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This paper deals with first passage heights of sums of renewal
sequences, random walks, and Levy processes. We prove that the joint age´

Ž .and excess and therefore, the current life stationary distributions of
Ž .these heights are stochastically increasing in the usual first-order sense

in the passage levels. As a preliminary tool, which is also of independent
interest, a new decomposition of the stationary excess distribution, as a
convolution of two other distributions, is developed. As a consequence of
these results, certain monotonicity results are concluded for ratios involv-
ing convex functions. This paper is motivated by problems related to
control of queues with removable servers which model single-machine
produce-to-order manufacturing systems. Applications to these problems
are provided.

1. Introduction. As is usual in renewal theory, S denotes the sum of kk
Ž .i.i.d. nonnegative random variables. Let n t denote the smallest value of k

for which S exceeds t. One of our results is that the stationary excessk
Ždistribution of S is stochastically increasing in the usual, first-ordernŽ t .

.sense in t. In this paper we prove this and stronger results, generalize them
to a random walk with positive drift and, further, to a Levy process, and´
discuss their applications. In addition, we establish a new decomposition of
the stationary excess distribution of S where n is any finite mean stoppingn

time. Theorem 2.1 expresses that distribution as the convolution of two
simpler ones.

Ž .As is well known, n t is a stopping time. Denote by n another stopping
time. Our basic result, Theorem 2.2, states that the stationary current life as
well as the joint age and excess distributions of S are stochasticallyn n nŽ t .

Žincreasing in t. The same theorem establishes the simpler and possibly
.known result that the stationary current life and joint age and excess

distributions of S are stochastically increasing in k. However, Example 5.2k
shows that even the excess distributions of S need not be stochasticallyk n nŽ t .
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Ž .increasing in k. It is evident cf. Lemma 2.2 that stochastic monotonicity of a
stationary current life distribution implies the same property of the corre-

Ž .sponding excess distribution. But the converse is false cf. Example 5.5 .
The results announced above are renewal theoretic results, but they spring

from and are applied to optimization of queues. Let us indicate how. A
single-machine produce-to-order manufacturing system can be modeled as an
M XrGr1 queue, that is, as a single-server queue with a general service time
distribution and exponential interarrival times of batches of customers. For

Ž .the N-policy of Yadin and Naor 1963 , this server is switched off when the
system becomes empty and is switched on when the number of waiting
customers is at least N. A natural question is whether the average waiting
time W experienced by a customer increases with N. Lee and SrinivasanN
Ž .1989 provided a formula for W , but it was not clear from this formulaN
whether W is increasing or not. Their formula led us to observe that theN
monotonicity of W would follow directly from the monotonicity of the meansN

� < 4of the stationary excess distributions of S N g NN and thus would follownŽN .
Ž .from the stochastic monotonicity in N of these distributions. In the same

paper, Lee and Srinivasan provided a formula for C , the average cost perN
unit time incurred by an N-policy, and they conjectured that C is quasi-con-N

Ž . Ž .vex unimodal in their terminology . We prove this conjecture Corollary 3.1
by observing that it follows from the decomposition presented in Theorem 2.1.

Section 2 presents our basic results on stochastic monotonicity. Section 3
relates these results to optimization of queues. Section 4 generalizes the
results in Section 2 to random walks and Levy processes. That section also´
contains results on the monotonicity of ratios involving convex functions.
Section 5 deals with counterexamples to other directions of generalization.
Collectively, these counterexamples suggest that the hypotheses in Sections 2
and 4 are the right ones to impose.

2. Setup and basic results. In what follows RRq is the set of nonnega-
tive reals, RR is the set of all reals, and NN is the set of positive integers.

Ž . Ž . Ž . Ž . Ž .Denote a n b ' min a, b , f xy s lim f y , f xq s lim f y . Al-y  x y x x
most surely, without loss of generality, stochastically increasing and
Laplace]Stieltjes transform are abbreviated to a.s., w.l.o.g., SI and LST,

Ž brespectively. Throughout, an empty sum is defined to be zero i.e., Ý c ' 0isa i
.when a ) b .

Ž . � < 4On a filtered probability space V, FF, P with filtration FF i G 0 , leti
� < 4 Ž 4X i g NN be an adapted sequence X g FF , i g NN of identically distributedi i i

w xfinite mean nonnegative random variables with P X s 0 - 1, such that X1 i
� < 4is independent of FF for every i g NN. In particular X i g NN is a renewaliy1 i

sequence, that is, i.i.d. For convenience, let X be independent of FF ' E` FF` is0 i
Ž ` .the smallest s-field containing D FF and be distributed like X . We defineis0 i 1
this filtration in order to allow the accommodation of stopping times that are
determined by more than just our renewal sequence or even independent of it
altogether. Henceforth, whenever we mention stopping time we mean a
stopping time with respect to the above filtration which is not a.s. zero. Also,
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in this paper, a random time will mean a nonnegative integer-valued random
Ž .variable not necessarily a stopping time which is not a.s. zero. Unless

explicitly assumed otherwise, stopping and random times are allowed to be
infinite with positive probability or even a.s.

We recall that a function of multiple variables is nondecreasing if it is
nondecreasing in each variable. As is customary, we will use F to denotest
the usual stochastic ordering. That is, for random vectors V and W, V F Wst

Ž . Ž .if Eg V F Eg W for every nondecreasing g. If V and W are random
w x w xvariables, an equivalent definition is P V ) t F P W ) t for every t.

Throughout this paper, when we stochastically compare random vectors, we
do not assume that they live on the same probability space. Rather, we are
only concerned with their distributions. Although this might normally inter-
fere with stochastic process notation, we find this convenient and we hope

� Ž . < 4that it does not cause confusion. When we write V l l g L is SI, where
q Ž . Ž .L s RR , NN, it means that V l F V l for any l - l , where l , l g L.1 st 2 1 2 1 2

n Ž . � < 4 Ž .Set S s 0, S s Ý X , n t s inf n S ) t . As is well known, n t is a0 n is1 i n
Žstopping time with respect to the renewal sequence hence, with respect to

. Ž .our filtration and n t ) i if and only if S F t. It is also well known thati
Ž . q Ž .En t - ` for all t g RR . Hence, En n n t - ` for any random time n and

q Ž .t g RR . Since n ? is a right continuous process, we have by dominated
w Ž . Ž . x Ž .convergence n n n t q h F n n n t q 1 for h F 1 that En n n t is a right

Ž .continuous nondecreasing function. Also we observe that En n n t s 0 for
Ž . Ž .t - 0 and En n n ` s En finite or infinite .

Ž a e.For a given random variable Y with EY - `, we denote by Y , Y a
Ž .random vector having the joint stationary age and excess resp. distribution

associated with Y. Also we let Y c s Y a q Y e have the stationary current or
total life distribution. It is well known that Y a and Y e are identically

w a e x w e x wdistributed, that P Y ) s, Y ) t s P Y ) s q t e.g., Karlin and Taylor
Ž . x1975 , pages 193]195 and that

EY 1�Y F t4cw xP Y F t s ,
EY

2.1Ž .
EY n t 1 tew xP Y F t s s P Y ) y dy.Ž .HEY EY 0

In particular, for any Borel measurable g,

EYg YŽ .
cEg Y s ,Ž .

EY
2.2Ž .

Y ` w xE H g y dy H g y P Y ) y dyŽ . Ž .0 0eEg Y s s ,Ž .
EY EY

provided the right-hand sides are well defined. The following is well known.
The simple short proof is provided for completeness.
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Ž . c Ž cLEMMA 2.1. Let U ; Uniform 0, 1 and Y be independent. Then UY ,
w x c. Ž a e.1 y U Y and Y , Y are identically distributed.

w a e x w e xPROOF. Recalling that P Y ) s, Y ) t s P Y ) s q t , we have
c c c cw xP UY ) s, 1 y U Y ) t s P srY - U - 1 y trYŽ .

q
EY 1 y s qt rYŽ .qcs E 1 y s q t rY sŽ .

EY
2.3Ž . q

E Y y s q t EY n s q tŽ . Ž .
s s 1 y

EY EY
w e xs P Y ) s q t .

q Ž .where a s max a, 0 . I

� Ž . < 4The following lemma implies that, for a family V t t g RR of nonnegative
� cŽ . < 4 �Ž aŽ . eŽ .. < 4random variables, V t t g RR is SI if and only if V t , V t t g RR is SI.

LEMMA 2.2. Let Y and Z be two nonnegative random variables. Then
c c Ž a e. Ž a e.Y F Z if and only if Y , Y F Z , Z .st st

Ž a e. Ž a e. Ž .PROOF. Let Y , Y F Z , Z . For any nondecreasing function g x onst
Ž . Ž . Ž c.RR, the function f y, z s g y q z is nondecreasing. Thus, Eg Y s

Ž a e. Ž a e. Ž c.Ef Y , Y F Ef Z , Z s Eg Z .
c c Ž . Ž .Now let Y F Z . If f y, z is a nondecreasing function, then g x sst

Ž Ž . . w x Ž .f ux, 1 y u x is nondecreasing in x for any u g 0, 1 . Let f y, z be a
nonnegative nondecreasing function. We apply Lemma 2.1 and get

Ž a e. Ž c Ž . c. w Ž c Ž . c. < x w Ž cEf Y , Y s Ef UY , 1 y U Y s EE f UY , 1 y U Y U F EE f UZ ,
Ž . c. < x Ž c Ž . c. Ž a e.1 y U Z U s Ef UZ , 1 y U Z s Ef Z , Z . I

REMARK 2.1. In view of Lemma 2.2, a natural question is whether Y e Fst
Z e implies Y c F Zc. Example 5.5 shows that the answer to this question isst
negative. However, Y e F Z e does imply a result which is weaker thanst

c c w a e x w e xY F Z . In light of Lemma 2.1 and P Y ) s, Y ) t s P Y ) s q t , west
w a e x w a e xhave that P Y ) s, Y ) t F P Z ) s, Z ) t . This inequality defines a

two-dimensional stochastic order which is weaker than F ; see Stoyanst
Ž . Ž .1983 and Marshall and Olkin 1979 .

For every random time n with En - ` we let SU be a random variablen

having the distribution

En n n sŽ .
Uw x2.4 P S F s s .Ž . n En

Ž .Recalling that n n n ? is nondecreasing and right continuous with En n
Ž . Ž . Ž .n 0y s 0 and En n n ` s En , the right-hand side of 2.4 indeed represents

a well-defined distribution function. The next lemma gives an alternative
description of the distribution of SU.n
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LEMMA 2.3. For every random time n , with En - `, and every bounded
Borel measurable g,

E Ýn g SŽ .is1 iy1U2.5 Eg S s .Ž . Ž .n En

PROOF. We have that
Ž .nnn sn

E 1 s E 1 s En n n sŽ .Ý Ý�S F s4iy 12.6Ž . is1 is1

w U x Us En P S F s s En E1 .n �S F s4n

Ž .Since 2.6 holds for any real s, by standard measure theoretic arguments the
result extends to any bounded Borel measurable g. I

Let n be a stopping time. Then,
ES 1 ES n sn �S F s4 nnc eP S F s s , P S F s s ,n nES ESn n

ES n Sn nŽ s.Uw xP S F s s ,n ESn

2.7Ž .

Ž .where the first two identities follow from 2.1 , while the third is implied by
Ž . ŽES n S s ES s EXEn n n s the last equality is from Wald’s iden-n nŽ s. n n nŽ s.

. Ž . Ž . U e ctity and by 2.4 . From 2.7 we obtain that S F S F S , where then st n st n

second ordering is well known. The following theorem introduces a new
relationship between S e and SU. This is the decomposition property for S e ton n n

which we refer in the abstract and introduction.

THEOREM 2.1. For a given finite mean stopping time n , let SU and X e ben

independent. Then S e and SU q X e are identically distributed.n n

� 4 � 4PROOF. As n is a stopping time, both the event n G i s n ) i y 1 and
S are in FF , hence jointly independent of X . Therefore, for a ) 0iy1 iy1 i

n

1 y E exp yaS s E 1 y exp ya X exp yaSŽ . Ž . Ž .Ž .Ýn i iy1
is1

`

s E 1 y exp ya X Eexp yaS 1Ž . Ž .Ž .Ý i iy1 �n G i4
is1

2.8Ž .

n

s 1 y Eexp ya X E exp yaS .Ž . Ž .Ž . Ý iy1
is1

w Ž . xIt is well known it also follows from integration of 2.2 in parts that for a
finite mean positive random variable Y, the LST of the stationary excess time
is given by

1 y Eexp ya YŽ .
e2.9 Eexp ya Y sŽ . Ž .

aEY
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Ž . Žfor a ) 0. Therefore, dividing both sides of 2.8 by aES s aEXEn Wald’sn

. Ž Ž . ya ?.identity and recalling Lemma 2.3 with g ? s e , we have that
2.10 Eexp yaS e s Eexp ya X e Eexp yaSUŽ . Ž . Ž .Ž .n n

and the proof is complete. I

The following lemma prepares for the corollary which follows it. Note that
� < 4this result still holds if all we would require is that X i g NN is an arbitraryi

sequence of random variables having the property that S ª ` as k ª ` andk
Ž .En t - ` for all t.

� U < 4 � U < q4LEMMA 2.4. The families S k g NN and S t g RR , with any ran-k n n nŽ t .
dom time n , are SI.

PROOF. We first observe that
Ek n n s n sŽ . Ž .

Uw x2.11 P S F s s s E n 1 ,Ž . k k k

which is nonincreasing in k. This implies the stochastic monotonicity of
� U < 4 Ž . Ž . w Ž .x w Ž .xS k g NN . Since En n n t n n s s En n n t n En n n s we have thatk

U w Ž . Ž .xthe distribution function of S is given by En n n ? rEn n n t n 1n n nŽ t .
which is nonincreasing, hence SI, in t. I

As an immediate corollary of Theorem 2.1 and Lemma 2.4 we obtain the
Ž .following. We note that a substantially stronger result Theorem 2.2 will be

given shortly.

� e < 4 � e < q4COROLLARY 2.1. The families S k g NN and S t g RR , with anyk n n nŽ t .
stopping time n , are SI.

Corollary 2.1 makes it natural to question why we only consider stopping
Ž . Ž . w Ž .times which are either deterministic k or of the form n n n t n t s ` n

Ž . x e en t being a special case . Perhaps S F S for any two stopping timesn st n1 2

with n F n ? More generally, is it not the case that if Y F Y then Y e F1 2 1 2 1 st
e � < 4Y ? Could we weaken the assumption that X i g NN are i.i.d.? The answers2 i

to all of these questions are negative in general. These questions and coun-
terexamples are discussed in Section 5. We now proceed to strengthen the
monotonicity results described in Corollary 2.1.

� c < 4 � c < q4THEOREM 2.2. The families S k g NN and S t g RR , with anyk n n nŽ t .
�Ž a e . < 4 �Ž a e . <stopping time n , are SI and therefore S , S k g NN and S , S tk k n n nŽ t . n n nŽ t .

q4g RR are SI as well.

� < 4PROOF. Since X 1 1 F i F k are identically distributed, i si �S ) y4k
Ž .1, . . . , k, then by 2.2 ,

ES 1 EX 1k �S ) y4 1 �S ) y4k kc2.12 P S ) y s s .Ž . k ES EXk
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Therefore, the right-hand side is clearly nondecreasing in k. To argue that
Sc is SI, we observe that for t F y we have that S 1 s 0 forn n nŽ t . i �S ) y4i

Ž . � Ž . 4i - n t . Also S and n n n t G i are jointly independent of X . Thus foriy1 i
t F y,

Ž .nnn t

ES 1 s E S 1Ýn n nŽ t . �S ) y4 i �S ) y4n n nŽ t . i
is1

`

s E S q X 1 1Ž .Ý iy1 i �S qX ) y4 �n n nŽ t .G i4iy 1 i
is1

`

s E S q X 1 1Ž .Ý iy1 �S qX ) y4 �n n nŽ t .G i4iy 1
is1

2.13Ž .

Ž .nnn t

s E S q X 1Ž .Ý iy1 �S qX ) y4iy 1
is1

U
Us E n n n t E S q X 1 ,Ž . Ž .n n nŽ t . �S qX ) y4n n nŽ t .

U wwhere it is emphasized that S and X are taken to be independent wen n nŽ t .
Ž . xobserve that the last equality in 2.13 follows from Lemma 2.3 . For every

� 4t G y, S F y if and only if S F y, and S s S on S F y . There-n n nŽ t . n n n nŽ t . n n

fore, for t G y,

ES 1 s ES y ES 1n n nŽ t . �S ) y4 n n nŽ t . n �S F y4n n nŽ t . n

s E n n n t EX y ES 1 .Ž . n �S F y4n

2.14Ž .

Ž . Ž .Including y in the range in 2.13 as well as in 2.14 is done in order to
insure that the monotonicity holds over the entire nonnegative real line.

Ž . Ž . Ž .Combining 2.1 , 2.13 and 2.14 we have that

ES 1n n nŽ t . �S ) y4n n nŽ t .cP S ) y EX s EXn n nŽ t . ESn n nŽ t .

ES 1n n nŽ t . �S 4n n nŽ t .) ys
En n n tŽ .2.15Ž .

E SU q X 1 U , t F y ,Ž .n n nŽ t . �S qX ) y4n n nŽ t .s ½ EX y ES 1 rEn n n t , t G y ,Ž .n �S F y4n

Ž . Uonce again, with the understanding that in 2.15 , X and S are consid-n n nŽ t .
Ž . Ž .ered independent. Clearly g ? s E ?q X 1 is nondecreasing. Hence�?qX ) y4

w c x w x � U < q4P S ) y is nondecreasing on 0, y as, by Lemma 2.4, S t g RRn n nŽ?. n n nŽ t .
w . w c xis SI. On y, ` , P S ) y is clearly nondecreasing as well. The last twon n nŽ?.

statements of the theorem follow from Lemma 2.2. I

REMARK 2.2. If we change the assumption of i.i.d. to exchangeable, then
Ž . � c < 4 �Ž a e . < 42.12 is still valid. Hence, S k g NN as well as S , S k g NN will also bek k k
SI under this assumption.
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3. Control of M XrrrrrGrrrrr1 queues with removable servers. In this
section, we consider a stochastic model of a single-machine produce-to-order
manufacturing system. We suppose that orders appear in i.i.d. batches ac-
cording to a stationary Poisson process and that production times are i.i.d.
Thus, the model is an M XrGr1 queue. When the server completes a job or
has no work to do, it might pay to switch the server off or to divert it to
another purpose, which leads to the study of a queue with a ‘‘removable’’
server.

The optimization problem that presents itself is to minimize the aggregate
cost per unit time, whose components are a set-up cost incurred each time the
server is turned on, a linear operating cost per unit time while the server is
on and a linear holding cost per unit time that each customer waits for
service. The basic result is that average cost per unit time is minimized by an
N-policy: turn the server on when the number of waiting customers is at least

Ž .N, and turn it off when the system becomes empty. Lee and Srinivasan 1989
derived formulas for operating characteristics of an N-policy and constructed
an algorithm that computes the best N-policy. See also Lee, Lee and Chae
Ž . Ž .1994 for further results in this direction. Federgruen and So 1991 proved
the optimality of an N-policy over all policies, stationary or nonstationary.

One important issue in the M XrGr1 model is whether the average
waiting time W in a queue controlled by an N-policy is increasing in N.N
Another issue, conjectured on pages 717 and 718 in Lee and Srinivasan
Ž .1989 , is whether the average cost C per unit time incurred by an N-policyN

Ž .is quasi-convex unimodal, in their terminology in N. Both issues are
resolved in Corollary 3.1.

COROLLARY 3.1. Consider an M XrGr1 queue with a removable server. The
expected customer waiting time W under an N-policy is nondecreasing in N,N
and the expected cost per unit time C is quasi-convex in N.N

PROOF. First we show the monotonicity of W . Using our notation, Theo-N
Ž . erem 4.2 in Lee and Srinivasan 1989 shows that W s AES q B, whereN nŽNy1.

A and B are constants and A ) 0. This equation can also be obtained from a
wgeneral decomposition of a queue with a removable server see Fuhrmann

Ž . Ž . Ž .xand Cooper 1985 , Shanthikumar 1988 and Kella and Whitt 1991 . Thus,
W is nondecreasing in N if and only if ES e has the same property. TheN nŽN .
latter is immediate from Corollary 2.1. Even so, we provide a simple direct
proof. In fact, this proof is what motivated us to consider the substantially
more general statements presented in Theorems 2.1 and 2.2.

In this section, X is integer valued. Without loss of generality, assume
2 w xX g NN. With p s 1, a s EX and b s 2 EX, set p s P S s N ,0 0 0 N nŽNy1.

a s ES2 and b s 2 ES for N g NN. Note that since X g NN, eitherN nŽN . N nŽN .
S s N or S s S . Thus, S is distributed like S qnŽNy1. nŽN . nŽNy1. nŽN . nŽNy1.
X1 , X being independent of S . This gives the recursions�S sN 4 nŽNy1.nŽNy1. N Ž 2 .b s b q 2 EXp s 2 EX Ý p and a s a q 2 NEX q EX p sN Ny1 N is0 i N Ny1 N
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EX 2 ÝN p q 2 EX ÝN ip . Since ES e s a rb ,is0 i is0 i nŽN . N N

EX 2 ÝN ipis0 ie3.1 ES s qŽ . nŽN . N2 EX Ý pis0 i

and, by induction, the right-hand side is nondecreasing in N. Thus, W isN
nondecreasing in N.

2 Ž . e UWe note that EX r 2 EX s EX , so that in view of Theorem 2.1, ESnŽN .
N N Ž . Ns Ý ip rÝ p . In particular we identify En N s Ý p andis0 i is0 i is0 i

nŽN . N Ž .E Ý S s Ý ip see Lemma 2.3 , which is easy to verify directly.is1 iy1 is0 i
Ž . Ž . Ž .For the second result, formulas 6.1 ] 6.4 in Lee and Srinivasan 1989

Ž .y1 eexpress C s a ES q bES q c, where a, b, and c are con-N nŽNy1. nŽNy1.
Ž .stants and a, b ) 0. Without loss of generality, we set b s 1, so that 3.1

gives
3.2 C y C s g f ,Ž . Nq1 N N N

where
pN

3.3 g sŽ . N Ny1 NÝ p Ý pis0 i is0 i

is nonnegative and
Ny1 a

3.4 f s N y i p yŽ . Ž .ÝN i EXis0

is increasing. Therefore, if C ) C for some N then f ) f ) 0 andNq1 N m N
C G C for any m G N. So, C is quasi-convex. Imq 1 m N

Although C is quasi-convex, it need not be convex; if X s 2 a.s., thenN
C s C for all N g NN, in which case C cannot be convex.2 Ny1 2 N N

Ž .Related work on the simpler MrGr1 queue no batch arrivals with a
Ž . Ž .removable server includes Yadin and Naor 1963 , Heyman 1968 , Sobel

Ž . Ž . Ž . Ž . Ž .1969 , Bell 1971 , Hofri 1986 , Kella 1989 and Altman and Nain 1993 .
Ž .Sobel 1969 showed that for any stationary policy for a GIrGr1 queue, there

is an N-policy with the same or better average cost per unit time, but his
method does not apply to batch arrivals.

Ž .Heyman 1968 noted that it can be difficult to estimate waiting costs, in
which case it becomes natural to consider a pair of criteria, one being average
operating cost per unit time and the other being the average waiting time.
Rigorous analysis of this bicriterion problem for an MrGr1 queue was done

Ž . Xby Feinberg and Kim 1996 . In an effort to extend their work to M rGr1
queues, the following question immediately arises: is W increasing in N?N
This question motivated our research, and Corollary 3.1 answers it. Kim
Ž .1995 has used the results of this paper in a study of bicriterion optimization
of an M XrGr1 queue with a removable server.

4. Extensions and consequences. In this section we will consider
generalizations of Theorem 2.2. To begin, do parts of Theorem 2.2 hold when

w x � < 4P X - 0 is positive? Clearly, we cannot expect even S k g NN itself to be SIk
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� e < 4when X can be negative, let alone S k g NN . However, as for other aspectsk
of Theorem 2.2, the answer is indeed positive and is given as follows.

� < 4 Ž .THEOREM 4.1. Let X i g NN be i.i.d. not necessarily nonnegative withi
< < �Ž a e . < q4 � c < q4E X - ` and EX ) 0. Then S , S t g RR and S t g RR are SI.1 1 nŽ t . nŽ t . nŽ t .

� < 4PROOF. With T s 0 let T s inf S S ) T be the consecutive strictly0 n i i Ny1
� < 4increasing ladder heights associated with the random walk S i G 0 . Theni

wT y T are positive i.i.d. random variables having a finite mean see, e.g.,i iy1
Ž . xChung 1974 , pages 281 and 284, Theorems 8.4.4 and 8.4.7 and it is clear

Ž . � < 4that S s T where m t s inf i T ) t . Therefore, the result followsnŽ t . mŽ t . i
from Theorem 2.2. I

Theorem 4.1 implies that part of Theorem 2.2 holds for positive mean
random walks. A continuous time process which is continuous in probability
and has stationary independent increments is called a Levy process. This´
process is often viewed as a continuous time analogue of a random walk. Does

� <Theorem 4.1 extend to Levy processes? Preparing for the answer, let Z t g´ t
q4 Ž . < <RR be a cadlag strong Markov version of a Levy process satisfying E Z -` ` ´ 1

� < q4 Ž .`. Let FF t g RR be a standard right continuous, augmented filtration,t
such that Z y Z is independent of FF for every s - t. As before, one possiblet s s

Ž . � < q4such filtration is the augmentation of the one generated by Z t g RR . Int
the following theorem, when we say stopping time, we mean a stopping time
Ž . Ž . � < 4not a.s. zero with respect to this filtration. Let s t s inf s Z ) t .s

< < �Ž a e . < q4THEOREM 4.2. If E Z - ` and EZ ) 0, then Z , Z t g RR and1 1 s Ž t . s Ž t .
� c < q4 � < q4 ŽZ t g RR are SI. If in addition Z t g RR is nondecreasing a subordi-s Ž t . t

. �Ž a e. < q4 � c < q4nator then Z , Z t g RR and Z t g RR are SI and, for any stoppingt t t
�Ž a e . < q4 � c < q4time t , Z , Z t g RR and Z t g RR are SI.t n s Ž t . t n s Ž t . t n s Ž t .

� <ykPROOF. Consider S s Z . Then for every k g NN, S y S n gk , n n2 k , n k , ny1
4 Ž . � <NN are i.i.d. having positive and finite mean. Setting n t s inf n n g NN,k

4 �Ž a a . < q4S ) t , we have by Theorem 4.1 that S , S t g RR is SI. Ink , n k , n Ž t . k , n Ž t .k k

particular S has a finite mean. Clearly S is nonincreasing in k;k , n Ž t . k , n Ž t .k k
� < q4hence, by right continuity of Z t g RR , S x Z as k ª `. Therefore,t k , n Ž t . s Ž t .k

by dominated convergence ES 1 x EZ 1 for any conti-k , n Ž t . �S ) y4 s Ž t . �Z ) y4k k , n Ž t . s Ž t .k

nuity point y of the distribution of Z . Similarly, we also have thats Ž t .
ES x EZ as k ª `. Therefore, Sc converges in distribution tok , n Ž t . s Ž t . k , n Ž t .k kc � c < q4 �Ž a e . < q4 wZ , which implies that Z t g RR ; hence Z , Z t g RR is SI sees Ž t . s Ž t . s Ž t . s Ž t .

Ž . xStoyan 1983 , page 6, Proposition 1.2.3 .
�Ž a e. < q4 �Ž a e . < q4The proofs for Z , Z t g RR and Z , Z t g RR , whent t t n s Ž t . t n s Ž t .

� < q4Z t g RR is a subordinator, are identical only that we apply Theorem 2.2t
directly rather than Theorem 4.1; therefore, for the sake of brevity, they are
omitted. The only potential complication is what the approximating stopping
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times should be for every approximating grid. However this is simple and
standard, as we can approximate t by n s Ý` n2yk 1 yk yk andk ns1 �t gwŽny1.2 , n2 .4
observe that n xt , where in particular n is a stopping time with respect tok k

� < 4ykthe filtration FF n G 0 . In2

REMARK 4.1. Theorem 4.2 generalizes Theorems 2.2 and 4.1, which follow
� < q4from it if we take Z t g RR to be a compound Poisson process with jumpst

distributed like X, and restrict the stopping times to occur at points of jumps.
On the other hand, Theorem 2.2 is more specific; it rests on the i.i.d. random

� < 4variables X i g NN which provide insight into what is going on and why.i
In Section 3 we describe the initial question motivated by a queueing

application. Namely, is ES2 rES nondecreasing when X is positivenŽk . nŽk .
Ž . 2 Ž . Ž .integer valued? Since f x s x is convex with f 0 s f 0q s 0 and ESnŽk .

Ž .s EXEn k , a seemingly different generalization of this property is given by
the following two corollaries.

Ž . Ž . Ž . < <COROLLARY 4.1. Let f be convex on 0, ` with f 0 F f 0q F 0. If E X - `
Ž . Ž .and EX ) 0, then Ef S rEn t is nondecreasing in t. If in addition X G 0nŽ t .

Ž . Ž . Ž .a.s., then Ef S rk is nondecreasing in k and Ef S rEn n n t is nonde-k n n nŽ t .
creasing in t for any stopping time n .

Ž . Ž . Ž . � <COROLLARY 4.2. Let f be convex on 0, ` with f 0 F f 0q F 0. If Z t gt
q4 < < Ž . Ž .RR is a cadlag Levy process with E Z - ` and EZ ) 0 then Ef Z rEs t` ` ´ 1 1 s Ž t .

� < q4is nondecreasing in t. If in addition Z t g RR is nondecreasing, thent
Ž . Ž . Ž .Ef Z rt and Ef Z rEt n s t are nondecreasing in t for any stoppingt t n s Ž t .

time t .

Ž .PROOF OF COROLLARIES 4.1 AND 4.2. If f is convex on 0, ` , then it has a
nondecreasing density f X. Hence, for any nonnegative random variable Y,

Y Xw x w x4.1 Ef Y y f 0 P Y s 0 y f 0q P Y ) 0 s E f y dyŽ . Ž . Ž . Ž . Ž .H
0

Ž . Ž .both sides being finite and equal or both infinite . If EY - ` then from 2.2
XŽ e.the right-hand side is EYEf Y , so that

w xEf Y 1 P Y s 0Ž .
X e4.2 s f 0q y f 0q y f 0 q Ef Y .Ž . Ž . Ž . Ž . Ž .

EY EY EY
Ž . Ž .The result follows upon replacing Y by S , x s n t , k, n n n t or by Z ,x x

Ž . Ž .x s s t , t, t n s t , applying Corollary 2.1 and Theorem 4.1 or Theorem 4.2,
w xrespectively, and noting that both 1rEY and P Y s 0 rEY become nonin-

creasing when Y is replaced by any nondecreasing process. I

5. Counterexamples. As discussed in the paragraph following Corol-
lary 2.1, in this section we will explore certain natural directions in which one
could try to generalize the results of Section 2, which were not discussed in
Section 4. We show that these directions are fruitless. Here we will only
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consider the stationary excess time. Clearly a negative result regarding the
stationary excess distribution trivially carries over to the joint distribution of
the stationary age and access, and hence also to the stationary current life
distribution. Under the conditions of Theorem 2.1 this would also imply a
negative result for SU.

EXAMPLE 5.1. When Y is deterministic, it is clear that Y c s Y and Y e is
Ž . Ž . Ž .uniformly distributed on 0, Y Lemma 2.1 . Hence if Y t is an arbitrary

Ž . cŽ . eŽ .deterministic increasing function, then so is Y t , and Y t is clearly SI.
eŽ . Ž .Can it be the case that Y t is SI for any nondecreasing process Y t ? The

Žanswer is no. To see this, take Y to be geometrically distributed that is,1
w x Ž .n .P Y s n s 1 y p p, n s 0, 1, . . . and let Y s Y q a where 0 - a - 1.1 2 1

Then clearly Y - Y . As 2 EY e s EY 2rEY , it suffices to show that EY 2rEY1 2 1 1
) EY 2rEY in order to obtain a contradiction. It is easy to check that, with2 2
q s 1 y p,

EY 2 1 q q1 s ,
EY p1

5.1Ž .
EY 2 1 q q pa 1 y aŽ .2 s y .
EY p q q pa2

� < 4 � Ž . < q4EXAMPLE 5.2. Since both k k g NN and n n n t t g RR in Theorem 2.2
are nondecreasing families of stopping times, is it the case that under the
same assumptions S e F S e for any two finite mean stopping times n F n ?n st n 1 21 2

If this is too much to hope for, then perhaps it is possible to verify the far
� e < 4more modest conjecture that S k g NN is SI? Again, the answer is no.k n nŽ t .

Ž . Ž .Let S t s S and S t s S . To obtain a counterexample, assumenŽ t . k k n nŽ t .
w x w x w Ž . x w Ž . xthat P X s 1 s P X s 8 s 1r2. Then P S 8 s 2 s P S 8 s 16 s2 2

w Ž . x w Ž . x w Ž . x w Ž . xP S 8 s 16 s 1r4, P S 8 s 9 s P S 8 s 9 s 1r2 and P S 8 s 3 s3 2 3 3
w Ž . xP S 8 s 10 s 1r8. Hence,3

ES2 8 2 1 2 ES2 8Ž . Ž .2 3
5.2 s 11 q q ) 11 q s .Ž .

ES 8 3 18 3 ES 8Ž . Ž .2 3

EXAMPLE 5.3. In view of Remark 2.2, an immediate question is whether
� e < q4 � e < q4for an exchangeable sequence S t g RR , or even S t g RR , is SI inn n nŽ t . nŽ t .

t. Here too the answer is no. In particular, let X s X s X s ??? with1 2
w x w x w Ž . x w Ž . xP X s 1 s P X s 3 s 1r2. Then P S 3 s 4 s P S 3 s 6 s 1r2 as well

w Ž . x w Ž . x was P S 4 s 5 s P S 4 s 6 s 1r2 recall that S is strictly greater thannŽ t .
xt, rather than just greater than or equal to . In particular, it is easy to check

that
1 1e e5.3 P S 3 ) 5 s ) s P S 4 ) 5 .Ž . Ž . Ž .10 11

� < 4EXAMPLE 5.4. Assuming that we insist on the independence of X i g NN ,i
could we do away with the identical distribution assumption? Of course, if n
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and all the X ’s are deterministic, then so is S and hence the resultsi n n nŽ t .
would clearly hold. However, once we introduce randomness, the results do
not hold in general. For example assume that all random variables are
exponentially distributed, with EX s 1 and EX s 1r2 for i G 2. Then1 i

Ž . Ž . Ž yt yt .S s t q g t where, by the memoryless property, g t is a e , 1 y enŽ t .
mixture of X and X . With this in mind, both ES2 and ES can be1 2 nŽ t . nŽ t .

easily computed. Simple differentiation gives that ES 2 rES isnŽ t . nŽ t .
w . Ž . yt 0 2strictly decreasing on 0, t where t t q 1 s e . To check that ES rES0 0 0 k k

is not necessarily increasing, take any independent X and X with EX s1 2 1
Ž . Ž . 2 2EX s 1 and Var X ) Var X q 2, in which case ES rES ) ES rES .2 1 2 1 1 2 2

c c Ž a e. Ž a e.Lemma 2.2 states that Y F Z is equivalent to Y , Y F Z , Z . Thest st
following example shows that just Y e F Z e does not imply Y c F Zc.st st

w xEXAMPLE 5.5. Consider two random variables Y and Z with P Z s 1 s
w x w x w x w2r3, P Z s 2 s 1r3 and P Y s 2r3 s 6r11, P Y s 4r3 s 3r11, P Y s

x w c x w c x w c x2 s 2r11. Then P Z s 1 s P Z s 2 s 1r2 and P Y s 2r3 s
w c x w c x c cP Y s 4r3 s P Y s 2 s 1r3. We observe that Y F Z does not hold.st

We apply Lemma 2.1 and compute the distribution functions of X e and Z e:

0, if t F 0;¡
3

t , if 0 - t F 1;
4e ~w x5.4 P Z F t sŽ . 1 t

q , if 1 - t F 2;
2 4¢
1, if t ) 2;

and

0, if t F 0;¡
11 2

t , if 0 - t F ;
12 3
1 5 2 4

e ~w x5.5 P Y F t sŽ . q t , if - t F ;
3 12 3 3
2 t 4

q , if - t F 2;
3 6 3¢
1, if t ) 2.

It is easy to see that Y e F Z e.st
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