

lim sup
u→∞

P (D312(u))

uF(u)
= 0(3.75)
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for all δ > 0. Therefore, we conclude that

lim
τ↓0

lim sup
u→∞

P (D31(u))

uF(u)
= 0(3.76)

for all δ > 0. Furthermore,

P
(
D32(u)

)= P
(
D32(u) ∩ {r∗ + �(T∗) > (1 + ε′)(H∗ + T∗)

})
+ P

(
D32(u) ∩ {r∗ + �(T∗) ≤ (1 + ε′)(H∗ + T∗)

})
:= P

(
D321(u)

)+ P
(
D322(u)

)
,

(3.77)

where we recall that 0 < ε′ < ε is such that rj < 1 + ε′ for all j /∈ J+(ε). Now, for
a λ > 0,

P
(
D321(u)

)≤ P
(
D311(u)

)+P
(
D312(u)

)+P

( ⋃
j∈J+(ε)

⋃
i>λu

{
T

(j)
i ≤ i

(
µ

πj

−δ

)})
,

and so it follows from (3.74), (3.75) and Lemma 3.5 that

lim
τ↓0

lim sup
u→∞

P (D321(u))

uF(u)
= 0(3.78)

for all δ > 0. Furthermore,

P
(
D322(u)

)= P

(
D322(u) ∩

{
�(t)

t
> 1 + ε for some u < t < T∗

})

+ P

(
D322(u) ∩

{
�(t)

t
1 + ε for some t > H∗ + T∗

})
.

Since time T∗ is the beginning of the only holding time H
(j)
i > τ(u + i), the first

probability on the right-hand side above describes a situation of the type (3.38),
and so the same argument gives us

lim
u→∞

P (D322(u) ∩ {�(t)/t > 1 + ε′ for some u < t < T∗})
uF(u)

= 0(3.79)

for all δ > 0 and τ > 0 small enough. Finally, by the strong Markov property,

P

(
D322(u) ∩

{
�(t)

t
1 + ε for some t > H∗ + T∗

})

≤ P

(
sup

0≤t≤T∗

(
�(t) − (1 + ε)t

)
> u(1 − δ)(ε − ε′)

)
,

and so it follows from (3.79) and (3.50) that

lim
u→∞

P (D322(u))

uF(u)
= 0(3.80)
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for all δ > 0 and τ > 0 small enough and, hence, by (3.76) and (3.80) we get

lim
τ↓0

lim sup
u→∞

P (D32(u))

uF(u)
= 0(3.81)

for all δ > 0. Now we conclude by (3.72), (3.76) and (3.81) that

lim
δ↓0

lim
τ↓0

lim sup
u→∞

P (D3(u))

uF(u)

≤ 1

µ(γ − 1)

∑
j∈J+(ε)

θjπj

(( s+
j (ε)

1 + s+
j (ε)

)−γ

− 1
)
.

(3.82)

Now, a similar decomposition of the event D4(u) gives us a corresponding upper
bound

lim
δ↓0

lim
τ↓0

lim sup
u→∞

P (D4(u))

uF(u)

≤ 1

µ

∑
j∈J+(ε)

θjπj

[
1

1 + s+
j (ε)

( s+
j (ε)

1 + s+
j (ε)

)−γ

− 1

γ − 1

(( s+
j (ε)

1 + s+
j (ε)

)−(γ−1)

− 1
)]

,

(3.83)

and so the statement (3.69) follows from (3.82) and (3.83). This establishes the
asymptotic upper bound and hence completes the proof of the theorem. �

We conclude this section with several statements required in the proof of
Theorem 3.1. Some of these statements are well known, and we present them here
for completeness. We use the notation introduced earlier in the section. The first
lemma shows that the starting times of the sojourns of the underlying process in
different states are very unlikely to be much smaller than their means.

LEMMA 3.5. For every j = 1, . . . ,K and δ > 0, there are positive num-
bers C

(j)
1 and C

(j)
2 such that, for all i ≥ 1,

P

(
T

(j)
i ≤ i

(
µ

πj

− δ

))
≤ C

(j)
1 e−C

(j)
2 i(3.84)

and

P

(
�
(
T

(j)
i

)≤ i

(
µ

πj

− δ

))
≤ C

(j)
1 e−C

(j)
2 i .(3.85)

PROOF. Since the proofs of both statements are very similar, we only
prove (3.85). It is, of course, enough to consider i ≥ 2. With the usual notation Pj



34 P. EMBRECHTS AND G. SAMORODNITSKY

and Ej meaning that j = 1, . . . ,K is the initial state of the Markov chain, we have,
for any θ > 0,

P

(
�
(
T

(j)
i

)≤ i

(
µ

πj

− δ

))

≤ Pj

(
�
(
T

(j)
i−1

)≤ i

(
µ

πj

− δ

))

≤ exp
{
θi

(
µ

πj

− δ

)}
Ej exp

{−θ�
(
T

(j)
i−1

)}

=
(

exp
{
θ

(
µ

πj

− δ

)}
Ej exp

{−θ�
(
T

(j)
1

)})i−1

exp
{
θ

(
µ

πj

− δ

)}
.

However,

Ej�
(
T

(j)
1

)= K∑
k=1

πk

πj

µkrk = µ

πj

by (3.1). Therefore, there is a θ > 0 such that

Ej exp
{−θ�

(
T

(j)
1

)}≤ exp
{
−θ

(
µ

πj

− δ

2

)}

and our statement follows with

C
(j)
1 = exp

{
θ

(
µ

πj

− δ

2

)}
, C

(j)
2 = θδ

2
. �

The next lemma puts a common stochastic bound on the sojourn random
variables.

LEMMA 3.6. Under the assumption (3.3) there is a nonnegative random

variable H ∗ with a distribution F ∗ such that H ∗ st≥ H
(j)
1 for every j = 1, . . . ,K

and limx→∞ F
∗
(x)/F (x) = θ∗ for some θ∗ ∈ (0,∞).

PROOF. Let H be a random variable with distribution F . It follows from (3.3)

that for every j = 1, . . . ,K there is a bj ≥ 0 such that (θj + 1)H + bj

st≥ H
(j)
1 .

Now set H ∗ = (max(θ1, . . . , θK) + 1)H + max(b1, . . . , bK). �

The following inequality for sums of independent uniformly bounded zero mean
random variables is very useful.
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LEMMA 3.7. Let Y1, . . . , Yk be independent zero mean random variables such
that, for some c > 0, |Yn| ≤ c a.s. for n = 1, . . . , k. Then, for every u > 0,

P

(
k∑

n=1

Yk > u

)
≤ exp

{
− u

2c
arcsinh

(
cu
/

2 Var

(
k∑

n=1

Yk

))}
.

PROOF. See Prokhorov (1959); see also Petrov (1995), 2.6.1 on page 77 or
Lemma A.2 in Mikosch and Samorodnitsky (2000b). �

The next lemma shows that it is very unlikely that two different holding times
are both sufficiently long to matter as far as the rate of mixing is concerned.

LEMMA 3.8. For any τ > 0 the event Bτ (u) in (3.60) satisfies

lim
u→∞

P (Bτ (u))

uF(u)
= 0.

PROOF. This statement is an immediate consequence of Lemma 2.7 in
Mikosch and Samorodnitsky (2000b). �

4. Conclusion. Beyond the modeling of insolvency related to non-life insur-
ance, more recently, ruin estimation for general claim processes has become impor-
tant as a potential methodological tool in the analysis of financial data. As a con-
sequence, more refined insurance-type risk processes are called for. These models
will, in particular, have to cater to stochastic intensities driven by exogenous eco-
nomic factors and, at the same time, allow for heavy-tailed claim amounts. Our
results show how classical ruin estimation results are “robust” with respect to sto-
chastic changes away from a constant intensity model. Through various examples,
it is shown which intensity models allow for such robustness. Especially the model
treated in Section 3 on Markov chain switching models was motivated by practical
considerations from finance where underlying market variables may switch ran-
domly between states indicating various levels of economic activity. Our contribu-
tion will hopefully add some further understanding to the general class of models
that allow for a ruin theoretic analysis.

Though our results were presented with eventual insurance and finance
applications in mind, it should be obvious that the same results apply to numerous
other areas of applied research, such as teletraffic and Internet data, dam theory
and storage models in operations research.
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