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THE POISSON-SKIP MODEL OF CROSSING-OVER1

By Kenneth Lange, Hongyu Zhao and Terence P. Speed

University of Michigan, Yale University and
University of California, Berkeley

The Poisson-skip model introduced in this paper generalizes the chi-
square model of crossover interference. Both models are constructed from
the random points of a Poisson process occurring along a meiotic bundle
of four chromatids. The points of the Poisson process are divided into χ
points and o points, with χ points corresponding to crossovers. In the chi-
square model, a fixed number of o points intervene between every adjacent
pair of χ points; in the Poisson-skip model, a random number of o points
intervene. Both of these renewal models permit reasonably straightforward
calculation of gamete and tetrad probabilities for multiple linked markers.
We illustrate the data analysis possibilities of the Poisson-skip model by
fitting it to classical recombination data on Drosophila, the mouse, and
Neurospora. We also describe conditions on the discrete skip distribution
that guarantee positive interference.

1. Introduction. The phenomenon of genetic interference first observed
by Sturtevant (1915) and Muller (1916) in Drosophila has proved to be al-
most universal in higher organisms. Although many mathematical models
have been proposed in the literature to describe crossing-over, the biological
mechanisms of interference remain obscure. The recent review by McPeek and
Speed (1995) highlights the renewal process models pioneered by Fisher, Lyon
and Owen (1947) and subsequently elaborated by Owen (1950), Carter and
Robertson (1952), Payne (1956), Cobbs (1978), Stam (1979), Karlin and Liber-
man (1983), Foss, Lande, Stahl and Steinberg (1993), and Zhao, Speed and
McPeek (1995a). Competing point process models include the count-location
model [Karlin and Liberman (1979), Risch and Lange (1979), Goldgar and
Fain (1988)] and the King and Mortimer (1990) polymerization model.

To fit a specific model to recombination data involving several linked loci,
one must calculate the probabilities of the various gamete types. These proba-
bilities are nontrivial, and most mathematical work on renewal process models
has focused on the chi-square model, where it is assumed that the interevent
(or interarrival) distribution is chi-square with an even number of degrees
of freedom 2m. The chi-square model has been interpreted by Foss, Lande,
Stahl and Steinberg (1993) as a Poisson process involving two types of ran-
dom points. Changing their notation slightly, we designate these points as
χ and o points. Chiasmata, which are the cytological sites of crossing-over,
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correspond to χ points; o points merely serve to separate χ points. Between
each successive pair of χ points exactly m−1 o random points intervene. The
level of interference associated with the chi-square model increases with its
order m.

The chi-square model fits data from a variety of organisms well [Zhao, Speed
and McPeek (1995a)]. Its major statistical drawback is that the order of the
model is confined to the positive integers. This discreteness of the underly-
ing parameter space is a nuisance. In the current paper, we extend the chi-
square renewal model to the more general Poisson-skip renewal model for
which this objection no longer holds. [In his appendix to the paper by Foss,
Lande, Stahl and Steinberg (1993), Lande partially anticipates this extension.]
The Poisson-skip model still permits relatively painless calculation of multi-
locus gamete probabilities. We demonstrate the versatility of the Poisson-skip
model by fitting it to classical recombination data on Drosophila, the mouse,
and Neurospora. In contrast to the chi-square model, the Poisson-skip model
can entail negative as well as positive interference. Thus, it is of consider-
able interest to formulate sufficient conditions for positive interference. Using
arguments from reliability theory, we establish such conditions.

2. The Poisson-skip model. During meiosis, two homologous chromo-
somes duplicate to form two pairs of two sister chromatids each. These two
pairs then align in a synapsed bundle of four chromatids. Each crossover along
the chromatid bundle involves two nonsister chromatids. If the random pair
of chromatids participating in a given crossover depends on the pairs chosen
at other crossovers, then the crossing-over process exhibits chromatid inter-
ference. Because there is little consistent evidence for this phenomenon [Zhao,
McPeek and Speed (1995b)], we assume its absence in the sequel. Convinc-
ing evidence does exist for chiasma interference (Zhao, Speed and McPeek
(1995a)]. This second form of interference appears to involve the suppression
(positive interference) or induction (negative interference) of additional chias-
mata in the vicinity of a chiasma already formed. Positive interference is the
rule.

In the genetic crosses of the kind considered here, we will assume that rel-
evant parents are fully informative for linkage in the sense that it is possible
to classify the recombination pattern of each of their contributed gametes. If
we consider n+ 1 ordered marker loci along a chromosome, then such a par-
ent should be heterozygous at each participating locus and should possess two
distinguishable haplotypes (M1, M2; : : : ;Mn+1) and (m1, m2; : : : ;mn+1). The
recombination pattern displayed by one of the parent’s transmitted gametes
is summarized by a sequence (i1, i2; : : : ; in) of indicators, where ij = 1 corre-
sponds to recombination and ij = 0 to nonrecombination between loci j and
j + 1. For instance, with three loci, the two equivalent gametes M1, m2, m3
and m1, M2, M3 are represented by the sequence �1;0�.

Although the chi-square model was initially pursued because of its math-
ematical tractability, it has recently been revived by Foss, Lande, Stahl and
Steinberg (1993) on biological grounds. They suggest that certain gene conver-
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sion events occur along the chromatid bundle according to a Poisson process.
In their interpretation, some of these crossover intermediates, the χ points,
resolve into chiasmata; the o crossover intermediates do not. Under the chi-
square model, if a random point is a χ point, then the next m − 1 random
points are o points. These are followed by a χ point, then m− 1 o points, and
so forth. The resulting chiasma process is stationary provided each random
point is assigned probability 1/m of being a χ point. The chi-square model
makes the specific prediction that tetrads with close double crossovers will be
enriched for o points. Unfortunately, Foss and Stahl (1995) find no evidence
for such structures in yeast.

In spite of this empirical failure, the close fit of the chi-square model to
recombination data argues that it is worth refining as a statistical tool. The
Poisson-skip model now introduced generalizes the chi-square model in a use-
ful way. Both the chi-square and Poisson-skip models are generated by a Pois-
son process with constant intensity λ and by a skip distribution sn on the pos-
itive integers. Random Poisson points are divided into o points and χ points.
The o points are “skipped” to reach χ points or chiasmata. In the case of the
chi-square model, a fixed number m−1 of o points are always skipped to reach
the next χ point. In the more general Poisson-skip model, one skips n − 1 o
points with probability sn. The choice of how many o points to skip is made in-
dependently at each χ point. This probabilistic mechanism creates a renewal
process with interevent distribution

F�x� =
∞∑
n=1

sn

∞∑
m=n

�λx�m
m!

e−λx:(1)

The Poisson tail probability
∑∞
m=n e

−λx�λx�m/m! appearing in this formula is
the probability that the nth random point to the right of the current χ point
lies within a distance x of the current χ point. If ω = ∑∞

n=1 nsn denotes the
mean number of random points until the next χ point, then Wald’s formula
implies that F�x� has mean ω/λ. Hence, the density of the equilibrium dis-
tribution (Ross, 1983) to the next χ point is

λ

ω
�1−F�x�� = λ

ω

∞∑
n=1

sn

[
1−

∞∑
m=n

�λx�m
m!

e−λx
]

= λ

ω

∞∑
n=1

sn

n−1∑
m=0

�λx�m
m!

e−λx:

Mather’s (1938) formula

θ = 1
2 �1− Pr�N�a; a+x� = 0��(2)

gives the recombination fraction of a chromosome interval �a; a+ x� in terms
of the random number N�a; a+x� of chiasmata occurring on the corresponding
bundle interval. If we require the Poisson-skip model to be stationary, then
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formula (2) reduces to

θ = 1
2

{
1− λ

ω

∫ ∞
x
�1−F�y��dy

}

= 1
2

[
1− λ

ω

∫ ∞
x

∞∑
n=1

sn

n−1∑
m=0

�λy�m
m!

e−λy dy

]
:

This can be simplified by successive integrations by parts. Indeed,

∫ ∞
x

�λy�m
m!

e−λy dy = 1
λ

m∑
k=0

�λx�k
k!

e−λx

implies that

θ = 1
2

[
1− 1

ω

∞∑
n=1

sn

n−1∑
m=0

m∑
k=0

�λx�k
k!

e−λx
]

= 1
2

[
1− e

−λx

ω

∞∑
n=1

sn

n−1∑
k=0

�n− k��λx�
k

k!

]
:

3. Gamete probabilities. We now turn to the problem of calculating ga-
mete probabilities under the Poisson-skip model. It is helpful to consider two
associated Markov chains as we move from left to right along the chromatid
bundle. The first of these has state space �0;1;2; : : :�. When this chain is in
state 0, the most recently encountered point was a χ point. When it is in state
i > 0, it must pass exactly i− 1 o points before encountering the next χ point
to the right. If the chain is currently in state 0, then we adopt the perspective
that it decides how many o points to skip simultaneously with moving to the
next random point. Thus, the chain exits state 0 to state n − 1, n > 1; with
transition rate λsn. If the chain decides to skip no o points, then it remains
in state 0. If the chain is currently in state n > 0, then it encounters the next
random point and falls back to state n−1 with transition rate λ. Finally, if at
most r−1 o points can be skipped, then the motion of the chain on the reduced
state space �0;1;2; : : : ; r− 1� is summarized by the infinitesimal generator

0 =




0 1 · · · r− 2 r− 1

0 −λ�1− s1� λs2 · · · λsr−1 λsr
1 λ −λ · · · 0 0
:::

:::
:::

:::
:::

r− 1 0 0 · · · λ −λ


:

It is straightforward to check that the chain has equilibrium distribution
π with components πm = ω−1∑

n>m sn. Indeed, this follows directly from the
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balance conditions

− 1
ω

∑
n>0

snλ�1− s1� +
1
ω

∑
n>1

snλ = 0

1
ω

∑
n>0

snλsm+1 −
1
ω

∑
n>m

snλ+
1
ω

∑
n>m+1

snλ = 0

and the constraint
∑
n>0 sn = 1.

The second Markov chain is identical to the first except for an absorb-
ing state 0abs. When the Poisson-skip process hits a new χ point, the second
Markov chain exits to state 0abs. Thus, the chain moves to state 0abs from state
0 with transition rate λs1. In state 1 it moves to state 0abs instead of state 0.
Otherwise, the second chain behaves exactly as the first chain. If at most r−1
o points can be skipped, then the second chain has infinitesimal generator

1 =




0 1 · · · r− 2 r− 1 0abs

0 −λ λs2 · · · λsr−1 λsr λs1
1 0 −λ · · · 0 0 λ
:::

:::
:::

:::
:::

:::
r− 1 0 0 · · · λ −λ 0
0abs 0 0 · · · 0 0 0



:

We can capture the dynamics of both Markov chains by computing the
matrix exponentials P�t� = exp�t0� and Q�t� = exp�t1�. The entry pij�t� in
row i and column j of P�t� gives the probability that the Poisson-skip process
moves from state i of the first chain at time 0 to state j of the same chain
at time t. The corresponding entry qij�t� of Q�t� provides the probability that
the process moves from state i of the first chain to state j of the first chain
without encountering a χ point during the interim.

It is possible to find explicit expressions for these probabilities by simple
path counting arguments. In fact,

q0j�t� =





e−λt; j = 0,
∑
k>j

sk
�λt�k−j
�k− j�!e

−λt; j > 0(3)

for i = 0, and

qij�t� =





0; j > i or j = 0,
�λt�i−j
�i− j�!e

−λt; 0 < j ≤ i(4)

for i > 0. The expression for q00�t� in (3) is based on the observation that the
Poisson-skip process cannot leave state 0 and return to it without encountering
a χ point. The process stays in state 0 with probability e−λt. On the other hand,
the process can leave state 0 and wind up in state j > 0 if the kth point to its
right is the next χ point, and if it encounters k − j o points during the time
interval �0; t�. Conditioning on the value of k gives the expression in (3) for



304 K. LANGE, H. ZHAO AND T. P. SPEED

q0j�t� when j > 0. Similar reasoning produces the expressions in (4) for qij�t�
when i > 0.

The entries pij�t� of P�t� are harder to calculate, but useful formulas can
be derived by considering the discrete renewal process corresponding to the
skip distribution �sk�k≥1. One can characterize this process by defining un to
be the probability that the nth point to the right of the current χ point is a χ
point. The un satisfy the initial condition u0 = 1 and the classical recurrence
relation

un = s1un−1 + s2un−2 + · · · + sn−1u1 + snu0:(5)

The recurrence (5) is derived by conditioning on the position of the last χ point
before point n.

Armed with the probabilities un, we can now express

pij�t� = 1�0<j≤i�
�λt�i−j
�i− j�!e

−λt + 1�j=0�
∞∑
n=0

un
�λt�i+n
�i+ n�!e

−λt

+ 1�j>0�
∞∑
n=0

un
∑
k>j

sk
�λt�i+n+k−j
�i+ n+ k− j�!e

−λt:

(6)

Indeed, the first term e−λt�λt�i−j/�i − j�! of (6) expresses the probability of
encountering i − j o points during �0; t�; this is relevant when there is a
direct path from state i to j that does not pass through state 0. The term
une

−λt�λt�i+n/�i+n�! is the probability of passing through the i− 1 current o
points to the right, hitting the next χ point, and returning to a χ point after
encountering n further points. Finally, the term

unsk
�λt�i+n+k−j
�i+ n+ k− j�!e

−λt

is the probability of passing through the i − 1 current o points to the right,
hitting the next χ point, returning to a χ point after encountering n further
points, and then passing through k−j remaining o points enroute to a χ point
k further points to the right.

The finite-time transition probabilities pij�t� and qij�t� permit calculation
of the probability of an arbitrary gamete recombination pattern �i1; i2; : : : ; in�
over n+1 loci. Let tj be the distance between loci j and j+1. For our purposes,
it is crucial to keep track of the state Xj of the first Markov chain at locus j
as j increases from 1 to n+ 1. The Xj are unobservable. What is observable
are the indicator random variables Yj = ij−1 flagging for each j whether a
recombination event has occurred between loci j − 1 and j. One strategy to
compute Pr�Y2 = i1; : : : ;Yn+1 = in� is to invoke Baum’s forward algorithm
from the theory of hidden Markov chains [Baum (1972) and Devijver (1985)].
This suggests computing recursively the joint probabilities

fj�xj� = Pr�Y2 = i1; : : : ;Yj = ij−1;Xj = xj�
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beginning with f1�x1� = πx1
for a stationary process. At locus n+1 we recover

the gamete probability Pr�Y2 = i1; : : : ;Yn+1 = in� from the identity

Pr�Y2 = i1; : : : ;Yn+1 = in� =
∑
xn+1

fn+1�xn+1�:

In view of Mather’s formula (2), if ij = 1, then

fj+1�xj+1� =
∑
xj

fj�xj� 1
2

[
pxj; xj+1

�tj� − qxj; xj+1
�tj�

]

because �pxj; xj+1
�tj� − qxj; xj+1

�tj��/2 is the probability that the chain moves
from state Xj = xj at locus j to state Xj+1 = xj+1 at locus j+1 and that the
chosen gamete is recombinant on the interval between the loci. On the other
hand, if ij = 0, then

fj+1�xj+1� =
∑
xj

fj�xj� 1
2 �pxj; xj+1

�tj� + qxj; xj+1
�tj��

because

qxj; xj+1
�tj� + 1

2 �pxj; xj+1
�tj� − qxj; xj+1

�tj�� = 1
2 �pxj; xj+1

�tj� + qxj; xj+1
�tj��

is the probability that the chain moves from state Xj = xj at locus j to state
Xj+1 = xj+1 at locus j+ 1 and that the chosen gamete is nonrecombinant on
the interval between the loci.

If there is an upper bound r − 1 on the number of o points that can be
skipped, then the result of the forward algorithm can be summarized by defin-
ing the r× r matrices

Rj = 1
2 �P�tj� − Q̃�tj��

Nj = 1
2 �P�tj� + Q̃�tj��

appropriate to recombination and nonrecombination, respectively, between loci
j and j+1. Here Q̃�t� is the matrixQ�t� omitting its last row and last column.
The matrices Rj and Nj provide the explicit expression

Pr�Y2 = i1; : : : ;Yn+1 = in� = πRi1
1 N

1−i1
1 · · ·Rin

nN
1−in
n 1;

where π is the equilibrium distribution and 1 is a column vector of 1’s. If the
process is nonstationary, then we merely replace the equilibrium distribution
π in this product by an appropriate initial distribution for the state of the
chain at the first locus.

4. Fitting the model to data. In this section, we describe the outcomes
of fitting a special form of the Poisson-skip model to data from a variety of
organisms. This mixture form has its skip distribution determined by sm = α
and sm+1 = 1 − α for α ∈ �0;1� and its equilibrium distribution by πi = ω−1

for 0 ≤ i ≤ m− 1 and πm = ω−1�1− α�, where ω = mα+ �m+ 1��1− α�. The
case α = 1 corresponds to a chi-square model of order m, and the case α = 0
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to a chi-square model of order m + 1. For data on n + 1 linked markers, the
stationary mixture model involves n scaled genetic distances t1; : : : tn, an in-
terference parameter m, and a mixture parameter α. The intensity parameter
λ is arbitrarily set to 1 because only the products λti are identifiable. The n+2
parameters of the model can be estimated by the method of maximum likeli-
hood. Optimization methods such as the Nelder–Mead simplex algorithm are
particularly attractive in this context because they do not require derivatives
of the loglikelihood [Press, Teukolsky, Vetterling and Flannery (1992)].

Table 1 presents the results of fitting the stationary chi-square and mixture
models to nine data sets. Data sets five through nine involve Neurospora. This
bread mold occupies a special place in genetics because one can recover all four
products of a meiosis in an ensemble called an ascus. We have extended our
calculation of gamete probabilities to the calculation of tetrad probabilities for
data of this sort. For the sake of brevity, we omit the theoretical development
here. Interested readers can find a partial treatment in [Zhao, McPeek and
Speed (1995b)] based on Mather’s early work [Mather (1935)].

The first data set listed in Table 1 was collected by Weinstein (1935), the
second by Morgan, Bridges and Schultz (1935), the third by Blank, Campbell,
Calabro and Eustachio (1988), the fourth by Todd, Aitman, Cornall, Ghosh and
Hall (1991), the fifth by Perkins (1962), and the sixth through ninth by Strick-
land (1961). For the Morgan, Bridges and Schultz (1935) Drosophila data, our
findings are in close agreement with the results of McPeek and Speed (1995),
who estimate a shape parameter of 4:94 for a gamma interevent distribu-
tion. Weeks, Ott and Lathrop (1994) previously found positive interference
in several models fitted to the mouse chromosome 1 data of Blank, Campbell,
Calabro and Eustachio (1988) and the mouse chromosome 12 data of Todd, Ait-
man, Cornall, Ghosh and Hall (1991). The four Linkage group I Neurospora

Table 1
Data analysis with the Poisson-skip model

Organism N Best chi-square Best mixture D ln L

Drosophila1 28,239 s5 = 1 �s4; s5� = �0:40;0:60� 0.36
Drosophila2 16,136 s5 = 1 �s4; s5� = �0:06;0:94� 0.53
mouse3 317 s7 = 1 �s6; s7� = �0:33;0:67� 0.02
mouse4 288 s5 = 1 �s4; s5� = �0:30;0:70� 0.02

Neurospora5 1,252 s3 = 1 �s3; s4� = �0:58;0:42� 0.70
Neurospora6 1,802 s3 = 1 �s3; s4� = �0:44;0:56� 0.30
Neurospora6 1,968 s3 = 1 �s2; s3� = �0:16;0:84� 1.84
Neurospora6 2,239 s3 = 1 �s2; s3� = �0:15;0:85� 2.09
Neurospora6 2,810 s3 = 1 �s3; s4� = �0:34;0:66� 1.32

1Weinstein (1935).
2Morgan, Bridges and Schultz (1935).
3Blank, Campbell, Calabro and Eustachio (1988).
4Todd, Aitman, Cornall, Ghosh, et al. (1991).
5Perkins (1962).
6Strickland (1961).
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markers typed by Strickland (1961) are a subset of the six markers typed by
Perkins (1962). Table 1 lists the organism, the number of offspring N typed,
the best fitting chi-square model, the best fitting mixture model, and the in-
crease in loglikelihood (base e) in passing from the discrete chi-square model
to the continuous mixture model.

The improvements in loglikelihoods under the mixture model are modest
for the data sets displayed in Table 1. In this regard, it is helpful to recall the
major improvements of the chi-square model over competing models such as
the count-location model. Furthermore, the mixture model is by far the sim-
plest Poisson-skip model. More complex skip distributions might yield more
impressive results.

5. Interference. We now turn to the question of when a Poisson-skip
model entails positive chiasma interference. If the two adjacent intervals �a; b�
and �b; c� on the chromatid bundle contain N�a; b� and N�b; c� chiasmata respec-
tively, then the coincidence coefficient

C =
�1/4�Pr�N�a; b� > 0;N�b; c� > 0�

�1/2�Pr�N�a; b� > 0��1/2�Pr�N�b; c� > 0�

=
�1/4��1− Pr�N�a; b� = 0� − Pr�N�b; c� = 0� + Pr�N�a; b� +N�b; c� = 0��

�1/2��1− Pr�N�a; b� = 0���1/2��1− Pr�N�b; c� = 0��

is the traditional measure of chiasma interference in the absence of chromatid
interference. Chiasma interference is positive when C > 1 and negative when
C < 1. Haldane’s Poisson process model gives C = 1 for all adjacent, and
indeed all disjoint, intervals.

When crossing-over is governed by a renewal process with interevent dis-
tribution F and density f, Karlin and Liberman (1983) show that positive
interference occurs when F has increasing failure rate (IFR) and negative in-
terference occurs when F has decreasing failure rate (DFR). Recall that F has
IFR (DFR) if F̄�t + x�/F̄�t� is decreasing (increasing) in t for every x, where
F̄�x� = 1−F�x� is the survivorship function. In practice, one verifies the IFR
(DFR) property by showing that the hazard rate f�x�/F̄�x� is increasing (de-
creasing) in x. The gamma density f�x� = β�βx�α−10�α�−1e−βx has IFR for
α > 1 and DFR for 0 < α < 1. Hence, the chi-square model always exhibits
positive interference. The Weibull distribution F�x� = 1 − e−�λx�α follows the
same interference pattern as the gamma relative to its parameter α. If the
crossing-over process is stationary, then these sufficient conditions for posi-
tive and negative interference can be replaced by the weaker conditions that
F has decreasing mean residual lifetime (DMRL) and increasing mean resid-
ual lifetime (IMRL), respectively. If the random variable X has distribution F,
then F has DMRL (IMRL) when the conditional expectation E �X− t �X > t�
is decreasing (increasing) in t.

To apply these results, it is helpful to introduce a constraint that we will
impose on the discrete skip distribution of the Poisson-skip model to achieve
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positive interference. A nonnegative sequence �cn�∞n=−∞ is said to be log con-
cave whenever c2

n ≥ cn−1cn+1 for all n. To avoid certain pathologies entailed
by this standard definition, we will add the stipulation that cn > 0 if and
only if n ∈ I for some interval I, which can be finite, semiinfinite, or infinite.
For instance, any sequence concentrated on a single integer or two adjacent
integers is log concave. The geometric density cn = 1�n≥0�p�1 − p�n provides
another example.

If for the sake of convenience in the Poisson-skip model we take λ = 1,
then each interevent distance for the Poisson-skip model can be represented
as a random sum S = ∑N

i=1Xi, where the Xi are independent, exponentially
distributed random variables of unit mean and the number of summands N ≥
1 is independent of allXi. If the count variableN has the skip density �sn�n≥1,
then S has the gamma mixture density

∑∞
n=owne

−xxn/n! with wn−1 = sn.

Theorem 1. In the Poisson-skip model, let C be the set of discrete densities
�wn�n≥0 forN−1 such that S =∑N

i=1Xi has the IFR property and consequently
entails positive or no interference. Then we have the following:

(a) C is closed under weak limits;
(b) C is closed under convolution;
(c) C contains all discrete log concave densities;
(d) C contains all densities concentrated on a single integer or two adjacent

integers, all binomial, geometric, Poisson, uniform, and integer-order negative
binomial densities, and the shifts of any of these densities by a positive integer.

To avoid interrupting our discussion, we defer the proof to the Appendix.
For a counterexample to the IFR property, consider the mixture density

pe−x + qx2e−x/2 with q = 1− p. Its hazard function

p+ q�x2/2�
p+ q�1+ x+ �x2/2��

has derivative

q�qx+ q�x2/2� − p�
�p+ q�1+ x+ �x2/2���2 ;

which for small x is negative. The Poisson-skip interevent density

p− r
1− r e

−x + q

1− rre
−rx = pe−x + qr

1− r �e
�1−r�x − 1�e−x

= pe−x + q
∞∑
n=1

�1− r�n−1re−x
xn

n!
:

(7)

with 0 < r < p provides a more striking counterexample. Because exponential
distributions enjoy the DFR property, and the collection of DFR distributions
is closed under admixture, the density (7) has the DFR property and conse-
quently entails negative interference.
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6. Discussion. Haldane’s Poisson model is widely used in gene mapping.
Although Speed, McPeek and Evans (1992) show that Haldane’s model is
asymptotically consistent for ordering multiple linked loci, there is an in-
evitable loss in statistical efficiency if it is invoked in the presence of chi-
asma interference [Goldstein, Zhao and Speed (1995)]. Thus, better models of
crossing-over are worth pursuing. The stationary renewal models are appeal-
ing candidates. For instance, Zhao and Speed (1996) prove that most of the
map functions geneticists employ in practice arise from stationary renewal
processes. As an analytically tractable subset of renewal models, Poisson-skip
models have even more to recommend them.

First, any interevent distribution on �0;∞� can be arbitrarily well approxi-
mated by a Poisson-skip interevent distribution [Neuts (1981)]. Second, most
of the analytic advantages of the chi-square model carry over to the Poisson-
skip model. For instance, one can extend our calculation of gamete probabili-
ties to the calculation of tetrad probabilities for Neurospora. Our data analysis
in Section 4 relies on this extension. Third, the Poisson-skip model allows for
recombination hot spots since inhomogeneity of the underlying Poisson pro-
cess relative to physical distance does not contradict its homogeneity relative
to genetic distance. Fourth and finally, the Poisson-skip model fits recombina-
tion data well. Even a simple mixture of two chi-square distributions performs
well on the fruit fly, mouse, and Neurospora data examined here.

Among the many crossover models proposed in the literature, only the
model of Goldgar and Fain (1988) and a version of the polymerization model of
King and Mortimer (1990) fit Drosophila data as well as the chi-square model
[McPeek and Speed (1995)]. Under each of these three models, it is possible
to estimate the joint distributions of the crossovers along a chromosome con-
ditional on there being one, two, and three crossovers on the chromosome. For
the data sets we have explored, the estimated distributions are always similar
across models. Thus, in spite of incorporating very different mechanisms, all
three models appear capable of capturing some of the salient features of the
recombination process. It is our hope that the analysis of new, more extensive
data sets will better discriminate among the Poisson-skip and these competing
models.

There is ample room for improvement and generalization of the Poisson-
skip model. For example, one could construct a version of the model that
includes chromatid as well as chiasma interference [Zhao (1995)]. Alterna-
tively, one could extend the model to include the phase distributions used with
great success in queuing theory [Neuts (1981)]. A phase-type model involves
a Markov chain with a single absorbing state and a given initial distribution.
Visits to the absorbing state constitute a renewal process. Compared to the
Poisson-skip model, phase-type models present greater difficulties in calculat-
ing gamete and tetrad probabilities. Furthermore, because the representation
of a phase-type distribution may not be unique, some of its underlying pa-
rameters may not be identifiable. Finally, whichever of these generalizations
is pursued, massive amounts of data will be required to discriminate between
it and the Poisson-skip mixture model.
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APPENDIX

Before embarking on the proof of Theorem 1, let us consider a less obvi-
ous example of a log concave sequence, namely the sequence of partial sums
en�x� =

∑n
i=0 x

i/i! of the exponential function for x ≥ 0. By convention, we
take en�x� = 0 for n < 0. The inequality en�x�2 ≥ en−1�x�en+1�x� can be re-
stated as

en−1�x�2 +
2xn

n!
en−1�x� +

(
xn

n!

)2

≥ en−1�x�2 +
xn

n!
en−1�x� +

xn+1

�n+ 1�!en−1�x�:

To prove this inequality, it suffices to show that

n∑
k=0

xn+k

n!k!
= x

n

n!
en−1�x� +

(
xn

n!

)2

= x
n

n!
en�x�

≥ xn+1

�n+ 1�!en−1�x�

=
n∑
k=1

xn+k

�n+ 1�!�k− 1�! :

When we examine the coefficient of xk+n on both sides of this last inequality,
it is apparent that

1
n!k!

≥ 1
�n+ 1�!�k− 1�!

holds because n + 1 > k. This proves the log concavity of en�x� with strict
inequality in the defining inequality when x > 0.

If we let m ≤ n and multiply the inequalities

c2
m ≥ cm−1cm+1

c2
m+1 ≥ cmcm+2

:::

c2
n ≥ cn−1cn+1;

then the inequality

n∏
k=m

c2
k ≥ cm−1cm

(
n−1∏

k=m+1

c2
k

)
cncn+1
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results. When m; n ∈ I, we can cancel balancing positive factors on both sides
and infer that

cmcn ≥ cm−1cn+1:(8)

Inequality (8) remains true when either m 6∈ I or n 6∈ I because our added
condition on log concave sequences forces both sides to be 0.

Proof of Theorem 1. It is well known that the set of IFR distributions is
closed under weak limits and convolutions (Ross 1983). Part (a) is now proved
by observing that if limk→∞ Nk =N∞ in distribution, then limk→∞

∑Nk

i=1Xi =∑N∞
i=1 Xi in distribution. Part (b) follows from the representation

N1+N2∑
i=1

Xi =
N1∑
i=1

Xi +
N2∑
j=1

XN1+j

for N1 and N2 independent. The assertions in part (d) are immediate conse-
quences of parts (a), (b) and (c).

To prove part (c), first note that the survivorship function of the sum S
amounts to

∞∑
n=0

wn

∫ ∞
x

tn

n!
e−t dt =

∞∑
n=0

wnen�x�e−x

in our notation for the partial sums of the exponential function. This rep-
resentation follows from integration by parts or from standard waiting time
arguments for a Poisson process. The derivative of the hazard function of S
therefore is

d

dx

∑∞
n=0wn�xn/n!�e−x∑∞
n=0wnen�x�e−x

= d

dx

∑∞
n=0wn�en�x� − en−1�x��∑∞

n=0wnen�x�

=
∑∞
k=0wk�ek−1�x� − ek−2�x��

∑∞
l=0wlel�x�

�∑∞n=0wnen�x��2

−
∑∞
k=0wk�ek�x� − ek−1�x��

∑∞
l=0wlel−1�x�

�∑∞n=0wnen�x��2

= �
∑∞
k=0wkek−1�x��2 − �

∑∞
k=0wkek−2�x���

∑∞
l=0wlel�x��

�∑∞n=0wnen�x��2

= �1/2�
∑∞
k=−∞

∑∞
l=−∞�wkwl −wk−1wl+1��ek−1�x�el−1�x� − ek−2�x�el�x��

�∑∞n=0wnen�x��2
;

(9)

where the sequences wn = en�x� = 0 for n < 0. In light of inequality (8), the
two factors wkwl −wk−1wl+1 and ek−1�x�el−1�x� − ek−2�x�el�x� in the last line
of (9) are simultaneously nonnegative or nonpositive. Hence, the derivative of
the hazard function is nonnegative. 2
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