
The Annals of Applied Probability
1996, Vol. 6, No. 4, 1248–1259

A GAMBLING SYSTEM AND A MARKOV CHAIN1

By S. N. Ethier

University of Utah

“Oscar’s system” is a gambling system in which the aim is to win one
betting unit, at least with high probability, and then start over again. The
system can be modeled by an irreducible Markov chain in a subset of the
two-dimensional integer lattice. We show that the Markov chain, which
depends on a parameter p representing the single-trial win probability, is
transient if p < 1

2 and positive recurrent if p ≥ 1
2 .

1. Introduction. “Oscar’s system” was described by Allan N. Wilson in
his book The Casino Gambler’s Guide [(1965), page 247] as follows:

This system is designed so that in each sequence of plays,
the player gains a net profit of one unit, and then starts over
again: : : : The first bet is one unit. Whenever a bet is lost, the
next bet is the same size as the one just lost. Whenever a bet
is won, the next bet is one unit larger—unless winning the
next bet would produce for the sequence a profit exceeding
one unit. If it would, the bet size is reduced to an amount
that is just sufficient to produce a profit of one unit.

The system can be modeled by a Markov chain. We assume that at each trial
(in a sequence of independent Bernoulli trials) the gambler wins or loses the
amount of his bet, winning with probability p, where 0 < p < 1. Let Xn

denote the number of units the gambler needs to reach his goal following
the nth trial and let Yn denote the gambler’s bet size at trial n + 1. Then
��Xn;Yn�; n = 0;1;2; : : :� is a Markov chain in the state space

�1:1� S = ��0;0�� ∪ ��i; j� ∈ N ×Nx i ≥ j�;

where N = �1;2;3; : : :�, with initial state �X0;Y0� = �1;1� and transition
probabilities

�1:2� P��i; j�; �k; l�� =





p; if �k; l� = �i− j; �j+ 1� ∧ �i− j��;
q; if �k; l� = �i+ j; j�;
0; otherwise,

for all i ≥ j ≥ 1, where q = 1 − p and a ∧ b = min�a; b�. If we assume that
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upon completion of a sequence a new one is begun, then

�1:3� P��0;0�; �k; l�� =
{

1; if �k; l� = �1;1�;
0; otherwise,

and the chain is irreducible and aperiodic.
In a previous paper [Ethier (1996)] the author investigated the problem of

finding the probability that the gambler achieves his one-unit goal before the
system calls for a bet that exceeds a house limit of M units. The problem
had been posed by Wilson (1962) in The American Mathematical Monthly.
Let ��Xn;Yn�; n = 0;1;2; : : :� denote the Markov chain in S with transition
probabilities (1.2) and (1.3) and define

�1:4� T = min�n ≥ 0x �Xn;Yn� = �0;0� or Yn ≥M+ 1�;
where the positive integer M is fixed. The problem was to find Q�1;1�, where
in general

�1:5� Q�i; j� = P��XT;YT� = �0;0� � �X0;Y0� = �i; j��
for all �i; j� ∈ S. These probabilities satisfy the linear system

�1:6� Q�i; j� = pQ�i− j; �j+ 1� ∧ �i− j�� + qQ�i+ j; j�;
j ≤ i ≤ I�j�; 1 ≤ j ≤M;

where Q�0;0� = 1 and Q�i; j� = 0 if j ≥ M + 1 or if both 1 ≤ j ≤ M and
i ≥ I�j� + 1. Here

�1:7� I�j� =
(M+1∑
k=j

k

)
− 1

and so the number of equations in the system is

�1:8�
M∑
j=1

�I�j� − j+ 1� = M�M+ 1��M+ 2�
3

:

In the author’s earlier paper, a recursive algorithm was provided that yields
the exact value of Q�1;1� in a finite number of steps (depending on M).

Some numerical values forQ�1;1� are given in Table 1. Results are included
for M = 50;100;150; : : : ;350 and three choices of p (motivated by roulette,
craps and coin-tossing). They were obtained on a high-speed Hewlett–Packard
computer with a 128-megabyte memory.

In the present paper we address the following questions. If Table 1 could
be extended ad infinitum (and with arbitrary precision), would the sequence
of probabilities in the second column converge to 1? What about the third
column? More generally, is the Markov chain in S with transition probabilities
(1.2) and (1.3) recurrent or transient? The following theorem provides the
answers and a bit more.

Theorem 1. The Markov chain in S with transition probabilities (1.2) and
(1.3) is transient if p < 1

2 and positive recurrent if p ≥ 1
2 .
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Table 1

Q�1;1�, the probability using Oscar’s system of achieving a net profit of one unit before being forced
to abort the system, as a function of the house limit M and the single-trial win probability p a

M p 5 9//19 p 5 244//495 p 5 1//2

50 0.99078112 0.99620367 0.99734697
100 0.99464246 0.99841219 0.99904342
150 0.99587158 0.99902785 0.99947577
200 0.99646866 0.99930553 0.99965833
250 0.99681764 0.99946077 0.99975501
300 0.99704404 0.99955895 0.99981337
350 0.99720107 0.99962624 0.99985174

aAll figures are rounded to eight decimal places. [From Ethier (1996).]

Thus, when p < 1
2 as is typically the case in a gambling house, there is

positive probability of not achieving the one-unit goal, even in the absence of
a house limit. This is proved in Section 2 using a probabilistic argument based
on the strong law of large numbers.

The case p = 1
2 is the most interesting from the mathematical point of view.

If the rules were simplified so that the gambler’s bet size remained at one unit
at each trial, the system could be modeled by a reflecting random walk in the
set of nonnegative integers, which of course is null recurrent when p = 1

2 .
Evidently, the increasing bet sizes in Oscar’s system are responsible for the
switch to positive recurrence in the critical case. In Section 3 we give an
analytic proof based on Foster’s (1953) criterion.

It seems that for most Markov chains depending on a parameter, null re-
currence occurs at the boundary between transience and positive recurrence,
but the present example is an exception.

2. Transience when p<<< 1
2 . Let ξ1; ξ2; : : : be a sequence of i.i.d. random

variables on some probability space ��;F ;P� with P�ξ1 = 1� = p = 1 −
P�ξ1 = 0�, where 0 < p < 1

2 , and let i be a positive integer (to be specified
later). We can construct the Markov chain ��Xm;Ym�; m = 0;1; : : :� in S
with initial state �i;1� and transition probabilities (1.2) and (1.3) in terms of
the sequence ξ1; ξ2; : : : ; at least up to, but not including, time

�2:1� TD = min�m ≥ 1x Xm −Ym ≤ 0�;

where min \ = ∞. Specifically, we define �X0;Y0� = �i;1� and

�2:2� Xm+1 =Xm − �2ξm+1 − 1�Ym; Ym+1 = Ym + ξm+1;

for m = 0;1; : : : ; and we define TD in terms of these sequences by (2.1).
Let 0 < ε < 1

4 ∧ p be such that p− ε is rational and

�2:3� �1− 2�p− ε���p− ε��1− 4ε�2
2

− 4ε�p+ ε� > 0:
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Since Ym − 1 = ξ1 + · · · + ξm, the strong law of large numbers implies that
there exists a positive-integer-valued random variable N such that

�2:4� P��m−1�Ym − 1� − p� ≤ ε for all m ≥N� = 1:

Choose a positive integer N0 such that P�N ≤N0� ≥ 1− ε: Then the event

�2:5� A = �m�p− ε� ≤ Ym − 1 ≤m�p+ ε� for all m ≥N0�

satisfies P�A� ≥ 1− ε.
Given a (nonrandom) �0;1�-valued sequence η1; η2; : : : ; we define, by anal-

ogy with (2.2), �x0; y0� = �i;1� and

�2:6� xm+1 = xm − �2ηm+1 − 1�ym; ym+1 = ym + ηm+1;

for m = 0;1; : : : : Let

�2:7� E = ��ηm� ∈ �0;1�Nx m�p− ε� ≤ ym − 1 ≤m�p+ ε� for all m ≥N0�

and, for each n ≥ N0, choose �η�n�m � ∈ E so that the corresponding sequence
�x�n�m ; y

�n�
m � [as in (2.6)] satisfies y�n�n − 1 = �n�p+ ε�� and

�2:8� y
�n�
l = min�ylx �ηm� ∈ E and yn − 1 = �n�p+ ε���; 1 ≤ l ≤ n− 1:

We claim that

�2:9� Xn ≥ x
�n�
n on A; n ≥N0:

Before proving this, we indicate the underlying idea. The set E can be in-
terpreted as the set of all admissible sequences of wins and losses [admissible
in the sense that ω ∈ A implies �ξm�ω�� ∈ E]. Given n ≥ N0, the sequence
�η�n�m � ∈ E is chosen to maximize the number of wins in the first n trials,
and yet postpone them as long as possible [cf. (2.8)]. Inequality (2.9) says that
�η�n�m � is the gambler’s best-case scenario in E, insofar as his fortune following
the nth trial is concerned. This is intuitively clear, since, under the sequence
�η�n�m � of wins and losses, winning bets occur later (closer to trial n) when the
bet size is larger.

To make this precise, note that if ω ∈ A, the vector �η�n�1 ; : : : ; η
�n�
n � can be ob-

tained from �ξ1�ω�; : : : ; ξn�ω�� by means of a finite number of “transpositions”
of the form �η1; : : : ; ηn� 7→ �η′1; : : : ; η′n�, where, for some k ∈ �1; : : : ; n − 1�,
�ηk; ηk+1� = �1;0�, �η′k; η′k+1� = �0;1� and η′l = ηl for all l ∈ �1; : : : ; n�−�k; k+
1�, followed by a finite number of “substitutions” of the form �η1; : : : ; ηn� 7→
�η′′1; : : : ; η′′n�, where, for some k ∈ �1; : : : ; n�, ηk = 0, ηl = 1 for l = k+1; : : : ; n,
η′′k = 1 and η′′l = ηl for all l ∈ �1; : : : ; n� − �k�. If �xm; ym�, �x′m; y′m� and
�x′′m; y′′m� are the corresponding sequences as in (2.6), then x′n = xn − 1 and
x′′n = xn − 2yk−1 − �n− k�. We conclude that (2.9) holds.
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It follows from (2.9) that

�2:10� Xn −Yn ≥ x
�n�
n − 1− �n�p+ ε�� on A; n ≥N0:

Notice that if we denote x�n�n by x�n�n �i� to indicate its dependence on i, then
x
�n�
n �i� = x�n�n �1� + i− 1. Thus, if we could show that

�2:11� x
�n�
n �1� − �n�p+ ε�� → ∞ as n→∞;

it would follow that, for i sufficiently large, Xn −Yn ≥ 1 on A for all n ≥ 1,
that is, TD = ∞ on A, and so

�2:12� P�TD = ∞� ≥ 1− ε > 0:

This would then imply that the Markov chain in Swith transition probabilities
(1.2) and (1.3) is transient when p < 1

2 .
It remains to establish (2.11), which is simply a property of a deterministic

sequence. Note that the last ln terms of η�n�1 ; : : : ; η
�n�
n are all 1’s, where ln is

the largest integer satisfying

�2:13� �n�p+ ε�� − ln
n− ln

≥ p− ε;

hence

�2:14� ln =
[ �n�p+ ε�� − n�p− ε�

1− p+ ε

]
≤ 2nε

1− p+ ε < 4nε:

At eachm for whichN0+1 ≤m ≤ n−ln−1, if η�n�m = 1, then η�n�m+1 = 0. [This
follows from the fact that b/a ≥ p− ε implies �b+1�/�a+2� ≥ p− ε.] So each
win is followed immediately by a loss, and additional losses are interspersed
at various times. To make things easier to analyze, we apply some of the
transpositions described earlier to �η�n�m � to obtain �η̃�n�m �, which will belong
to �0;1�N but not to E. Recall that p − ε = r/s for positive integers r and
s with 2r < s. For each segment �Ms + 1; : : : ; �M + 1�s� �M = 1;2; : : :� in
�N0 + 1; : : : ; n− ln�, the s terms of the sequence �η�n�m � do not depend on M.
There are s − 2r 0’s and r (1,0)’s in some specific order. We define �η̃�n�m � by
requiring that on each segment �Ms+1; : : : ; �M+1�s� in �N0+1; : : : ; n− ln�
it consist of s − 2r 0’s followed by r (1,0)’s (in that order). Elsewhere it is
the same as �η�n�m �. Since x̃�n�n �1� ≤ x

�n�
n �1� by the argument in the second

paragraph below (2.9), it will suffice to show that

�2:15� x̃
�n�
n �1� − �n�p+ ε�� → ∞ as n→∞:

On each such segment �Ms+ 1; : : : ; �M+ 1�s�, the behavior of �x̃�n�m �1�� is
very simple. The s−2r initial losses increase x̃�n�• �1� by �s−2r��Mr+1� since
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ỹ
�n�
Ms − 1 = �r/s�Ms, and the remaining r win–loss pairs increase it further by
r. Consequently, we have

x̃
�n�
n �1� ≥ x̃�n�N0

�1� +
��n−ln�/s�−1∑
M=�N0/s�+1

��s− 2r��Mr+ 1� + r�

−
ln∑
j=1

��n�p+ ε�� − ln + j�

= �s− 2r�r
(��n− ln�/s�

2

)
+ �s− r�

[
n− ln
s

]

− ln�n�p+ ε�� +
(
ln
2

)
+O�1�

≥
{
�1− 2�p− ε���p− ε��1− 4ε�2

2
− 4ε�p+ ε�

}
n2 +O�n�

(2.16)

and hence (2.3) implies that (2.15) holds, as required.

3. Positive recurrence when p≥≥≥ 1
2 . Here we rely on Foster’s (1953) cri-

terion, which for our purposes can be stated as follows. [See Meyn and Tweedie
(1993) for more-general formulations. See also Fayolle, Malyshev and Men-
shikov (1995).]

Foster’s Criterion. An irreducible Markov chain in a countable state
space S with transition probabilities �P�i; j�; i; j ∈ S� is positive recurrent
if and only if there exist a function Vx S 7→ �0;∞�; a constant ε > 0 and an
element i0 of S such that

∑
j∈S

P�i; j�V�j� −V�i� ≤ −ε; i ∈ S− �i0�;(3.1)

and
∑
j∈S

P�i; j�V�j� <∞; i = i0:(3.2)

Let us begin with the simplest (and least interesting) case of (1.1)–(1.3),
namely, the case in which 1

2 < p < 1. Taking V�i; j� ≡ i and ε = p − q, we
find that

∑

�k;l�∈S
P��i; j�; �k; l��V�k; l� −V�i; j�

= pV�i− j; �j+ 1� ∧ �i− j�� + qV�i+ j; j� −V�i; j�
= p�i− j� + q�i+ j� − i
= −jε
≤ −ε; �i; j� ∈ S− ��0;0��:

(3.3)
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Thus, Foster’s criterion [with i0 = �0;0�] implies the positive recurrence when
p > 1

2 .
For the remainder of this section, we assume (1.1)–(1.3) with p = 1

2 . Define
the operator 1 on real-valued functions V on S by

1V�i; j� =
∑

�k;l�∈S
P��i; j�; �k; l��V�k; l� −V�i; j�

=





1
2V�i− j; �j+ 1� ∧ �i− j��
+ 1

2V�i+ j; j� −V�i; j�; �i; j� 6= �0;0�;
V�1;1� −V�0;0�; �i; j� = �0;0�;

(3.4)

and observe that

�3:5� 1V�i; j� = 11V�i; j� + 12V�i; j�; �i; j� ∈ S− ��0;0��;

where

11V�i; j� = 1
2V�i− j; j ∧ �i− j�� + 1

2V�i+ j; j� −V�i; j�(3.6)

and

12V�i; j� = 1
2V�i− j; �j+ 1� ∧ �i− j�� − 1

2V�i− j; j ∧ �i− j��:(3.7)

This suggests that, to apply Foster’s criterion, we should look for a nonnegative
function V on S that is concave in the first variable and decreasing in the
second variable.

We begin by considering the function V1 on S given by

�3:8� V1�i; j� = iα;

where 0 < α < 1.

Lemma 1. Fix 0 < α < 1 and b ≥ 0. Then

�1+ x�α ≤ 1+ αx− α�1− α�
2�1+ b�2x

2; −1 ≤ x ≤ b;(3.9)

and

�1+ x�α ≥ 1+ αx− α�1− α�
2

x2; 0 ≤ x <∞:(3.10)

Proof. Let f�x� and g�x� denote the left- and right-hand sides of (3.9).
Then f�0� = g�0�, f′�0� = g′�0� and f′′ ≤ g′′ on �−1; b�, so (3.9) (except with
x = −1) are consequences of the Taylor expansion

�3:11� f�x� = f�0� + xf′�0� + x2
∫ 1

0
�1− u�f′′�ux�du; −1 < x ≤ b;

and the analogous expansion for g. The case x = −1 then follows by continuity.
Inequality (3.10) is proved similarly. 2
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Using (3.9) with b = 1, we find that

1V1�i; j� =
1
2
�i− j�α + 1

2
�i+ j�α − iα

= iα
[

1
2

(
1− j

i

)α
+ 1

2

(
1+ j

i

)α
− 1

]

≤ −α�1− α�
8

j2

i2−α
; �i; j� ∈ S− ��0;0��;

(3.12)

and therefore that

1V1�i; j� < 0; �i; j� ∈ S− ��0;0��;(3.13)

and

1V1�i; j� ≤ −
α�1− α�

72
; �i; j� ∈ A;(3.14)

where

�3:15� A =
{
�i; j� ∈ S− ��0;0��x j ≥ 1

3i
�2−α�/2}:

Next, given 0 < β < 1, we consider the function V2 on S defined by

�3:16� V2�i; j� =





0; if �i/β�β < j ≤ i;
�i− βj1/β�2j−2; if iβ < j ≤ �i/β�β ∧ i;
i2�1−β� − β�2− β�j2�1−β�/β; if 1 ≤ j ≤ iβ;
0; if �i; j� = �0;0�:

Note that V2, if extended via (3.16) to all of ��0;0�� ∪ ��i; j� ∈ �1;∞� ×
�1;∞�x i ≥ j�, is continuous, as is its first partial derivative with respect
to i. (The significance of this will become apparent later.)

Lemma 2. Assume 1
2 < β ≤ 2

3 . Then

1V2�i; j� < 9
8 ; �i; j� ∈ S− ��0;0��;(3.17)

and

1V2�i; j� < −�1− β��2− β�; �i; j� ∈ B;(3.18)

where

�3:19� B =
{
�i; j� ∈ S− ��0;0��x j ≤ 1

3i
β
}
:

Remark. As we will see, the second term in the third line of (3.16) gives
(3.18) (using β ≤ 2

3 ). The first term in that line makes V2 nonnegative and
is harmless because of (3.13) (using β > 1

2 ). Finally, the second line of (3.16)
smooths out V2 sufficiently to give (3.17).
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Proof of Lemma 2. With reference to (3.16), we define

�3:20�
E = ��i; j� ∈ Sx �i/β�β < j ≤ i�;
F = ��i; j� ∈ Sx iβ < j ≤ �i/β�β ∧ i�;
G = ��i; j� ∈ Sx 1 ≤ j ≤ iβ�:

Note that E∪F∪G = S−��0;0�� and that �1;1� ∈ G, �2;2� ∈ F (using β > 1
2 )

and �i; i� ∈ E for all i ≥ 3.
If �i; j� ∈ B, then j ≤ 1

3i
β < 1

3i, so �i − j�β > � 2
3i�β > 2

3i
β ≥ 2j ≥ j + 1.

Consequently, �i; j� ∈ G, �i − j; j + 1� ∈ G and �i − j; j� ∈ G. By (3.13),
11V2�i; j� < 0 and therefore

�3:21�

1V2�i; j� = 11V2�i; j� + 12V2�i; j�
< 12V2�i; j�
= − 1

2β�2− β���j+ 1�2�1−β�/β − j2�1−β�/β�
≤ −�1− β��2− β�;

where the second inequality uses the fact that �j+1�γ−jγ =
∫ j+1
j γxγ−1 dx ≥ γ

if γ ≥ 1, and this gives (3.18).
To establish (3.17), notice first that V2�i; ·� is nonincreasing for each i ≥ 1.

This implies that

�3:22� 12V2�i; j� ≤ 0; �i; j� ∈ S− ��0;0��:
Observe next that, for each j ≥ 1,V2�·; j� is 0 on �j;βj1/β� (if j ≥ 3), quadratic
and convex on �βj1/β ∨ j; j1/β� and concave on �j1/β;∞�. Since V2, together
with its first partial derivative with respect to i, is continuous,

�3:23� V2�i; j� ≤ �i− βj1/β�2j−2; �i; j� ∈ S− ��0;0��;
with equality holding if �i; j� ∈ F.

It remains to bound 11V2. There are several cases to consider:
Case 1. �i; j� ∈ E and �i+j; j� ∈ E. SinceV2�1;1� = �1−β�2 < 1

4 ,V2�2;2� =
1
4�2− β21/β�2 < 1

4 and V2�l; l� = 0 for l = 0 and all l ≥ 3, and since j < i− j
implies �i− j; j� ∈ E, we have 11V2�i; j� = 1

2V2�i− j; j ∧ �i− j�� < 1/8.
Case 2. �i; j� ∈ E and �i+j; j� ∈ F. Here i < βj1/β ≤ i+j, so 11V2�i; j� =

1
2V2�i− j; j ∧ �i− j�� + 1

2�i+ j− βj1/β�2j−2 < 1
8 + 1

2 .
Case 3. �i; j� ∈ E and �i+ j; j� ∈ G. [This can occur for only finitely many

�i; j�.] In view of (3.23), the argument used in Case 2 applies here, with the
equality replaced by an inequality. (Note that i < βj1/β ≤ i + j continues to
hold in this case.)

Case 4. �i; j� ∈ F. By (3.23),

11V2�i; j� ≤ 1
2�i− j− βj1/β�2j−2 + 1

2V2�i− j; i− j�
+ 1

2�i+ j− βj1/β�2j−2 − �i− βj1/β�2j−2

< 1+ 1
8 :

(3.24)
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Here we have bounded 1
2V2�i−j; j∧�i−j�� by the sum of the first two terms

after the first inequality in (3.24).
Case 5. �i; j� ∈ G and �i−j; j∧�i−j�� ∈ G−��1;1��. Since j∧�i−j� = j

and �i+ j; j� ∈ G, we have 11V2�i; j� < 0 by (3.13).
Case 6. �i; j� ∈ G and �i−j; j∧�i−j�� ∈ F−��2;2��. Again, j∧�i−j� = j

and �i+ j; j� ∈ G. Also, i = j1/β + θj for some θ ∈ �0;1�, so

11V2�i; j�
= 1

2�j1/β + �θ− 1�j− βj1/β�2j−2

+ 1
2��j1/β + �θ+ 1�j�2�1−β� − β�2− β�j2�1−β�/β�

− ��j1/β + θj�2�1−β� − β�2− β�j2�1−β�/β�
= 1

2j
2�1−β�/β�1− β+ �θ− 1�j−�1−β�/β�2

+ 1
2j

2�1−β�/β��1+ �θ+ 1�j−�1−β�/β�2�1−β� − β�2− β��
− j2�1−β�/β��1+ θj−�1−β�/β�2�1−β� − β�2− β��

≤ 1
2j

2�1−β�/β��1− β�2 + 2�1− β��θ− 1�j−�1−β�/β + �θ− 1�2j−2�1−β�/β�
+ 1

2j
2�1−β�/β(1+ 2�1− β��θ+ 1�j−�1−β�/β

− 1
9�1− β��1− 2�1− β���θ+ 1�2j−2�1−β�/β − β�2− β�

)

− j2�1−β�/β(1+ 2�1− β�θj−�1−β�/β

− �1− β��1− 2�1− β��θ2j−2�1−β�/β − β�2− β�
)

= 1
2�θ− 1�2 − 1

18�1− β��2β− 1��θ+ 1�2 + �1− β��2β− 1�θ2

< 1
2 + 1

9 ;

(3.25)

where the first inequality uses (3.9) with b = 2 and (3.10).
Case 7. �i; j� ∈ G and �i − j; j ∧ �i − j�� ∈ E ∪ ��0;0�; �1;1�; �2;2��. [This

can occur for only finitely many �i; j�.] The term following the first equality in
(3.25) is replaced by 1

2V2�i−j; j∧�i−j�� < 1/8, so from Case 6, 11V2�i; j� <
11
18 + 1

8 . [To see that this argument applies here, note that if j < i − j, then
�i−j; j� ∈ E, so i−j < βj1/β < j1/β, while if j ≥ i−j, then i−j ≤ j < j1/β;
in either case, i = j1/β + θj for some θ ∈ �0;1�.]

The resulting bound on 11V2, together with (3.22), gives (3.17) and proves
the lemma. 2

We now complete the argument. In addition to 1
2 < β ≤ 2

3 , assume that
2�1− β� ≤ α < 1 and define the nonnegative function V on S by

�3:26� V = V1 + ηV2;

where η > 0 remains to be determined. Then, by (3.14) and (3.17),

�3:27� 1V�i; j� < −α�1− α�
72

+ 9
8
η; �i; j� ∈ A;
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and by (3.13) and (3.18),

�3:28� 1V�i; j� < −�1− β��2− β�η; �i; j� ∈ B:

We can equalize the right-hand sides of (3.27) and (3.28) by taking

�3:29� η = α�1− α�
72�1− β��2− β� + 81

:

Since �2− α�/2 ≤ β, we have A ∪B = S− ��0;0�� and we can apply Foster’s
criterion with V as in (3.26), ε = �1 − β��2 − β�η and i0 = �0;0�. This es-
tablishes the positive recurrence when p = 1

2 and completes the proof of the
theorem.

4. Additional remarks. (1) Back in the early 1960s, Julian Braun ran
a computer simulation of Oscar’s system, as reported by Wilson [(1965),
pages 250–252]. He took the house limit to be M = 500 units and the single-
trial win probability to be p = 244/495 (from the game of craps). There were
66 disasters in 280,000 sequences, which led to an estimate of Q�1;1� of
0.99976429 in this case.

When M = 500 and p = 244/495, the linear system (1.6) has 41,917,000
equations [see (1.8)]. Using the algorithm referred to in Section 1 and a Sil-
icon Graphics Power Challenge XL computer at the Utah Supercomputing
Institute, we have found in this case that Q�1;1� = 0:999740807832, rounded
to 12 decimal places. (This double-precision computation required about 200
megabytes of memory and about 7.5 hours of CPU time.) Although the sim-
ulation estimate of the complementary probability is off by about 9%, it is
accurate to within 1 standard deviation for a simulation of its size.

(2) Let p = 1
2 and let ��Xn;Yn�; n = 0;1; : : :� be the Markov chain in S

with initial state �X0;Y0� = �1;1� and transition probabilities (1.2) and (1.3).
Let Fn = σ��Xm;Ym�x m = 0; : : : ; n�, let T0 be the hitting time of the state
�0;0� and define X∗n = Xn∧T0

. Then �X∗n;Fn; n = 0;1; : : :� is a martingale,
but despite the fact that E�T0� < ∞, the optional stopping theorem does not
apply. Indeed, E�X∗T0

� = 0 while E�X∗0� = 1. However, because the increments
grow at most linearly (�X∗n+1−X∗n� ≤ Yn ≤ n+1), a second-moment assumption
on the stopping time will suffice for the applicability of the optional stopping
theorem. [This follows from a minor modification of Theorem 4.7.5 of Durrett
(1995).] In particular, E�T2

0� = ∞.
(3) Let p = 1

2 and define T0 as in the preceding remark. Recently, Borovkov
(1996) has improved on our result that E�T0� <∞ by showing that

�4:1� P�T0 > n� = O�n−3/2 log3/2 n� as n→∞:

The proof involves combining embedding techniques with boundary problems
for the Wiener process.
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