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A CONSISTENT MODEL SELECTION PROCEDURE
FOR MARKOV RANDOM FIELDS BASED
ON PENALIZED PSEUDOLIKELIHOOD

By CHUANSHU J1' AND LYNNE SEYMOUR

University of North Carolina and University of Georgia

Motivated by applications in texture synthesis, we propose a model
selection procedure for Markov random fields based on penalized pseudo-
likelihood. The procedure is shown to be consistent for choosing the true
model, even for Gibbs random fields with phase transitions. As a by-prod-
uct, rates for the restricted mean-square error and moderate deviation
probabilities are derived for the maximum pseudolikelihood estimator.
Some simulation results are presented for the selection procedure.

1. Introduction. Markov random fields are widely used as models in
statistical image analysis [cf. Karr (1991) and Rosenfeld (1993)]. Since
Hassner and Sklansky (1980) and Cross and Jain (1983) first used isotropic
Markov random fields to generate synthetic textures, others have explored
different types of Markov random fields for texture synthesis. How does one
choose a model from a collection of Markov random fields such that its typical
sample resembles an observed texture? In this paper we present a model
selection procedure based on penalized pseudolikelihood for Markov random
fields in the form of an exponential family. It is shown that, asymptotically,
this procedure chooses the correct model under very general conditions.

Little has been done to address selection of Markov random fields. Kashyap
and Chellappa (1983) first proposed a method of selection based on linear
combinations of gray levels plus Gaussian noise. Smith and Miller (1990)
proposed a selection procedure which is based on the stochastic complexity of
Rissanen (1984) and is similar to the one presented here. Seymour and Ji
(1996) derived two Bayesian selection criteria [Akaike (1978); Schwarz (1978)].
The first is based on the maximum likelihood estimate; it is of theoretical
interest, but is intractable for random fields. The other criterion uses the
Markov chain Monte Carlo approximation to the likelihood developed by
Geyer and Thompson (1992). Although Markov chain Monte Carlo criterion is
viable, it is difficult to implement for images and requires that the random
field exhibit weak spatial dependence.

In Section 2, the required random field framework is briefly introduced.
Section 3 gives the formulation of the model selection problem and the main
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results. The selection procedure presented is based on the maximum pseudo-
likelihood estimate of Besag (1974). Although the criterion is similar to the
Bayes criteria discussed above, it is not a Bayesian criterion. Even so, it has
distinct advantages over the Bayes criteria; our criterion is much easier to
compute and asymptotically it is shown to give a consistent choice of model,
whether the spatial dependence is weak or strong. Since the spatial depen-
dence involved in texture modelling may vary from short range to long range,
the pseudolikelihood procedure has more extensive applications.

Because model selection and parameter estimation are closely related, the
maximum pseudolikelihood parameter estimate and existing asymptotic re-
sults for this estimate are discussed in Section 4. In addition, two new
lemmas are proven which provide rates for the restricted mean-square error
and moderate deviation probabilities for the maximum pseudolikelihood esti-
mate.

Section 5 presents and discusses some highlights of a simulation study of
model selection via pseudolikelihood. Some concluding remarks are made in
Section 6. All technical proofs are in the Appendix.

2. Random field framework. We consider Gibbs random fields induced
by translation-invariant pair-potentials of finite range. The extensions to
other finite-range translation-invariant potentials is straightforward but in-
volves heavy notation. For a more general discussion of Gibbs random fields,
see Georgii (1988).

With each site i € Z?, associate a random variable X, taking values in a
finite set S. Then X = {X,, i € Z?} is a random field with configuration space
O =87 Let x = {x,, i € Z?} € Q denote a realization of X. For a region
A C Z?, the subconfiguration space is given by Q, = S*, so write X, = {X],
i € A} for the random field on A and x, = {x;, i € A} € Q, for a realization
of X,.

Let the potential U = {hU(x,), B;Uy(x,, x,): x,,x; € S; j € Z*}, with o
representing the origin, be a collection of functions such that U;: S — R and
U,: S XS — R are known and U,(s, t) = U,(¢, s). The term AU,(-) (though
not usually employed) may be used to model large-scale spatial trends, where
h € R (the external field coefficient) is an unknown parameter. The term
B,U,(-,-) is a pair-potential of range R > 0: the parameters B; € R, j € Z*
(the coupling coefficients) are also unknown and are such that g, = B_;, V j
and B, = 0V j with [j| > R, where |-|is a norm on 7. In particular, 8, = 0.
Let 6 denote the vector parameter with components being the external field
and coupling coefficients.

The following examples are just two of the potentials that have been used
for modelling with Markov random fields.

ExaMpLE 1. Consider the general Ising models, where Uy (x,) = x;,
Uy(x;, xj) =x,x;and S = {—1,1}. If B; = B> 0 for |jl =1 and B; = 0 other-
wise, then we have the well-known two-dimensional Ising model.
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ExamMPLE 2. Let Uyfx;) =0 and Uy(x,, x;) = 1/[1 + o(x; — x;)*], where
o > 0 is a constant. This potential is used in Geman and Graffigne (1986).

A Gibbs measure (Gibbs random field) induced by a potential U is a
probability measure P on () such that for every x € Q) and any finite A € 72,

eXP[_HA(x)]

(2.1) P(XA = xA|X c = xAc) = zA

b

where the energy associated with x on A is given by

Hy(x) =—h by Ui(x;) — 3 )y B;-iUs(x;, x;) — Y Bi-:Us(x;, x;)
iEA i,jJEA iEA
0<l|j—il<R JEA
lj—il<R
and the normalizing factor, called the partition function, is given by

2, =2Z\(xy) = ) exp| —H,(x)].

The conditional probabilities {P(X; = x|, X =,x), x € Q}, are called the local
characteristics at site i € 72, where , X = {Xj, Jj#i} and ;x = {xj, J# i)
Indeed, the left-hand side of (2.1) is determined by the local characteristics at
all i € A [Geman (1991)].

Under our assumptions on U, the set £(U) of Gibbs random fields induced
by U is always non-empty, but need not be a singleton (in which case there
are phase transitions of the Gibbs random field and in which case the
random field exhibits spatial long-range dependence).

A neighborhood system 0 is a collection {.#'(i): i € Z?}, where .#'(i) C 7>
is the set of neighbors of i € 7?2 satisfying i €.#(i) and i €/(j) < jer (i)
VY i,j € Z?. Define the boundary of a finite region A C Z? by JA =
(U;c @)\ A. Then every P € Z(U) is a Markov random field with respect
to a neighborhood system 9t in the sense that for every x € () and any finite
A c 72,

P(X, =x,| Xy =xy) = P(X, =x,]x,, =2%,,)
with 7 (i) = {j € 72%: B;_; # 0} for every i. In fact, a Markov random field on
a finite lattice has a Gibbs representation [Hammersley—Clifford theorem in
Geman (1991)].

We will be referring to the following examples, which illustrate the simi-
larities and differences in specifying both the neighborhood and the parame-
ter dimension. For these examples, let Uy(x,) =0, Uy(x,, x;) = x,x; and
S ={-1,1}.

ExamMpPLE 3. The neighborhood system depicted in Figure 1, denoted m1,
is for the two-dimensional Ising model. Each site ¢ has four nearest neigh-
bors. The same coupling coefficient 8 is imposed for each pair (i, j), j €4°(i).
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B - . By - Sy
Fic.1. Model m1. FiGg. 2. Model m2. FiGc. 3. Model m3.

ExaMPLE 4. For the model in Figure 2, denoted m2, every site i again has
four nearest neighbors. However, two parameters B, and By are used for
“vertical pair” and “horizontal pair” interactions, respectively.

ExaMPLE 5. For the model in Figure 3, denoted m3, each site i has 12
neighbors that can be subdivided into two layers. The parameters 8 and 7y
are associated with the inner layer and the outer layer, respectively.

Write {p,(x;0), x € Q, i € 7%} for the local characteristics with param-
eter 6.

DEFINITION 1. The parameter 6 is said to be identifiable if p,(x;6) #
p,(x;0’) for some x € ) whenever 6 # 6'.

REMARK. Identifiability may also be imposed via conditions on the poten-
tials [Georgii (1988); Gidas (1993)] or by conditions on £(U) [Cométs (1992)].

For an n X n square lattice A(n), let x,.,) = x(n) denote a single realiza-
tion of X, ,, = X(n), where X has a distribution P € £(U). Write P, for P to
indicate the parameterization and write E,(-) for the expectation with respect
to P,. Extend the observation x(n) to a configuration ¥ on Z? by periodiza-
tion, or tiling [toroidal edge correction; Ripley (1981)], as illustrated in
Figure 4. Correspondingly, let X denote the periodic random field based on
X\ n)

ﬁ))eﬁne the pseudolikelihood function [Besag (1974)], a product of the local
characteristics of the sites of A(n), as

PZ(x(n),0) = ]:! )Pe(Xi =&)X =%).
e n

Any measurable function of x(n) which maximizes 2% (x(n),-) is called a
maximum pseudolikelihood estimate of 6 based on x(n). We denote this
estimate by 6.

There are several motivating factors for using the maximum pseudolikeli-
hood estimate of 0. A practical one is that the local characteristics are quickly
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C ()] [x()] 2 (n)
x(n)| [x(n)] |x(n)

Fic. 4. Tiling.

and easily computed. An intuitive one is that the local geometry of an image
may be reasonably summarized by the local characteristics. A theoretical one
is that its existence, uniqueness and consistency have been proven by Geman
and Graffigne (1986); independently, Gidas (1988) and Cométs (1992) have
established its consistency.

3. The model selection problem and a consistency result. Specifi-
cation of a potential (i.e., selecting a Markov random field model) consists of
the interconnected parts of specifying both the neighborhood system It and
the dimension of the parameter 6.

Let ® = RX be the parameter space of interest, decomposed as the disjoint
union ® = UY_,0,,,0, N0, =TV m # m', where each O, corresponds
to a candidate model (i.e., a potential) parameterized by an element of R*».
We assume that every closure @m is a k, -dimensional linear subspace of R¥,
m=0,1,..., M [cf. Schwarz (1978)]. In particular, ®, corresponds to the
completely specified model with no unknown parameter. Denote the set of all
candidate models by .# =1{0,1,..., M} and let 9, be the neighborhood
system for the model m €.7.

In Examples 3, 4 and 5, one sees that Jt,,, = % ,, # ), 5 and that &, =
1, while %,,, = k,,; = 2. Several synthetic textures generated from m1l, m2
and m3 by the Gibbs sampler [Geman and Geman (1984)] are shown in
Figures 5-10. The coupling coefficients are assigned different values to
produce different imaginary patterns of both weak and strong spatial depen-
dence: “sands” (Figure 5), “clouds” (Figure 6), “wood grain” (Figure 8) and
“wall papers” (Figures 7, 9 and 10). Note that samples from such simple
models are far from resembling real textures.

In general, starting from 6 € 0, a different model can be obtained either
by equating some components in 6 (e.g., letting 8y, = By = B in m2 to obtain
m1) or by setting some components to zero (e.g., letting y = 0 in m3 to obtain
ml). In this way the pseudolikelihood, when written in the form of an
exponential family, may be reduced to its minimal form [cf. Barndorff-Nielsen
(1978); Brown (1986)].

For each m €, let 6, be the maximum pseudolikelihood estimate re-
stricted to ©,,. Let 2%, (-, -) denote the pseudolikelihood for model m €.# in
minimal form: 2%, (x(n), 0) = expl{|A(WI[O'V, — g,(8)]}, where V, and
g,() denote functions analogous to the sufficient statistic and cumulant
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Fic. 5. Model m1, B = 0.1.

generating function, respectively. Define the information criterion as

ko
Q, = sup log. 2% (x(n),¥) — —=log|A(n)|.
€0, 2

Then the pseudolikelihood selection procedure is to choose the model m .7
which maximizes @,,.

Decompose the collection of candidate models as .# =.#,(7) U {7} U.#y(7),
where 7 €.# is the true model, 6 € ©_ is the true parameter which is
assumed to be identifiable (see Definition 1), #Z(7w) ={m €7: 0 & @m} and
My(w) ={m €x: O_C O, }. Here .#,(7) corresponds to an underparameter-
ized choice of model or to an incorrect specification of neighborhood system
(different neighborhoods will correspond to different subspaces which may
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Mline.

Fic. 6. Model m1, B = 1.0.

have the same dimension), while .Z,() corresponds to an overparameterized
choice. Note particularly that ®_ is a proper subset of ©, if m €.#,(m) and
that our decomposition of .# leaves out no choice of model, since we have
decomposed the parameter space ® into a disjoint union of subspaces 0,,,
m €.#, earlier in this section.

Denote the selection procedure which chooses a model 77 based on x(n) by
m = d(x(n)), where d: Q,,, —.# denotes the decision function.

DEFINITION 2. A selection procedure d(-) is said to be consistent if
lim, ., P(d(X(n)) = w) =1, where X(n) is a sample from P,, 6 € O_,
TEM.
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Fic. 7. Model m1, B = —1.0.

The following two propositions give decay rates for the probabilities of
choosing an incorrect model in .Z,(7) and in .#,(7), respectively.

PROPOSITION 1. There exists ¢ > 0 such that P,(im e# (7)) < exp(—n°®)
for sufficiently large n.

PROPOSITION 2. There exists a > 0 such that Py(m €#,(w)) = O(n™") as
n — o

The following theorem is an immediate consequence of Propositions 1
and 2.

THEOREM 1. The selection procedure based on Q,, is consistent.
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i

Fic. 8. Model m2, B, = 1.0, B, = 0.1.

4. Some properties of the maximum pseudolikelihood estimator.
Because parameter estimation is such an important part of model selection,
some asymptotic properties of the maximum pseudolikelihood estimator are
discussed in this section. In particular, Lemmas 3 and 4 in this section
provide some asymptotic orders of consistency for the maximum pseudolikeli-
hood estimator; these are crucial in proving the consistency for the selection
procedure.

Fix a model m €.# and a parameter 6 € 0,, and suppress the notation
indicating the model in this section and in the corresponding proofs in the
Appendix. Recall the pseudolikelihood in exponential family form: the “suffi-
cient statistic” is given by

Z Z( %, EJV(L'))

- |A(n)| ieA(n)
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denote Ao, R) = ARR + 1). Let £ € S and 7 € Q,, g)\(,)» S0 that the com-
bined configuration is ¢ ® n € Q, 4,1, Define

Hi(f@ 77) = l(X\(i,R):é:@U}’
l]i(n) = 1(X1\(i,R)\(i)=77) fOI‘ l < A(n)

and

N,(¢on)= ) (@),

ieA(n)

N,(n) = X L(n).

ieA(n)
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Define the event

N,(éo n)

M(n) = {x(n) (S Q/\(n): W

>A VERNEQyuriy

on which the empirical probabilities for all configurations in (1, are
bounded away from 0. The complement of this set is negligible for large n.

LEMMA 1. There exist positive constants A, ¢ and C such that

P(,(Nn(fe5 ) < A| < Cexp(—cn)

[A(n)]

for all large n and all £ ® m € Qo5 1)
Hence, the following lemma is restricted to .«(n).

LEMMA 2. There exist ¢,C > 0 such that ¢ < vT V2g(3)v < C for all unit
vectors v € R*», all & € 0, in a neighborhood of 6, all x(n) €.#(n) and all
large n.

REMARK. The following is a simple argument for the existence and
uniqueness of the maximum pseudolikelihood estimator. The “pseudolikeli-
hood” equation is given by V = Vg(8). Now, for all 9 € R*~, it can be shown
that E,[V — Vg(9)] = 0, so that by Theorem 14.A8 of Georgii (1988), we have

(4.1) lim [V - Vg(60)] =0, Pyras.

By Lemma 2, there exists a small neighborhood of 6, say @, on which Vg(-) is
a homeomorphism. Then, for large n, we have V € Vg(&) by (4.1). Thus there
exists w € @ satisfying the pseudolikelihood equation, V = Vg(w), Py a.s.
Since g(-) is globally convex [see (A.1) in the proof of Lemma 2 in the
Appendix] and locally strictly convex by Lemma 2, the solution o is the
unique maximum pseudolikelihood estimate 6.

The next two lemmas provide asymptotic orders for the restricted mean
squared error and moderate deviation probabilities for the maximum pseudo-
likelihood estimate.

LEMMA 3. E0{||(§ — 6||21M(n)} =O0(A)™Y) as n - .

REMARK. Theorem 1 may also be proven by Proposition 1, Lemma 3 and
the Chebyshev inequality. However, the decay rate of the probability of
choosing an incorrect model produced by this method can only be of the order
1/log n—a rate inferior to the one inferred by using Propositions 1 and 2.
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LEMMA 4. For every & > 0 there exists a > 0 such that
Py(|A(n) 16 = 61° > elog n) = O(n™%)

asn — »,

REMARK. It is noteworthy that the constant « in Lemma 4, which is the
same «a as in Proposition 2, cannot be made greater than 1 in general. This
precludes the use of the Borel-Cantelli lemma in an effort to prove the strong
consistency of the pseudolikelihood selection procedure. [A procedure d(-) is
said to be strongly consistent if d(X(n)) —» m, Pra.s. as n — », where X(n)
is a sample from P,, 6 € ©_, m €#.] This observation is supported by the
exact order of moderate deviation probabilities in the i.i.d. case given in
Rubin and Sethuraman (1965).

5. Some simulation results. Although there is an extensive literature
in various Markov chain simulation algorithms, we use the Gibbs sampler
[Geman and Geman (1984)] for simulating textures. In our simulation stud-
ies, we have used the three models m1, m2 and m3 which were introduced in
Section 3. For convenience, we have omitted including a “largest” model
among the candidates (cf. Proof of Proposition 1 in the Appendix). We study
the pseudolikelihood procedure for 500 X 500 random fields with the neigh-
borhood interactions varying from weak to strong. In the tables we present,
B, corresponds to B for m1 and m3 and By for m2, while B, corresponds to
By for m2 and vy for m3. The symbol * * indicates the chosen model.

The pseudolikelihood procedure seems to work well in all cases, given the
similarity of the candidate models. When neighborhood interactions are
weak, as in Table 1, there are no phase transitions and an identifying
structure cannot be discerned in a realization. In such cases, the pseudolikeli-
hood procedure tends to overparametrize—in fact, the values of @,, do not
vary much among the models. Also, the sample from the true model was
practically indistinguishable from a sample from m1 with no phase transi-
tions (indeed, m1l is a special case of both). On the other hand, when
neighborhood interactions are stronger, phase transitions are possible. The
procedure still tends to overparametrize when the true model is m1 (seen in
Table 2), but the chosen model is close to the true model and @,, again does
not vary much. As seen in Table 3, the pseudolikelihood procedure worked
extremely well when structures unique to the model are easily discernible,
making a clear (i.e., one value of @,, is much larger than the others) and
correct choice over all other candidates.

REMARK. These same phenomena may be observed for m3 [Seymour
(1993)].

6. Concluding remarks. The model selection procedure proposed in
this paper has a similar expression to that of the Bayesian information
criterion [Schwarz (1978); Akaike (1978)] with the likelihood replaced by the
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TABLE 1
Weak neighborhood interactions

Model By By Q.
B=01
1 0.09880 — —167024
2 0.10120 0.09651 —167028
* %3 0.09921 —0.00108 — 165694

By = 0.01, B = 0.1

1 0.05414 — —170461
2 0.01175 0.09568 —169606
* %3 0.05403 —0.00153 —169099
By = 0.1, By = 0.01
1 0.05557 — —170388
2 0.10343 0.00657 —169255
* %3 0.05554 —0.00229 —169032
TABLE 2
Strong neighborhood interactions m1
Model B, B2 Q.
B=1
1 1.0176 — —2523
2 1.0325 1.0027 —2529
% %3 1.0676 —0.02667 —2485
B=-1
1 —1.0242 — —2702
2 —1.0053 —1.0425 —2708
* %3 —0.97953 —-0.02614 —2678
B=2
1 1.9805 — —1206
2 6.3686 1.7551 -1210
* %3 1.9371 0.04030 —1201

pseudolikelihood in the first term and the same penalty for overparameteri-
zation in the second term. A similar modification of Akaike’s information
criterion [Akaike (1974)] may be considered. In the ii.d. case, Woodroofe
(1982) pointed out that Akaike’s criterion is superior to the Bayesian criterion
asymptotically when the dimensionality of the parameter tends to infinity at
an appropriate rate as the sample size tends to infinity. We expect that a
similar result will hold for Markov random field texture models if we let the
range of the potential R = R, — o; however, more delicate asymptotics are
needed to accomplish this, and the result in Ji (1990) may be helpful.
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TABLE 3
Strong neighborhood interactions m2

Model B, Bz Q.

By =01,y =1

1 0.54126 — —64924

* %2 0.09975 1.0074 —44670

3 0.74073 —0.12326 —-60873
By =1, By =01

1 0.54077 — —65320

* %2 1.0010 0.10003 —45135

3 0.73140 —0.11896 —61489

By=1Bg=-1

1 —0.01349 — —171907

* %2 0.97933 —1.0521 —2379

3 —0.01865 —0.18243 —169900
By=-1,Bg=1

1 —0.02736 — —171902

* %2 —0.98039 1.0469 —2398

3 —0.03704 —0.19437 —169833

The asymptotic distributions for the indices @,,, m €.#, may also be
investigated. The need for such was demonstrated in Woodroofe (1982), in
which the distribution of the number of superfluous parameters contained in
the selected model was found. Such a result could be used to make numerical
comparisons between different models. The derivation may not be too difficult
under Dobrushin’s uniqueness condition for Gibbs random fields [Georgii
(1988)]. However, the derivation is very challenging under the assumptions
we have made in this paper due to the lack of a central limit theorem for
Gibbs random fields under phase transitions.

Extensive simulation studies are still being done for real texture synthesis,
and many issues remain open. A rich class of candidate potentials is required
for using Markov random field models for texture synthesis. Our approach in
this paper has been to consider a great variety of neighborhood systems. The
recent approach of Kiinsch, Geman and Kehagias (1995) is to code each site
variable in a complex manner while restricting to the nearest neighbors. Both
of these approaches involve extremely intense computation. Current research
still has yet to achieve the ideal of a convenient statistical method for
replicating real textures.

APPENDIX

LEMMA A.1. Let R be the range of the Gibbs random field. Let (1), ...,
B(T) be bounded regions in 7%, T € N, with the distances between %(t) and
H(t") greater than R for all t #t'. Also, let €= 7>\ (UT_,%(t)) be the
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corridor between these regions. Then for any collection of bounded measurable
functions f,;: Qg4 > R, t =1,...,T, we have

T T
Ee{t_l_llft(X,@(t)) x%} = t].__.[lEe[ft(Xﬁ’(t)HxZ]
uniformly for all corridor configurations x, € Q,, where E,(‘|x.) is the
conditional expectation with respect to Py(+|x).

ProOF. This result follows from the Markov property of X. O

ProOF OF LEMMA 1. Assume without loss of generality that (3R + 1)
divides n. Partition A(n) as a union of disjoint tiles A(n) = UZ_,D(¢), so that
each tile D(¢) is a BR + 1) X (3R + 1) square lattice. Then T =[n/
BR + D)%

Also, write the decomposition A(n) = U @8} 1)ZG(k), where every G(k)
contains exactly T sites with the same relative positions in the disjoint tiles
D(t), t =1,...,T. For instance, one G(k) may consist of the centers of the T
tiles, while another G(k) may consist of all upper left corners of the T tiles.
Therefore, N,(¢ ® 1) = LPE V'Y, o, 1,(€ @ ) and for every £ © n € Q55
we have

N, (& n) BR+1)?
O(W < /\) < exp(—)\n) kgl EH

1

exp{— — Y l(¢o n)}]
ieG(k)

For a fixed index %, let (k) = Z*\ (U ;< g)A(i, R)) be the corridor dividing

the regions A(i, R), i € G(k). Then

€1

1
Ee[eXP{ - ;l]i( &o 77)}
for some ¢; > 0 and all large n. Therefore, employing Lemma A.1,

Pe(Nn(fﬂa n)

RO

< Cexp(—cn)

for some C > 0 and some ¢ > 0. O

Proor or LEMMA 2. Define
K(9,n) =97V —g(9) =IA(n)|"" log 2Z(x(n),9).

Let p,(&lm;9) be the local characteristic at the origin, where ¢® n e
Qyer+1) € €S is the value at the origin o0 and 1 € Q5 1y\(,)- Then, via
translation invariance, we may write

N,(n) 5> N,(¢® )
|A(n)| & N,(n)

K(9,n) =% log p,(&lm; 9).
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Write the local characteristic at the origin in exponential family form
xp{97¢(£ @ 1))
r,exp{d’p(s @ 1)}’

where & € R*» and ¢(-) is an appropriate vector-valued function. Because
LN, (£ ® m) = N,(n) for fixed n, we have

n(n)
A(n)[

p,(€élm;0) =

~V2K(9,n) = Z TAGOT [( (X, & n) — Ey[ (X, ® n)n])

X($(X, ® m) = Ey[#(X, @ m)in])ln],

where E9(-|n) is the conditional expectation with respect to p (- In; 9). Hence
for v € R*», we have

TVvig(9)v
(A1) = —vT VZK(%,n)v
. N(”’)) T 2
= E gy Bl (6, @ m) ~ E[0(X, @ )] )

Since this expectation is bounded and there are only finitely many n €
Qp@r+ 10 We see that v” V2g(9)v < C for some C > 0.

On the other hand, the identifiability of 6 guarantees that the “outside”
expectation is strictly positive for at least one of the n-configurations. Also,
for fixed ¢ € Sand n € Q54 1)\ () it should be clear that N,(n) = N, (¢ & 7).
Then on ¥(n),

N.(n) _ N.(£®n)
[A(r)[ — [A(n)]

for all n-configurations. Therefore, v’ V2g(9)v > ¢ for some ¢ > 0. O

>A>0

PROOF OF LEMMA 3. The Taylor expansion of VK(3, n) about 6 gives
VK(60,n) = VK(6,n) + V2K(9',n)(0— 0)
— —V%(9")(6 - 0)
for some ¢’ satisfying |9’ — ol <llo— all By Lemma 2,
(A.2) 16 - 61l < CIIVK (6, n)|”
on #(n) for some C > 0. Thus E,{l6 — 601°1,,,} < CE,{|IVK(6, n)|*}. Rewrite
K(6,n) as

K(6,n) = Y| X L(£@ m)log p,(&lm;0)

o, Z )
|A(n)| ieA(n) “€éon L
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so that

(A.3) VK(0,n) = Y. w,

where W. is the vector

W, =2 0L(n)(¢(X; © n) — E,[$(X; ® n)n]).

For each i € A(n), all of the components of W, are bounded. Let w; denote an
arbitrary component of W;. Then it is sufficient to show

2

E{( Y w) } - o(lA(m)).
ieAn)

Using the decompositions of A(n) from the proof of Lemma 1, it is enough to

show

E,

[ £ w]|-otam)

ieG(k)

for each G(%). Let €(k) be a corridor as constructed in the proof of Lemma 1.
Then E,(W;|x.)) =0 for i € G, and every configuration x,;, Since the
elements w; are bounded, Lemma A.1 gives

2

Ee{( Y wl—) } < C|G,
ieG(k)

for some C > 0. Because |G(k)| = [A(n)I(3R + 1) 2, the result clearly follows.

O

ProorF oF LEMMA 4. By (A.2) and Lemma 1, it suffices to show that for
every ¢ > 0,

P,(IA(n)[IVE (8, n)|[* > &log n) = O(n=*).

Using the notation in the proof of Lemma 3, it is enough to show that for
every ¢ > 0,

Y wi‘ >er, | =0(n"%)

ieG(k)

for some « > 0, where 7, = /|A(n)llog n.

Consider the two cases for the absolute value, studying first the positive

case. For p > 0 (to be specified),
w;
exp( Y P ) )
i€G(k) Vv

(A4) Pe(

Pe( Y wi>8’rn)SeXp(—ps\/E)E9

ieG(k)
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Using Lemma A.1 and the construction of the corridor #(%) in the proof of
Lemma 1,

pw; pw;
E exp( Y ) =E,{ [] E exp(—)X N
| e Ve “icow T\ I

From the proof of Lemma 3, E,(w,|x;,,) = 0 for every corridor configuration
X k> 50 that

Th

- a'p?|G(k
Pe( Y w, > STn) < exp(—ps\/Tn )exp(M)
ieG(k)
for some a’ > 0. Let a” = a’/(BR + 1)? and recall that |G(k)| = [A(n)|/
(BR + 1)2. Set p=en Y2(og n)>*(2a")"! and note that |A(n)| = n%. Then

PO( Y w; > 8Tn) =0(n %)
ieG(k)
with a = £2/4a".
For the negative case,

P,,(— Z w; > ETn) =0(n™%)
ieG(k)

can be derived in the same way. Hence (A.4) follows. O

PROOF OF PrROPOSITION 1. Note that for all 9 € ©,, and all m €.#,(7),
there exists &; > 0 such that |6 — 9| > 3¢;. Let M be the “largest” model
(i.e., the model which can be reduced to any of the other candidate models), so
that ©,, c ©,, for all m €.#. Note here that ,, = ® = RX and that we may
write 0 for 6,, since 6, is a “global” maximum pseudolikelihood estimate
over the set .Z.

Let 2(n) = {x(n) € Qi 6 — ol < £,}. Then, applying Lemma 1 to
P,(«/(n)°) and the exponential consistency of 6 [Cométs (1992)] to P,(2(n)°),
we have P,({#/(n) N2 (n)}°) < exp(—n") for some a; > 0 and for all large n.
Hence we restrict our attention to «(n) N2 (n).

Let m €#(w), where i denotes the chosen model. Recall from the proof
of Lemma 2 that K(9,n) = 9V — g(®) = 8'V,; — g,,(9). Recall also that
K(¥9, n) is globally concave and locally strictly concave so that 6 is the unique
maximum pseudolikelihood estimate. Since the true parameter 6 is some
positive distance away from @m, there exists & > 0 such that
supycg K(@,n) <K(6,n)— 6 for all large n, Pra.s. Then @, — Q,, >
aZIA(n)rfor some a, > 0 and for all m €.#,(7) so that

Py( e (m)) < Py(Qy, — @y > 0) < exp(—n°)

as n — o for some ¢ > 0. O
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PROOF OF PROPOSITION 2. Let F(n) = {x(n) € Q,,: IAMIIG, — 0]* <
e log n for all m €}, so that by Lemma 4, P,(F(n)°) = O(n~*) for some
a > 0. Hence we restrict our attention to &#(n) N F(n).

On 2(n), for a chosen model m €.#,(7), we have

Q. - Qs =|A(n)|[ K, (6,,n) = (05, n)] = (k, — ky)log n.
Hence, we have

Kw(éw, n) - Km(ém

n) = —C(l6, - 6I* +116; — o1°)
for some C > 0, so that
Q. — Qi =AM |[-C(18, — 01 + 18, - 01%)] = (k, — k,)log n.
Then on #(n) N F(n),
Q. Q; =aylogn,
where a; = k; — k. — 2Ce > 0, provided ¢ is sufficiently small. Hence,
P,(i c4y(m)) < Py(Q; — @, > 0) = O(n™")

as n — o for some a > 0. O
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