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LARGE DEVIATIONS FOR THE OCCUPATION TIMES
OF INDEPENDENT PARTICLE SYSTEMS
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We prove a large deviation principle for the density field of indepen-
dent particle systems in an infinite volume. We then deduce from the
one-dimensional case of this result the large deviations for the occupation
times of various sets (from microscopic to macroscopic scales) and we
recover the theorem established by Cox and Griffeath. An expression of
the rate function is given using the Brownian motion local time as in
Deuschel and Wang.

1. Introduction. The study of large deviations for the occupation times
of infinite particle systems was initiated by Cox and Griffeath [2] for indepen-
dent simple random walks on the lattice Z¢ with an initial equilibrium
distribution. From the general results on the large deviations for Markov
processes, one could have expected the exponential decay speed a, of devia-
tion probabilities for the occupation times to be equal to ¢, yet Cox and
Griffeath showed it depends on the dimension d. More precisely, the more the
particles are recurrent, the slower the deviation probabilities go to O:

Ve, ifd=1,
a,=1{t/logt, ifd=2,
t, if d > 3.

More recently, Deuschel and Wang [3] have obtained the same results for a
Poisson system of independent Brownian particles.

The proof of Cox and Griffeath relies on accurate estimates on random
walks so that the explicit rate function can be computed. Cox and Griffeath
conjecture that the dependence of the speeds of large deviations on the
dimension of the lattice should also occur for some interacting particle
systems.

Landim [9] solves the problem for the symmetric simple exclusion process
(SSEP). He obtains the same speeds as for the independent system. As
expected, if d > 3, the large deviations for occupation times of the SSEP
follow from general results for Markov processes. The rate function is then
given by a variational formula, which turns out to be degenerate for d = 1
and d = 2. But in the one-dimensional case, Landim proves that the occupa-
tion time of a site is related to the density field, that is, the empirical
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distribution of particles. Indeed, a large deviation for the occupation time of a
microscopic site occurs if and only if there is an abnormal density in a small
macroscopic box centered around this site. Notice that such a result is not
valid in higher dimensions, because particles are not recurrent enough.
Landim then applies a contraction principle to the large deviations for the
density field of the SSEP, which has been established by Kipnis, Olla and
Varadhan [8], and he obtains the large deviations for occupation times in
dimension d = 1. Unfortunately, the rate function is still given by a varia-
tional formula.

So it is natural to ask if, in the one-dimensional case, the large deviations
for occupation times of the independent random walk system have the same
origin as for the SSEP. Landim’s method would then provide a variational
rate function, but would it be possible to recover Cox and Griffeath’s explicit
formula? This paper answers these questions and our program is as follows.

In the first step, we prove a large deviation principle for the density field of
the independent system. Although the method is by now standard (see [4], [8]
and [9]), some technical difficulties appear because of the infinite volume and
because the number of particles is an unbounded function of the sites. In the
second step, we look at the relation between the occupation times of a site
and the density field. From the first and second steps, we deduce large
deviations for the occupation times of various sets (from microscopic to
macroscopic scales), with a variational expression of the rate function. So, in
the third step, we have to find an explicit formula. Such a problem is
generally difficult, even if there are some examples in the literature (see, e.g.,
[3], [6] and [7]). In our case, we can reduce the variational problem to a
simple linear partial differential equation (PDE) and we have a stochastic
interpretation of its solution in terms of the Brownian motion local time
(Deuschel and Wang [3] have obtained the same expression for the rate
function). Moreover, with our approach, the result can be extended to some
nonequilibrium initial distributions.

Notice that the method is not based on the independence of particles, in
the sense that this property is not used for computations. Yet, the noninterac-
tion of particles leads to a very simple PDE. In most interacting cases, it will
turn out to be a nonlinear equation. For example, if we apply the method to
the SSEP, we get a system of nonlinear PDEs with coupled initial and final
conditions, and we do not know how to solve such a system. Otherwise, the
nonexplicit use of independence should lead to an extension of the method to
the general zero-range process, but in the present state of things, the main
ingredient, that is, the large deviation principle for the density field, is not
obtained in the classical sense (see [1]), mainly because of the nonstandard
form of the rate function (which is not convex).

The paper is divided as follows. In Section 2, the notation and main results
are stated. Section 3 deals with the last two steps of the method and the first
step is established in Section 4.

2. Notation and main results. Throughout this paper, we are inter-
ested in an independent particle system on Z: initially, the particles are
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distributed according to a probability measure on the state space X = NZ. Let
£, € X Dbe an initial configuration. Then each of the ¢,(%k) particles located on
site k& evolves independently of the others, performing a continuous-time
random walk on Z with a transition p(i, j) satisfying the following condi-
tions:

(i) p is shift invariant: p(i, j) = p(j — i),
(i1) p has a finite range: p(k) = 0 if |k| > &,
(iii) p has zero mean: ¥, kp(k) = 0

and we set o2 = ¥, kZp(k).

If we denote by ¢&,(k2) the number of particles located on site & € Z at time
t €[0,T], the occupation time of the finite subset A of Z, defined as the
particle density on this set up to time ¢, is given by

1
aily B, 6 &

where | A| denotes the cardinality of A.
It is well known (see, e.g., [5]) that the Poisson product measures v
marginals are Poisson laws with parameter A. That is,

T,(A) =

* whose

An
vM(n(k) =n) = ;ef)‘,

are shift invariant and invariant for the process.

To establish a large deviation principle for the occupation time, when the
process is initially distributed with these equilibrium measures, it is enough
to compute the limit

1
W(A,0) = ]37111100 ﬁlog E*Mexp{0NTy:(A)}],

where E* denotes the expectation with respect to the law of the process.
Indeed, a result due to Sievers, Plachky-Steinbach and Ellis (stated as
Lemma 1 in [2]) asserts that if (A, 0) satisfies some smoothness conditions,
then the large deviation principle follows with the Legendre transform of
y(A, ) as rate function:
D(A,a) =sup{ab— (A, 0)}.
oeR

Moreover, with this approach, the result can be extended to some nonequi-
librium initial distributions. For any positive integer N and y € A(A), where
A()) is the set of continuous and bounded functions equal to A outside a
compact subset of R, we consider as initial law the Poisson product measure
vy, with smooth parameter y, whose marginals are given by

Loy s

vi(n(k) =n) N

Notice that

ON 1
E*¥[exp(6NTy:( A))] = m[eXp{m [} T e d}}
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so it is natural to consider the accelerated process (1,),co 7] = (&n2); (0,19
on NZ. Its infinitesimal generator is defined by

(21) VneX, Zf(n) =N*Lp(—)a@)(f(n")) = f(n)),

where f is a cylinder function on X; that is, f depends only on a finite
number of coordinates, and where n*/ is the configuration obtained after a
jump of a particle from site i to site J:

n(i) =1, ifk=iandn(i) >0,
ni(k) ={n(j)+1, ifk=jandn(i) >0,
n(k), otherwise.

The density field is the empirical measure corresponding to the distribution
of the particles:

1
MN(t) = N Z ”k(i)sz‘/zv,

ie”Z

where §; ,y stands for the Dirac mass on i/N. We denote by Py the law of
the accelerated independent process when the initial distribution is »}.

The independent particle system satisfies a law of large numbers when it
is initially distributed with the Poisson product measures. Indeed u¥(0)
converges to the macroscopic density field y(x)dx, and this law of large
numbers is conserved: u"(¢) converges to the unique solution of the heat
equation (the so-called hydrodynamical scaling limit of the particle system)
with y as initial condition. To obtain a large deviation principle from this
limit for the density field u”, we apply the method introduced by Kipnis, Olla
and Varadhan [8] and Donsker and Varadhan [4]: we observe the deviations
of the process when some perturbations occur in the jump rates.

We now introduce the notation to define the rate function of the large
deviation principle. For topological convenience, we work with the Schwartz
space .’ of slowly increasing distributions, endowed with the strong dual
topology. The path of the density field ( u™(¢)), cqo, 7] is then considered as an
element of D(0,T],.%’), the space of cadlag functions from [0, 7] into .#,
with the Skorohod topology. If F €. is a positive measure and if f €., we
will write (F, ) = [ f(x)F(dx). For any p € D([0,T],.%’) and y € A()A), we
define the following linear functional on the space Z(R X [0, T] of infinitely
differentiable functions on R X [0,T'], with a compact support [the set of
infinitely differentiable functions on R with a compact support will be de-
noted by 2(R)]

1(p,G) = (p(T),G(-,T)) ~ ( p(0),G(-,0))

2 2

T o 0 J
_fo <p(s)’(7&_x2 + E)G(-,s)>ds.
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Then we introduce the rate functions

o? T G \2
Ii(p) = sup ){l(p,G —7f0 <p(8),(g) (‘,8)>d8},

GeZ(Rx[0,T]
B(p(0)17) = sup {(p(0).) = [ (expl(x)) = Dy(x) d .
g€ (R) R

L(p) =L, (p) +h(p(0),7).
Given M >0 and n € Z, let & be the closed and convex subset of
D(0,T],.5"):

MM

n

T
{peD([O,T],Y’), p positive measure: / p(s)([n,n+1])ds SM},
0
M=, _,9Mand & = U, . @M. We set
IL(p), ifpew,
T(p) = {7 .
+ oo, otherwise.
Now we can state the following result.

THEOREM 1. For any closed subset C of D([0,T],.%"),

1
(2.2) lim sup Nlog Py uN ecC] < —infJ,(p).
N> pEC
For any open subset O of D([0,T],.%"),
1
(2.3) lim inf —~log Py[uNeo] = - 32£Jy( p).

Notice that this result extends to the independent process on the lattice
7%, with N? instead of N as the exponential decay speed.

The occupation time of a site is not a continuous function of the density
field. Yet, we will see with a superexponential estimate that the occupation
time can be replaced, without any change to the large deviation probabilities,
by the average number of particles in a small macroscopic box. Indeed, if we
consider

1
eN — ;
nt (O) 28N+ 1 mSZENnt(l)’

then we can prove the following result.

LEmMMA 2.1. For every § > 0, t €[0,T1],

1
(2.4) lim lim sup ﬁlog PX,[ /;)tVN,g(ﬂs) ds

e—0 N-—>®

TIEES

where
Vy, (m) = 1(0) = 7°V(0).
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Such a result was first established for the symmetric simple exclusion
process in infinite volume in Lemma 3.1 of [9].

Using Theorem 1, a large deviation principle is then obtained for the
random variable

[1ne¥(0) ds
0

and it follows from Lemma 2.1 that, for any finite subset A of Z, the function
(A, 0) is given by

#(A,0) = lim y*(0),

where

w0 = swp {of'pa)ds =)
peD(0,1],.7) \ 70

and where («,), . , is a regularizing family of functions on R; that is, «, is an

infinitely differentiable nonnegative function with a compact support in

[—¢, €] such that [pa (x)dx = 1.

The last part of the proof consists of the explicit computation of ¢ “(8). The
main idea is to differentiate the function of p in the supremum and then to
search for the critical paths. We show that some particular functions of these
paths satisfy a partial differential equation and the Feynman—Kac formula
provides a stochastic interpretation of its solution in terms of the Brownian
local time L,. Finally, letting & go to 0, we get (A, 6).

In fact, we will apply this method to study the large deviations for the
occupation times of various sets (from microscopic to macroscopic scales).
More precisely, let us denote by (A,),., a family of finite subsets of Z. We
define the occupation time of A, up to time ¢ as

T(A) - ——[' T &(k)d

=— s.

n 1Al Yo keA, ’

First, we will study the occupation times of sets in the microscopic scale, that
is, an increasing family of sets (A,), ., such that

o5 y diam A, 0

. im ———— =0,

(2.5) lim —7

where, for any finite subset B of Z, diam B = max{|x — yl|, x, y € B}. Let A
be a bounded Borel subset of R with a positive Lebesgue measure such that
its frontier has a zero measure. We define the discrete approximation of A as

. . i
(2.6) A, = {LEZ,WEA}.
A family (A,),. , of finite subsets of Z¢ is said to be in the macroscopic scale
if there exists a bounded Borel subset A of R such that

(2.7) li 4,24 0
. m ————- =
t—> > ‘/;
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and we write A = lim,_, ,A,/ Vt. Notice that, if (4,),. , is in the microscopic
scale, then lim, . A,/ Vt = {0}. Now we can state our main result.

THEOREM 2. Let (A,),., be in the microscopic or macroscopic scale and
let A=1lim,  , A,/ Vt. Then, for any closed subset F,

lim sup — \/_ log P"*[T,(A,) €F] < — 1nfCI>A(a)
t—>

and, for any open subset (),

1
liminf — log P**[T,(A,) € Q] = — 1nf (I)A(a)

e VE
where
®a(@) = sup(ab = 4,(6))
and
fR([Ex[exp{200_2L(,z(0)}] — 1)y(x) dx, if A = {0},
Ya(0) = 2002 .
fR([Ex[exp{ m(A) /ALUz(y) dy} - 1)y(x) dx, ifm(A) >0,

where m denotes the Lebesgue measure on R.
3. Large deviations for the occupation time.

ProoOF OF LEMMA 2.1. We begin with the equilibrium case y = A, where A
is a fixed positive constant. We denote by 1®V(0) the average number of
particles in the small macroscopic box [ — &N, eN I:

X m(J).

ljl<eN

To deal with the unboundedness of 17°V(0), let us introduce w(nV(0)), where
w(k) = klog(k/B), for k € N and B > 0. If B > eA, then, for every 6 < 1,

(3.1) r(0) = log Ej[exp{6w(my(0))}] < =
We first observe that for a<?2/T,

28N+]_

(3.2) lim sup lim sup Nlog E} [exp{ast (nsN(0)) ds}} <0

=0 N->»

Indeed,
E} [exp{angoTw(n;N(O)) ds” < E)[exp{TaeNo (15 (0))}]

(33) TasN
eXp{— > w(no(j))H,

<E}
2eN + 1 i< eN
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where we have successively used Jensen’s inequality, the invariance of v*
and the convexity of w. From (3.1), (3.3) and the shift invariance of v*, we get

1 N T N 2eN + 1 TaeN
ﬁlog E} exp{astO o(n (0))ds} < N r( SN 1 )

Thus, letting N go to « and & go to 0, we obtain (3.2).

Notice that it is enough to prove (2.4) without the absolute value. For any
a > 0 and ¢ € [0, T], the probability that we have to estimate is less than or
equal to

exp(—a8N)E} [exp{aNf()tVN7€(ns) ds}}

X

B [exp{aaNfotw(n;N(O)) ds”)l/z.

So, in view of (3.2), we need to show that, for any a > 0,

1
lim sup lim sup —log Ej [eXp N{aftVN +(ny) ds
3y 0 v "

—aa/:w(an(O)) ds}] <0.

Now, following the proof of Theorem 2.1 in [8], we use the Feynman-Kac
formula, and the expectation above is equal to [S(¢)1 dv, where S(¢) is the
semigroup corresponding to the infinitesimal generator

Zif(n) =Zyf(n) + N(aVy, (1) — aso(n7(0))),
where %, is defined in (2.1). We then apply a spectral decomposition theorem
to the symmetric part of L5, (see [1] for details), and (3.4) will be proved if, for
any a > 0,

limsup limsup  sup {a[f(n)VN,g(n)w(dn) — ND(f)
-0 N-owx TfvMdn)=1
(3.5) f=0
~ s f(n) w(n"(0))"(dn) | <0,
where D(f) is the Dirichlet form given by
D(f) =3 X5~ ) [(VI™) = VA ) n(i)v(dm)
,J

and p(k) = (p(k) + p(—k))/2. In order to keep the notation simple, we now
suppose that p(k) = 1/2if |k| = 1 and p(k) = 0 otherwise. Since

(3.6) JF@™)n(0)v*(dn) = [F(n)n(j)v*(dn),
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the first term in the supremum (3.5) is equal to

Y [(F(n) = F(n"7))n(0)v*(dn).

2eN + 1 i< eN

We begin to deal with positive indices j in the previous sum

1 .
SeN 1. & J(£(n) = F(n7))n(0) »*(dn)

0<j<eN

1
=g L L [ =t ))m(0) v (dn).

0<j<eN O0<k<j-1
Noting that

f(no,k) _f(no,k+1) _ (\/f(”’?o’k) . \/f(no,k+1) )(\/f("’]o’k) + \/f(ﬂo’k+1))

and using the Cauchy—Schwarz inequality, the last expression is bounded
above by

by [f(\/f(no’j) = \/f(n°’j“))Zn(O)w(dn)]l/2

0<j<eN
1/2

X

[(VAE®T) + T ) (0w (am)|

Similar inequalities hold for negative indices. Then we apply the classical
Cauchy—Schwarz inequality for sums and we obtain the upper bound

1/2
%ll \Z‘ JWFn™) = V™) )271(0)“(dn)
iIvijl<eN
(3.7) = s
X %H lzl JWF@™y +V@®9) )Zn(O)v*(dn)
ilVIjl<eN
li—j-1

From the change of variable formula (3.6), we see that the first term in the
product (3.7) is equal to

1/2
@8 | T L[(VF™) — VR ) m(iyvr(dm)| = V2D(H)
ilV]jl<eN
li—jl=1

and the second term in the product (3.7) is less than
1/2

2 Y [f(n"9)n(0)v*(dn)
(39) ljl<eN

=V2V/2sN +1 []ngN(O)f(n)VA(dn)r/Z-
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Moreover, since o is convex,

[o(™ @) (n)*(dn) = of [2(0) ()" (dm) .

Therefore, in view of (3.5), (3.7), (3.8), (3.9) and the inequality above, the
estimate (3.4) will be established if, for every a > 0,

2eN +1
limsup limsup sup {a N Vry —x — saw(y)} < 0.

e—0 N—->wo x>0,y>0
A simple computation shows that this supremum is equal to
a® 2eN + 1 1)

eaf exp( 1o =N

which goes to 0 as N — © and ¢ — 0.
To obtain the same result in the general case, notice that, if v € A(A), then
we have

dPy dvy v(i/N) i
= — = og——— — y| = | + A|.
Therefore, for any & > 0,
lim —log £} (dpﬁ)k( )}
m ——log Ly || w55 | (7
>0 dP
(3.10) N N

= Ak fR(yk(x) — %) dx — kfR(y(x) — ) dx

and this term is finite since y € A(A). O

ProoF OoF THEOREM 2. (i) We begin with the case A, = {0}. We want to
study the limit (6) defined by

1 1
(3.11) 1\17130 Nlog E} [exp{ONj;) 1,(0) ds}].
It is enough to compute, for every ¢ > 0 and 6 € R, the limit
1 1
& . _ eN
pe(0) = 1\171_120 Nlog EX,[exp{HN/(; 1727 (0) ds”

and to prove that, for every 6 € R, lim, _, , /°(0) exists and is finite, because
in this case the limit is equal to (6). Indeed,

By, [exp{oNfolns(O) ds}]
(3.12) < exp(86N)EY, [exp{ezvfoln;N(O) ds}}

+ EY

1 1
exp ON{[O 7N (0) ds + fo Vi () ds} Lavy snp s> 5)}-
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But the second term on the right-hand side of (3.12) does not contribute to the
limit (3.11), since we have

1 1 1
NIOg E} [exp QN{_/;) s N(O) ds + _/;) VN,g(ns) ds} ]]'{jOlVNYS(nS)ds> 3}}
1 1 1
< sylog Ej\\,[exp N{50]0 Vi o(m,) ds — safo o(n:N(0)) ds}]

T %log EY [exp{saN/Ol“’(”;N(O)) ds”

1 1

. A eN
+5NlogEN[exp59N{fO 177 (0) ds}}

1 I 1 A (dPy Y’
+WlogPN[/o Vi, o(m) ds > 8| + —log B} | |

and, in view of (3.2) and (3.4), the first and second terms of the previous
expression are less than 0 as N goes to «© and & goes to 0. Moreover, in the
limit, the third term is bounded above by limsup, ,, #.(560)/5, the fourth
term goes to — because of Lemma 2.1 and the last term is less than a
positive constant by (3.10). So, we obtain

1 i ;
(3.13)  limsup —log E} exp{ONflns(O) ds} < limsup4°(0).
N-ox N L 0 d e—0

If we reverse 1,(0) and N(0) in (3.12), we get in the same way

1 [ 1 ] e
(314)  liminf—-log B} -exp{GNfO n,(0) ds}_ = liminfy(6).

Notice that 77V(0) can be replaced by {( u™(s), a,), where (a,),., is a
regularizing family. Now, we can compute the limit ¢°(8) by truncating the
continuous function on D([0, 1],.%’), defined by

1
p - Gfo (ps, a,) ds,

and applying Varadhan’s theorem to the large deviation principle for the
density field (Theorem 1). It leads to the variational formula:

(0= sw o {ofXpa)ds— (0]

peD(0,1],%")

With some arguments to regularize the paths that we will expand in the
proof of the lower bound of Theorem 1 [Section 4, (4.20) to (4.24)], the
supremum can be taken over bounded and smooth p which are greater than
a positive constant and satisfy ,( p) < o« (we denote by & the subset of these
paths). Moreover, we will prove in the same section [see (4.18) and (4.19)]
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that, in this case, there exists a function JH/dx such that

p 0'219;) &( &H)
—p
ax

ot 2 dx? ox
and

T,(p) - %Qfol<p<s,-),(%)2(-,s)>ds

0, x
+/{; p(0, x)logpi(x)) - p(0,x) + y(x)) dx.

Considering p(t, x) = p(o2¢, x) and H(x,t) = H(x, o~ %t), we would like to
compute

l/js(e) = Sup\I,.s,O( :B)’
pe&

with

by (7 = 000 (70,9, a3 dn— L [ o, (2 (o)

. 6 p) = 6o j;) p(s,*), a.)ds 2/(-) p(s,*), Py , S s
p(0, x)
—f 5(0, x)log () —5(0,x) + y(x)]| dx
Notice that, in view of the equation satisfied by p and H,

P 10%p 9 (oH
—p

ot 2 9x® x| dx

(3.15)

SO
[ (/292 /a3%) = (o/a0)] 32, ) dy

p(t, x)

Thus, V, , is a concave and differentiable function on &. Let p be a solution
of Eulers equation DV, ,(p) = 0. Applying elementary rules of infinitesimal
calculus, we obtain that for every G € Z(R x [0,1],

2

2 [7G(, ), @) ds + f”2<G(-,s),(%(9— ’ )H( s)>ds
0 0

oH
(316)  ——(x.f) =

dx? Jat
— . 2

1 oH
(317) 2 et S)( )

+<G(-,O),I7(-,O)> —<G(-, %), H(:, 0?))

5(0, x)
—fRG(x,O)log 2 (x)

For every g € Z(R), consider the function G, € Z(R X [0, 1]), defined by
G,(x,t) =g(x)T, (1),

(v s)>ds

dx = 0.
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where T, is a smooth function on [0, 1] such that lim T (¢t) = IL(Uz}(t).

n—wx n

Letting n go to =, the above equality implies that, for every g €2(R),
(g,H(-,0?)) = 0, so that

(3.18) ﬁ(, 0.2) =0.

We get in the same way

/_)(0’ )

v(x)

Then equalities (3.17) and (3.18) mean that H is a solution of the partial
differential equation

(3.19) H(-,0) =log

2

+ 60 %, =0,

oH 1 9%2H 1(¢H
Jx

(3.20) at 2 dgx? 2

H(-,0?) =0.
Now, suppose that H and p satisfy (3.15) and (3.20). Then we have the
following expression:

1., 2%
S <p<>(i—) (-,s>>ds

= —(5(0,7), H(-,0)) + 90*2[0"? 5(s,), a,) ds.
Indeed,

.2 oH
/(; <p(37')’(g)

</_J(0'2")’I7('7 0'2)> - <7)(0")’ﬁ("0)>

2 1 92 —
_j;)” <ﬁ(s’.)’(§j_x2 + %)H(',S)>d8

2

(~,s)>ds

— 2

— o2 1({0H
= —{(p(0,-),H(-,0)) +f0 <ﬁ(s,-),§((9—x) (,8) + 00'_2a3>ds.

Therefore, in view of (3.19), we obtain
5(0, x)
y(x)

v, ,(5) = (p(0,"), H(-,0)) - /R( 5(0, x)log - 5(0,x) + v(x)) dx
= [ ((0, %) = ¥(x)) dx

= /R (exp H(x,0) — 1)y(x) dx.
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In order to assert that this term is the supremum of WV, ,, that is, that it is
equal to ¢.(0), we just have to prove the existence and uniqueness of the
solutions of (3.20).

To turn the partial differential equation (3.20) into a linear one, consider,
forx eRand 0 <t <1,

F(x,t) =exp H(x,1—1t).
Then F satisfies

JF 1 9%F

— =—— + 00 %,F,

ot 2 gx2
F(-,0) = 1.

This new equation has only one solution. Using the Feynman—-Kac theorem,
it is given by

F(x,t) = [Ex[exp{eﬂfo"“ag(ws) ds”,

where W, is the Brownian motion started at x. Consequently, if L_(y)
denotes the Brownian local time at y € R, then

U (0) = /R([E"[exp{Zf)a_Q(a&,L(,z(-)>}] - l)y(x) dx.

Now, we just have to study the limit (6) of ¢,(6) as & goes to 0. On the
one hand, we use Jensen’s inequality to claim that

/R([Ex[exp{ZOO'_zf <a£,L02(.)>H _ 1)y(x)dx
/f( [eXP Z(x)] - 1)ag(y)v(x +y) dydx

and, since y is smooth, this term goes to

fR([E [exp{ z(x)}} - 1)y(x) dx
when & goes to 0.

On the other hand, we apply Fatou’s lemma

lim infy,(0) >
im infy,( )>f

g (113}) [Ex[exp{200_2<a€, Lu_z(')>}] - 1)y(x) dx

and, since the local time paths are smooth enough, the limit in the integral
exists and is equal to

E*[exp{200~2L,2(0)}].

As a conclusion, we get

w(0) = /[;Q([Ex[exp{QOU_zLaz(O)}] — 1)y(x) dx.
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To complete the proof of (i), let us recall that the law of the Brownian local
time L,(0) is given by

2 x a?
P*[2L,(0) € da] = Wfol 'exp(— 5) dx 8,(da)

1 (a + le)2
exp| ———— | da
2wt 2t

A straightforward computation proves that, if 02 = 1 and y = A (where A is a
positive constant), then

+

2 0 2 B
PP e G I \/? exp(0%/2) | exp(=s*/2)ds — 0]
aa

0 0

and this is the explicit Legendre transform of the rate function obtained by
Cox and Griffeath (Theorem 1 of [2]).

(i) We now prove Theorem 2 for subsets in the microscopic scale, that is,
an increasing family (A,),., of finite subsets of Z satisfying (2.5). We can
suppose 0 to be an element of A, for every ¢ > 0. As we did previously, it
suffices to study the limit

1
(3.21) lim Nlog Ex

Now i€ANe

ON 1 i
exp{m/(; )y ”fls(l)ds}}

to obtain a large deviation principle for the occupation time of A,. With the
superexponential estimate (Lemma 2.1), we will see that, for any § > 0,

lim sup lim sup —log Py
e—>0 N—>x N
(3.22)

>5]=_m.

It easily follows that the limit (3.21) is equal to ¢(0) defined by (3.11) and
computed in part (1).

Because of (3.10), it is enough to prove (3.22) in the equilibrium case y = A,
where A is a positive constant. Then we use the basic inequality

k
(3.23) log( Y ai) <logk + maxklog a;
i=1 1<i<
and we get
1 1
—log P} i) — nN(@i))ds| > 8
N g N |AN2|'/‘O iE§N2(ns( ) s ( )) ]

lo |A 2| 1
log [An:| [ sl

STN T mmyleR

[ () = m (i) ds
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So, in view of Lemma 2.1 and the shift invariance of v»?, (3.22) will be

established if
. 5]
goes to —o when N goes to + and & goes to 0. Notice that

b ().

li+eN|<diam Ape2

1
(324)  log P

Y V(i )ds—fn”v(o)ds

i€ANe

|AN2|‘/O

Y V() = N (0)| <

‘|ANz|teA ) 2eN + 1

Therefore, taking N large enough so that ¢N > diam Ay: and applying
Chebyshev’s exponential inequality, (3.24) is bounded above, for any a > 0,

by
aN 1
st 5 o)

1
—8a + —log E
N 2eN +1 [il<diam A= 0

and this term is less than or equal to

2diam Ay: + 1

Sa + log E2 4o 0
. N o8 Ey|expy 5 1 (0 |-

We conclude, letting N — «, ¢ = 0 and, finally, ¢ —» +x.

(iii) Let (A,),. , be in the macroscopic scale with A = lim, . A,/ Vt [see
(2.7], where A is a bounded Borel subset of R with positive Lebesgue
measure such that its frontier has a zero measure, and denote by A, the
discrete approximation of A [see (2.6)]. Then

Z s Z s
|AN2| i€Apn2 ( ) |AN2| i€Aye ( )
| Ay AA | :
<———— ¥ (i) + — X ().
|AN2||AN2| i€ApNe |AN2| i€Ap2 AA s

Moreover, it is easy to see that N™!|A:| —» m(A) and N~ ! A,:| - m(A). So,
following part (ii) and noting that

Y (i) =

|AN2|ZEA 2 N2|

(VN (s), 1,

we obtain that the limit ¢,(0) defined by (3.21) is equal to

1 y ON 1, N
z?inw ﬁlogE [exp{ (A)[O<;L (s), 14> dsH.

Now, let (g,),., be a sequence of uniformly bounded functions with a
compact support such that g, — 1, a.e. As a result, with the same argu-
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ments as in part (i) if we define

1 ON

then
k x 200°°
i (0) = fR([E [exp{m(A) fRL,rz(y)gk(y)dy} - 1)v(x)dx
and ,(0) = lim, .. y£(0). So, finally,
2602
Ya(0) = fR([EXIexp{mfAL”z(y)dy} — 1|y(x) dx. O

4. Large deviations for the density field in an infinite volume. In
this section, using the method introduced in [8], we prove a large deviation
principle for the density field of the accelerated independent particle system.

For any H(:,-) € 2(R X [0,T]), we introduce the weakly asymmetric pro-
cess. Its generator acts on cylinder functions f in the following way:

SAf(n) =N*Ep(i = DHCHIy(s)nD) [ F(ni7) = f(n)],

where

. J i
Cii'n(s) = exp(H(N,s) - H(N,s))
We denote by Pi>” the law of this process when the initial distribution is »y.

4.1. Preliminary lemmas. In the next subsections, we will need some
technical lemmas. The first one aims at proving that the perturbed process is
close to the initial independent process. Indeed, P is absolutely continu-
ous with respect to Py, and, applying Girsanov’s formula, its density ZZ =
(Z§ (), 0., is the exponential martingale

Zy(t) = eXp{Z[fot(H(%,s) —H(%s)) dJi
(4.1) oY
NP = 000 ) = Do) s

where J/*/ is the number of jumps from site i to site j up to time ¢.

LeEmMMA 4.1.  For any positive number p, we can find a positive constant c,
such that

Vte[0,T], E]{‘,[(Zﬁ(t))p] < exp(c,N).
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PrROOF. First, we rewrite the martingale Z as

Z0(t) - exp{ » [H(%,t)m(i) - 50w = [ 5 s i as

ieZ
—NQfOt(%‘,p(j —i)Ci/n(s) — 1)ns(i) dSl}-

We expand the last term in the exponential using Taylor’s formula. Then, as
H and its derivatives are continuous with a compact support, there exists a
positive continuous function f with a compact support, such that

ZH(t) < exp{ % f( (o) + (i) + 'm0 d)}

ie”Z
Now using the Cauchy—Schwarz inequality, we get

(28] < (EN[exp{Spi( | )}Dm

ieZ

(4.2) (EN[exp{sp £ £ me )}”1/3

ieZ

{5 3 o]

and the third term in this product is bounded above by

(2 mfecofone = o ]

ieZ

As v} is invariant, (4.2) is less than

EN[exp{?»p(TV DY f( )”’lo( )}}

ieZ

Finally, since v* is the Poisson product measure, this term is equal to
i
[ Texp A(exp(3p(T \% l)f( N)) - 1) ,
i
so there exists a positive constant c, such that (8.2) is less than exp(c,N). O

We can extend Lemma 4.1 to the law of the weakly asymmetric process
with »3 as initial distribution [y € A(A)]. Indeed, we have P:Y = ZH. 7P}
where

43Z{V{W(t) B j 2R
A 5
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Since y € A()), the terms with i/N outside a compact subset of R do not
contribute to the martingale. So, for any p > 0, there exists c,(y) > 0 such
that

Ey

(‘Zlyj)pl < exp(c,(v)N).

LEmMmA 4.2, If v € A(M) is the initial profile and if f is a positive continu-
ous function on R which satisﬁes limsup, . x2f(x) < o, then

1 T
lim lim sup —log Py ( ) iYds > M

Proor. We use the Chebyshev exponential inequality and the
Cauchy—Schwarz inequality to get

o[ 5 [ ] ot ae

ieZ

< eMN(E])\‘,[(ZII\?”(T))Z])1/2(E]’\\,[exp{2iezzf(%)‘/;Tns(i) ds}})l/z.

With Lemma 4.1 and its extension (4.3), the second term is bounded by
exp(Ncy(v)/2). For the third term, we proceed as we did in (4.2), using the
invariance and shift invariance of »*. We obtain that

sleale L [ < oefeefenli] )

So, as N goes to », we get

Z f( )ans(i)ds > M

1
lim sup Nlog Py
LEZ

N>

(4.4)
<M+ C— + —f (exp[2TF(6)] — 1) d6

and this last integral is finite under our assumptions on f. O

4.2. Hydrodynamical limits in infinite volume. In this subsection, we
prove the hydrodynamical limit for the weakly asymmetric process.

LEmMmA 4.3. If y€ A(A) and H €e2(R X [0,T)), then the empirical mea-
sure u" converges in PLY probability to the unique weak solution p €
D(0,T], "), with sup, o ;€ p(2),(1 + x2)71) < =, of the equation

ap  a? % d ( , 0H
(4.5) at 2 gx? dx )
p(0, dx)

II
=<
—~~

K
~

&

x
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ProoF. The proof is similar to the proof of Theorem 3.2 in [8]. Let QH Y
(respectively, Q%) be the law of the empirical measure under P” (respec-
tively, Pg). In the first step, we prove the tightness of (Qlf,l”/)Nzl. In the
second step, we show that any limit point of this sequence is concentrated on
weak solutions of (4.5) and finally we establish the uniqueness of such
solutions. Let us begin with the second step.

For any G €2(R X [0,T]), we consider the following square integrable
martingale with respect to the weakly asymmetric independent process:

ME(D) = (0, 60,09 = (0, 60,00 = [{w¥(9), 5110 )as
NI [0 o(6( 53] - 6l 3+5) Jcimtommir as.

On the one hand, if we denote, for p € D(0,T],.7"),
1(p,t,G) = p(t),G(,t)) — {p(0),G(-,0))

o? d*’G IG
—f<p<s> ( SR +5)(-,s)>ds

(o0 e

then, using Taylor’s formula to expand the last term of M$(¢), there exists a
continuous positive function g, with a compact support in R such that

1 i
(46)  IM§() — (WY, 1,6) = 1 'Zzgl(ﬁ)/fnsu) ds.

On the other hand, the quadratic variation of M§ is given by

.= 2| [0 =06 55] - G(%ﬂs))zclzm(s)nsu)ds},

and, using again Taylor’s formula, we see that there exists a function g, with
the same properties as g; such that

(4.7) (M), < N? lggz(;,)fotns(i)d&
Therefore, using Lemma 4.1,

Eff7[(M§).]
(4.8) 1

< .
N N

dj;AyeXp{ )y gz(ﬁ.)j;:ns(i) dS}

ie?Z
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For every 8§ > 0, it results from Doob’s maximal inequality and (4.6) that

PH:7| sup IZH(MN,t,G)I > 8

2 2
- 4(—) EF[(ME)r]
tel0,T] 5

1 i Ns
ol L) [nas> .

ieZ

so with Lemma 4.2 and (4.8), we get, for every 6 > 0,

(4.9) lim PAF,I’V[ sup |IH(uM,t,G) > 8| =0.

Noo t€l0,T]

Now, we deal with the first step. A tightness criterion on D([0,T],.%") is
given by Theorem 4.1 in [10]. We have to prove that, for any f €. and £ > 0,

lim lim sup PW[ sup [V (), ) — Cu(s), P> ¢
20 Now ls—tl<

= 0.

In fact, we establish a stronger result which will be useful for the proof of the
upper bound of the large deviation principle:

lim lim sup —log Pi+”
5—-0 N-o»

sup KuN(t), > —(uN(s), >«

|s—tl<d

(4.10)

X = — Ve

Using Lemma 4.1, we can suppose that H = 0. Then, splitting up the interval
[0, T'] into intervals [¢,, ¢, . ;] of length &, it is enough to prove that

1
lim lim sup sup —log P}
s N_mp kpN g I'n

sup |<MN(t),f>—<MN(tk),f>|>§

tp<t<th,.

X = —® Vfes,

and, with the invariance of v*, we just need the following estimate for any
e>0:

1
lim lim sup —log P2
5—0 N_,oop N &4y

x[ sup K u(2), ) — (u¥(0), )| > &

0<t<é

= — Vfes.

Considering —f instead of f, we can forget the absolute value. For every
fe¥ and a > 0, define

AL () = (), af ) = (u(0), af)
Yp(j— i)exp{a(f(%) —f(%))} - 1)];:1;8(1') ds.

iJ

- N
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There exists a positive continuous function % , such that lim sup, ... x%h, (x) <
« and, for every ¢t € [0, 6],

1 |
WY af) = (a(0),af) <AL (D) + T b ) [0 s

i€’/

Then, for any a > 0,

Pze[ sup (1), £) — (N (0), ) > &

0<t<s
N ’ fo1e
(4.11) SPN[ sup Ay . (¢) > —}
0<t<é 2
1 i F) Poyed
+ P = ) h,|— ) ds > —|.

On the other hand, we apply Doob’s inequalities to the exponential martin-
gale exp NA]fvy (1) and we get

) 1 N ¢ ea £
(4.12) lim sup ﬁlog Py| sup Af .(t) > ) < g

N-ox telo0, 8]

On the other hand, a similar computation to (4.4) gives

. 1 R i\ s ga
hgfzp Nlog Py N E’Zh"‘(ﬁ)fo n,(i) ds > -
(4.13) i

cea
<-4+ AfR(exp(aha(e)) ~ 1) de.

Finally, we complete the proof using (4.12) together with (4.13) in (4.11) and
letting 6 go to 0 and « go to .

We proved with (4.9) that any limit point " of the sequence (Q%")y. ;
is concentrated on the weak solutions of (4.5). To complete the proof of
Lemma 4.3, we need the uniqueness of weak solutions. But the space
D(0,T],.%") is too large to obtain such a result. Nevertheless, with the
following formula, it suffices to look for solutions in the set of positive
measures with moderate increments:

1 1
(4.14) lim limsup —log PH"/[ sup <,LLN(t), >2A} = —oo,
A->x N> o N N tel0,T] 1 +x2

Indeed, with Lemma 4.1, it is enough to study the independent case, that is,
H = 0, and even if ¢(x) = (1 + x?)"! is not in .%, we notice that My} is still a
square-integrable martingale and that (4.7) holds. So inequalities (4.11),
(4.12) and (4.13) hold with e = A, a =1, and § = T, and, letting A go to o,
we obtain (4.14).
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Let p € D([0,T1],.%') be a weak solution of (4.5) which satisfies

1
sup <p(t), >< o,
tel0, 7] 1+x?

Then p(¢) = (1 + x2) " p(¢) is a positive finite measure such that

dp  o? d?p J
— = —— +—(Ap) +B
at 2 Jx? ax( P) P

(where A and B are smooth functions), with (1 + x2)"'y(x) dx as initial
condition. Following Propositions 3.4 and 3.5 in [11], we can prove the
uniqueness of solutions of this partial differential equation. O

4.3. Proof of Theorem 1. Notice that, since J.(p) = supy. {(L(p) A
M1, m+ M1, ,»} and since & is convex, J, is lower semicontinuous
and convex.

Upper bounds. To establish estimate (2.2), we first consider the case
where C is a compact subset of D([0,T],.#’). For given G €2(R X [0,T])

and g € Z(R), Girsanov’s formula (4.1) can be written, using Taylor’s expan-
sions as we did in (4.6), in the following way:

dP]\CIJ.veXp(g)

el (el
X expN{(MN(T),G(',T)> — (uM(0),G(-,0))
[0, Sl s s
NI [ Ep - ) - 1)ns(i)d8}
< exp N{Cw¥(0), ) = [ y()(exp () = 1) e + o(1)}
x expN{l(uN,G) - %210T<MN<3>,(%<-,8))2>ds
[

where A is a positive continuous function with a compact support in R. With
Lemma 4.2, the remainder in Taylor’s formula does not contribute to the

1
+W Zh

ieZ
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Girsanov density as N goes to . Indeed,

1 1
(4.15) limsup ~log Py u" € €] < limsup ~log Pyl N e c?,
N-x N-o»

where |
(%)/()Tns(i) ds +o(1) < 5.

The lower bound (2.3) can be easily established for every open neighbor-
hood of a smooth path p (see the next subsection). To deal with the general
case, we need to regularize paths, but it can not be done for every element in
D(0,T],%"). We now prove that the deviations from the hydrodynamical
limit only occur for paths in .7. Indeed, inequality (4.4) shows that, for every
M > 0 and n € Z, there exists ¢ > 0 which depends neither on M nor on n,
such that

1
CS=CQ{W Zh

i€Z

1
VN >1, NlogP,Q/,[,uNeEM,f”] < -M+ec.

Thus, for any & € N, if we write

ci= U [cn ()] U

Inl<k

o n MM)}

Inl<k

and if we use the basic inequality (3.23), we get

1
—log Py u € C?]

N
log(2% + 2)
4.16 —_—
(4.16) < ——
1
+NlogP]3 uNeCin ( N M,f”) V(-M+c).
Inl<k

Now, we proceed as in Section 4 of [8]:

/.LNECSO( ﬂ%,f””

Inl<k

1

1
I G,yexp(g)| (7G,vexp(g)) !
Nlog Ey [(ZN ) ]lmNecﬁnmmgw%»]

<é+ sup [—{(l(p,G)_%fOT<p(s),(%(.,s)) >ds)

peC®n(n \n\gk%M)

+(<p(0),g> - fR(exp(g(x)) —1)y(x) dX)H-

Since C° N (N, ,#") is compact and since the function of the variable p
which appears in the supremum is continuous, we can let & go to . Then,
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optimizing the last inequality over 6 > 0, G €Z(R X [0,T]) and g € 2(R),
we obtain from (4.15) and (4.16) that

1
lim sup —log P}[ u¥ € C]
N> N

2 G 2
< inf sup | — l(p,G)—U—fT p(s),(—(-,s)) ds
Gef(eug(sg),ﬂ) peCrar™ 2/ Jx

+(<p(o>,g> - [ (exp(g(x)) = Dy(x) d)}] V(M +o).

With the compactness of C N, the infimum and supremum can be re-
versed (see, e.g., [12]); so, optimizing over M > 0, inequality (2.2) is proved for
compact subsets.

We conclude, in the general case, noting that (4.10) implies the existence of
a sequence of compacts C; such that

1
limsup —log Py[ u" & C,| < L.
N> N

Indeed, consider the set of paths
A(g, 5, ¢) = {p: sup |<p(t),g>—<p(s),g>|$s}.
[t—s|<d

Formula (4.10) means that

1
lim lim sup —log PY[ uy & A(g, 8, )] = —.
850 Now IN

Now, take a sequence of functions (g;),.; which is dense in .#. For every
L>0,/>1and m > 1, we can find 8(], m, L) > 0 such that, for N large
enough, we have
P py & A(g;, 8(1,m, L),1/m)] < exp(—NLml).
Then consider
CL= n A(gl16(l>maL)a1/m)
I>1,m>1

and

K, =C,nB,
where B; is the set of paths p such that, for every ¢ [0,T], < p(?),
(1 + x*)7 ') < L. We claim that the closure of K is suitable. Indeed,

PiluyeCl< X exp(—NLml)

21, m>1
< exp(—NL).
Then, in view of Lemma 4.2 and (4.14),

1
lim sup —log PY[ uy € B,] <C — L.
N-—>x N
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Moreover, from the definition of K;, for all / > 1,

lim sup sup Kp(t),g,) —{p(s),g>l=0.

020 peK, |t-sl<s
As (g;) is dense and as all the paths we look at are in B,, this property
remains valid for every function g in . and so K; is relatively compact in
D(0,T], ).

Lower bounds. First, we identify the rate functions. Suppose that y € A(A)
and A(p(0),y) < ». Then we see that p(0) is absolutely continuous with
respect to Lebesgue measure and if we denote by p(0, x) its density,

0, x
(4.17)  Rh(p(0),v) = fR(p(o,x)Ingi(x))

For p € D([0,T],.'), we consider the Hilbert space #(p) defined in the
following way. Let H,( p) be the space of functions H on R X [0,T] that are
almost everywhere differentiable in space and such that

fT<(‘;Z)2( s), ps>ds<oo

Define the scalar product

- p(0,x) + y(x)| dx.

G &H
(G, H]_af — S (8).p, )ds

and define the equivalence relation G ~ H if

fOT<(%—ﬁ)( s), ps> ds = 0.

Then we obtain Z( p) by the completion of the space H,(p)/~ . It is easy to
verify that Z(R X [0, T]) is dense in #( p). The proof of Lemma 5.1 in [8] can
be adapted here; that is, if I,( p) < o, there exists dH/dx €.#(p) such that

(4.18) I( p) = %fOT<p(s>,(%<-,s)) >ds

and in this case p is a weak solution of (4.5).
Obviously, the lower bound (2.3) will be proved if, for any open neighbor-
hood V of p € D([0,T], "), such that J (p) < = [ie., p €« and [(p) < =],

1
4.19 li f —log Py ev —d .
(4.19) iminf —log Py[ u" € V] = —J,(p)
Suppose p to be such that the function dH/Jx [defined by (4.18)] is the
derivative of a smooth function with a compact support. Then we obtain (4.19)
with the same arguments as those developed in the proof of Theorem 5.1
in [8].
To reduce the problem to this situation, we will regularize p.
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Denote by «, a regularizing family and p° = p* «,. Since p €%, p® is
spatially smooth and satisfies

(4.20) sup pra(s, x) ds < .
xeR 70
Notice that p® — p in D(0,T],.#’) and that A( p¢(0), y) — h( p(0), y). More-

over, since I, is convex, lower semicontinuous and invariant under spatial
shifts, I,( p?) = I,( p). Now, define

(4.21) pf=(1—¢)p®+ el

We observe that ;; converges to p as & goes to 0, that A(A, y) < « and that
I,(A) = 0 since A is a solution of the heat equation. So, using convexity and
lower semicontinuity of the rate function, I (p®) > I (p). As a consequence,
we just have to prove (4.19) for paths p which are spatially smooth, bounded
below by a positive constant [from (4.21)] and which satisfy (4.20).

Let p be such a path and let JH/Jdx be the corresponding function. To
regularize p with respect to time, we proceed in the same way, but time
convolutions of p over [0,T] require extending p to [0,T'], where T’ > T.
Denote by x the solution of the heat equation with p(-,T') as initial condition
and define

p(t, x), if0<t<T,
x(t—T,x), otherwise.

(4.22) pt, x) = {

Since p is a weak solution of (4.5), p satisfies

(4.23) — - —|o%

- o —
at 2 9x%2  IJx p

p o ip 9 oH
dx |’

where
7 oH
E(x t) = a—(x,t), ifo<t<T,
J ’ x
¥ 0, otherwise.

Now, denote by j; the natural extension of I; to paths over [0, T"']. In view of
(4.18) and (4.22), we notice that

(4.24) I($) = Io(p).

For a family of smooth functions B; with their support in [0, §] and such that
/¢ Bs(¢) dt = 1, we consider the path defined by

po(t, x) = fOTﬁ(t +5,%)B;(s) ds.
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It easily follows from (4.20) and (4.22) that sup, , <o, 77xr P5(¢, x) < . Since
t = p(t) is right continuous, p; = p as 6 — 0. Moreover,

Io(ps) = ["To( p(s + ) By(s) ds

<Iy(p),
so I,(p®) = I,(p).

Consequently, it is enough to prove (4.19) for bounded smooth paths p
which are bounded below by a positive constant. Under these assumptions on
p and in view of (4.5), the function dH/dx corresponding to p in (4.18) is
smooth and bounded. Furthermore, it belongs to L?*(R X [0,7T']). Then we
conclude, approximating H with functions with a compact support as in the
proof of Theorem 3.3 in [9]. O
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