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A LAW OF LARGE NUMBERS ON
RANDOMLY DELETED SETS

BY MARK D. ROTHMANN AND RALPH P. RUSSO

Georgia Institute of Technology and University of Iowa

Consider a system into which units having random magnitude enter
Ž .at arbitrary times and remain ‘‘active’’ present in the system for random

periods. Suppose units of high magnitude have stochastically greater
Ž .lifetimes tend to stay active for longer periods than units of low magni-

� Ž . 4 Ž .tude. Of interest is the process m t : t G 0 , where m t denotes the
average magnitude of all units active at time t. We give conditions which

Ž .guarantee the convergence of m t and we determine the form of the limit.
Some related processes are also studied.

1. Introduction. Consider a system into which units of varying magni-
tude enter at fixed points in time. Suppose each is endowed with a lifetime,

Ž .during which the unit is ‘‘active’’ alive, in service, etc. , and that unit lifetime
and magnitude are positively associated. Then, at any specific point in time,
the collection of active units comprises only a portion of those that have
entered the system. Moreover, since large units tend to remain active for
longer durations than small units, one cannot regard the magnitudes of the
active units as a random sample from some underlying distribution of magni-
tudes. For example, it is reasonable to assume that marriages ending ulti-
mately in divorce possess stochastically shorter lifetimes than those that do
not. Thus, the expected fraction of active marriages that will end in divorce is
smaller than the probability that a new marriage will end so. Similarly, in

Ž .business, the time required to complete a task lifetime is often positively
Ž .associated with its complexity magnitude . An inspector observing the sys-

Žtem at a specific point in time may be interested in the distribution or the
.mean complexity of tasks currently not completed, rather than the underly-

Ž .ing distribution or expected value of task complexity.
Ž . Ž . Ž .Let X, L , X , L , X , L , . . . be an independent and identically dis-1 1 2 2

� 4 � 4 Ž .tributed sequence of random vectors with P L G 0 s 1 and P X F x s G x .
� 4Suppose t , n G 1 is a strictly increasing sequence of nonnegative realn

numbers with t ª `. For k G 1, let t be the time of arrival of some kthn k
unit into a system, let X be the magnitude of that unit and let L be thek k

Ž .time it remains in the system its lifetime prior to deletion.

Received May 1994; revised November 1995.
AMS 1991 subject classifications. Primary 60F15; secondary 60G17.
Key words and phrases. SLLN, random deletion, sample means.

170



SLLN ON DELETED SETS 171

� 4We call such a unit active at time t if I s I t F t - t q L s 1. Wek , t k k k
also define for t G 0,

� 4A s I , G s P t F t - t q L ,Ý Ýt k , t t k k
kG1 kG1

S rA , if A G 1,t t tS s X I and m t sŽ .Ýt k k , t ½ 0, if A s 0.tkG1

Here, A represents the number of units active at time t, G represents thet t
Ž .expected number of such units and m t represents their average magnitude.

Our goal is to determine conditions under which the continuous time process
� Ž . 4of averages m t : t G 0 is almost surely convergent, and in these cases to

identify the limit.
Ž .In Rothmann and Russo 1994 we assumed additionally that X and L are

independent. When X possesses a moment generating function in an open
Ž . Ž .interval about the origin, we prove Theorem 2 that m t ª EX almost

< < r w .surely if G rlog n ª `. When E X is finite for some r in 1, 2 , we requiretn
Ž y1r r .the stronger condition lim inf n G ) 0. When r G 2, we require alsotn

Ž .that G be nondecreasing Theorems 3 and 3a . Furthermore, all results aretn

shown to be ‘‘sharp.’’
Here we consider the more interesting case where unit life is influenced by

the corresponding magnitude. For example, ‘‘large’’ units may have stochasti-
cally greater lifetimes than ‘‘small’’ units. In this case, the effect of large units
on the process tends to be longer lasting than that of small units, and one

Ž .expects the process limit when it exists to exceed EX. In Section 2 we
present our main results, in Section 3 some applications and in Section 4
we comment on the case where the interarrivals are independent random
variables.

2. The main results. Let S denote the support of X. We assume in this
� Ž . 4section that R ? : x g S is a collection of functions for whichx

� 4P L ) t N X v s R t if X v s x ,Ž . Ž . Ž .x

where v is any point in the basic space, and there exists a distribution
Ž .function 1 y R* with R* 0 ) 0 and

2.1a R t F R* t for x g S and t G 0.Ž . Ž . Ž .x

One can think of R* as the survival function of a ‘‘uniformly dominant’’
lifetime variable L*. For k G 2 define the increment a s t y t , and fork k ky1
t G 0 define

GU s R* t y t I t F t and G x s R t y t I t F t ,Ž . Ž . Ž . Ž . Ž .Ý Ýt k k t x k k
kG1 kG1

U w Ž .xwhere G resp. G x represents the expected number of units active at timet t
Žt were all units endowed with lifetime L* resp., with the lifetime of a unit
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.having magnitude x . We assume further that for all x in S,

G x rGU s R t y t R* t y tŽ . Ž . Ž .Ý Ýt t x n k n kn n
1FkFn 1FkFn

� 4 � 4s P L ) t y t N X s x P L* ) t y tÝ Ýn k n k
1FkFn 1FkFn

2.1bŽ .

ª f xŽ .
Ž .for some measurable function f having Ef x ) 0, and

2.1c GUrlog n ª `.Ž . tn

Ž . Ž .Conditions 2.1b and 2.1c insure that active units accumulate quickly
Ž . Ž .enough for convergence to occur. Since R* 0 ) 0, 2.1c holds if a log n ª 0n

w Ž .xsee the proof of Corollary 2.1 in Rothmann and Russo 1994 . Later in this
Ž .section, we remark on the ‘‘reasonableness’’ of condition 2.1b .

Ž . � 4THEOREM 2.1. Suppose 2.1 holds and E exp tX - ` for all t in an open
Ž . Ž . Ž .interval containing the origin. Then m t ª EXf X rEf X almost surely.n

Ž U U . Ž . Ž . Ž .If, in addition, lim inf G rG G 1, then m t ª EXf X rEf X almostt tnq 1 n

surely.

REMARKS. The conclusion of the theorem holds if we simultaneously
Ž . Ž .weaken the condition on X and strengthen condition 2.1c , so that 1

< < r w . Ž y1r r U . Ž . < < rE X - ` for some r in 1, 2 and lim inf n G ) 0 or 2 E X - ` fortn

some r G 2, GU is nondecreasing and lim inf ny1r r G ) 0. This is evidentt tn n

wfrom our proof of Theorem 2.1 see Theorems 3 and 3a of Rothmann and
Ž .x URusso 1994 . When a is a nonincreasing sequence, G is a nondecreasingn tn

Ž U U . Ž .sequence and lim inf G rG G 1. If R t is nondecreasing in x for eacht t xnq 1 n wreal t, then EX is a lower bound to the almost sure limit by Proposition 7.1.5
Ž . xof Ross 1983 , since f is nondecreasing . We illustrate this last point with

two examples:

Ž . Ž .EXAMPLE 1 Random detection . Suppose X is U 0, 1 , a log nx0 andn
Ž . Ž .R t s 1 y t x for 0 F t F 1 and 0 F x F 1. Let R s R for x - 0 andx x 0

ŽR s R for x ) 1. Then, if X s x, L is zero with probability 1 y x the kthx 1 k k
. Ž .unit is ‘‘undetected’’ , but is otherwise uniform on 0, 1 . We set R* s R , so1

Ž . Uthat f x s x for 0 F x F 1 and G rlog n ª `. Since a is nonincreasing,t nn
Ž .m t ª 2r3 almost surely.

Ž . �EXAMPLE 2 The limiting proportion of types . Suppose a ' d ) 0, P X sn
4 � 4 Ž . Ž . Ž .0 s p s 1 y P X s 1 , R t rR t ª a , some 0 F a F 1, and tR t ª ` as0 1 1

w Ž . Ž .y1r2 Ž . Žt ª `. For a concrete example, take R t s a t q 1 and R t s t q0 1
.y1r2 x1 for t ) 0. If X s i we will say that the kth entering unit is ‘‘type i,’’k

i s 0, 1. In the limit, p is the proportion of entering units which are type 0.
However, if 0 F a - 1, such units tend to have shorter lifetimes than type 1

Ž .units, and are thus expected to comprise a smaller than p proportion of the
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active population. At time t, we call this proportion p and observe thatt
Ž . Ž .p s 1 y m t . Set R* s R . From a routine calculation we have f 0 s at 1

Ž .and f 1 s 1. We have also

GUrlog n s R* t y t rlog nŽ .Ýt n kn
1FkFn

s 1rn y k n y k R n y k d rlog n ª `.Ž . Ž . Ž .Ž .Ý 1
1FkFn

Ž . Ž . Ž Ž ..Since a is nonincreasing, m t ª 1 y p r a p q 1 y p almost surely.n
Ž . Ž Ž .. Ž .Thus, p ª 1 y 1 y p r a p q 1 y p s a pr a p q 1 y p almost surely.t

Ž .In Rothmann and Russo 1997 we prove the following results which show
Ž .that condition 2.1b is not nearly as restrictive as it looks.

Ž . Ž . Ž . Ž . Ž .1. If na ª 0, then f x s R 0 rR* 0 , in which case EXf X rEf X sn x
Ž .E X N L ) 0 .

Ž . Ž . Ž Ž yL r c .. Ž Ž yL*r c..2. If na ª c g 0, ` , then f x s 1 y E e N X s x r 1 y E e ,n
in which case

EXf X rEf X s E X 1 y E eyL r c N X r 1 y E eyL r c .Ž . Ž . Ž . Ž .Ž . Ž .Ž .
Ž . Ž .3. If na `, a x0 and EL* - `, then f x s E L N X s x rEL*, in whichn n

Ž . Ž . Ž Ž ..case EXf X rEf X s E XE L N X rEL.
Ž . Ž . Ž .4. If na `, a xg G 0 and EL s `, then f x s lim R t rR* t , pro-n n t ª` x

vided this limit exists.

Ž . ŽIt can be shown that in case 1, log A rt ª ` a.s. faster than exponentialt
. Ž . Žgrowth of the active population ; in case 2, log A rt ª 1rc a.s. exponen-t

. Ž . Žtial growth ; and in cases 3 and 4, log A rt ª 0 a.s. slower than exponen-t
.tial growth . Case 2 gives applicable results for a population that grows

exponentially; for example, a population of biological units or a population of
carriers of a contagious disease.

In cases 1]4, if the conditional life distributions are Laplace transform
w Ž .xordered in x see Shaked and Shantikumar 1994 , then

E Xf X rEf X G E X .Ž . Ž . Ž .Ž .
Note that Laplace transform ordering is a weaker condition than stochastic

Ž . Ž .ordering. For 0 F c F `, let m c denote the almost sure limit of m t as given
in cases 1]4. If the hazard rate functions of the conditional life distributions

Ž . ware nonincreasing in x, then m c is nonincreasing in c see Rothmann and
Ž .x ŽRusso 1997 . Larger c’s correspond to slower rates of entry slower growth of

.the active population and a larger limiting mean.
The following result is applicable to ‘‘short’’ interarrivals and requires

neither that X possess a moment generating function nor that a uniformly
dominant life exists.

< < Ž . Ž .THEOREM 2.2. Suppose E X - `. If G x rn ª f x for some measur-tn
Ž . Ž . Ž Ž .. Ž .able function f with Ef X ) 0, then m t ª E Xf X rEf X almost

surely.
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Ž . Ž .Suppose R 0 ) 0 for x in S. If lim sup na - `, then d - G x rn F 1x n x tn

w . Ž . Ž . Ž .for some d ) 0. If na ª c g 0, ` , then G x rn ª f x s R 0 or 1 yx n t xn

Ž yL r c . Ž .E e N X s x according as c s 0 or c ) 0. The resulting limits of m t are
as in cases 1 and 2 above.

Ž . 2EXAMPLE 3. Suppose X has d.f. G x s 1 y 1rx for x G 1, na x1 andn
the conditional life distribution of L, given X s x, is exponential with mean

Ž . Ž yL . Ž . Ž 2x. Then f x s 1 y E e N X s x s xr1 q x and thus m t ª E X r1 q
. Ž . Ž .X rE Xr1 q X s log 2r 1 y log 2 a.s.

The proof of Theorem 2.1 will require three lemmas. Define t s t y tnk n k
Ž .and let « denote an arbitrary constant in 0, 1 . If Z is a random variable,

Ž .r Z denotes the ratio ZrEZ. All statements involving random denominators
are asserted to hold on the set where those denominators are nonzero.

LEMMA 1. For n G 1, let T denote the row sum of a rowwise independent,n
Ž .triangular array of indicator variables. If ET rlog n ª `, then r T ª 1n n

almost surely.

Ž .PROOF. We have var T F ET by independence. By Bernstein’s inequal-n n
w Ž . Ž .xity see either Serfling 1980 or Uspensky 1937 , for 0 - d - 1 and all large

� < < 4 � 2Ž .2 Ž .4 y2n we have P T y ET ) dET F 2 exp yd ET r 2 ET q dET F n .n n n n n n
I

Ž Ž . Ž ..LEMMA 2. Suppose CC is a Borel set for which E f X I X g CC ) 0. If
Ž .2.1 holds, then

r I X g CC , L ) t ª 1 almost surely.Ž .Ý k k nkž /
1FkFn

PROOF. We have

� 4 � 4P X g CC , L ) t s P L ) t N X s x dG xŽ .Hk k nk nk
CC

so that for large n, by the dominated convergence theorem,

� 4P X g CC , L ) t rlog nÝ k k nk
1FkFn

� 4s P L ) t N X s x dG x rlog nŽ .ÝH nk
CC 1FkFn

s GUrlog n G x rGU dG xŽ . Ž .Ž . Ž .Ht t tn n n
CC

G GUrlog n E f X I X g CC r2.Ž . Ž .Ž .Ž .tn

Ž .The result now follows by 2.1c and Lemma 1. I
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The following lemma is a consequence of Theorem 1 of Rothmann and
Ž .Russo 1997 :

� 4 � 4 Ž .LEMMA 3. Suppose P X s 1 s p s 1 y P X s 0 . If G 1 rG ª g ,t tn n
Ž . Ž .G rlog n ª ` and lim inf G rG G 1, then m t ª pg almost surely.t t tn nq1 n

PROOF OF THEOREM 2.1. We prove Theorem 2.1 in the continuous time
case only. The proof in discrete time is essentially the same. We first consider
the case where X is bounded. The result is trivial if X is degenerate, so we
assume that y` - ess inf X - ess sup X - `. By Lemma 2,

2.2 r A ª 1 a.s.Ž . Ž .tn

Ž . Ž .By the dominated convergence theorem DCT , upon integration of 2.1b we
have
2.3 G rGU ª Ef X .Ž . Ž .t tn n

We observe that the following inequalities hold for t F t F t :n nq1

A y 1 F A F A , G y 1 F G F G ,t t t t t tnq 1 n nq1 n

G x y 1 F G x F G x and GU y 1 F GU F GU .Ž . Ž . Ž .t t t t t tnq 1 n nq1 n

2.4aŽ .

For t F t F t we have alson nq1

1 G G rG s G rG G rGU GU rGU GUrG ,Ž . Ž . Ž . Ž .t t t t t t t t t tn nq1 nq1 nq1 nq1 n n n

1 G A rA s r A G rGU GUrGŽ . Ž . Ž .t t t t t t tn nq1 nq1 nq1 n n
2.4bŽ .

= GU rGU A rA rr A ,Ž . Ž . Ž .t t t t tnq 1 n nq1 n

Ž . Ž . Ž .so that by 2.2 , 2.3 , 2.4 and our lim inf condition,

2.5 A rA ª 1 a.s. and G rG ª 1 uniformly in t F t F t .Ž . t t t t n nq1n n

Ž . Ž .Now, by 2.2 and 2.5 ,

2.6 r A ª 1 a.s.Ž . Ž .t

Ž .The following inequalities hold for t F t F t and follow from 2.4a :n nq1

G x y 1 rGU GU rGU F G x rGUF G x rGU GUr GU y 1 ,Ž . Ž . Ž .Ž . Ž .Ž . Ž . Ž .ž /t t t t t t t t t tnq 1 nq1 nq1 n n n n nq1

G y 1 rGU GU rGU F G rGU F G rGU GUr GU y 1 .Ž . Ž . Ž . Ž .Ž . Ž .t t t t t t t t t tnq 1 nq1 nq1 n n n n nq1

Ž . Ž . Ž .These inequalities, when combined with 2.1b , 2.1c , 2.3 and our lim inf
condition, yield

2.7 G x rGU ª f x and G rGU ª Ef X .Ž . Ž . Ž . Ž .t t t t

Fix x - x - ??? - x so that0 1 m

x - ess inf X - ess sup X - x0 m

and
x y x - « for 0 F j F m y 1.jq1 j
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Define

wh s x , x , p sP X g h� 4.j jy1 j j j

and

A j s I X g h , L ) t y t .Ž . Ž .Ýt k j k n k
� 4k : t Ftk

� 4 Ž . Ž . Ž . Ž .Note that P L ) t N X g h s 1rp H R t dG x if p ) 0. Thus, by 2.7j j h x jj

and the DCT,

P L ) t y t N X g h rG� 4Ý k j t
� 4k : t Ftk

s 1rp 1rG R t y t dG xŽ . Ž . Ž .Ž . ÝHj t x k
h j � 4k : t Ftk

s 1rp GUrG G x rGU dG xŽ . Ž . Ž .Ž . Hj t t t t
h j

2.8Ž .

ª 1rp Ef X f x dG x .Ž . Ž . Ž .Ž .Hj
h j

Ž . Ž . Ž .By Lemma 3, 2.1c , 2.3 and 2.8 we have

2.9 A j rA ª 1rEf X f x dG x a.s.Ž . Ž . Ž . Ž . Ž .Ž .Ht t
h j

Now

1rA x A j F m t F 1rA x A j F u t q « ,Ž . Ž . Ž . Ž . Ž . Ž .Ý Ýt jy1 t t j t
1FjFm 1FjFm

Ž .so that almost surely, by 2.9 ,

1rEf X xf x dG x y « F 1rEf X x A jŽ . Ž . Ž . Ž . Ž .Ž . Ž . ÝH H jy1 t
h j1FjFm

F lim inf m t F lim sup m tŽ . Ž .
nª` nª`

F 1rEf X x A jŽ . Ž .Ž . Ý H j t
h j1FjFm

F 1rEf X xf x dG x q « .Ž . Ž . Ž .Ž .H
Ž . Ž Ž .. Ž .Thus, since « is arbitrary, we conclude that m t ª E Xf X rEf X

almost surely.
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We now remove the boundedness assumption. Fix m ) 0 so that0
Ž Ž . Ž ..E f X I ym - X - m ) 0. Fix m ) m and define0 0 0

AA s I ym F X F m I ,Ž .Ýt , m k k , t
kG1

W s X I X ) m and V s X I X - ym .Ž . Ž .n , m n n n , m n n

We have

S rA s X I ym F X F m I rA q W I rAŽ .Ý Ýt t k k k , t t k , m k , t t
kG1 kG1

q V I rAÝ k , m k , t t
kG1

2.10Ž .

s B q B q B .t , m , 1 t , m , 2 t , m , 3

We define a new process where the kth entering unit has respective magni-
tude and lifetime

w xX , if X g ym , m ,k kY sk , m ½ y2m , otherwise
and

w xL , if X g ym , m ,k kl sk , m ½ 0, otherwise.
Ž .We also define x s I t F t - t q l , so thatk , t k k k , m

Ý Y x rÝ xk G1 k , m k , t k G1 k , t
2.11 B s .Ž . t , m , 1 AA r A G rr AA E AA Ý xŽ . Ž .t , m t t t , m t , m k G1 k , t

Ž . Ž .By 2.6 and Lemma 2 using similar arguments for AA as for A ,t, m t
Ž . Ž . Ž .r A rr AA ª 1 a.s. Now, by 2.7 ,t t, m

lim G rE AA s lim G rGU lim G x rGU dG xŽ . Ž . Ž . Ž .Ž .Ht t , m t t t t
tª` tª` tª` w x-m , m

s Ef X f x dG x .Ž . Ž . Ž .H
w xym , m

By Theorem 1 applied to the bounded Y ’s,k , m

lim Y x xÝ Ýk , m k , t k , t
tª` kG1 kG1

s xf x dG x f x dG x a.s.Ž . Ž . Ž . Ž .H H
w x w xym , m ym , m

Ž .Since Ý x s AA , we conclude from 2.11 thatk G1 k , t t, m

2.12 lim lim B s EXf X rEf X a.s.Ž . Ž . Ž .t , m , 1
mª` tª`

Next, we form an image of our process on a new probability space: Attach to
Ž .the original space a sequence U of i.i.d. U 0, 1 random variables which arek

jointly independent of the X ’s. We may redefine the L sequence and alsok k
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U Ž .define sequences L and L x as follows:k k

L x s sup y : R y G U , L s L X� 4Ž . Ž . Ž .k x k k k k

and

LU s sup y : R* y G U .� 4Ž .k k

On the new space the joint distributions of the X ’s and L ’s remain thek k
U U Žsame. However, in addition we have L F L . Define I s I t F t -k k k , t k

U .t q L . Now,k k

2.13 0 F B F W IU IU A IU .Ž . Ý Ý Ýt , m , 2 k , m k , t k , t t k , tž / ž /
kG1 kG1 kG1

Let E and H denote, respectively, the numerator and denominator int, m t
Ž . < < � 4 Ž .2.13 . Since for t small, E exp tW - `, we have by 2.1c and Theoremk , m

Ž .2.1 of Rothmann and Russo 1994 ,

2.14 lim lim E s lim x dG x s 0 a.s.Ž . Ž .Ht , m
mª` mª`tª` Ž .m , `

Furthermore,

H s G rGU r A r IU .Ž . Ž . Ýt t t t k , tž /
kG1

Ž U . Ž . Ž . Ž .Thus, since r Ý I ª 1 a.s. by Lemma 2 , we have by 2.6 and 2.7 ,k G1 k , t

2.15 lim H s Ef X ) 0.Ž . Ž .t
tª`

Ž . Ž .Putting 2.14 and 2.15 together we get

2.16 lim lim sup B s 0 a.s.Ž . t , m , 2
mª` tª`

Now

V IU IU A IU F B F 0,Ý Ý Ýk , m k , t k , t t k , t t , m , 3ž / ž /
kG1 kG1 kG1

Ž .so that, by the same argument that yielded 2.16 ,

2.17 lim lim inf B s 0 a.s.Ž . t , m , 3
mª` tª`

Ž . Ž . Ž . Ž .Statements 2.10 , 2.12 , 2.16 and 2.17 together yield the final result. I

PROOF OF THEOREM 2.2. The proof is the same as that of Theorem 2.1,
U Ž . U Ž .with the following changes: Replace G by Ý I t F t and I by I t F t .t k G1 k k , t k

Ž .Note that 2.14 follows from the ordinary SLLN. I
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Ž .3. Applications. The pth quantile 0 - p - 1 associated with the units
active at time t is given by

w xp X pA q 1 y p X pA q 1 , if pA s pA ,Ž . Ž . Ž .t t t t t t
j st , p ½ w x w xX pA q 1 , if pA / pA ,Ž .t t t t

w x Ž .where 0 F p F 1 is fixed, y denotes the greatest integer in y and X i ist
� 4the ith order statistic among the members of X : I s 1 .k k , t

Ž . Ž .THEOREM 3.1. Suppose G x rG ª f x for some function f satisfyingt tn n
` Ž . Ž . Ž .H f x dG x s 1 and G rlog n ª `. If c p is the unique solution to they` tn

Ž Ž .. Ž . Ž . Ž .equation p s H I x - c p f x dG x , then j ª c p almost surely. If,tn , p
Ž . Ž .in addition, lim inf G rG G 1, then j ª c p almost surely.t t t, pnq 1 n

Ž . 1r2In Example 1, c p s p . In cases 1]4, if the conditional life distribu-
Ž Ž ..tions are Laplace transform ordered in x, then G c p G p. If the hazard

rate functions of the conditional life distributions are nonincreasing in x,
Ž . w Ž .xthen c p is nondecreasing in c see Rothmann and Russo 1997 .

PROOF OF THEOREM 3.1. We prove the continuous time result only. Fix
Ž . Ž . Ž . Ž . Ž .c - c p so that p ) H I y` - x F c f x dG x . Define T s I X G c ,0 0 n n 0

U � 4S s T I and g s lim P L G t y t N T s 1 rG .Ý Ýt k k , t k n k k tnnª`kG1 1FkFn

For 1 F k F n,

� 4P L G t N T s 1k nk k

� 4 � 4s P L G t , T s 1 N X s x dG x rP T s 1 .Ž .H k nk k k k
w .c , `0

Thus, using Fatou’s lemma,

� 4 � 4g s lim P L G t N X s x dG x rG P T s 1Ž .ÝH k nk k t knnª` w .c , `0 1FkFn

� 4s f x dG x rP T s 1 .Ž . Ž .H k
w .c , `0

By Lemma 3,

SUrA ª f x dG x ) 1 y pŽ . Ž .Ht t
w .c , `0

Ž .so that lim inf j G c p a.s. Additionally, by a similar argument,t, p
Ž .lim sup j F c p a.s. It, p

An application of Theorem 2.2 and 3.1 to the case where X s L yields a
result on the ‘‘mean total life’’ of units active at time t, l s Ý L I rA ,t k G1 k k , t t
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and the associated pth quantile b obtained by replacing X by L in thet, p k k
definition of j . One expects units with long life to exert a greater influencet, p
on l and b than units with short life. An observer inspecting the systemt t, p
at time t sees this as a forward shift in the distribution of L. The result is a

w Ž . Ž .xvariation of the ‘‘inspection paradox’’ see Feller 1971 or Ross 1983 :

Ž . w .THEOREM 3.2. a Suppose na ª c g 0, ` . If 0 - EL - `, then l ªn t
Ž . Ž Ž yL r c.. Ž yL r c.E L N L ) 0 a.s. when c s 0 and l ª E L 1 y e rE 1 y e a.s.t

Ž .when 0 - c - `. If c s 0 and t p is the unique solution to

� 4 � 4P L ) 0 p s I x - t p R 0 dP L F x ,Ž . Ž .Ž .H x

Ž . Ž .then b ª t p almost surely. If 0 - c - ` and t p is the unique solutiont, p
to

yL r c yx r c � 4pE 1 y e s I x - t p 1 y e dP L F x ,Ž . Ž . Ž .Ž .H
Ž .then b ª t p almost surely.t, p

Ž .b Suppose a and 1rna are nonincreasing, a log n ª 0 and na ª `.n n n n
� 4 � 4 2If P L s 0 - P 0 F L F m s 1 for some m, then l ª EL rEL almost surely.t

Ž . Ž Ž .. � 4If, in addition, t p is the unique solution to pEL s H I x - t p x dP L F x ,
Ž .then b ª t p almost surely.t, p

Ž .In Theorem 3.2, we observe that the almost sure limit of l t is bounded
below by EL, and that of b is bounded below by the pth quantilet, p

of L. Thus, the mean eventual life of active units exceeds the expected life of
entering units.

Ž .PROOF OF THEOREM 3.2. a This result is an immediate consequence of
Theorem 3.1.

Ž . Ž . Ž .b For x ) 0 let h n, x s Ý I t F x . Fix x ) 0 and 0 - d - 1.1F k F ny1 nk
Since a x0, we have for large n,n

x 1 y d F t y t F xŽ . n nyhŽn , x .

and
a h n , x F t y t F h n , x a .Ž . Ž .n n nyhŽn , x . nyhŽn , x .

Thus,

3.1 1 y d xra F h n , x F xra .Ž . Ž . Ž .nyhŽn , x . n

Ž . w x w xDefine n d s n y d n . Since t y t G a d n ª `, we have thatn nŽd . n
Ž . Ž . Ž .h n, x F d n for large n. Furthermore, n d a F na , so that by 3.24 ,nŽd . n

Ž . Ž . Ž . Ž .1 y d xn d rna F h n, x F xra . Since d is arbitrary, a h n, x rx ª 1.n n n
Ž . Ž . Ž .Thus, h n, x rh n, m ª xrm s f x for 0 F x F m. The result now follows

via an application of Theorems 1 and 2. The condition a log n ª 0 guaran-n
tees that GUrlog n ª `. Itn
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4. Random interarrivals. In this section we show how the results of
Section 2 can be extended to cover the case where the interarrivals are
independent random variables. We assume that a and b are fixed positiven n
sequences for which

� 4P a F a F b s 1 for n G 1,n n n

Ž . Ž .as would be the case when for example a ; U a , b . The followingn n n
< <statements correspond to cases 1]3 of Section 2: If E X - `, Ý a s `nG1 n

and nb ª 0, thenn

4.1 m t ª E X N L ) 0 a.s.Ž . Ž . Ž .n

< < Ž .If E X - ` and lim na s lim nb s c g 0, ` , thennª` n nª` n

4.2 m t ª E X 1 y E eyL r c N X r 1 y EeyL r c a.s.Ž . Ž . Ž . Ž .Ž .Ž .n

t X Ž .If Ee - ` for all t in an open interval containing the origin, condition 2.1a
holds with EL* - `, na `, b x0, a rb ª 1 and b log n ª 0, thenn n n n n

4.3 m t ª E XE L N X rEL a.s.Ž . Ž . Ž .Ž .n

Ž .PROOF OF 4.1 . Define for n G 1,

A n s I L ) r and A n s I L ) s ,Ž . Ž . Ž . Ž .Ý Ýa k n , k b k n , k
1FkFn 1FkFn

where r s Ý a and s s Ý b . Define also then, k nykq1F jF n j n, k nykq1F jF n j
process

m s s X I L ) s rA n .Ž . Ž . Ž .Ýb n k k n , k b
1FkFn

We have

m t y m s F m t y X I L ) t rA nŽ . Ž . Ž . Ž . Ž .Ýn b n n k k nk b
1FkFn

q X I L ) t y I L ) s A nŽ . Ž . Ž .Ž .Ý k k nk k n , k b
1FkFn

< <F A r rA s y 1 X I L ) r rA rŽ . Ž . Ž . Ž .Ž . Ýa n b n k k n , k a n
1FkFn

< <q A r rA s X I L ) r rA rŽ . Ž . Ž . Ž .Ž . Ýa n b n k k n , k a n
1FkFn

< <y X I L ) s rA s .Ž . Ž .Ý k k n , k b n
1FkFn

< < Ž . Ž . < < Ž . Ž .Since Ý X I L ) r rA r and Ý X I L ) s rA s1F k F n k k n, k a n 1F k F n k k n, k b n
converge almost surely to the same finite limit and

A r rA s s A r rEA r EA r rEA sŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .a n b n a n a n a n b n

= EA s rA s ª1 a.s.Ž . Ž .Ž .b n b n

4.4Ž .
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< Ž . Ž . < Ž .we have that m t y m s ª 0 almost surely. In 4.4 we observe thatn b n
Ž . Ž . Ž . Ž .A r rEA r and EA s rA s are almost surely convergent to 1, bya n a n b n b n

Lemma 2. Also, we have

4.5 EA r rEA s s EA r rn r EA s rn ª 1.Ž . Ž . Ž . Ž . Ž .Ž . Ž .a n b n a n b n

Ž . Ž . Ž .see the remarks following Theorem 2.2 . Since m s ª E X N L ) 0 almostb n
Ž .surely by Theorem 2.2 and case 1, statement 4.1 follows. I

Ž . Ž . Ž .The proof of 4.2 is similar to that of 4.1 . The proof of 4.3 uses Theorem
Ž . Ž .2.1 and is also similar to that of 4.1 . To obtain 4.5 in this case, one uses

an argument like that found in the proof of Theorem 3 of Rothmann and
Ž .Russo 1995 .
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