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STABILITY OF POLLING SYSTEMS WITH
EXHAUSTIVE SERVICE POLICIES AND

STATE-DEPENDENT ROUTING
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1
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Novosibirsk State University and Technical University

of Braunschweig

We consider a polling system with a finite number of stations fed by

compound Poisson arrival streams of customers asking for service. A

server travels through the system and upon arrival at a station the server

serves all waiting customers until the queue is empty, where the service

time distribution depends on the station. The choice of the station to be

visited next as well as the corresponding walking time may depend on the

whole current state. Examples are systems with a greedy-type routing

mechanism. Under appropriate independence assumptions it is proved

that the system is stable if and only if the workload is less than 1.

Ž .1. Introduction. Consider a server who visits polls the stations of a

queueing network. The stations are numbered 1 through K and with each of

them there is associated a queue with infinite waiting capacity fed by an

arrival stream of customers with intensity l , i s 1, . . . , K. The process of alli

arrival instants is assumed to be homogeneous Poisson. At a given arrival

instant, however, all stations may simultaneously receive a group of cus-

tomers. The joint distribution of these groups should render the expected

group sizes positive and finite. The server employs the so-called exhaustive

service policy at each station. This means that, upon arriving at a nonempty

station, he will provide service there until the moment when the station

becomes empty, which includes service for all those customers who may

arrive during the service of the customers present at the time of the server’s

arrival. The services are independent of the arrival stream and each served

customer departs from the system. The service times at station i are i.i.d. and

are assumed to have a finite positive mean b . When the server has finishedi

the batch of services at station i or if he has found that station empty, then

he walks to another station j, say, taking a walking time that might also

be 0. The choice of this station and the associated walking time depend on

the whole current state of the system and may even depend on future

arrivals. An example is the greedy routing mechanism, where the server

chooses a station with the maximum number of customers in a certain

neighborhood waiting at the start of the walk.
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The aim of the present paper is to establish a stability condition for the

queueing network ensuring that the server can handle all the work arriving

at the network. Mathematically, this amounts to proving the ergodicity of the

underlying Markov chain. Under appropriate independence assumptions it

will be shown that the system is stable if and only if

K

1.1 l b - 1.Ž . Ý i i

is1

It is worth mentioning that our stability results can be proved under more

general i.i.d. assumptions on the input using the same ideas. We have decided

to work under the Poisson assumption in order to avoid technicalities which

could obscure the main arguments.

A special feature of the present model is that the server’s decision about

which station to serve next depends on the actual configuration of customers
Ž .in the system. In Coffman and Gilbert 1987 one can find a discussion of a

polling system with a greedy server on a circle and a line as well as a

conjecture about the stability condition. The only earlier paper we are aware

of, however, which solves the stability problem for polling systems with
Ž .state-dependent routing is Schassberger 1993 , where the ergodicity of a

symmetric ringlike network with a limited service policy has been proved.

Ž .These results are generalized in Foss and Last 1995 which deals with

polling systems with a special greedy routing mechanism on a graph but with

rather general service policies for each station. In this work conditions

sufficient for stability and sufficient for instability are presented. These
Ž .conditions coincide only in special symmetric cases and it is shown by

examples that the determination of the exact stability region might be a

difficult task. There are many other papers establishing comparison and

stability results for polling systems with state-independent routing. We refer
Ž . Ž .here to Levy, Sidi and Boxma 1990 , Georgiadis and Szpankowski 1992 ,

Ž . Ž .Borovkov and Schassberger 1994 and Fricker and Jaibi 1994 . Massoulié
Ž .1995 constructed a stationary regime for polling systems with stationary

ergodic arrival process and with state-independent routing mechanism.

Ž .Thereafter, for a more general model, Foss and Chernova 1996 proved the
Ž .stability results using the saturation rule of Baccelli and Foss 1995 . In this

Žcontext one should also mention the papers by Kroese and Schmidt 1992,
.1994 proving the stability of a polling model on the circle and by Altman and
Ž .Levy 1994 on polling systems in space. For applications of polling models we

Ž . Ž .refer to Coffman and Gilbert 1987 and Takagi 1990 , who gives a survey of

the extensive literature.

The idea of the stability proof in this paper is to construct, by induction on

the number of stations, a stopping time at which a certain linear test function

satisfies a multiplicative drift condition. Ergodicity is then obtained from a

general stability result on Markov chains which is a ‘‘randomized’’ version of
Ž .stability criteria by Malyshev and Menshikov 1982 ; see also Meyn and

Ž . Ž . Ž .Tweedie 1993, 1994 , Borovkov 1994 , Dai 1995 and Fayolle, Malyshev and
Ž .Menshikov 1995 .



S. FOSS AND G. LAST118

The paper is organized as follows. Section 2 gives the extensive and exact

description of the model and introduces some notation. Section 3 presents the

proof of the stability result. The Appendix contains some general results for

discrete-time Markov processes needed in the course of our paper.

2. Model description. We consider a queueing system consisting of K

stations with infinite waiting capacities. With each station there is associated

a queue of customers waiting for service. One server is traveling through the

system. Upon arrival of the server at a station, the corresponding queue is

served until it is empty, including customers arriving after the server’s

arrival instant. Each service takes a random time and each served customer

leaves the system.

Ž .We let X t denote the number of customers in the ith queue at timei

Ž .t g R . Further we denote by S t the number of the station which isq

Ž .occupied by the server while serving is in progress and we let S t [ 0
Ž . Ž .otherwise. Both X t and S t are taken to be right continuous, and we cani

Ž . Ž .assume that there exist limits from the left, denoted by X t y and S t y .i

Let T , n g N, be the time of the nth service completion and T nq1 then

Ž .time of the beginning of the next service after time T . If X T ) 0,n SŽT y. nn
nq1 Ž .then T s T . If X T s 0, thenn SŽT y. nn

W [ T nq1 y Tnq1 n

Ž .is the walking time taken by the server to travel from station S T y ton

Ž nq1. Ž . Ž . Ž nq1.S T s S T y . The cases W s 0 and S T y s S T are notnq1 nq1 n

excluded. It should be kept in mind that the server may have visited several
Ž nq1.empty stations before he starts serving queue S T . Hence in certain

cases the time W can be regarded as a sum of walking times. If the systemnq1

is empty at time T , then a part of W is, in fact, used to wait for the nextn nq1

arriving customer. Hence W has to be positive in that case. We refer herenq1

to the model description below as well as to Examples 2.1 and 2.2.

Ž .The initial conditions are given by a random element X 0 s
Ž Ž . Ž . . K � 4 Ž .X 0 , . . . , X 0 , S of Z = 1, . . . , K . If X 0 s 0, then the server starts1 K 0 q S0

walking as described above. In this case T 1 s W is defined as the time of the1

Ž . Ž .beginning of the first service, and we set S 0 y [ S and S t s 0 for0
1 w 1 Ž . Ž 1. x Ž .0 F t - T . If T s 0 we have S 0 s S T . If X 0 ) 0, then the serverS0

Ž . Ž .starts serving until the queue S 0 y s S 0 [ S is empty. In this case we0

define W s T 1 [ 0.1

In order to explain how the system is operating, we will now describe the

arrival processes, the services and the assumptions on the routing and
Ž .walking times. The underlying probability space is denoted by V, FF, P .

Define

FF [ s X s : s F t , t g R ,Ž .Ž .t q

Ž . Ž Ž . Ž . Ž .. � 4where X t [ X t , . . . , X t , S t . Then FF : t g R is a right-continuous1 K t q

Ž .filtration describing the internal history of the process. We let A t denotei
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the number of customers who have arrived at station i by time t. Hence

A s, t [ A t y A s , s F t ,Ž Ž . Ž .i i i

is the number of customers who arrived at station i during the time interval
Ž xs, t . We assume that the arrival instants are different from the times of

completion of services so that

� 4A t s 1 s F t X s y X s y , t g R ,Ž . Ž . Ž .Ž .Ýi i i q

Ž . Ž .s : X s )X syi i

is FF -measurable. We also note thatt

K K

T s min t G T : X t - X t y , n g Z ,Ž . Ž .Ý Ýnq1 n i i q½ 5
is1 is1

where T [ 0, and0

T nq1 s inf t G T : S t / 0 , n g Z .� 4Ž .n q

n � 4 � 4Hence T and T , n g N, are FF -stopping times. If T is any FF -stoppingn t t

time, then, as usual,

� 4FF [ A g FF : A l T F t g FF for all t g R� 4T ` t q

Ž .denotes the history at time T, where FF [ s D FF .` s) 0 s

Ž .The sequence t of all arrival instants is assumed to form a homogeneousn

Ž .Poisson process with intensity l. Further there is given a sequence B sn

ŽŽ 1 K .. KB , . . . , B of independent random elements of Z which is independentn n q

Ž . i iof t and such that a [ EB is positive and finite for all i and Ý B ) 0.n i 1 i n

Ž .The arrival process A t is then assumed to be given byi

� 4 iA t [ 1 t F t B .Ž . Ýi n n

nG1

It is a compound Poisson process with intensity l [ la . Note that thei i

� Ž .4A t are independent if and only if the components of B are independ-i 1

ŽŽ .. � 4ent. We will assume more generally that t , B is a marked FF -Poissonn n t

Ž .process; see, for example, Last and Brandt 1995 . That is to say that

� 41 s - t F t , B g CÝ n n

nG1

is independent of FF for all s - t and all measurable C : Z
K. In particular,s q

Ž xA t, v is independent of FF for all t - v. This property generalizes to ani t

� 4 Ž xFF -stopping time T ; that is, A T, v is independent of FF for all v, wheret i T

ŽŽ x.A T, v s 0 if v F T. Also,i

� 4EA T s l ET , i g 1, . . . , K ,Ž .i i

� 4 � 4for any FF -stopping time T. More generally, if S is another FF -stoppingt t

time satisfying S F T, then

< < � 42.1 E A S, T FF s l E T y S FF , P-a.s., i g 1, . . . , K .Ž . Ži S i S
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We assume that service times are independent of the arrival process and

that

n < n
n2.2 P T y T g ? FF s G ? , P-a.s. on S T s i , n g N,� 4Ž . Ž . Ž .Ž .n T i

Ž .where G , . . . , G are distributions on 0, ` with finite and positive means1 K

b , . . . , b . In particular, different service times are independent.1 K

Ž . Ž .Assume that S T y s i, n g N, and X T s 0. Then the server stopsn i n

Ž nq1.serving station i and the station S T s j to be served next satisfies
Ž nq1.X T ) 0. The choice of the station j and the random variable W mayj nq1

depend on the whole actual state of the system and even on the arrivals after

time T , and the corresponding conditional distributions might be quiten

general; see Examples 2.1 and 2.2. However, we assume that there is a finite

constant w such that

<2.3 E W FF F w , P-a.s. on X 0 s 0 ,Ž . Ž .� 41 0 S0

as well as a constant p ) 0 satisfying

<2.4 P A W s 0 FF ) p , P-a.s. on X 0 s 0, X 0 ) 0 ,Ž . Ž . Ž . Ž .Ž . Ý1 0 S k½ 50

k

where

A t [ A t .Ž . Ž .Ý i

i

The latter condition excludes some strange behavior of the server and seems

to be satisfied in all relevant examples. It states that given the server has

just completed a batch of services and the system is nonempty, then the

probability that the next batch of services starts at one of these nonempty

stations is uniformly bounded from below by a positive constant.

Our assumptions imply that the T are almost surely finite and satisfyn

lim T s ` and hence we assume these properties to hold everywhere onnª` n

V. Denote

Ŝ n [ S T y , n g Z ,Ž . Ž .n q

where we recall that T s 0; see also the discussion of the initial values0

above. The process

ˆ ˆ ˆ2.5 X n [ X T , . . . , X T , S n , FF [ FF , n g Z ,Ž . Ž . Ž . Ž . Ž .Ž .1 n K n n T qn

is assumed to be a homogeneous Markov chain, where we dispense with

making this assumption more explicit. This could be done by introduc-
Žing appropriate kernels describing the conditional distribution of W ,nq1

Ž nq1. Ž nq1. Ž nq1.. Ž .X T , . . . , X T , S T given FF and X T s 0. Because1 K T SŽT y. nn n

we do not need these kernels later on, we prefer to illustrate our model by

examples.

� 4 Ž .EXAMPLE 2.1. Assume that for each i g 1, . . . , K there is a set N i :
� 4 Ž .1, . . . , K of neighbors of i such that i g N i . Assume that for all i, j g
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� 4 � 41, . . . , K there is a sequence k , . . . , k g 1, . . . , K such that k s i, k s j1 r 1 r

Ž .and k g N k for 1 F m F r y 1. This means that the neighborhoodmq 1 m

� 4relation equips 1, . . . , K with the structure of a directed and connected
Ž . Ž .graph. Assume that S T y s i, n g N, and X T s 0. Then the servern i n

Ž nq1.stops serving station i and selects another station S T s j, say, in such a
Ž .way that j g N i and

X T ) 0 if X T ) 0,Ž . Ž .Ýj n k n

Ž .kgN i

which means that the server walks to one of the nonempty stations in his

neighborhood. This is a greedy-type routing mechanism. To describe the

dynamics of this system more accurately, we assume that for any x s
Ž . K � 4 � Ž . 4x , . . . , x , i g Z = 1, . . . , K there is a set D : C [ j g N i : x ) 01 K q x x j

Ž .such that D / B whenever C / B. If X 0 s x and C / B, thenx x x

P W g dw, X W s y , . . . , X W s y , S W s j N FFŽ . Ž . Ž .Ž .1 1 1 K K 1 0

s F
X

dw P x q A w , . . . , x q A w s y , . . . , yŽ . Ž . Ž . Ž .Ž .Ž .i j 1 1 K K 1 K

1
� 4= 1 j g D ,x

card Dx

where F
X

is a distribution with a finite mean w . Assume now that thei j i j

Ž .system starts at time 0 in a state x s x , . . . , x , i satisfying Ý x s 0.1 K k g N Ž i. k

Then the server chooses a station j, say, randomly among the neighbors of i.
1 Ž .Again it takes the server a random time W with the distribution F x toi j

Ž 1. 1walk from i to j. If X W ) 0, then we put W [ W . If not, then the serverj 1

Ž . Ž .chooses another station randomly in the set A j of all stations k g N j
Ž 1. Ž 1.satisfying X W ) 0, if there is such a station. If Ý X W s 0, thenk k g N Ž j. k

Ž . Ž .A j [ N j . The server continues in this way until he arrives at a nonempty
Ž . Ž . Ž .station. Assume that inf Ý w x ) 0, where w x is the mean of F x .x i, j i j i j i j

Under obvious independence assumptions it takes the server a finite random
Ž . Ž .time W to arrive at a nonempty station. The process satisfies 2.3 and 2.4 .1

We conclude this example by specifying possible choices of the sets D .x

Ž .i Assume that

D s j g N i : x s max x : k g N i .� 4Ž . Ž .� 4x j k

This defines the so-called greedy walking mechanism.

Ž . Ž .ii Assume that there are positive and finite numbers d i, j indicating a
Ž .distance between j g N i and i and that

D s j g N i : d i , j s min d i , k : k g N i , x ) 0 ,� 4� 4Ž . Ž . Ž . Ž .x k

where min B [ 0. In this case the server tries to walk to the nearest

nonempty station in his neighborhood.

Ž . � Ž . 4iii D s j g N i : x ) 0 .x j

Ž . � Ž . � 44iv D s j g N i : x s min x : x ) 0 .x j k k
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Ž . Ž .v Let 0 - c - d and assume that x s x , . . . , x , i satisfies1 k

Ý x ) 0. Letk g N Ž i. k

D s j g N i : c F x F dŽ .� 4x j

Ž .if this set is nonempty and let D be given as in i otherwise.x

We give now another example for a routing mechanism which was consid-
Ž .ered by Schassberger 1993 in the special case of a ringlike graph. In that

case the polling system could be considered as an approximation of the greedy

server on the circle.

Ž .EXAMPLE 2.2. Consider the situation of Example 2.1 ii . An r-tuple p s
Ž . � 4 r Ž .k , . . . , k g 1, . . . , K is called a path if k g N k for 1 F m F r y 11 r mq1 m

Ž .and if all k are distinct. The length d p of such a path is defined bym

Ž . Ž .d k , k q ??? qd k , k . Assume that the system starts at time 0 in1 2 my1 m

Ž .state x s x , . . . , x , i satisfying Ý x ) 0. Consider the set of all paths p1 K k k

starting at i and ending at a station k with x ) 0, and let H be the subsetk x

Ž .where d p becomes minimal. The server then chooses the next station j,

say, randomly in the set

D
X

[ l g N i : there is a p s k , . . . , k g D with l s k .� 4Ž . Ž .x 1 r x 2

As in Example 2.1 it takes the server a random time W 1 with some distribu-
X Ž 1. 1tion F to walk from i to j. If X W ) 0, then we put W [ W . If not, theni j j 1

the server chooses another station randomly in the set D
X

. The serverX ŽW .1

continues in this way until he arrives at a nonempty station at a time W . If1

Ý x s 0, then the server moves as in the previous example. Once the serverk k

has completed a walk at a moment where the system is nonempty, he
Ž . Ž .continues walking as described above. It is easy to see that 2.3 and 2.4

hold. This example could be generalized by allowing the server to change his

destination during a walk if there occurs an arrival at a station that is closer

than that he is currently walking to. In this case the choice of the next

destination depends again on future arrivals.

Ž .State-independent routings as in Fricker and Jaibi 1994 are also covered

by our model. A special case is a Markovian routing as described next.

Ž . Ž .EXAMPLE 2.3. Let r be an irreducible Markovian routingi, j 1F i, jF K

matrix and assume that the server, upon completing a batch of services at

station i, chooses his next destination j, say, with probability r indepen-i, j

dent of everything else. It takes the server a random time with distribution

F
X

to walk from i to j. These walking times are independent of each otheri j

and independent of anything else. If at the moment of the server’s arrival the

jth queue is nonempty, then it is served according to the exhaustive policy.

Otherwise the server chooses a next destination according to the routing

matrix. Assuming that the F
X

have finite means w satisfying Ý w ) 0,i j i j i j i j

Ž . Ž .both conditions 2.3 and 2.4 are fulfilled.
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We conclude with a simple example where the only nonzero walking times

are times taken to wait for the next arriving customer. Such a system is very

similar to an MrGIr1-queueing system with batch arrivals. In particular, it
Ž .is rather easy to see that stability is implied by inequality 1.1 .

EXAMPLE 2.4. Assume that after a batch of services the system is not

empty. Then the server chooses one of the nonempty stations and resumes

servicing instantaneously. If, on the other hand, the system is empty after a

batch of services, then the server waits for the next batch of arriving

customers. Then he chooses one of the nonempty stations and starts serving

without further delay.

ˆ� Ž .43. Proof of the stability result. We consider the Markov chain X n
Ž .defined by 2.5 . All assumptions formulated in the previous section are

supposed to be in force. The main result of our paper is the following theorem.

Ž . Ž .THEOREM 3.1. i Assume that 1.1 holds. Then there is a finite subset of
K ˆ� 4 � Ž .4Z = 1, . . . , K which is positive recurrent for the Markov chain X n . If theq

chain is irreducible, then it is positive recurrent and if it is, in addition, also

aperiodic, then it is ergodic.
ˆŽ . � Ž .4 Ž .ii If the chain X n is ergodic, then 1.1 holds.

ˆ� Ž .4REMARK 3.2. In Examples 2.1 through 2.4 the Markov chain X n is

irreducible and aperiodic. In general, these properties are not implied by our

model assumptions and must be checked in each case.

The proof of the theorem is split into several lemmas. The basic idea is to

prove that the number of walks can be neglected when compared with the

number of services. A polling system where the server needs no time to travel

to a nonempty station as in Example 2.4 can easily be proved to be stable if
Ž .1.1 is satisfied.

Unless stated otherwise we consider in this section a more general model,

where the stochastic behavior of the system is influenced by a further
� Ž . 4piecewise constant process U t : t G 0 taking values in some measurable

Ž .space U, UU and being right continuous w.r.t. the discrete topology. We let

X t [ X t , . . . , X t , S t , U tŽ . Ž . Ž . Ž . Ž .Ž .1 K

� 4and define the filtration FF as before, where we now use the new processt

Ž .X t . We apply the assumptions on the arrival process and the services of

Section 2 verbatim and we also assume that

ˆ ˆ3.1 X n [ X T , . . . , X T , S n , U TŽ . Ž . Ž . Ž . Ž . Ž .Ž .1 n K n n

is a homogeneous Markov process. We can assume that it fits the general
Ž . Ž .setting of the Appendix. Our assumptions 2.3 and 2.4 remain unchanged,

Ž .but we note that FF also contains the information induced by U 0 .0
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Define n [ 0 and0

ˆn [ min k ) n : X k s 0 , n g Z .Ž .ˆ½ 5nq1 n SŽk . q

ˆ Ž .If X s 0 resp., ) 0 , then n , n g N, is the number of completed servicesŜŽ0. n

Ž . Ž .before the server starts his n q 1 th resp. nth walk. Clearly, T is ann n

� 4FF -stopping time. Most of our analysis will be based on the Markov chaint

Ž Ž . .Y n , GG , n g Z , which is defined byn q

ˆY n \ Y n , . . . , Y n , S , U [ X n s X T , GG [ FF .Ž . Ž . Ž . Ž .Ž . Ž .1 K n n n n n Tn n n

Ž Ž . . Ž Ž . .Note that Y 0 , GG s X 0 , FF .0 0
K � 4We define a function V on Z = 1, . . . , K = U byq

3.2 V x [ b x q ??? qb x , x s x , . . . , x , i , u .Ž . Ž . Ž .1 1 K K 1 K

< <Further we define x [ x q ??? qx , where x is as above.1 K

X X ˜ ˜Ž .LEMMA 3.3. Assume 1.1 . There are constants d , d , d , d , d , d such1 2 1 2 1 2

that
X X<3.3 E T GG F d Y 0 q d ,Ž . Ž .n 0 1 21

<3.4 E V Y 1 GG F d V Y 0 q d ,Ž . Ž . Ž .Ž . Ž .0 1 2

˜ ˜<3.5 E n GG F d Y 0 q d .Ž . Ž .1 0 1 2

ˆ Ž .PROOF. Unless stated otherwise we assume that X 0 s 0.ŜŽ0.
1 Ž̂ .At time T the server enters station S 1 and then the system operates

w Ž .x Žindependently of U 0 like a stable MrGIr1-queueing system with batch
ˆ. Ž .arrivals until station S 1 is empty. It is well known that the busy period

T y T 1 satisfiesn1

1 1
1 1E T y T N FF F h X T , P-a.s.,Ž .Ž .n T SŽT .1

where h is a linear function and where the independence assumptions have
Ž 1.also been used. Indeed, assume that S T s i and consider a random walk

Ž .generated by the increment A h y 1, where h is a generic service time ati i i

station i independent of A . Theni

1< 1E n FF s c Y T ,Ž .1 T i i

where c is the mean of the number of steps needed by the random walk toi

decrease by 1. Now the desired inequality follows from Wald’s identity. Using
Ž .our assumption 2.3 , we hence obtain that

1< < < <1E T GG s E W GG q E E T y T FF GGn 0 1 0 n T 01 1

1 <1F w q E h X T GG .Ž .Ž .SŽT . 0

Ž .From 2.1 we have

1 1< <1E X T GG F Y 0 q E A T GGŽ . Ž . Ž .ÝSŽT . 0 i 0

i

F Y 0 q w lŽ . Ý i

i
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Ž .and 3.3 follows. Similarly,

< <E Y 1 GG F Y 0 q E A T GGŽ . Ž . Ž .i 0 i i n 01

<F Y 0 q l E T GGŽ .i i n 01

Ž .and 3.4 follows. The third assertion follows by similar arguments.
ˆ Ž .If X 0 ) 0, then the assertions follow by directly referring to theŜŽ0.

properties of an MrGIr1-system. I

K � 4LEMMA 3.4. Consider a measurable set B : Z = 1, . . . , K = U and as-` q

sume that there is a C g FF satisfying0

3.6 P T - t N FF ) p P-a.s. on X T s 0 l C , n g Z ,� 4Ž . Ž .Ž .` 1 T n qn

where

3.7 T [ inf t : X t g B� 4Ž . Ž .` `

and where we recall that t is the first arrival epoch. Then, for any number1

Ž .N ) 0, there is a p N ) 0 satisfying

P T - t N FF G p N , P-a.s. on X 0 F N .� 4Ž . Ž . Ž .` 1 0

PROOF. Because we could always argue on the set C, we will assume for

simplicity that C s V. Given FF , one can determine the number j of nonempty0

Ž .stations. Assume for simplicity that X 0 ) 0 and putS0

nn j1

i iT [ T y T q W q ??? qW q T y T .Ž . Ž .Ý Ýi n q1 n y1 i1 j

is1 isn q1jy1

� Ž . Ž . Ž njq1 . 4 � 4Then A T s 0, A T s 0, X T g B : T - t and we may use our` ` ` 1

Ž . Ž .assumptions 2.4 , 3.6 and successive conditioning to obtain the estimate

P T - t N FF G p < X Ž0. < p jq1 ,Ž . ˜` 1 0

where

p [ min P A T y T 1 s 0 N S T 1 s j ) 0.Ž .˜ Ž .Ž .1
j

< Ž . <For X 0 F N the right-hand side of the above inequality is not smaller than
Ž . N Kq1p N [ p p . I˜

� 4We need to introduce some further notation. Let u : n g Z be the flow ofn q

ˆ� Ž .4shift operators associated with the process X n ; see the Appendix. Then

u
X
[ un1

� Ž .4is the shift operator associated with Y n . The symbol O is reserved to
Ž . Ž .denote a deterministic function O: R ª R satisfying lim sup O t rt -q q t ª`

`. Further we let

� 4D t [ card n G 1: T F tŽ . n

be the number of departures by time t.
Ž .Under 1.1 the assumptions of the following lemma will be proved to hold.
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� 4LEMMA 3.5. Assume that s is a GG -stopping time and L, c , c g R ,n 1 2 q

Ž .« , c g 0, 1 are constants satisfying

<3.8 E V Y s GG F cV Y 0 , P-a.s. on V Y 0 ) L ,� 4Ž . Ž . Ž . Ž .Ž . Ž . Ž .0

1y«
<3.9 E s GG F c V Y 0 , P-a.s. on V Y 0 ) L ,� 4Ž . Ž . Ž .Ž . Ž .0 1

<3.10 E n GG F c V Y 0 , P-a.s. on V Y 0 ) L .� 4Ž . Ž . Ž .Ž . Ž .s 0 2

Then, under the assumptions of Lemma 3.4,

1y«
<3.11 E t GG s O V Y 0 , P-a.s. on C ,Ž . Ž .Ž .Ž .` 0

<3.12 E D T GG s O V Y 0 , P-a.s. on C ,Ž . Ž . Ž .Ž .Ž .` 0

Ž .where T is given by 3.7 ,`

t [ min n G 1: Y n g B� 4Ž .` `

and min B [ `.

PROOF. Define s [ 0 and0

s [ s q s (u
X

, n g Z ,nq1 n s qn

g [ min n G 1: V Y s F cV Y 0 ,� 4Ž . Ž .Ž .Ž .n

X Ž .where u denotes the identity on V. By 3.8 and Lemma 4.2 we have0

1
X<3.13 E g GG F , P-a.s. on V Y 0 ) L ,� 4Ž . Ž .Ž .0

1 y c cŽ .

X � 4 X
where L [ Lrc. The GG -stopping time s [ s satisfiesn g

V Y s
X

F cV Y 0Ž . Ž .Ž . Ž .

� 4 Ž .everywhere on g - ` . Moreover, by 3.10 we have, P-almost surely on
� Ž Ž .. X4V Y 0 ) L , that

gy1

<XE n GG s E n y n GGŽ .Ýs 0 s s 0jq1 j

js0

`

<� 4s E 1 j - g E n y n GG GGŽ .Ý s s s 0jq 1 j j

js0

`

� 4F c E 1 j - g V Y s GGŽ .Ž .Ý2 j 0

js0

g

F c E V Y s GG .Ž .Ž .Ý2 j 0

js0
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From Lemma 4.2 we obtain that
X X<X3.14 E n GG F c V Y 0 , P-a.s. on V Y 0 ) L ,� 4Ž . Ž . Ž .Ž . Ž .s 0 2

X Ž . Ž .where c [ c r 1 y c . In a similar way we obtain from 3.9 that2 2

gy1 g
1y«X X<E s GG s E s (u GG F c E V Y s GG ,Ž .Ž .Ý Ý0 s 0 1 j 0j

js0 js0

so that, by Lemma 4.2,

1y«X X X<3.15 E s GG F c V Y 0 , P-a.s. on V Y 0 ) L ,� 4Ž . Ž . Ž .Ž . Ž .0 1

X Ž . X X
where c [ c r 1 y c . Next we iterate s by defining s [ 0 and1 1 0

s
X

[ s
X
q s

X
(u

X
X , n g Z .nq1 n s qn

Ž X . Ž X . X
XSince Y s s Y s (u , we havenq1 s n

3.16 V Y s
X

F cnV Y 0 .Ž . Ž . Ž .Ž .Ž .n

Denote

t
X
[ min n G 1: V Y n F L

X
.� 4Ž .Ž .

Then we can bound t
X
F s

X
X , whereg

g
X
[ min n G 1: V Y s

X
F L

X
.� 4Ž .Ž .n

Ž . Ž .Arguing as above, we get from 3.15 and 3.16 , P-almost surely on
� Ž Ž .. X4V Y 0 ) L , that

X
g y1

X X X<E t GG F E s y s GGŽ .Ý0 jq1 j 0

js0

`
X X X <X X� 4s E 1 j - g E s (u GG GGÝ s s 0j j

js0

`
1y«X X X� 4F c E 1 j - g V Y s GGŽ .Ž .Ý1 j 0

js0

`
1y«X Ž1y« . jF c V Y 0 cŽ .Ž . Ý1

js0

and hence

1y«X X<3.17 E t GG F c V Y 0 , P-a.s. on V Y 0 ) L ,� 4Ž . Ž . Ž .Ž . Ž .˜0 1

X Ž Ž1y« .. Ž .where c [ c r 1 y c . Similarly, we obtain from 3.14 that1̃ 1

X<X3.18 E n GG F c V Y 0 , P-a.s. on V Y 0 ) L ,� 4Ž . Ž . Ž .Ž . Ž .˜t 0 2

X Ž .where c [ c r 1 y c .2̃ 2

Ž . Ž .To prove 3.11 and 3.12 , we define inductively, for g Z ,q

T
X

[ inf t G TU : V X t F L
X

,� 4Ž .Ž .nq1 n

TU
[ inf t ) T

X
: A t ) A t y ,� 4Ž . Ž .nq1 nq1



S. FOSS AND G. LAST128

U X U Ž Ž U .. X
where T [ 0. Note that T s T if V X T F L . Let0 nq1 n n

B t [ card n G 1: T F t� 4Ž . n n

be the number of completed batches of services by time t. We have the

following inequalities:

3.19 T
X

F T , D T
X

F n X , B T
X

F t
X
.Ž . Ž . Ž .X1 n 1 t 1r

Let

s U
[ min n G 1: X t g B for some t with T

X
F t F TU

.� 4Ž . ` n n

� Ž Ž .. X4 Ž . Ž .On the set V X 0 ) L we have, by 3.18 and 3.19 ,

U <UE D T FFŽ .s 0

`
U U U� 4s E 1 j - s D T y D T FFŽ . Ž .Ž .Ý jq1 j 0

js0

`
XU U� 4s E 1 j - s D T y D T FFŽ . Ž .Ž .Ý jq1 jq1 0

js0

`
XU U < U� 4q E 1 j - s E D T y D T FF FFŽ . Ž .Ý jq1 j T 0j

js0

`
Y XU U U U< � 4F L E s FF q c E 1 j - s 1 V X T ) L V X T FF˜ Ž . Ž .Ž . Ž .½ 5Ý0 2 j j 0

js0

Y X U <F L q c L q 1 E s FF q c V X 0 ,Ž . Ž .Ž .Ž .˜ ˜2 0 2

Y < < Y Ž . X
where L is a finite constant satisfying x F L whenever V x F L . Here we

have also used, for n G 1, the easily proved inequality

XU
XE V X T N FF F L q max l b ,Ž .Ž .n T i in

i

where we assume for notational simplicity that l b F 1 for all i. Similarly,i i

Ž . Ž .we obtain from 3.17 and 3.19 that

1y«1y«XU U< <UE B T FF F K q c L q 1 E s FF q c V X 0 .Ž . Ž . Ž .Ž .˜ ˜Ž .s 0 1 0 2

Y Ž U . � 4UBy standard arguments it follows that t [ B T is a GG -stopping time.s n

Ž U . Y
Y USince clearly n F D T and t F t , we could use our estimates to concludet s `

Ž . Ž . w U < xthe assertions 3.11 and 3.12 if we knew that E s FF is bounded on0

� Ž Ž .. X4V X 0 ) L . To this end we note that Lemma 3.4 implies, P-a.s. on C,

X U 4 X
Y

P X t g B for some t with T F t F T N FF G p L ,Ž . Ž .Ž .` n n Tn

so that a geometrical trial argument completes the proof. I

Ž . � 4LEMMA 3.6. Assume 1.1 . Then there exists a GG -stopping time s andn

Ž . Ž . Ž .constants L, c , c g R , « , c g 0, 1 , such that 3.8 ] 3.10 in Lemma 3.5 are1 2 q

satisfied.



GREEDY-TYPE POLLING SYSTEMS 129

PROOF. We proceed by induction on the number of stations. For K s 1 we
Ž . Ž . Ž .can take s s 1. Then 3.8 and 3.9 are trivial, while 3.10 is a well-known

property of a stable MrGIr1-queueing system; see Lemma 3.3.

Now we suppose that the assertion is true for all polling systems with K
Ž .stations satisfying our general assumptions and 1.1 . We consider a polling

system with K q 1 stations described by the process

X t s X t , . . . , X t , S t , U t .Ž . Ž . Ž . Ž . Ž .Ž .1 Kq1

Ž .To exploit our induction hypothesis, we couple X t with another auxiliary
˜� 4 Ž .polling system with stations 1, . . . , K described by the process X t . This

auxiliary process should behave like the original process until the time when

the server first enters station K q 1. Hence we define

˜ ˜ ˜ ˜X t , . . . , X t , S t [ X t , . . . , X t , S t , t - T ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .1 K 1 K `

where

T̃ [ inf t : S t s K q 1 .� 4Ž .`

˜ ˜ ˜Ž . Ž Ž . Ž . Ž .. Ž .Further we let U t [ U t , X 0 q A t for t - T and U t s u forKq1 kq1 ` `

˜ ˜Ž .t G T , where u is not in the space U = Z . Hence the process U t takes` ` q

˜ nq1� 4values in the set U = Z j u . Assume that T s T for n g Z . Inq ` ` q

Ž . nq1particular, X T s 0 and we recall that T s T is possible. WeSŽT y. n nn

Ž .distinguish two cases. First we assume that Ý X T ) 0. Then we leti/ Kq1 i n

˜nq1 nq1 Ž .T [ T be the moment of the beginning of the n q 1 th service for the
˜� Ž .4process X t and assume that

˜ nq1 nq1 nq1 ˜ nq1X T s X T , . . . , X T , S T , u ,Ž . Ž . Ž . Ž .Ž .1 K `

˜ nq1 nq1Ž . � Ž . 4where S T is assumed to be in the set j / K q 1: X T ) 0 . Thej

Ž nq1.second case is Ý X T s 0. In that case we puti/ Kq1 i

˜nq1 nq1T [ inf t ) T : A t ) A t yŽ . Ž .Ý Ýi½ 5
i/Kq1 i/Kq1

and

nq1˜ ˜X t s X T q A T , t , T F t F T .Ž . Ž . Ži i n i n n

˜nq1 ˜ nq1Ž . Ž .Further we set S t s 0 for T F t - T and we assume that S T isn

˜ ˜nq1� Ž . 4an element of i / K q 1: X T ) 0 . In both cases we assume that thei

˜ ˜ ˜ ˜nq1Ž Ž . Ž . Ž ..process X t , . . . , X t , S t evolves after time T as in Example 2.4.1 K

˜Ž .So far we have given a pathwise description of the process X t . We skip
˜� Ž .4here the obvious technical details describing the joint distribution of X t

˜� Ž .4 � Ž .4and X t and ensuring that X t will indeed become a process satisfying
Ž . Ž .the general assumptions of this section. Assumption 2.4 also implies 3.6 for

K ˜� 4 � 4 � Ž . 4 � Ž .4B [ Z = 1, . . . , K = u and C s X 0 ) 0 , a set which is s X 0 -` q ` Kq1

measurable by definition. Hence we can apply the induction hypothesis to
Ž . Ž .obtain 3.11 and 3.12 with t replaced by`

� 4t [ min n G 1: S s K q 1˜̀ n
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˜and T replaced by T . This argument works just as well for any station other` `

than K q 1.

� 4There is a GG -measurable random element j of 1, . . . , K q 1 with the0

property

Y 0Ž .
3.20 Y 0 G .Ž . Ž .j

K q 1

Ž . Ž .We claim that 3.8 ] 3.10 are satisfied with

� 4min n G 1: j s S , if S / j ,n 03.21 s [Ž . ½ 0, otherwise.

Since j is GG -measurable we can use the above argument to conclude that0

1y«
<3.22 E s GG s O V Y 0 ,Ž . Ž .Ž .Ž .0

˜ <3.23 E D T GG s O V Y 0 ,Ž . Ž .Ž . Ž .Ž .0

where

T̃ [ inf t G 0: S t s j .� 4Ž .

Ž .Next we are going to show that s does satisfy the drift condition 3.8 . We

have

3.24 Y s s Y 0 q A T y n i ,Ž . Ž . Ž . Ž .i i i n ss

where

i ˆ3.25 n [ card k g N: k F n : S k s i , n g N.Ž . Ž .� 4n n

Ž . Ž .Using the very definitions of the polling system as well as 2.2 and 2.3 , we

can calculate

n q1` m

n< � 4E T FF s E 1 m q 1 F s W q T y T FFŽ .Ý Ýn 0 n q1 n 0s mž /
ms0 nsn q1m

`

<� 4s E 1 m q 1 F s E W FF FFÝ n q1 T 0m n m
ms0

` Kq1
n q1m� 4q E 1 m q 1 F s 1 S T s i� 4Ž .Ý Ý

ms0 is1

`
n < n� 4= 1 n q 1 F n F n E T y T FF FFÝ m mq1 n T 0

ns1

`

� 4F wE 1 m q 1 F s FFÝ 0

ms0

` Kq1
n q1m� 4q E 1 m q 1 F s 1 S T s i b n y n FF ,� 4Ž . Ž .Ý Ý i mq1 m 0

ms0 is1
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where we have taken advantage of the stopping time properties of s and nm

which imply, for example, that

m q 1 F s , S T n mq1 s i , n q 1 F n F n g FF n .Ž .� 4m mq1 T

Hence

< < <E T FF F wE s FF q E z FF ,n 0 0 0s

where
Kq1

iz [ b n .Ý i s

is1

Using

< <E A T FF s l E T FF ,Ž .i n 0 i n 0s s

Ž . Ž .we obtain from 3.22 and 3.24 that

< <E V Y s FF F V Y 0 y 1 y r E z FFŽ . Ž . Ž .Ž . Ž .0 0

1y «̃
q O V Y 0 ,Ž .Ž .Ž .

3.26Ž .

where the workload
Kq1

r [ l bÝ i i

is1

Ž . Ž .is strictly less than 1 by assumption. From the definitions 3.20 and 3.21 we

have
Kq1 Y 0Ž .

in s n G ,Ýs s
K q 1is1

Ž .yielding since all b are positive thati

<E z FF G cV Y 0 ,Ž .Ž .˜0

where

min bi
c s .˜

K q 1 max bŽ . i

Ž . Ž .Inserting this into 3.26 , we obtain 3.8 for a suitably chosen constant L.

Ž .Next we want to prove 3.10 making use of the equality

˜ ˜w xE n N FF s E D T N FF q E E D T y D T N FF N FF .Ž . Ž .Ž . ˜s 0 0 n T 0s

Ž .The first summand can be bounded according to 3.23 . For the second we can
Ž .use 3.5 and

˜ <E V X T FF s O V X 0 ,Ž .Ž . Ž .Ž .Ž . 0

Ž .which can be proved as 3.26 . I

In the remainder of this section we return to the setting of Section 2 which
Ž .is obtained by letting U t ' 0.
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Ž . Ž .PROOF OF THEOREM 3.1 i . Assume 1.1 . By Lemma 3.6 we can use
ˆŽ Ž . . Ž Ž . . Ž .Theorem 4.3 with X n , n in place of X n , s . Assumption 4.6 of thats

� Ž . 4theorem is clearly satisfied and the set x: V x F L is finite for any L ) 0.

The other assertions are standard. I

� Ž .4In case Y n is ergodic we let p denote its stationary initial distribution

and define

w [ w x p x ,Ž . Ž .Ý
x

Ž . K � 4where w x , x g Z = 1, . . . , K , satisfiesq

<w x s E W FF , P-a.s. on Y 0 s x .� 4Ž . Ž .1 0

Hence w is the average time taken by a walk after a batch of services. Since
ŽŽ .. � 4p 0, . . . , 0, i ) 0 for all i g 1, . . . , K , it is clear from the definition of W1

XŽ .that w has to be positive. Consider now the Markov chain Y n denoting the

system states at the consecutive polling instants, that is,

Y
X

n [ X T n nq1 , n g Z ,Ž . Ž . q

and let p
X

denote its equilibrium distribution if the chain is ergodic. Note
X Ž .that p has to be concentrated on the set of all those x s x , . . . , x , i1 K

Ž .satisfying x ) 0. On this set we define a function B ? byi

<B x s E n FF P-a.s. on Y 0 s x .� 4Ž . Ž .1 0

Let
X K � 4 K � 4p [ p Z = i s p Z = i .Ž . Ž .i q q

Then
Xy1B [ p B x , i p x , i� 4Ž . Ž .Ž . Ž .Ýi i

KxgZq

is the stationary average batch size given that the server is at station i.

Next we turn to the proof of the necessity part of Theorem 3.1. This proof
ˆ� Ž .4will also yield an equilibrium equation for the process X n . A shorter proof

could be obtained by comparing the system with a polling system as in
Ž .Example 2.4. The latter system can easily be proved to be unstable if 1.1

does not hold.

Ž .PROOF OF NECESSITY OF 1.1 . Let n g N. We can use the calculations
Ž . Ž .which led to 3.25 with n in place of s to obtain that

i< < <3.27 E Y n FF s Y 0 q l E W n q z FF y E n FF ,Ž . Ž . Ž . Ž .Ž .i 0 i i n 0 n 0

where
K

iz [ b n ,Ýn i n

is1

ny1

W n [ WŽ . Ý n q1m

ms0

n Ž .and n is given by 3.25 .i
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Ž .In the remainder of the proof we follow Borovkov and Schassberger 1994 .

Unless stated otherwise we assume that r / 1, where

K

r [ l b .Ý i i

is1

Let f : R
K

ª R
K be the linear transformation given by

bi
� 4f e [ e q l , i g 1, . . . , K ,Ž .i i

1 y r

where e is the ith unit vector and the ith component of l is l . We applyi i

Ž .this transformation to obtain from 3.27 by a straightforward calculation

that

<E f Y n , . . . , Y n y Y 0 , . . . , Y 0 FFŽ . Ž . Ž . Ž .Ž . Ž .Ž .j 1 K 1 K 0

l j j< < � 4s E W n FF y E n FF , j g 1, . . . , K ,Ž . 0 n 0
1 y r

3.28Ž .

where f is the jth component of f.j

ˆ X� Ž .4 � Ž .4 � Ž .4Assume now that X n and hence also Y n and Y n are ergodic.

Ž .Dividing both sides of 3.28 by n and letting n ª `, the left-hand side tends

to 0 and we obtain that

l wj
� 43.29 s B p , j g 1, . . . , K .Ž . j j

1 y r

Ž .In particular, we have r - 1. Assume now that r s 1. Dividing 3.27 by n

and letting n ª `, we obtain

K

B p s l w q l b B p .Ýi i i i j j j

js1

Multiplying by b and summing up yields an equation contradicting w ) 0. Ii

ˆ� Ž .4 Ž .COROLLARY 3.7. If X n is ergodic, then 3.29 holds.

Ž .REMARK 3.8. Consider Example 2.1 or Example 2.2. Let R t denote the
Ž . Ž .residual walking time at time t g R if S t s 0 and let R t be the residualq

�Ž Ž . Ž .. 4service time otherwise. Then X t , R t : t g R is a homogeneous Markovq

process. Using Theorem 3.1 and the properties of the Poisson process, it is not
�Ž Ž . Ž ..4 Ž .hard to prove that X t , R t is Harris ergodic if 1.1 holds. Under natural

additional assumptions this conclusion could also be made in the general

case.

APPENDIX

This Appendix contains some results for discrete-time Markov processes
� Ž . 4and Markov chains. We consider a Markov process X s X n : n g Zq

Ž .taking values in the measurable space X, XX . The process X is assumed to
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Ž . Ž .fulfill the following standard properties. The random elements X n are
Ž . � 4defined on V, FF and are measurable with respect to FF , where FF : n g Zn n q

is an increasing sequence of s-fields. For each n g Z there is a measurableq

mapping u : V ª V such that u s u (u . Hence u is the nth iteration ofn mqn m n n

the shift operator u [ u . We assume that1

X (u n s X m q n , m , n g Z ,Ž . Ž .m q

Ž .Ž . Ž .Ž .where the process X (u is given by X (u n v [ X n u v . We call u ,m m m n

n g Z , the family of shift operators associated with X. Further thereq

Ž .is a family P , x g X, of probability measures on V, FF such thatx

Ž Ž . . Ž .P X 0 s x s 1 and the mapping x ª P A is measurable for all A g FFx x

� 4and such that, for any FF -stopping time T,n

< � 4P X (u g ? FF s P X g ? , P -a.s. on T - ` ,Ž .Ž .x T T X ŽT . x

where we interpret all processes as random elements of the corresponding

function space equipped with Kolmogorov’s product s-field. This is the strong

Markov property of X. In particular,

<P X g ? FF s P , P -a.s. on X 0 s x , y g X.� 4Ž .Ž .y 0 x y

� 4Assume that s is a finite FF -stopping time and define

A.1 s [ s q s (u , n g Z ,Ž . nq1 n s qn

where s [ 0 and u is the identity on V. Then the s are stopping times0 0 n

Ž . Ž .and Y n [ X s , n g Z , is again a Markov process in discrete time. Onen q

can take the same family P , x g X, of probability measures while the shiftx

� 4operator is given by u and the filtration by FF : n g Z .s s qn

Ž .In the following P denotes a probability measure on V, FF of the form

P ? s P ? m dx ,Ž . Ž . Ž .H x

Ž .where m is a probability measure on X, XX .

Under additional technical assumptions the conditions of the next lemma

are known to imply the so-called geometric ergodicity. The proof of this as

well as of the next result is not difficult and can follow along the lines of
Ž .Meyn and Tweedie 1993, 1994 for example.

Ž .LEMMA A.1. Assume that there are numbers c g 0, 1 and L g R as wellq

as a measurable function V: X ª R such thatq

<E V X 1 FF F cV X 0 P-a.s. on V X 0 ) L .� 4Ž . Ž . Ž .Ž . Ž . Ž .0

Define

A.2 t [ min n G 1: V X n F L ,� 4Ž . Ž .Ž .L

where min B [ `. Then, for any 0 - d F 1,

dtL V X 0Ž .Ž .d
E V X n FF F , P-a.s. on V X 0 ) L� 4Ž . Ž .Ž . Ž .Ý 0 d1 y cns0
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and

<E t FF - `, P-a.s. on V X 0 ) L .� 4Ž .Ž .L 0

LEMMA A.2. Assume that the assumptions of Lemma A.1 hold and denote

g [ min n G 1: V X n F cV X 0 .� 4Ž . Ž .Ž . Ž .

Then, for any 0 - d F 1,

dg V X 0Ž .Ž .d
A.3 E V X n FF F , P-a.s. on V X 0 ) Lrc .� 4Ž . Ž . Ž .Ž . Ž .Ý 0 d1 y cns0

Moreover,

1
<E g FF F , P-a.s. on V X 0 ) Lrc .� 4Ž .Ž .0

1 y c cŽ .

Ž .The next result is similar to Theorem 2.2 in Meyn and Tweedie 1994 . For

the reader’s convenience we will present the proof.

Ž .THEOREM A.3. Assume that there are numbers c g 0, 1 and L, c , d ) 0,2

� 4a measurable function V: X ª R and a finite FF -stopping time s G 1 suchq n

that

<A.4 E V X s FF F cV X 0 , P-a.s. on V X 0 ) L ,� 4Ž . Ž . Ž . Ž .Ž . Ž . Ž .0

<A.5 E s FF F c V X 0 , P-a.s. on V X 0 ) L ,� 4Ž . Ž . Ž .Ž . Ž .0 2

<A.6 E V X 1 FF F d , P-a.s. on V X 0 F L .� 4Ž . Ž . Ž .Ž . Ž .0

Then
X<E t FF F c max V X 0 , L , P-a.s.� 4Ž .Ž .L 0

X Ž . �for some finite c , where t is given by A.2 . In particular, the set x g X:L

Ž . 4V x F L is positive recurrent, in the sense that
X<E t FF - c L, P-a.s. on V X 0 F L ,� 4Ž .Ž .L 0

t - `, P-a.s. on V X 0 ) L .� 4Ž .Ž .L

PROOF. Let s [ 0 and, recursively, s [ s q s (u , n G 1. Denoting0 nq1 n s n

t [ min n G 1: V X s F L ,� 4Ž .Ž .n

Ž .we obtain from A.5 that

ty1

<E s FF s E s (u FFÝt 0 s 0i

is0

`

<� 4s E 1 i - t E s (u FF FFÝ s s 0i i

is0

`

� 4F c E 1 i - t V X s FF .Ž .Ž .Ý2 i 0

is0
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Ž .By A.4 we can apply Lemma A.1. Hence

c2
<A.7 E s FF F V X 0 , P-a.s. on V X 0 ) L .� 4Ž . Ž . Ž .Ž . Ž .t 0

1 y c

Ž Ž ..Since t F s , this yields the assertion for V X 0 ) L. To prove the otherL t

Ž Ž ..case, we can use inequality t F 1 q s (u for V X 1 ) L to obtain, fromL t 1

Ž .A.7 ,

< < <E t FF s E 1 V X 1 F L t FF q E 1 V X 1 ) L t FF� 4 � 4Ž . Ž .Ž . Ž .L 0 L 0 L 0

< < <F P V X 1 F L FF q E 1 V X 1 ) L E s (u q 1 FF FF� 4Ž . Ž .Ž . Ž .Ž .0 t 1 1 0

c2
<F 1 q E 1 V X 1 ) L V X 1 FF .� 4Ž . Ž .Ž . Ž . 0

1 y c

Ž .By assumption A.6 the proof is complete. I
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