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ON THE CONVERGENCE OF MULTITYPE BRANCHING
PROCESSES WITH VARYING ENVIRONMENTS'

By OwWEN DAFYDD JONES
University of Sheffield

Using the ergodic theory of nonnegative matrices, conditions are
obtained for the #? and almost sure convergence of a supercritical
multitype branching process with varying environment, normed by its
mean. We also give conditions for the extinction probability of the limit to
equal that of the process.

The theory developed allows for different types to grow at different
rates, and an example of this is given, taken from the construction of a
spatially inhomogeneous diffusion on the Sierpinski gasket.

1. Introduction and statement of results. A multitype branching
process with varying environment (MTBPVE) generalizes the classical multi-
type branching or Galton—Watson process. For a finite number d of types, we
allow the number of type j offspring of a type i parent at time n to depend on
I, j and n. In what follows, we give second moment conditions under which a
MTBPVE normed by its mean, whose mean matrices are weakly ergodic,
converges a.s. and in #? to a nontrivial limit. These conditions generalize
those of Harris (1963) for multitype fixed environment processes and those of
Fearn (1971) and Jagers (1974) for single-type varying environment pro-
cesses. Notably, if the mean matrices are well behaved in some sense, then
our .#? convergence condition is best possible.

Our results give conditions under which a MTBPVE grows like its mean,
which in this case is given by a forward product of nonnegative matrices.
Nonnegative matrix products can exhibit more than one rate of growth, in the
sense that, as additional factors are added to the product, different elements
of the product can grow at different rates. This opens up the possibility of
MTBPVE with more than one rate of growth. Indeed, in Section 4 we give an
example of a MTBPVE with two distinct growth rates, arising from the
construction of a spatially inhomogeneous diffusion on the Sierpinski gasket
(a simple fractal). In order to analyze growth rates better, the discussion of
ergodic theory given in Section 2 goes beyond that strictly required for our
convergence results, in particular looking at strong ergodicity and some
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related ideas. However, this extra analysis will be needed for the example in
Section 4.

In addition to results on the convergence of the normed process, we also
derive conditions for the extinction probability of the limit to equal that of the
process. This result will also be applied in Section 4.

We will adopt the following notation for the remainder of the paper. For a
matrix A € R¥*? write A(i,j) for its (i, j))th element, A(i,-) for the row
vector given by its ith row and A(-, j) for the column vector given by its jth
column. Similarly, for a vector a € R?, write a(i) for its ith component. The
vector of 1s will be written 1 and the unit vector with a 1 in position i will be
written e;,. A (nonnegative) matrix is called row/column allowable if each
row /column has a nonzero component. A row and column allowable matrix is
simply called allowable. Clearly, the product of allowable matrices is also
allowable. Write A > 0 or a > 0 if every element of A or a is > 0, and write
A > 0or a > 0if every element is greater than 0. Unless stated otherwise, we
will assume that all matrices and vectors dealt with are nonnegative.

A nonnegative matrix A € R?*? is called primitive if there exists an n
such that A" > 0. For such A we write PF(A) for its (unique, real) largest
eigenvalue, that is, its spectral radius, and LPF(A) and RPF(A) for the
corresponding (unique, strictly positive) left and right eigenvectors respec-
tively, normed to be probability vectors. Here, PF stands for Perron-—
Frobenius.

Suppose that the offspring distributions of the process are given by a
sequence of Z9*¢ valued r.v.s. {X, )} _,. That is, the distribution of the
number of type j children born to a single type i parent at time n is the same
as that of X,(i,j). Define M, =EX,, V,[i] = CovX,(i,-) and ¢2(i,j) =
Var X,(i, j) = V,[i](j, j). We will assume that the {M,};_, are finite in all
that follows. Unless otherwise stated, we will also assume that they are
allowable. For fixed m >0, let Z, ={Z, ) _, be the branching process
defined in the usual way [see, e.g., Asmussen and Hering (1983) or Athreya
and Ney (1972)], letting Z,, (i, j) be the number of type j descendants at
time n of a single type i parent at time m. Note that, as defined, Z,, takes on
values in 799, where the rows of Z,, are independent processes.

For a sequence of matrices {A,},_,, we will write Am’n for the forward
product from m to n — 1. Thatis, A,, , =4, A, ., = A,_;. It follows from
the branching property of Z,, that for any m <n < p,

E(Zm,plZm,n) =Z, .M, ,.

Our tool for dealing with the matrix product M,, , is the ergodic theory of
nonnegative matrices.

Ergodic theory for nonnegative matrices can be viewed as a generalization

of the Perron-Frobenius theory, as it describes the growth and limiting

behavior of matrix products. We say that the matrices {M,} are weakly

ergodic if for all m > 0 the forward product M,, , is strictly positive and of
rank 1 in the limit as n — oo, A precise definition is given in Section 2.

n
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A fundamental tool used in the development of ergodic theory for matrix
products is Birkhoff's contraction coefficient. For x, y € R¢, x,y > 0, put

max; x(2)/y(i) maxlog x(i)y(J)
min; x(8)/y(i) i x(J)y()’
The character p is often called a projective distance since p(xT, yT) =0 if
and only if x = Ay for some A >0 and p(ax?, ByT) = p(xT, yT) for all
scalars a, 8> 0. For a nonnegative column allowable matrix A € R%*¢,
Birkhoff’s contraction coefficient is defined as
Tp T
p(x'A, y"A)
7(A) = sup _
( ) x,y>0, x#Ay P(xT,yT)

It is easily shown that 0 < 7(A) < 1 and that for any other nonnegative
column allowable matrix B € R?*?, 7(AB) < r(A)r(B). If A is allowable
then

p(x",y") = log

A(i, k) AG, D)
1 e(4) ) omin S22,
MA) = T ey TR #(4) - SRAGHAGD” "

[This result is due originally to Birkhoff (1957), but see also Seneta (1981),
Section 3.4.] It follows that for allowable A, 7(A) < 1if and only if A > 0 and
7(A) = 0 if and only if A = wv” for some strictly positive w,v € R% Given
this and our definition of weak ergodicity, it should come as no surprise that

{M,} are weakly ergodic < VY m=0,7(M, ,) > 0asn — ».
[See Seneta (1981), Lemma 3.3.] Define diagonal matrices
"R, = diag("R,(1),...,"R,(d))
for 0 <m < n by
"R,(J) = 1M, ,(-,])-
The main results of the paper follow.

THEOREM 1 (2 convergence theorem). If the {M,} are allowable and
weakly ergodic with column limit vectors {w,,} and if for some m > 0,

= "R (i)o2(i,j
1) D3 (1) 0,7 ( J)<Oo

n=mi,j mR?LJrl(j) ’

then there exists a r.v. L, > 0 such that EL, = w,, and

Z, "R >, L 17 asn — =,

THEOREM 2 (Almost sure convergence theorem). If in addition to the
conditions of Theorem 1 we have
* (n+1-m)"R,(i)g2(i,))

(2) Y X

n=mi,j mRr21+1(j)
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and there exists a C < «© such that for all n > m,
(3) Y 7(M,,) <(n+1-m)C,
p=n

then in addition to ¥? convergence we have

Z, "R,' > L,1" a.s.asn — .

Here condition (2) is a strengthening of the variance condition (1), while
condition (3) constrains the speed at which the mean matrix M,, , tends to a
rank 1 matrix.

The proofs are given in Section 3. If the {M,} are well behaved, then not
only is condition (1) necessary for .#? convergence, but we can also dispense
with condition (3) for a.s. convergence. The following corollary details what
we mean by “well behaved,” and is the form of these results used in Section 4.
Its proof can also be found in Section 3.

COROLLARY 3 (Necessary and sufficient variance condition). Suppose we
are given rescaling matrices D, = diag(D,(1),..., D (d)) for all n > 0, such
that @, = D,M, D! converges elementwise to a primitive matrix Q. Then
the condition

D, (i), (i, J)
n=mi,j 1TQm,n1Dr?+1(j)

s

(4)

is necessary and sufficient for the #* convergence of Z, ,D,'/1"Q,, ,1 as
n — o, When it exists, this limit is of the form EmﬁT, for some r.v. Zm with
E f,m =D 'w, . Here ¥ is the left Perron—Frobenius eigenvector of @ (normed
as a probability vector) and the {w,), _, are strictly positive probability
vectors, which converge as m — © to w, the right Perron—Frobenius eigenvec-
tor of @ (normed as a probability vector). Also, if

(n’ +1- m)Dn(l)UnZ(L7J)
1Q,, ,1DZ, ,(J) B

(5) >

n=m

i,J
then we get a.s. convergence.

Finally, we have a result that shows that (under certain conditions)
Z,, (i,-) either dies out, or else the number of type j individuals grows like
"R, (j), for all j, with probability 1.

PropPoOSITION 4 (Extinction probabilities). Suppose that the conditions of
Theorem 1 hold, and for all m > 0 and 1 <i < d, let q,,(i) be the extinction
probability of the process Z,(i) ={Z, (i, )}, _,. Then, if there exists some

constant K and vectors h, € RY, n=0,1,..., such that for all m >0,
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l<i<dandx €R,,
(6) P(Z, (i, )h, <x)—>q,(i) asn —>
and
5w M, (i,0)02() k)
(7) Z Z N2 mp2
n=m j,k wm(L) Rn+1(k)

then q,,(i) = P(L,, (i) = 0).

Furthermore, if there exist rescaling matrices D, = diag(D,(1),..., D, (d))

forall n > 0, such that @, = D, M, D, !, converges elementwise to a primitive
matrix @, then (7) is equivalent to

- Dy())a2(j k)
(8) L Lo " 1D? (k

n=m j, k
where the w,, are the same as those of Corollary 3.

<K/h, (i) -1

)= (K/h, (i) = 1)(D,,'®, ) (i)

In practice, condition (6) can be difficult to check. However, we can give
some more practical conditions which imply it. If P(X, > 0) = 1 for all n,
then Z can never die out. Let .#,, , denote the minimum family sizes of Z,, .
Note that in many situations of interest—such as the example considered in
Section 4—#,, , can be explicitly determined. If we choose the {%,} so that

(9) My h, > * asn o>

then (6) follows. In practice we try and take the {%,} as small as possible, so
that condition (7) can also be satisfied.

If the {A,} are constant, then (6) reduces to requiring that the only
recurrent state of the branching process is 0. In the fixed environment case,
Harris (1963) showed that “nonsingularity” of the offspring distribution is
sufficient for the nonzero states to be transient. This result can be partially
extended to MTBPVE. Suppose that a r.v. X, taking values in Z?*?, describes
the offspring distribution of a fixed environment multitype branching process.
We say X is singular if

P(X(i,-)1=1) =1 foralli.
Now distinguish two cases.

1. The process Z can never die out. In this case, if we can find a nonsingular
X such that X <, X, for all n > 0, then the only recurrent state of
z, .G, )Y, _, is 0, for all i.

2. Extinction is possible from any initial state. In this case, if we can find a
nonsingular X such that X <, X, for all n > 0, then the only recurrent
state of {Z,, (i, )}, _,, is O, for all i.

An appropriate X can always be found if, for example, X, », X where X
is nonsingular and M = E X is primitive. A proof of these results is given in
Jones (1995). Note that the advantage of (9) over case (1) is that if the
minimum population size grows to infinity, then we can take A, — 0, making
(7) easier to satisfy. This is precisely the situation encountered in Section 4.
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Background. Although the results of Harris (1963) and those of Fearn
(1971) and Jagers (1974), which Theorems 1 and 2 generalize, were first
proved more than twenty years ago, there has been little interest in MTBPVE
until very recently. One reason for this new interest is the potential applica-
tion of MTBPVE to the study of diffusion on fractals, as is pursued (with
some success) in the work of Hattori and Watanabe (1993), Hattori, Hattori
and Watanabe (1994) and Hattori (1994). The first of these uses an analytical
approach to prove the weak convergence of the normed process to some limit,
though it makes a number of rather restrictive conditions on the mean
matrices {M,}. The report by Hattori (1994) goes somewhat further, giving
conditions for the #? convergence of Z,, (i, j)/M,, ,(i, ;) and some results
on the continuity of the limit. The conditions given make implicit use of weak
ergodicity, though are somewhat more technical than those of Theorem 1.
They also explicitly require supercriticality. The method used adapts some of
the ideas of Cohn (1989) to the varying environment case.

Cohn himself has taken the results of Cohn (1989) further, in joint work
with Jagers (1994) and also with Nerman and Biggins. The work with Jagers
claims %' convergence given weak ergodicity of the mean matrices
and (essentially) uniform integrability in n of {Z, ,"R,');_,. Cohn also
gives (without proof) some conditions for the #2 convergence of
Z, (i,j))/M, (i,j) as n — =, in a recent research report [Cohn (1993)].
These again assume weak convergence of the mean matrices together with a
uniform integrability condition and a variance condition, similar to but not
the same as condition (1). Cohn also makes the observation that it is possible
to move from an .#? result to an a.s. result using a Borel-Cantelli argument.
At the time of writing, the work of Cohn, Nerman and Biggins referred to is
still in preparation. It seems this work will treat MTBPVE more generally
than the concept of weak ergodicity allows, using instead the concept of
space—time harmonic functions to gain the required control over the matrix
products {Mmm}ﬁ:m [see Cohn and Nerman (1990) for a definition of
space—time harmonic functions and a detailed analysis of how they relate to
weak ergodicity].

2. Ergodicity of nonnegative matrix products. The use of “coeffi-
cients of ergodicity” such as 7 in the study of products of nonnegative
matrices, owes much of its modern development to the work of Hajnal (1976)
and Cohen (1979). Their ideas in turn owe a lot to the study of products of
positive stochastic matrices and inhomogeneous Markov chains. It is from
this connection with Markov chains that we get the term ergodic. Hajnal
(1976) suggested the more appropriate term “contractive” as an alternative,
but this has yet to be widely adopted. Most of the standard results and ideas
we will be using can be found in Seneta (1981), which provides a good
summary of the work in the area and has an extensive bibliography. For
more recent work in the area the reader is referred to Cohn and Nerman
(1990).
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In this section, we introduce the standard notions of weak and strong
ergodicity and describe how they relate to each other. Although we do not use
strong ergodicity explicitly in Theorems 1 and 2, it is of practical use when
applying them, as can be seen in Section 4. It is also used in demonstrating
that the variance condition (1) is best possible in certain situations: see
Corollary 16.

In what follows, we will mean by a sequence of rescaling matrices a
sequence of nonnegative diagonal matrices of full rank. For matrices M <
R4*? and D = diag(D(1),..., D(d)), premultiplying M by D is equivalent to
scaling each row i of M by D(i), while postmultiplying M by D is equivalent

to scaling each column j of M by D(j). Define rescaling matrices "R, =

diag("R,(1),...,"R,(d)) by putting "R, = I and requiring "R, M,""R, }, to
be column stochastic for all n > m. The term "R, is allowable and thus also
invertible, provided M is column allowable. As products of column

m,n

stochastic matrices are column stochastic, it is clear that, as defined in
Section 1,

"R,(j) = 1'M,, (")

DEeFINITION 5 (Weak ergodicity). The matrices {M,}),_, are said to be
weakly ergodic if there exist strictly positive w,, ,,v,, , € R? such that for all
m =0

Mm,n(iﬂj)
wm,n(i)vm,n(j)

For allowable M, this is equivalent to requiring for all m the existence of an
n such that M,, , > 0 and a probability vector w,, > 0 such that

M, o (isk) (i)
Mm,n(.]ak) wm(.])

[See Hajnal (1976), Theorem 1 or Seneta (1981), Lemma 3.4 and Exercise
3.5.] Since w,, > 0, this is equivalent to requiring

M,, (i, k)
Z"j]‘lm,n(j’ k)

e}

— 1 foralliand jasn — °.

forall i, jand k& as n — oo,

- w, (i) foralliandk asn — .

We will generally write this in matrix form as M,, ,"R,"' - w, 1" as n — o,

So, weak ergodicity requires that as n — o, the elements of any one
column of the forward product M,, , all grow at the same rate and that
within each column, the rows tend to fixed proportions.

The contraction coefficient 7 is used to give more tractable conditions for
weak ergodicity. We have already noted in Section 1 that the {M,} are weakly
ergodic if and only if 7(M,, ,) > 0 as n — =, for all m. Using the submulti-
plicity of 7, this is often enough to give a practical check for weak ergodicity.
The form of 7 for allowable matrices gives the following refinement for
allowable M, . The {M,} are weakly ergodic if and only if there exist n(k)1,
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n(k) # n(k + 1), such that
P \/¢(Mn(k),n(k+1)) = .
k=0

[See Hajnal (1976), Theorem 4 or Seneta (1981) Theorem 3.2.] A sufficient
condition for allowable M, [which also gives geometric decay of 7(M,, ,) as
n — o, thereby satisfying condition (3) of Theorem 2] is that there exist some
ny = 1 and y > 0 such that for all n, M, > 0 and

,nt+ng
min;j M,(i,)) .-
max; ; M, (i,j) ’

where min™ denotes the minimum over positive elements. [This is the well
known Coale-Lopez theorem. See Seneta (1981) Theorem 3.3 for the form
given here.] This condition also has consequences for strong ergodicity, as we
will see below.

Say column-allowable matrices {M,};_, have the RGR property (for rela-
tive growth rates) if for all m, i and j there exists r,,(i, j) € [0, ] such that

"R, (1)

"R,(J)
If the RGR property holds and r, (i, j) € (0, ) for all m, i and j, then we say
the {M,} have a single growth rate.

- r,(i,j) asn — o,

DEFINITION 6 (Strong ergodicity). The matrices {M,} are said to be strongly
ergodic if for all m there exists a probability vector v,, such that

M, (357)

T 1 - v,.(j) asn — »independently of i.
e; m,n

It follows immediately that if such v,, exist then they are in fact independent
of m, that is, v,, = v for all m.

Weak ergodicity can be thought of as requiring the columns of M,, , to
tend to fixed proportions as n — o, given by w,,. In an analogous manner,
strong ergodicity is often thought of as requiring the rows of M,, , to tend to
fixed proportions as n — «, given by v. However, strong ergodicity only tells
you about proportions with respect to the largest growth rate of M, .
Smaller growth rates, represented by the zeros in v, cannot be compared
without extra information, such as that supplied by the RGR property.

The next lemma should give a better idea of how the concepts of weak and
strong ergodicity are related.

ProprosITION 7 (Relating weak and strong ergodicity).

@) If the {M,} are row allowable, then strong ergodicity with v > 0
implies weak ergodicity.
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(i) If the {M,} are allowable, then weak and strong ergodicity together
imply M,,, ,/1"M,, .1 - w,v"as n - « for all m.

(iii) For allowable M,, if there exist probability vectors w,, > 0 and a
probability vector v such that M,, ,/1"M,, .1 - w,v" as n — © for all m,
then the {M,} are strongly ergodic.

(iv) If the {M,} are allowable, then strong ergodicity with v > 0 implies the
RGR property, with r,,(i, j) = v(i)/v(j) (thus giving a single growth rate).

(v) Weak ergodicity and the RGR property imply that for all m, i and j,
r,.(i, ) = r(i,j) is independent of m and they imply strong ergodicity, with
v(j) = 1/%,r(, j).

Proor. (i) It suffices to put w,, , = M,, ,1and v
definitions of weak ergodicity. The w
{M,} are row allowable.

(ii) Since the {M,} are weakly ergodic and allowable, we have that
¢(M,, ,) > 1as n - » Thus

m.n = U in the first of our
are strictly positive provided the

m,n

M, (i,)) UM, 1 M, (i,)E M, (k1)
el-TMmml-lTMm,nej Zk,le,n(i,k)Mm,n(l,j)
M, (i, /)T M, (k1)

M, (i, k)M, (L))

L, (L), ()

— 1 asn — «,

M, (1, k)M, (1))

Thus, dividing top and bottom of the left-hand side by (1”M m7,11)2, we have

Mm,n(l’-])/lTMm,nl
(efM,, ,1/1"M,, ,1)(1"M /1M, 1)

-1 asn — o,
m,n ej
But e/M, ,1/1"AM,, ,1 > w, (i) and 1"M,, ,e;/1"M, ,1 - v(j) and so
M, G, D/, 1 - w,(v(j) as n — = Note that we do not in
general need full weak ergodicity for this result to hold. All we need is that
M, ,e;/"R,(j) > w,, for those j for which v(j) > 0. This is why we only get
a partial converse to this result (see the next item).

(iii) It suffices to divide top and bottom of M,, (i, j)/e/M, ,1by 1"M,, 1
and send n — . Note that it also follows that M,, ,e;/"R,(j) - w,, for all j
for which v(j) > 0.

(iv) This follows from items (i) and (ii) on dividing top and bottom of
"R,(1)/"R,(j) by 1"M,, ,1. This argument fails if v has two or more zero
elements, i, and i, say, as we do not know how quickly "R ,(i,)/1"M,, ,1
and "R, (i,)/1"M,, ,1 go to zero. In particular we do not know if one of them
tends to zero faster than the other or not.
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(v) We observe to begin with that for all i
M, (i,7) _ My o(i,0)/"R,(J) "R,(J)
M, .(i,k) M, (i,k)/"R,(k) "R, (k)

w, (i) )
wn(s) "R =

r.(j,k) asn — oo,

Thus
r,(i,j) = lim

— lim Z"Z(Zkﬂlm(k’l))]‘lerl,n(l’i)
n—« z:l(z’kz‘lm(k’l))]‘Jerl,n(l’j)
—>r,.1(i,j) asn—>x©

noting that for positive «,, b,, ¢, and d,, if a,/b, — x and ¢,/d, — x then
(a, +¢,)/(b, +d,) - x. So r,(i,j) is independent of m. To show strong
ergodicity, consider

Mm,n(iaj) m n(l J) Z m n(l k) mRn(k)
M, (i,k) "R (J) "R,(k) "R,(J)

- ———— asn —> o,
Zkr(k7.])
Note that 1/X,r(k,j) <1 since r(k, k) =1, and that ¥ ,(1/X,r(k,j) = 1.
O

The concept of strong ergodicity is a generalization of that used when
dealing with (row) stochastic matrices. A sequence {A,},_, of stochastic
matrices is strongly ergodic if for all m, i and j, A, ,(i,j) > v(j)as n » =
for some probability vector v. It is also usual when dealing with stochastic
matrices to use stochastic ergodicity rather than weak ergodicity. The {A,}
are stochastically ergodic if A, ,(i,k) — A, ,(j,k) —> 0 for all m, i, j and %
as n — «, Clearly strong ergodicity implies stochastic ergodicity (though it
still does not imply weak ergodicity even in this setting). These definitions
are generally sufficient in the stochastic setting, as the forward products
{M,, ,},-, are bounded and the question of growth rates is not particularly
important. The extra concept of the RGR property is useful when you are
interested in multiple growth rates, in particular, not just the largest growth
rate.

A straightforward condition for strong ergodicity with v > 0 is the follow-
ing. For allowable M, , if there exists an n, > 1, a § < 1 and a probability
vector v > 0 such that (M, ,,) <6 for all n and x, > v for some
sequence of M, left eigenvectors {x, } then the {M,} are strongly ergodic with
row limit vector v. [See Seneta and Sheridan (1981) Theorem 4.2.] This
happens, for example, when the { M} converge elementwise to some primitive
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matrix M, in which case v is the left Perron—Frobenius eigenvector of M. It
is possible to say a little more in this case.

LEMMA 8 (Asymptotically primitive mean matrices). If M, — M element-
wise where M is primitive, then the {M,} are strongly ergodic. Moreover, if
we let A = PF(M) be the spectral radius of M, v = LPF(M) be the left
Perron—Frobenius eigenvector of M and w = RPF(M) be the right Perron—
Frobenius eigenvector of M (normed as probability vectors), then v is the row
limit vector for the {M,}, the column limit vectors {w,,} converge elementwise
tow as m — » and

N ™ 1 1M
o A B oL 5 VAR

m+1,n m,n

forall m.

Proor. That the {M,} are strongly ergodic with row limit vector v follows
from Theorem 4.2 of Seneta and Sheridan (1981). For the remainder consider
the following:

1 m, nl
Om =TT,
- M. lim Mm+1 nl 1Mm+1n
mnﬁx 1TMm+1,n1 1TMm,n
. ]‘TMm+ 1, nl

= Motln e 0y 1
which implies the existence of «7*':=1lim, . 1"M, ., ,1/1"M,, ,1 and
shows that if lim,, _, , w,, exists then it must equal w. Moreover, if lim , _, , w,,
exists, then so does lim,, .. «/**!, which must equal A~'.

In fact, we can show that the limit of any convergent subsequence of the
{w,,} must be w. Let {wn(k)}};’:0 be a convergent subsequence of the {w,} with
limit x,. Such a subsequence always exists, as the space of probability
vectors is compact in R%. We have that w,,, = M, W, 1 2% "', whence
sending &k — o,

xg = Mx, By,

where the existence of x; = lim, . w,;,,; and By =lim, . ar@*! is

implied by the existence of x, and M. That each limit exists separately
follows from the fact that the {w,} are all probability vectors.

We can repeat this procedure with the {w,,. ;- to show that w,,,,
converges to some limit x,. Repeating this ad infinitum gives us a sequence
of probability vectors x,, x;, x5,... and a sequence of scalars By, By, Ba,---
such that x, = Mx, ., 8, for all k. That is, x, = M*x,[1/-1B, for all k. Let
{4}, -0 be a convergent subsequence of the x;, with 11m1t y. Then x, =
lim, ., M*Py[17%)~'B,. It follows immediately that x, = w, since the w
coefﬁc1ent of the eigenvalue expansion of y cannot be zero because y = 0.
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Given that all convergent subsequences of the {w,,} converge to w, it
follows immediately that the {w,} themselves must converge to w, since
{w,,};, _, is contained in the compact set of probability vectors.

The final part of the lemma follows directly from the following observation
M, .M, 1M 1

+1,n
lim ——" =w v"M = lim ————"w, v”. O
now 1TM, 1 ™ now 1TM 1

m

By way of illustrating what is required to get more than one growth rate,
we give the following. If the {M,} are strongly ergodic and irreducible, then
the existence of some y > 0 such that

minf’j M, (i,j)

> for all

max; ; M,(i,7)) Y n
is sufficient to ensure that v > 0, that is, that there is a single growth rate.
[See Seneta (1981), Theorem 3.4.] It is possible to adapt existing results on
strong ergodicity with v > 0 to the multiple growth rate case by using
rescaling arguments, as we will see in Section 2.1 below.

2.1. Rescaling. We will now take a closer look at rescaling in general and
the rescaling matrices {"R,}, . ,, -, in particular.

LEMMA 9 (Rescaling lemma). Let D = diag(D(1),..., D(d)) be nonnega-
tive and of full rank. Then for any nonnegative column allowable matrix
A € R4,

7(AD) = 7(DA) = 7(A)
and for allowable A
®(AD) = ¢(DA) = $(A).

PrOOF. The result follows directly from the definitions of 7 and ¢. O

Observe that for column-allowable column-stochastic matrices {P,},_,,
weak ergodicity is equivalent to strong ergodicity with v = (1/d)1. Now,
define "P, ="R,M,"R; !, for all n > m > 0 and suppose that the {M,} are
column-allowable and weakly ergodic with column limit vectors {w,,}. Thus
for any m <n <p, 7(M, ,) > 0 as p - », so from Lemma 9, 7("P, ) > 0
as n — «. Thus as the "P, are column-stochastic, they are strongly ergodic
with v = (1/d)1. That is, there exist strictly positive probability vectors

{"w,};_,, such that
mPn,p _)mwn]_T as p — wforall n > m.
It is clear that "w,, = w,,. More generally we have

"w,1' = lim "P

po® n.p
o 1: m np-1n mp-1
= ;1_1)1; R,M, /’R,""R,"R,

="R,w,1" lim "R,"R;".

p—>®
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It follows that lim , ,,"R me;I exists and equals «,. I for some constant «,,.
Thus for n > m,

m _ . nm
w, = «a, R,w,.

It is easily checked that this definition of «, is consistent with the definition
given in Lemma 8, namely that ) = lim, ., 1"M, 1/1"M, 1.

We can in fact bound the speed at which "P, , converges to "w,1" as
p — . To do this we make use of a second coefficient of ergodicity (or
contraction coefficient), «. It is normally used with row-stochastic matrices,
but has been adapted here for use with column-stochastic matrices by the
simple expedient of transposing everything. For a column-stochastic matrix
P € R?9 define

I Pxllx

k(P) = su .
SRR S P
It can be shown that «(P) < 7(P) [Seneta (1981), Theorem 3.13]. Thus for a
column stochastic P, if x € R? and 1"x = 0 then || Px|l; < ||x|l;7(P). That is,
if 7(P) < 1 then P is a contraction mapping on the set {x € R%: 17x = 0}. In
particular we have here that 1"(e; —"w,) = 0 and so

”mPn,p("j) _mwnnl :”mPn,p(ej _mwp)"l
< 2T(mPnyp)
= 2T(Mn,p).

In practice we may be able to find natural rescaling matrices different from
the {"R,}. Suppose that {D, = diag(D,(1),..., D (d)};_, is a sequence of
rescaling matrices and put @, = D, M, D, !, for all n > 0. It follows from the
rescaling lemma that the {@,} are weakly ergodic if and only if the {M,} are
weakly ergodic. Suppose this is the case, and let {w,,}, _, and {%,,}, _, be the
column limit vectors for the {M,} and {Q,,}, respectively, then, noting that

Qe . D,M, e
w, = lim ————— = lim ———————
noo 1 Qm)nej now 1 DmMm,nej
and that
UM, i _ LDy (1) Qu,u(is)
m.nJ r—m m,n\"> B o )
"D, M,, e, 1Q, e, - ;Dml(z)wm(z) as n — o,
it follows that
D 'w,
(10) "

m T D g,
For strong ergodicity we have the following.

ProposITION 10 (Sufficient condition for strong ergodicity). If the {Q,} are
strongly ergodic with row limit vector © > 0 and lim, ., D,(i)/D,(j) exists
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€ [0,%] for all i and j, then the {M,} are strongly ergodic and have the RGR
property, with
5() . D)
—— lim —.
0(J) n>=D,(J)

r(l’.]) =

Proor. As v > 0, the {@,} and thus the {M,} are weakly ergodic. Thus
from Proposition 7(v), it suffices to establish the RGR property for m = 0.
Consider

. °R,(J) . Y,D5(i)Qo, (i,J) D,(J)
no= "R (k) n—= LDy (i)Q (i, k) D,(k)
v(j) .. D))

= 5(k) A D (k)

since lim,, _, .. @, (i, /)/@Q,, ,(i, k) = 0(j)/v(k) independently of i. O

This proposition provides a practical way of applying our existing condi-
tions for strong ergodicity with v > 0 to situations where we have multiple
growth rates. We also have the following (for use in Corollary 16 below).

ProposITION 11 (Rescaled limit matrices). If the {@,} converge element-
wise to a primitive matrix  then for all m, " P, converges elementwise to a
primitive matrix P given by

AP(i, ) = 5()Q(i,)/0(J)

where A = PF(Q) is the spectral radius of @ and v = LPF(Q) is the left
Perron—Frobenius eigenvector of @ (normed as a probability vector).

PrROOF. To begin with put "D, = D, 'D, and "Q, ="D,M, "D}, for all
n > m. Then "Q, »™@Q = D, '@QD,, as n - » where PF("Q) = A and "7 =
LPF("Q) = D,,v/¥,D, (i)v(i). Now, define a further set of rescaling matrices
{"E,}o < n<n by putting "E, =1 and requiring "E,"Q,"E, !, to be column
stochastic for all n > m (so the {"E,} play the same role for the {"@,} that
the {"R,} play for the {M,}). It should be clear that "E,"Q,"E, }, ="P,, that
is, that "E, ="R,"D,*.

Now, from Lemma 8, we have that

1""E, ""Q, . o
]'TQO,nl = ]'TQO,nl -"0 asn —o
and that
1TQO’n1 1
77Q, .1 1 =TT
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whence

leQm,n]' mEn(l’) m .. leQm,n+11

1TQO,n+11 leQm,nl Qn(l’J) mEn+1(-])

ORI
"o (J)
v(1)Q(1, )

= —. m

v(J)

AP (i,]) = A

asn —>x®

2.2. Growth rates. In this subsection we compare and bound various
growth rates obtained from the matrix product M,, , as n — %, with the aim
of simplifying the application of Theorems 1 and 2 and Proposition 4. The
results obtained will be put to practical use in Section 4.

For two sequences {x,)._, and {y,};_,, write {x,} = {y,} if lim, . x,/v,
exists € (0,). We say two such sequences have the same growth rate.

LEmMMA 12. Suppose we are given rescaling matrices D, = diag(D,(1),
...,D(d) for n>0 such that the matrices {Q, :=D,M D, 1} _, are
strongly ergodic with row limit vector v > 0. Then foranym > 0and1 <j <d

"R} = {("Qu. w1 Du() )

ProoF. We have "R (j) = 1D, 'Q,, ,e;- D, (j). From Proposition 7 we

m,n%j
know that @,, ,(i,/)/17Q,, ,1 converges as n — » to w,,(i)3(;), where the
{w,,} are the column limit vectors for the {@,}. Thus

"D, ' @ ne; _ TiDy ' (1)@, n(is )
1TQm,n]‘ 1TQm,I’L1

whence we get the result. O

> LD, (), (i) -0(j) asn -,

Under the conditions of Lemma 8 we can give bounds on the growth of
1"M,, ,1 or (more commonly) 1Q,, ,1, as n — .

LEMMA 13 (Growth bounds). If M, - M elementwise where M is primi-
tive, then for any & > 0 we can find a constant ¢, € (0,%) such that for all
n>m >0,

col(A—e)" " <1™™, 1<co(A+e) "
where A = PF(M) is the spectral radius of M.

PrOOF. From Lemma 8 we have for any £ > 0 that

lim a7, , = lim lim M, ,1/1"M,, ., ,1 = A"

m— © m—o® n—>w©
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Thus for any ¢ > 0 we can find some constant ¢, € (0,) such that for all
m,k >0,
(11) et (A —e) <ar,, <c(A+8)

Now since M is primitive and M, — M, there exists an m, and a ¢, € (0, )
such that for all m > m,, ¢; 117 <M < ¢,117, where n, is such that

mm+n -

M?" > 0. Thus for all n > m > m, andp>n+n0,
c;'1'M,, 1<1"M, 11"M 1<c,1'™M, 1
Dividing through by 1'M,, . , ,

e;lam, <1"M, al<cya
0

n+ng,p

1 and sending p — « gives us

n+n n+n

The result now follows on applying inequalities (11) to these. O

The next result gives a condition for the growth rate of 1"M,, 1 to equal A
exactly.

LEMMA 14 (Asymptotically geometric growth function). If M, — M ele-
mentwise where M is primitive and L7, _|IM,, — M||; < o, then for any m > 0,

(1M, 1), = (" = {20 A

where A = PF(M) is the spectral radius of M and A, = PF(M,) is the speciral
radius of M,,, for all k = m.

ProOF. Put A,, , = I17Z; A,. Also, recall that for any matrix A € R?*,
the #! operator norm ||A||1 is equivalent to the matrix norm |[Al =
max; IA(l DI. The following result is taken from Markus and Minc (1964),
Theorem3 1.6.For A, B € R?? B> A > 0, A, B primitive with PF(A) = «,
PF(B) = B we have

M
; m —<B-a< — .
ax; ; C(i,7) /L, C(k, j) in; ;C(i,7)/X,C(k,J)

where m = mini’j(B(i,j) —AQ,j), M = maxi’j(B(i,j) —A(G,j)and C >0
is column allowable and commutes with either A or B.

Suppose M, 1T M. Let C = M" where n, is such that M"° > 0 and put
¢y = min, C(L J)/2,C(k, j). Then from the above result, A — A, < ¢,lIM,
— M| Thus L IIM, — M|l < o implies ¥, (A — A,) < © which 1mphes that

A, o /A" ™ converges € (0,%) as n — o, that is, that{)\m’n}ﬁzm =N

The same holds if M, | M. If M, — M but not monotonically, then con-

sider the following elementwise minima and maxima:

M, =M, ANM and M'=M,V M.
Clearly M, — M|l =M, — M|V IM - M|, so X,IM, — M| <o and

Y M — M|| < ». Putting A= PF(M;) < A, < A = PR(M;), we get
D nhiem =0 o = (A7 "} _ ., whence {A ="

}CXZ
m,nln=m
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Now
A;l?an,n —ATTIMT
n—1
— Z A;m,lka,k(AI;IMk _ )\_IM))\(k+1)_nMn_(k+1)

k=m
(a telescoping sum). Thus, since [M,ll; <A,, X, _,IIM, — Mll; <% and
N e =,

||/\,;3an,” —A"T"M My

n—1
< Y la M, — 2 M|,
k

<

(AUIM, = M+ 107 Y = A, )

Il g |
SM 3

k

-0 asm — .
Finally, if we let v = LPF(M) and w = RPF(M) then since

lim A M = ol ywT,

we have that
lim lim Mm,n/lTMm’nl = lim w,vT
m-—ow n—>w m— o

woT

w'v lim lim A, M

m—ow pn—>o©

m,n

and so {1"M,, ,1%;_,, = (A ={\ O

m, n}z =m
Our final result for this section gives conditions for the uniform equiva-
lence of some particular growth rates.

LemmA 15. Suppose we are given rescaling matrices D, = diag(D,(1),
...,D.(d)) for all n > 0, such that the matrices {Q, =D, M, D, ! }:_, con-
verge elementwise to a primitive matrix Q. If we let {w,,}), _, be the column
limit vectors for the {M,} and let {w,,};, _, be the column limit vectors and v
the row limit vector for the {Q,)}, then for any 1 < i, j <d,

Q. (i,J) _ . _ . . .

(12) o 1 w,(i)0(j) asn — ©uniformlyinm > 0,
whence
(13) an—(l’J) — 1 asn — »uniformlyinm > 0

Wy ()" R,.(J) -
and

"R,(J) . .

(14) — 1 asn — ouniformlyinm > 0.

"D, 'w,, - 1'Q,, ,1-D,(j)v(J)
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Proor. Note to begin with that from Section 2.1, we have that for any
0O<m<nandl<j<d,|Q, ,e/1'Q, e, — w,l <27(Q,, ). Since @, -
@, we can find constants ¢, > 0 and 8, < 1 such that Q. ) < cyd; ™ for
all 0 <m < n. Thus, Q,, ,¢;/1'Q,, ,e; > W,, as n — © uniformly in m (and
geometrically fast). So, (12) will follow if we can show that the convergence
1'Q,, ,¢;/1"Q,, ,1 - 5(j) as n — = is also uniform in m.

From Lemma 3.10 of Seneta (1981) (on uniform strong ergodicity) we can
find constants ¢; > 0 and 8, < 1 such that for any 0 < m < n,

(1TQm n/lTQm n-+o» 1TQO,n/1TQ0,n1) =< Clafim'
Thus since p(1'Q, ,/17Q, ,1,7") — 0, we have that
p(lTQm /17Q nl,ET) — 0 as n — < uniformlyin m > 0.

Moreover, as 0 > 0 and @, — @, it is clear that Q = ({1'Q,, ,/1"Q,,
0 < m < n})is such that QO N §RY = & (where 8 indicates the set boundary)
Thus, if © is the set of probablhty vectors in R?, p(-,-) is equivalent to
[+ =-lly on ® N Q, and we have that 1'Q,, ,/1"Q,, ,1 > T as n — ® uni-
formly in m, as required.

Now, from (10) we have that

M, k) EDN(0)B,(0) /E,)
w0, (V' RAR) ~ EiD, ()@ (1 £) /@ n(G )

Thus (13) follows from (12) and the fact that w,,(i)/w,,(j) = w(i)/w(j) > 0.
Again from (10) we have that

mRrL(J) _ ZiDrgl(i)Qm,n(i’j)/lTQm,n]'
1'D,'w,, - 1'Q,, ,1-D,(j)v(Jj) L.D," (), (i)v(J)
Thus (14) follows from (12) and the fact that w,,(i)v(j) — w()v(j) > 0. O

3. Proofs of the theorems.

ProoF oF THEOREM 1. We are given that the {M,} are allowable and
weakly ergodic with column limit vectors {w,,} and that

- n( )o. (i, ) _
:Z ZZJ R}, 1(J)

[condition (1)]. We will show that Z,, "R, ' converges in #? to some L, 1"
where E L,, = w,,. We use a straightforward Cauchy convergence condition.
Consider for any 0 <m <n <p,

E(e!Z, "R," —¢'Z, ,"R,") (¢!Z, "R, ~ €!Z,

p

=Cm,n,n[i] - mnp[ ] mpn[i] +Cm,17717[i]’



790 O. D. JONES

where
Cm,n,p[ I’] = Emerler,neieiTZm,megl
=mR;1M£,neieiTMm,me;1
(nAp)—1 d
+ Z ngleTJrl,n ZVk[J]Mm,k(I’7J) Mk+1,me;1'
k=m j=1
It follows (given the {M,} are allowable and weakly ergodic) that e Z,, ,"R;*
converges in .#? if and only if lim, . Cm,n,p[i] is finite. From Section 2.1

we have that
mp-1_mp-1m
Mk+1,n R - Rk+1 Pk+1,n

n
mp-1m T
—="R,;, w,,,1" as n —» «.

Thus our normed process converges in .#? if and only if

[oe} d
(15) )y 1mwkT+1mR1;i1 by Vi[Jj] M, 1 (1,7) le;ilmwk+11T <
k=m j=1
which is certainly the case if

o

(16) Y "Ryi Vil i1"Ry iy - My, 4(i, ) <o forall j.

k=m

This condition is also necessary if the {"w,,};_,, are uniformly bounded
away from 0. Since M,, ,(i, j)/"R,(j) - w, (i) > 0, (16) holds if and only if
(17) Y "RiNVi[J]" Rl "R () <= forall j

k=m

which is independent of ;. We can rewrite (17) as

0 mR x)V.| x » 2
y #(%) kr[n 1(y )<oo for all x, y and z
S "Ruca(0)" Ry (2)

which is equivalent to

5 "Ry () Vil x](y, )
18 — <o forall x and y.
( ) k=Zm R%+1(y)

To see this note for positive sequences {a,} and {b,}, ©,a, < ©and £,b, < *
together imply ¥, v/a,b, < © (Schwarz inequality) and that

"R (x)V,[x](y, 2) < \/mRk(x)Vk[x](y’y) "Ri(2)V,[x](2,2)
"R 1(¥)"Rypii(2) "R} () "Ri.1(2)
Since V,[ x1(y, y) = 0/2(x, ), condition (18) is just condition (1) and as this is

independent of i, we have proved the #* convergence of Z,, ,"R, ' as n —
to some limit, call it W,,.

k
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Since Z,, ,"R,' =42 W,,, we have that
EW, - limEZ, ,"R;" — w, 1’

n
n— o

and
CovW,(i,") = limCovZ, ,(i,")"R,"

n— o

% d

Y 1Mwi "Rt X Vilj] "M, (1,7) "Rty wy 1"
j=1

The fact that Cov W, (i,-) = ¢,117 and EW, (i, ) = ¢,17 for some constants

¢y = co(m) and ¢, = c¢,(m) is enough to give us that W (i,-) = L, (i)17 for

some real valued L, (i), as it implies that E(W (i, j) — W, (i, £))*> = 0 for all j

and k. O

COROLLARY 16 (Best possible variance condition) If there exist diagonal
scaling matrices {D,}:_, such that @, = D, M, D, !, converges to some primi-
tive matrix @, then the condition (1) is necessary and sufficient for the <>
convergence onm’nmR;1 as n — «,

ProoOF. From Proposition 11 we have that P, ="R, M,"R,} converges
elementwise as n — © to a primitive matrix P given by AP(i,j) =
9(i1)Q(i, j)/5(j) where A = PF(Q) and o = LPF(Q). It follows from Lemma
8 that as n — ©, "w, converges to some w = LPF(P) > 0. Thus the
{"w,}o < m < » are uniformly bounded away from 0 and conditions (15) and (16)
in the above proof of Theorem 1 are equivalent. O

Before proving the second of our main theorems (on a.s. convergence), it is
worth noting that there is a natural martingale present. Recall from Section
2.1 that for any m < n,limpﬁwnR meljl exists and equals «,. 1. It follows
that

w, 17 = ;i_r)r:oMm’me;I =M, , I}i_IgMn’me;l = a,’,ﬁMm,nwan.
be the o-field generated by {Z,, ,};_,,, then
E( n+1Zm,n+1wn+1|Zn,n) =a,Z

That is, {a,Z, ,w,},_, is a martingale with respect to the filtration
{Zn’n}j‘;:m. In the terminology of Cohn and Nerman (1990), {a w, }7_, is a
harmonic sequence for the matrices {M,}:_, . Unfortunately, even given .#?
convergence, the a.s. convergence of a particular linear combination of the
Z,, ,(i,-) is not sufficient to give the a.s. convergence of the random vector

itself.

Let &,

m,n

PrOOF OF THEOREM 2. We are given that the {M,} are weakly ergodic,
that

(n+1-m)"R,(i)o,(i,])
RZMLZ] mR2+1(J)
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[condition (2)] and that there exists a C < » such that for all n > m,

Y 7'(M,L,p)2 <(n+1-m)C
p=n

[condition (3)]. Note that weak ergodicity is in fact implied by (3), since it
implies that (M, ,) — 0 as n — ». We will show that Z,, ,"R, ' converges
almost surely as n — « to L, 17, using a Borel-Cantelli type argument.

The first Borel-Cantelli lemma gives the a.s. convergence of

Zy,o(1,0) /"R, (J)

to L) if X, _, P(UZ, (i, j)/"R,(j)— L,(i)| > &) <= for all &> 0. Apply-
ing Chebyshev’s inequality, it is sufficient for this that

o

Y E(Z, .(i,0)/"R,(J) = Ly(i)) < =.

n=m

It is easily checked that
E(Zy,0(iJ)/"Ru(J) = Lyn())’

M, (i, J) Loncl (ML) !
- |t Y7 ; + __Rro.RA Y _’"R—l m
( mRn(.]) wm(l) k=2m mRn(J) kr+1 Wi+
d My, q,(57) )
X V.[1]-M, ,(i,)|| =" "R w
lgl k[ ] ,k( ))( Rn(J) k+1 k+1

—+

s

d
meHmRkil( AN 'Mm,k(i,l))mRkhmwkH-
k =1

To show the sum of these converges we need to know first, how fast
"Ry 1My, ,C, 0/ "R,(j) converges to "w,,; as n — », and second, how
fast "Ry (X_,V,[1]- M, ,(i,1)"R}; !, converges to 0 as k — .

From Section 2.1, we have that for m <n <pand 1 <j <d,

"R, M, ,(-,))/"R,(j) ="w,| =|"P, ,(e; —"w,)| < 27(M, ,).
Applying this above we get
E(Z,,,(isJ)/"Ru(J) = Lyn())’

n

<41(M,, )"
n—1 5 d
+ ) 41(My., ) 1" mRI;il( IRAN 'Mm,k(i,l))mRZhl
k=m =1
o d
+ ) mw/meRkil( AN ‘Mm,k(i’l))mRkilmwarl'
k=n =1

We deal with each term separately.
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Putting n = m, condition (3) implies that ¥;,_, 7(M,, ,)* < . This takes
care of the first term.
Summing the third term over n > m, we get

w d
Y (k+1- m)mwzfﬂmR;h( AN 'Mm,k(i7l))mRI;-&1mwk+1'
k=m =1
Using the same argument that was used in the proof of Theorem 1, this is
finite if condition (2) holds.

Summing the second term over n > m we get

© d 0
> 17 mRk+11( RAN 'Mm,k(i’l))mRkill ) T(Mk+1,n)2'
k=m =1 n=k+1
From condition (3), X;,_,,17(M, ., ,)* < (k + 2 — m)C. Now apply condition
(2) as was done for the third term, to show that the second term summed over
n > m is also finite. O

ProorF OF COROLLARY 3. We have rescaling matrices D, = diag(D,(1),
..., D(d)) for all n > 0, such that the matrices {@, = D, M, D },}:_, con-
verge elementwise to some primitive matrix . Let v = LPF(Q) be the row
limit vector and {w,,};_, the column limit vectors for the {Q,}, so that
w,, —» w = RPF(Q).

We show to begin with that

> D,(i)a2(i,j
Ty (i) o, (4,J)

— <o
n=mi,j ]‘TQm,nlDr%Jrl(J)

[condition (4)] is necessary and sufficient for the #? convergence of
Zy .D;'/1"Q,, ,1 as n — = for all fixed m > 0.

From Lemmas 8 and 12 it is clear that (4) is in fact equivalent to (1),
whence we have from Corollary 16 that (4) is necessary and sufficient for the
#?* convergence of Z,, ,"R, "' as n — =, to some L,,1" withE L,, = w,,. Thus,
as "R,())/1'Q,, ,1D,(j) » 1"D'w,, -v(j) as n - © (from the proof of
Lemma 12), putting L,, = L,, - 17D, %, , we get from (10) that as n — o,

Z, .D;'/1"q,, .1 -, L7,
where E L, = D,,'w,,.
For a.s. convergence, we have from Lemmas 8 and 12 that condition (2) is
equivalent to

- N 9.
Ty (n + 1T m)Dn2(z)a,f (2,7) o
n=mi,j 1 Qm,nan+1(J)
[condition (5)]. Also, because we have geometric decay of 7(M,, ,), condition
(3) is satisfied automatically here. To see this, let n, be such that @ > 0.
Then as n —» © we get 7(M, ,.,)=1(Q, ,.,) > 7(@") < 1. Thus, from
Theorem 2, under the given conditions on the {M,}, if (5) holds then

Z D1 /17Q,, 1>, oo L, o7 asn— o, |
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Before proving Proposition 4 we need some extra definitions. We will
suppose that the conditions of Theorem 1 hold in what follows.

Recall that q,,(i) is the extinction probability of the Z¢ valued process
z,(,)=1{2, G, ), _,. Put q, () =P(Z, (i, -)=0). Then as n — o,
Q. (D)1 q,G) forall m > 0and 1 <i <d.Put /,(i) = P(L,(i) = 0). Then in
general gq,, = (q,,(1),...,q,(d) <!, =(,1D),...,1,(d). We seek condi-
tions under which q,, =1,,.

Let f! be the joint p.gf of X, (i,-) and for x €[0,1]¢ put f,(x)=
(fH(x),..., f4(x)). Similarly, let f, , be the joint p.g.f. of Z,, ,(i,-) and for
x €[0,1]% put f,, n(x) (fo o(2),..., f2 (x)). Clearly

m n(x) - m( m+1( (fnfl(x)) ))
Let ¢! be the Laplace transform of L,(i) and for s € R, put ¢,(s) =
(¢> (s),..., ¢(s)). Similarly, let ¢! , be the Laplace transform of
Z, (i,1)/"R,(1) and for s € R, put d)m 2(8) = (¢, (),..., b2 (s)). Since
m,n(z D/"R,(1) -4 L), ¢, ,(s)— $,(s) as n — = for all m >0 and
s € R,.

Conditioning on Z we have for all m <n <p,

(19) S, p(8) = F b, ("R, (1) /"R, (1))).
Sending p — « then s — = in (19) gives
(20) Ly ="Fna(l,) forall0<m <n.

Conversely, sending s — « then p — % gives
Qpn =fm n(q,) forall0 <m <n.

So I'=(ly,1y,...), = (qq,qy,...) and (trivially) 1 := (1,1,...) are all solu-
tions to equatlons (20). Clearly, taking the inequalities elementw1se g<l<
1. In fact g is the minimal nonnegative solution to (20). To see this, suppose
that p = (py, p;,...) is some other nonnegative solution. Then for all m,

P = n(Py) =2 f0 2(0) =¢q, ,1q, asn— .

LEMMA 17. Suppose there exist vectors h, € RY such that »(Z,, (")
h,<x)—q,(i)asn > »forallm>0,1<i<dandx € R,.Then for any
sequence p = (py, py,...) satisfying log p,(i) < —cyh, (i) for some c, > 0
andalln >0 and 1 <1 <d,

lim f,, .(p,) =q, forallm>0.

Proor. Forall m >0 and 1 <i <d we have, for any x € R,,

riln(pn) = Z P(Zm,n(i") ZZT)

0<zTh,<x

+ X P(Z,,0,) =2")[1p.(i)*"

x<2Th,
< X Pz, ,.(i,)=z2")+e "
0<zTh,<x

Send n — «», then x — o to complete the proof. O
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PrROOF OF PROPOSITION 4. We are given that the conditions of Theorem 1
hold, and that, for some vectors 2, € R? and for all m >0, 1 <i <d and
x e R+’

P(Zm,n(i’ )hn < x) i qm(l) asn —> w
[condition (6)] and

=4 M, (i, )02,k
r T m (1 0) 0, (J )SK/hm(i)_1

mj, k=1 wm(i)z mRerH(k)

[condition (7)]. We will show (to begin with) that q,,(i) = P(L,,(i) = 0).

From (20) and Lemma 17 we see that the result will hold if we can find a
constant ¢, > 0 such that log /,,(i) < —cyh,,(i) forall m >0 and 1 <i <d.
Applying the Cauchy—-Schwarz inequality to E L, (i)I(L,,(i) > 0) gives (not-
ingEL, =w,,)

P(L,(i) = 0) <1 —w,(i)"/(w,(i)* + Var L,,(i)).
Thus the result will hold if, putting K = ¢, *,
(21) Var L, (i) /w,,(i)* < K/h,,(i) — 1

for all m > 0and 1 <: < d. But from Theorem 1 we have

o0 d
Var L, (i) = Z mwkT+1mRk+11( Z Vi[J] 'Mm,k(i’j))mRkilmwl?Jrl
k=m j=1
5L M, L (6,))52 (k)
S Z Z : mRZ k
k=m j, k=1 av1(k)
noting that

Vilil(z,9) l(Vn[j](x,X) L Vlil(y. )
"R, 1(2)"R,.1(y) T 2| "Ri, (%) "Ry 1(y)

So, (21) follows from (7), and we have proved the first part of the proposition.

The second part of the proposition is a simplification of (7), in the case
where there exist diagonal rescaling matrices D, = diag(D,(1),..., D,(d)) for
all n > 0, such that @, == D, M, D, !, converges elementwise to a primitive
matrix Q. It follows immediately from (10) and Lemma 15. O

4. An example from diffusions on fractals. The following example is
a reworking of one originally given by Hattori, Hattori and Watanabe (1994),
applying the results above.

The Sierpinski gasket is a simple fractal, defined as follows. Let V,, = {(0, 0),
(1,0),(1/2,V3 /2)} and E, = {((0,0), (1,0)), ((1,0), (0,0)), ((0,0), (1/2,V3 /2)),
(1,2, V3 /2), (0,0)), ((1,0), (1/2, V3 /2)), ((1/2, V3 /2), (1,0))} and recur-
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sively define (V,, E,), (V,, E,), (V5, E,), ... by
Vv,

n

1=V, U270 +V,] U227 1B) + V,]
and
E,.,=E,U[(2",0)+E,] U[@2"',2"'V3) +E,|

taking the sums elementwise over the given sets. Let V=V, U[-V,] and
E =E,  U[—E,] and write G, for the graph (V, E) and G, for 27"G,. The
Sierpinski gasket G is the closure of the set U5 _,27"V.

The direct approach to the construction of a diffusion on G is to consider
for each n some random walk Y, on G, and then look at the limit as n — o.
See for example Barlow and Perkins (1988) or Kumagai (1993). The essential
requirement of such a construction is that for any n > m, the random walk
obtained by observing Y, on G, (the G, decimation of Y,) is exactly Y,,.
Note that we observe Y, only when it moves from one G,, vertex to a different
G,, vertex. A sequence {Y,},_, of random walks satisfying this requirement is
called nested. We will be looking at a nested sequence of symmetric, spatially
inhomogeneous random walks.

Observe that topologically the graphs G, are identical. We distinguish
three distinct types of vertex depending on the relative positions of their
nearest neighbors. In G, define a type I vertex (x, y) as one with neighbors
(x—1,y),(x+1,y),(x—1/2,y +V3 /2 and (x + 1/2,y + V3 /2). A type
II vertex has neighbors (x + 1/2,y + V3 /2),(x + 1, y),(x — 1/2,y — V3 /2)
and (x +1/2,y —V3/2). A type III vertex has neighbors (x + 1/2,
y—v3/2), (x —1,5), (x —1/2,y — V3 /2) and (x + 1/2,y — V3 /2) (the
y-axis reflection of those of a type II vertex). The analogous definitions in
G, should be clear.

We also distinguish twelve types of directed edge, depending on the
orientation of the edge and its initial vertex. There are six possible orienta-
tions: 0; 7/3; 27/3; 7; 47w/3 and 57 /3 radians. The possible types of directed
edge are I1-0; I-7; I-w/3; 1-27w/3; 1I-w/3; 11-0; 11-47/3; 11-57/3; 111-27 /3,
I1I-7; 11I-47/3 and I11-57/3.

Now, weight the horizontal edges of G, (those with direction 0 or 7) with
weight 1 and the diagonal edges with weight a,. We define a random walk Y,
on G, in the usual manner, setting the probability of moving along a given

N

Type | Type 11 Type II1

Fic. 1. Three types of vertex.
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edge proportional to the weight of that edge. Requiring the Y, to be nested
leads to the following relation between the a,,:

a4 1(4' + 6an+1)

a, = .
2
" 3+46a,,,+a; .,

See, for example, Barlow (1993) for a discussion of how to calculate weights
(or conductivities) for a decimated graph (or network). Note that this requires
separate verification for each type of vertex.

An MTBPVE is obtained by considering the frequencies of the steps each
Y, makes along edges of each type (I-0, I-m, etc.). Take as our original
ancestor at time 0 the first step made by Y. The children of this step are the
steps made by Y; in going from Y(0) to Y,(1). Continuing in this manner,
the children of a step Y, (k) to Y,(k + 1) are the corresponding group of steps
made by Y, ;. As the weights a,, and thus the transition probabilities of Y,
vary with n, we have a varying environment. As the frequencies of each type
of step have different distributions, we have a multitype process. It is clear
from the geometry of G, and our choice of weights, that we only need to
distinguish five different types of transition.

Type 1: type I-0 or I-7.

Type 2: type I-m/3 or I-27/3.

Type 3: type I1-0 or III-7.

Type 4: type 1I-47/3, 11-57 /3, 11I-47/3 or 1I1-57/3.
Type 5: type II-7/3 or type III-27/3.

Types 1 and 3 are the horizontal transitions, while types 2, 4 and 5 are the
diagonal transitions.

The joint probability generating functions of the branching process are
given in the Appendix. We use these to calculate the mean matrices M, and
the variance matrices o> of the process. To the first order of magnitude (in

n

terms of powers of a,) these are, for n > 1,

4 8a,/3 8/9 8a,/3
5/2 1 1/3a, 5a,/3 1

M, ,=| 2 4a,/3 10/3 4a, 8a,/3
3/2 a, 1/3a, 2 2a,
1 1/2  1/3a, 3a, 3/2

and
8 8a,/3 16/27a, 8a,/3 0
33/4 5a,/3 1/9a> 5a,/3 0

n

gl = 2 4a,/3 8/9a, 4a, 8a, /3
9/2  2a, 1/9a? 3a, 2a,
2 1/4  1/9a¢> 3a, 1/4
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Putting D, = diag(1,a,,1,a,,a,) we get @, =D, M, D, !, - @ where

8/3 8/9 8/3 0

4/3 479 0 4/3

4/3 10/3 4 8/3|;
0 4/9 8/3 0

0 2/3 4/9 0 2

S N O

® is primitive with PF(Q) = 6. Moreover a, — 0 geometrically fast and, as
a,/a,., —4/3=0(,,),a,/a,,, = 4/3 geometrically fast as well. Thus
@, — Q geometrically fast and 1"Q,, ,1 grows like 6" ™. So the forward
matrix product M, , has two distinct growth rates, 6""™ and 6" "a
corresponding to horizontal and diagonal type transitions respectively.
Next, note that D, 02D %2 =A /a,,, + O(1) where A, — A, given by

0 8/3 16/27 8/3 0
0 0 4/27 0 0

A=|0 4/3 8/9 4 8/3
0 0 4727 0 0
0 1/3 4271 0 1/3

no

It is easily shown that {a,),_, = {(3/4)"}, _,, whence for any 0 <m < n,

D, o’D; 2, o 2\"" " 4\"
1, 1 9) (3 '
Applying Corollary 3, we see that 6™ "Z,, D, ! converges a.s. and in .#? as
n — ® to a nontrivial limit, call it W, 17.
We can now apply Proposition 4 to show that P(W, (i) = 0) = 0 for all m

and i. For some ¢ > 0 small, put 2, = (2 — £)7"1 for all n > 0. Then these
h, satisfy (6). Moreover

oo}
Y X
n=m j, k

D,(j) o' (J: k) 0((4)'")

1'q,, ,IDZ (k) |\3

and
Ky (2 —&)", i=1,3,

D 'w,)(i)/h,,(i) = o m
( )( ) () {K0(2—8) (%) , 1=2,4,5,

for some constant K, > 0, so that (8) is satisfied and we have P(W, (i) = 0) =
q,,(1) = 0.

Applying these results to the nested random walks {Y,}_,, it is possible
prove the existence of a scaled limit Y of the {Y,}, which will be a symmetric,
spatially inhomogeneous diffusion on the Sierpinski gasket G. The (time)
scaling used is that of the largest growth rate of the branching process,
namely {6"};_,, and the normed limits {W,,} give (on multiplying by a suitable
scale factor) the G,, crossing times of Y for each of the five transition types
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and m > 0. Note that the existence of a nontrivial limit Y follows from the
existence of the {W,,}, but to show Y is a diffusion requires that the {W,} have
no mass at 0. The actual details of the construction are standard: see Barlow
and Perkins (1988); Hattori, Hattori and Watanabe (1994) or Kumagai
(1993).

APPENDIX

We give here the joint p.g.f’s of the branching process described in Section
4. Write f{(x4,..., x;) for the joint p.g.f. of X,(i, ). Then we have:

fao1(x1, %5, %3, %y, X5)
= ((1+a,)(8 + Ta,)(x} + 6a,x] + 9aix} — x7x] + 2a2x,x,x,
+6a)x, x5 x4 + 200X, X35, + 2a) Xy x3%, + 205K, X, X35, + 257 ))
X((-3 —6a, —a2)(—2 - 16a, — 44a, — 48a) — 18a;, + x}
+6a,x? +9a2x? + 2x2 + da, x5 + 2a’x2 — x¥x% + 4alx,x,
+16adx,x, + 12atx,x, + 2a2x,x5%, + 603 x,x,0, + 2a2x,x5%,
+2adx,05%, + 2%, 05250, — aﬁx%xi))fl,
faoi(x1, %5, %3, %y, X5)
=(a,(1+a,)(3+7a,)(1+a, +x)x,(1+ 3a, +x3)x5)
X((-2 - 3a,)(—2 — 16a, — 44a — 48a) — 18a; + x} + 6a, x}
+9a%x? + 2x2 + 4a,x2 + 2a%x% — x2x2 + 4a’x,x,
+16a2x,x, + 12atx,0, + 2a%x,x5%, + 6a3x,x,%, + 2a%x5x5%,
+2a3x, x50, + 2a% %0530, — aix%xi))fl,
fo-1(xy, x5, 23, x4, %5)
= ((3 + 18a, + 19a})(x, x5 + 6a,x,x; + 9a,x X3 — X, X5 + Al Xy X537,
+3adxyx50, + aZxyxix, +alx x, x5 + 3adxx,05 + 2a% 5%, %5
+2adx3x, %5 + Q)X Xy X, X + Ap Xy XFX5))
X((—3 —6a, —aZ)(—2 — 20a, — 7242 — 108a}} — 54a; + x,x;
+6a,x,x;3 + 9a’x,x; + 2x2 + 8a,x% + 6a2x2 — x,x3 + 2a’x,x,
+12a3x,x, + 18atx,x, + 3a2x, %532, + 93 xy 252, + aZx,x2x,

+6a’x,x5 + 24adx, x5 + 18atx, x5 + a?x,x, x5 + 3ad x %, x5

-1
2 3 2 4 2
+4arx3x,%5 + 45 X53X, X5 + QX1 X5X4 X5 — anx2x4x5)) ,
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faoa(xy, x5, 23, 2, X5)
= (a,(3 + 18a, + 19a2)(1 + a, + x,)(1 + 3a, + x;) x7)
X((—2 - 3a,)(—2 — 20a, — 72a} — 108a} — 54a; + x,x,
+6a,x,x5 + 9a2x,x, + 2x2 + 8a, x5 + 6a’x2
—x,x5 + 2a2x,x, + 12a3x,x, + 18at x,x,
+3a’x,x30, + 9a3x,x5%, + alxyx2x, + 6a%x, x5
+24adx, 05 + 18atx, x5 + ax,x, 05 + 3adx,x, x5
+4a?x,x,%5 + 4adx3x0, %5 + A2 X5X, X5 — aﬁx2x2x5))71,
fo-1(%1, %5, %3, Xy, X5)
= (an(3 + 18a, + 19a2)(1 + 3a, + x3) x5( x5 x5 + x5 + anx5))
X((—2—3an)(—2—20an—72ai—108a2—54a2+x1x3+6anx1x3
+9a2x,x,+2x2+8a,x2+6a2x>—x,x5 +2a’x,x,
+12a®x,x, + 18atx,x, + 3a%x,x53x, + 9ad xy x50, + aZx,x2x,
+6a2x,x5 + 24adx, x5 + 18atx, x5 + aZx,x, x5 + 3adx,x, x5

-1
2 3 2 4 2
+4aix3%,%5 + 4, X3%,X5 + QX1 X5X, X5 — anx2x4x5)) .
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