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For an arbitrary point of a homogeneous Poisson point process in a
d-dimensional Euclidean space, consider the number of Poisson points
that have that given point as their rth nearest neighbor (r = 1,2,...). It
is shown that as d tends to infinity, these nearest neighbor counts
(r =1,2,...) are iid asymptotically Poisson with mean 1. The proof relies
on Rényi’s characterization of Poisson processes and a representation in
the limit of each nearest neighbor count as a sum of countably many
dependent Bernoulli random variables.

1. Introduction. Let II denote the countable random set of points of a
Poisson process with constant intensity rate A, in R¢. For an arbitrary point
Q in II, we are interested in the distribution of the number, N, ,, of points in
IT that have @ as their rth nearest neighbor (with respect to %, distance,
l1<p<w), r=1,2,.... The main objective of this paper is to show the
following limit theorem:

THEOREM 1. Asd — %, N; ;, N; ,,... are iid asymptotically Poisson with
mean 1.

Here, the convergence should be understood as “convergence in distribu-
tion.” Newman, Rinott and Tversky (1983) showed such convergence for the
first component N, ; (nearest neighbors) under Euclidean distance (p = 2).
Newman and Rinott (1985) extended this to include any %, distance (1 <p
< ©) and simplified the argument. The key step in their approach is to
establish

lim fA exp(—Vy 1 (uy,...,up))duy - duy, =1,
d,k

d— ®©
where
Ay =1 )E[de-ll NI<llu —ull,l<i+j<k
d.k Ugyenoy Uy, el <llu; —ull, 1 <i#j<

and where V, ,(u,,...,u,) denotes the volume of the union of the .#, balls
S, = B(u,, llu;|) (centered at u;, of radius ||lz,|)) in R, 1 <i < &, || - || being the
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<, norm. In contrast, we shall show that, in the limit as d — =, each N, ,
can be expressed as a sum of countably many dependent Bernoulli random
variables. The proof of the theorem follows as a consequence of the dependent
structure of these Bernoulli random variables, along with an application of
Rényi’s characterization of Poisson processes.

Interest in nearest neighbor counts arises in ecological applications [see
Roberts (1969), Cox (1981) and references therein] and in psychological
studies [see Schwarz and Tversky (1980) and Tversky, Rinott and Newman
(1983)]. Theoretical results concerning the probability that a random point is
the rth nearest neighbor of its own sth nearest neighbor can be found in
Roberts (1969), Schwarz and Tversky (1980), Cox (1981), Picard (1982),
Schilling (1986) and Henze (1986, 1987). It should be remarked that, in
addition to the Poisson process setting, some of these authors considered a set
of n iid observations in R¢ that have a continuous density and that behave
locally like a Poisson process when n is large.

2. Preliminary results. Without loss of generality, let the Poisson pro-
cess IT be “centered” so that the arbitrary point @ = 0 = (0,...,0), the origin
in RY Order the remaining points by letting @, denote the kth nearest
neighbor of @ in II. Thus T ={Q = 0,Q,,Q,,...}.

A standard argument shows that [|Q, ¢ has a gamma pdf of the form

fi(v) = (ZaAg) v  Yexp(—74A,0) /(R = 1)1, v >0,

where 7;; is the volume of the ., unit ball B(0, 1). Since the distribution of
N, , does not depend on \,;, we may and will take A, = 1/7;, so that

pk-1
(2.1) fi(v) = T(%) e ", v>0.

With this choice for A,;, it can be readily shown that the joint pdf of
||Q1||d, IIQZIId, e, IIQkIId assumes the form

(2.2)  fi. ax(vy,...,v) =exp(—v,), 0<v, <vy < - <y,

independent of d. For each £ =1,2,..., let T, , =r if @, has 0 as its
(r + Dst nearest neighbor (r =0,1,...). Thus, N, , =X, _, (T, ,=r— 1
(r=1,2,..)and X;_, I(T; , =r) = 1(k = 1,2,...), where I(A) denotes the
indicator of event A.
ProposITION 1.  For given nonnegative integers ry,...,r,, as d — ®,
P(Td,i =r,i=1,...,k) > pu(ry,..., 1),

where

Dip(rys..s 1)

=f0f...

U1 Up-1

v/

o k i
f exp(‘”k)[[l{ﬁexp(—vi)} dvy, -+ dvy.

(2.3)
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The proof of Proposition 1 borrows heavily from Newman and Rinott (1985)
(hereafter referred to as NR), particularly the proof of Lemma 6. As a
preliminary, we now state some lemmas.

LEMMA 1 (Lemma 4 of NR). If the pdf of a random vector U in R¢ can be
expressed in the form g(|lull) for some function g, then the distribution of
U/|U||l does not depend on g.

We denote the distribution of U/||U|| (which is concentrated on the Z,
unit sphere centered at 0) by %,.

LemMmA 2. If U; and U, are iid with distribution #,, then |U; — U,ll — ¢
in probability as d — « for some constant ¢ > 1 (depending on the value of p).

LEmMaA 3. If U, and U, are iid with distribution #,, and S; = B(U,, |U,|),
i =1,2, then Evol(S;NS,)/7, = 0 as d = © [where vol(S) denotes the
volume of set S].

LEMMA 4. If U has distribution #;, S = B(U,||U|) and S, = B(0, 1), then
asd — », Evol(S N S,)/7,; — 0.

PROOF OF PROPOSITION 1. For 0 < v; < vy < =+ <y, let
(v, 0,) = P(Td,i =r,i=1,.. k@I =v,i= 1,...,k).
Note by (2.2) that

oo oo

P(T,,=r,i=1,...,k) =/O [ [ pi(uise,v)exp(—vy) doy -+ oy

U1 Up-1

We want to show that as d — «,

k vli

(2.4) pi(v1, . 0v) = Hl{r—‘,exm—vi)},

i= it
which together with the bounded convergence theorem yields Proposition 1.
Observe that the ith factor on the right-hand side of (2.4) is just the
probability that an Z, ball of radius v} 4 in R? contains exactly r; points,
that is, the probability that a point at distance v}/ ¢ from the origin (such as
®; when IIQiIId = v,;) has 0 as its (r; + 1)st nearest neighbor.

For the remainder of the proof, we will condition on the event

&= [1Q" = v, i=1,..., k],

with 0 < v; <v, < - <v, fixed, and let S, denote the ball B(®
i=1,...,k

The proof of (2.4) depends upon showing, with (conditional) probability
approaching 1 as d — «, that the r; points in S; (besides ®,) required to

v}/ ) for

i’ Yi
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make T, ;, =r; do not reside in S; (and hence do not include @) for any j # i,
nor in the ball S, == B(0,v}/ ). Consequently, they reside in the set
k
S;=8-US, (i=1,..,k).
j=0
j#i

It follows immediately that (2.4) is equivalent to

k v’
(2.5) Pi(vy,...,0;,) = ]_[{—l'exp(—vi)} as d - o,
1\ !

i=

where p(v,,...,v,) denotes the conditional probability, given &,, that there
are exactly r; pomts in S for i =1,..., k. The bases for these claims, and
hence of this equlvalence are two facts Which do require justification:

(@) For j#i,1<i,j<k, P(Q,€S;1&;) > 0asd— .
(b) For j #i,0 <1i,j <k, E(ol(S;NS)|&,)/7; > 0as d— =

To show (a), let U; = Q,/v}/* and U, = @,;/v}/? in Lemma 2, which are
conditionally independent, given &,;, with common distribution #,, and
observe, on account of the triangle inequality, that

1Q, /v — @, /0¥ | = U, — Upll = 1 — (v;/v,)" I > ¢ —0>1

in probability as d — . This establishes (a).

Fact (b) requires two separate arguments: for 1 <i <j <k andfor0 =i <
J<k.Forl<i<j<k,defines S{ =S,/v//¢ and S} = S,/v}/¢, observe, on
account of the triangle inequality, that

vol(S; 1 8,) /v, = vol((S(v,/0,)""*) 0 8}) < vol(S} N S})

and then apply Lemma 3 to establish (b). For 0 =i <j <k, define S’ =
S;/v jl/ 4 observe, on account of the triangle inequality, that

vol(S, 1 S;) /v, = vol B(0,1) 1 (S'(v,/0,)""*)) < vol(B(0,1) N S")

and then apply Lemma 4 to establish (b).
To get at the verification of (2.5), we refine &, to events of the form

gﬁ = [(Ql,u-,Qk) =(q1"">qk)]

where |lg,lI* =v,, i = 1,..., k. Further, let p(q,,...,q,) denote the condi-
tional probability, glven é”d, that there are exactly r; points in S for
i = 1,..., k. With this level of conditioning, the sets S, Sl, ..., S, are d1s301nt
and ﬁxed Since %d depends only upon the behavior of the Poisson point
process within S,, and pl(q,...,q,) is concerned only with behavior outside
S, it follows that

k vl
ﬁl(ai(ql’“"qk) = ].__[ {ﬁeXP(_ﬁi)},

i=1
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where 0, = 5,(qy,...,q,) = vol(S,)/7;, i = 1,..., k. Thus,
ﬁltei(vlw"’vk) =E(ﬁl§(Q1>""Qk) Igd)

k {5i(Q1""’Qk)ri

=FE 1:_[1 - eXp(—ﬁi(Qp--ka))

&4

In turn, it follows, on account of (a) and (b), that as d — o,
5,(Qy,..., Q) — v, = {vol(Si) - vol(Si)}/% >0

in probability, so that the difference

{ﬁi(Q1>""Qk)r

k vl
ﬁg(vl""’vk) - 1_[ {ﬁexp(_vi)}

eXp(_ﬁi(Ql""’Qk))

(e

r;!

-0

- 11

1

k
&y
-1

as d — «, thereby establishing (2.5). O

Proor oF LEMMA 2. The following arguments are very similar to those
from line 20 on page 801 through line 2 of page 802 in NR. For 1 < p < =, let
W® and W® be iid random vectors in R? with iid components (W,
i=1,...,d) and pdf of the form

d
f(wy,...,w,;) = (const.) _]j[lexp(—lwilp).

For p =, let W® and W® be iid random vectors in R?, each with inde-
pendent components that are uniformly distributed on the interval (—1, 1).
By Lemma 1, (U, U,) has the same distribution as (W® /[|[W®D| W@ /
W ).

For 1 < p < o, by the law of large numbers, as d — o,

WP /d - EI]WDP and [WD — WP /d - E|WLD — WP
in probability, so that, as d — o,

wo we |

WL W

E|W1(1) _ W1(2)|17
EW®”

U, — G, =H i

in probability. The right-hand side is strictly greater than 1 since E|W® — x|?
is an even and convex function of x, and hence strictly increasing in |x| for
1<p <o
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For p = o, [WW|| - 1 and [W® — W®|| - 2, so that

w® W@

- - 2. O
W® W

U, — G,ll =H
The proof of Lemma 3 is established as part of the proof of Lemma 6 of NR
(cf. lines 13-14, page 801).

ProorF oF LEMMA 4. For an arbitrary but fixed n, let U,,...,U, be iid
with distribution £, and let S; = B(U,, 1). Then

1>7;'E Vol(( US| nS,
i=1

>7;' Y E vol(S; N Sy) — 75! Y E vol(Si N Sj)

i=1 1<i#j<n

=nZ; 'Evol(S; N S,) —n(n —1)7; 'E vol(S; N S,).

According to Lemma 3, the latter goes to zero as d — «, and since n is
arbitrary, the lemma follows. O

3. Proof of Theorem 1. Let T7,,T,,... be nonnegative integer-valued
random variables defined on a (rich) probability space such that

(3.1) P(T,=ry,.... T, =1,) =pp(ry,...,73)

given in (2.3). The existence of the probability space is guaranteed by the fact
that the collection of distributions p,, £ =1,2,..., satisfies Kolmogorov’s
consistency condition. [Later, we need to assume that the probability space is
sufficiently rich to admit uniform random variables independent of the T’s.
In truth, any nonatomic probability space is sufficiently rich to support all of
our random variables; cf. Halmos (1950), page 173.]

Proposition 1 implies the weak convergence

(3.2) (Ty1,Ty.9,...) = (T1,Ty,...) asd— .

A simple, useful stochastic description of (T4, T,,...) is possible, arising
from functional relationships among the densities (2.2), (2.3) and (3.1). The
components of (T}, T,,...) can be viewed as conditionally independent Pois-
son distributed random variables with means A, A,,..., respectively, given
the random vector A = (A, A,,...), where the distribution of A is, for any
fixed dimension d, the same as that for (|Q,[|%,|Q,]l%...). Indeed, A, A,, ...
can be viewed as a Poisson point process with constant intensity rate 1 on the
positive real line.
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Since [|Q,/|* has the density appearing in (2.1) it follows immediately that
T, has a negative binomial marginal distribution:

w(v" vk—l
= = __ L,V -v _o-(k+r)|k+r—1
(3.3) P(T,=r) j;{r!e }F(k)e dv =2 ( - ),
r=20,1,....

Thus the distribution of T), is the k-fold convolution of the (geometric)
distribution of T,.
More generally, for any set B in {0,1,...}",

P((T,,...,T,) € B)

k

(34) _ /(‘)OC/;OO/OC exp(—v,) Y l_[ {Z—Zr’ exp(—vi)} dv,, - dv;.

Vp-1 (Fyyeees rp)eB i=1

Let
N = Y I(T,=r—-1), r=12,...,
k=1

and observe from (3.3) that

EN. = ¥ 2—<k+r-1>(k+r‘2) -1, r=1,2,....
r = r— 1 ) 9 &y
Likewise, EN,; , =1, r = 1,2,..., because each point of Il has exactly one
rth nearest neighbor and hence, by (3.2),

(Ng1,Ng3,...) = (N, Ny,...) asd — .

Our task reduces to proving that N,, N,,... are iid Poisson with mean 1.

To this end, let U,, £ = 1,2,..., be iid uniform random variables on (0, 1]
that are independent of (T, T, ...) and consider the set of points I1, = {T}, +
U,k =172...}, apoint process on (0,©). Let M(%) denote the number of
points of II, in the set .. Clearly, M((r — 1,7]) = N,, and given N, = n,
these n points are uniformly distributed on (r — 1, r]. The theorem follows if
it can be shown that Il is a Poisson process with constant intensity rate 1.

By Rényi’s theorem [see, e.g., page 34 of Kingman (1993)], it suffices to
show that

(3.5) P(M(%) = 0) = exp( ~L(#))

for every finite union . of bounded intervals, when L(%) denotes the

Lebesgue measure of .. Without loss of generality, we may consider sets of

the form U’ ,.%,n =0,1,..., where .% is a finite union of intervals in

(r,r + 1]. From the construction of I, it is apparent that the distributions

of M(U?_,.%%) and M(U?_(r,r + L(&)] are the same. Thus, it suffices to

consider sets . of the form U?_(r,r + a,]with0 <a, <landn =0,1,....
To begin with, let % be a suitable set. Then

(3.6) P(M(#)=0) = imP(T,+ U, .7, i = 1,..., k)
k—
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and by the inclusion—exclusion principle,
(3.7) P(TL + (]t $y, l = 1,...,k) =1 _yl,k +<5ﬂ2,k _ i‘%e,k’
where

G p = Y P(T, + U, €2, i=1,...,m), m=1,...,k.

m,
1<j1<jo< * <jm<k

Clearly, ., ; is nondecreasing in k£ and in the limit, as £ — =, attains the
value

(3.8) Fy = P P(T, +U, €7,i=1,...,m).

" 1<j1<Jo< ++ <Jpu<®
We shall show that

L)

m!

(3.9) ., m=1,2,...,

m

which, in view of (3.6) and (3.7), establishes (3.5). (The required limiting
operations follow from the dominated convergence theorem and

L(x)"

m!

Y = el <)
m=0
So the task is to establish (3.9).
It is instructive to start with the simple case = (r,r + 1], r =0,1,...,

where we need to show that %, = (m)™', m =1,2,.... With (3.4) and
k >j,, a typical summand in (3.8) becomes

P(T,+ U, ez, i=1,...,m)
=P(T,=r,i=1,...,m)

vr

f exp(—vk)_]j[l{—j; exp(—vji)}dvk - dv,

r

-,
(_l)rm grm
S (r)™ ot - ot

=]

U1 V-1

[}

Xj;)wj;]xf exp(—vk - .r_zn:ltivji) dv, -+ dv,

V-1

with the integral assuming the value
1
(L+6,) (1 +t, +t, ) (Lt + e +2,)
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where k£, =j; and &k, =j, — j,_; for i > 1, independently of k. Hereafter, it

will be understood that the partial derivatives with respect to ¢,,...,¢,, are
evaluated at t; = -+ =t, = 1. Thus, due to symmetry,
-1 rm grm
S = Q Z -

(r)"™ k. k=1 Ot Ot

1
(L+¢,) (1 +¢t, +t, ) (L +t, + +tm)kl)

_1rm rm
IV

(rD)™ ey k=1 OH Ot

1
(L+t)" A+t +t)2 (L +, + +tm)kM)

(-n™"
(r)™ at] - e,

1
>< Z kl kZ km
By ky>1 (LA ) (L2 +8y)2 (L +t + - +8,)
(-n™ o 1
(r)™ gty e atn \ty(8y + ty) (8 + - +t,) )
Since
arm 1
oty - aty \ b, (b, + e e, )
is the same for all permutations 7 = (s7,...,m,) on {1,..., m} (when evalu-
ated at ¢, = --- =¢, = 1) and since
1 1
Zt (t 4 e 4 # )=tt cee f
T Ty T T 1%2 m
(which can be readily shown by induction on m), we have
arm 1
aty - atr by (8 + o +2,,)
1 arm 1 )
= — = (-1 (rhH™.
m! at] - ath \ bty - 8, m!
Consequently,
_1 rm _1 rm . 1
ym = ( )m ( ) (r') =
(r!) m! m!

as claimed.
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Now for the general case with = U?_,(r,r +a,],0 <ay,a,...,a, <1,
a typical summand in (3.8) becomes, for £ > j,, [cf. (3.4)],

P(T,+ U, ez, i=1,...,m)

=P(Tji+ U, €(r,r +a,] forsome r =0,...,n;foreach i = 1,...,m)

I
o
S~
@
o]
kel
~~
|
<
ol
N
L
/—/\
Nn [\1 3
('D
o]
kel
~~
|
\
\-/
U
S
ol
U
&

o .00 ©

f exp(—vy) l_[{v exp( — )}dvk - dv,

1 Up—1
o et
SO s {3 E e
0<ry,..., rp<ni=1
(?r1+"~+rm o oo - m
Xﬁ/ f exp(—v - tlv-,)dv - dv
Aty - atim Jo vy . k i:zl iy k 1
- +
= Z 1_[( )( 1)’1 T'm
0<rq,..., r,<n i=1

1
L+t )1 +t, +¢, )L+t 4+ +2,) )

X

where k£, = j, and k; =j;, — j;,_, for i > 1. Consequently,

> 7 v 7 ﬁ(jr;)(_l)rl+...+rm ¥

EYEETN
i By k,>1 0010 o dty

&r1+ e try,

(L+¢ )1 +¢t, +¢, )t (L +t, + +tm)k1)

m
i 1 ryt oty
1_[ 7")( ) ks z;e 21 0t{1 ﬁt;lm

0<ry,..., rp<ni=1

grit

I
]

(L+t)" A+t +t)"2 (L +t, + +tm)k'")

_ 3 ﬁ(a_r;)(_l)mmw

rit+ - +ry,

&t:’l"l ee ﬁt;’,’m
1

X

ty(ty + Ey) o (8 + o0 F )
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_ 1 r I (&)(—wﬁww
m! 7 0<ry,.. oy <ni=1 r;! at{r -+ dtm
1 )
X
t7T1 (tw1 + .- +t7rm)

r1+ +rm 1
(_1)r1+~~+rm
&tlﬁ o’?t,’nm tltz tm

i L n(%)(rll)---(rm!)=%(a0+~~-+an)m,

<ni=1

which establishes (3.9) and completes the proof. O
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