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AN EPIDEMIC MODEL WITH REMOVAL-DEPENDENT
INFECTION RATE

BY PHILIP O’NEILL

University of Bradford

This paper is concerned with a model for the spread of an epidemic in
a closed, homogeneously mixed population in which new infections occur

Ž . Ž .at rate b z xyr x q y , where x, y and z denote, respectively, the num-
bers of susceptible, infective and removed individuals. Thus the infection
mechanism depends upon the number of removals to date, reflecting
behavior change in response to the progress of the epidemic. For a
deterministic version of the model, a recurrent solution is obtained when
Ž .b z is piecewise constant. Equations for the total size distribution of the

stochastic model are derived. Stochastic comparison results are obtained
using a coupling method. Strong convergence of a sequence of epidemics to
an unusual birth-and-death process is exhibited, and the behavior of the
limiting birth-and-death process is considered. An epidemic model featur-
ing sudden behavior change is studied as an example, and a stochastic
threshold result analagous to that of Whittle is derived.

1. Introduction. Mathematical models for the spread of an infectious
disease in a population typically assume that the parameters governing
infection remain unaltered throughout an epidemic. However, when mod-
elling certain diseases it may be necessary to consider the effects of behavior
changes. In particular, individuals may take steps to reduce the risk of
infection if they are sufficiently aware of the presence of the disease in the
population. This kind of feature occurs in real-life epidemics; for example,
there is evidence of changing sexual practices among certain homosexual
groups in the United Kingdom in response to AIDS awareness advertising in

w Ž . Ž .xthe 1980’s see BMRB 1987 , Anderson, Blythe, Gupta and Konings 1989 .
The purpose of this paper is to examine a simple closed-population model

for an epidemic in which the infection rate depends upon the number of
removals that have occurred. In a modelling context, this infection mecha-
nism reflects behavior change in response to the perceived state of the
epidemic. In particular, this approach caters to epidemics where the current
number of infectives is unknown, but where some information about the
number of removed individuals is available. Data concerning sexually trans-
mitted diseases are often of this type. Deterministic models for sexually
transmitted diseases that consider behavior change have been proposed in

Ž .Blythe, Brauer, Castillo-Chavez, and Velasco-Hernandez 1992 , Brauer,
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Ž . Ž .Blythe, and Castillo-Chavez 1992 and Hadeler and Castillo-Chavez 1995 .
In particular, these models allow the rate of recruitment into the sexually
active part of the population to depend upon the current perceived state of
the epidemic.

The model that we shall consider is a generalization of the modified
w Ž . Ž .xstochastic epidemic see Gleissner 1988 and Ball and O’Neill 1993 .

Specifically, our model is defined as follows. Consider a population consisting
of initially n ) 0 susceptible and a ) 0 infective individuals, and for t G 0 let
Ž . Ž . Ž .X t , Y t and Z t denote, respectively, the numbers of susceptible, infective

and removed individuals at time t. The epidemic is a continuous-time Markov
chain, with transition probabilities

Pr X t q d t , Y t q d t , Z t q d t s x y 1, y q 1, z ¬� Ž . Ž . Ž . Ž .Ž .
X t , Y t , Z t s x , y , z 4Ž . Ž . Ž . Ž .Ž .

s b z xy d tr x q y q o d t ,Ž . Ž . Ž .
Pr X t q d t , Y t q d t , Z t q d s x , y y 1, z q 1 ¬� Ž . Ž . Ž . Ž .Ž .

X t , Y t , Z t s x , y , z 4Ž . Ž . Ž . Ž .Ž .
s g y d t q o d t ,Ž .

Ž .where b z ) 0 and g ) 0 are known as the infection and removal rates,
respectively. The two transitions defined above describe, respectively, an

Ž . Ž . Ž .infection and a removal. Notice that since X t q Y t q Z t s n q a for all
Ž Ž . Ž ..t G 0, it is sufficient to describe the epidemic in terms of X t , Y t only. The

epidemic ceases as soon as there are no infectives remaining in the popula-
Ž Ž .. Ž . Ž . Ž .tion. Note that by setting b Z t s n q a y Z t s X t q Y t , the epi-

wdemic reduces to the widely studied general stochastic epidemic model see,
Ž . xe.g., Bailey 1975 , page 88 .

The above definition of our model implies that when an individual becomes
infective, it remains so for a period of time having a negative exponential
distribution of mean gy1, and is then removed. This period of time is known
as the infectious period. It is possible to generalize our model so as to allow
the infectious period to be any nonnegative random variable, and we shall
consider this in Sections 3.2 and 3.3.

The paper is organized as follows. In Section 2 we consider a deterministic
version of the model and obtain results concerning the total size and temporal
behavior. The stochastic model is examined in Section 3. We show that the

Ž .methods of Picard and Lefevre 1993 can be applied to our model to yield a`
system of equations for the total size distribution. Comparison results for

Ž .epidemics with different b Z functions are considered by using the coupling
Ž .methods of O’Neill 1995b . By extending the methods of Ball and Donnelly

Ž .1995 , we show that the epidemic can be approximated by an unusual
birth-and-death process. Section 4 is concerned with a specific example,
namely a model for a sudden change in behavior. Again, deterministic and
stochastic models are considered, and for the latter we derive a Whittle-style

w Ž .xthreshold result see Whittle 1955 .
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Ž . Ž . Ž .2. Deterministic model. For t G 0 let x t , y t and z t denote, re-
spectively, the numbers of susceptible, infective and removed individuals in

Ž Ž . Ž .the population at time t. The epidemic, with initial condition x 0 , y 0 ,
Ž .. Ž .z 0 s n, a, 0 , is described by the differential equations

dx yb z xyŽ .
2.1 s ,Ž .

dt x q y

dy b z xyŽ .
2.2 s y g y ,Ž .

dt x q y

dz
2.3 s g y ,Ž .

dt
Ž .where b z , g ) 0.

2.1. Total size. The total size of an epidemic is defined as the total
number of susceptibles who ultimately become infected. It is not hard to see

Ž . Ž .that y t ª 0 as t ª `, and thus, writing T for total size, T s n y x ` s
Ž . Ž . Ž . Žz ` y a, where x ` s lim x t . We proceed by following Kendall 1956,t ª`

. Ž . Ž .1965 . Dividing 2.1 by 2.3 we obtain

dx yb z xŽ .
s ,

dz g n q a y zŽ .
which upon integration yields that

Ž .z t y1y1x t s n exp yg N y u b u du ,Ž . Ž . Ž .H½ 5
0

Ž .where N s n q a. Now since dzrdt ª 0 as t ª `, it follows from 2.3 that
Ž . w xz ` must be a root in a, N of the equation

j y12.4 N y j y n exp y N y u s u du s 0,Ž . Ž . Ž .H½ 5
0

Ž . Ž .where s u s b u rg .

Ž . Ž xLEMMA 2.1. Equation 2.4 always has at least one root in a, N , and
Ž .z ` is given by the least such root.

Ž . Ž .PROOF. Let H j denote the left-hand side of 2.4 , and define

N y1I s N y u s u du.Ž . Ž .Hs
0

Ž . Ž .Then if I s `, it is immediate from 2.4 that H N s 0. Conversely, ifs

Ž . Ž .I - `, then H N - 0, which, combined with the facts that H a ) 0 and Hs

Ž . Ž .is continuous in j , implies that 2.4 has a root in a, N . Suppose now that
Ž .2.4 has two roots, j and j , where a - j - j F N, and for contradiction1 2 1 2

Ž . Ž . Ž .assume that z ` s j . Now since z 0 s 0 and z t is nondecreasing in t,2
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Ž .the continuity of z ensures that there must exist an s ) 0 such that z s s j .1
Ž . Ž .However, since j is a root of 2.4 , we have that dzrdt s 0 and thus1 s

Ž . Ž .y s s 0. It follows that z ` s j , providing the required contradiction.1
Ž . Ž .Consider now two epidemics with infection rate functions b z and b z .1 2

w xSuppose that, for all j g a, N ,
` jy1 y1N y u s u du G N y u s u du,Ž . Ž . Ž . Ž .H H1 2

0 0

Ž . Ž . w xusing the obvious notation. It follows that H j G H j for j g a, N , and1 2
Ž . Ž . Ž .thus z ` G z ` . In particular, note that it is not necessary that b z G1 2 1

Ž .b z for all z in order to obtain this inequality.2

Ž . Ž .2.2. Temporal solution. The set of equations 2.1 ] 2.3 does not, in gen-
Ž .eral, appear to have a closed-form solution. However, by setting b z s b ) 0

for all z, the epidemic reduces to a modified epidemic, for which explicit
Ž . Ž . Ž . w Ž .formulas are available for x t , y t and z t see Ball and O’Neill 1993 ,

xSection 2.1 . By exploiting this fact, it is straightforward to obtain a recursive
Ž .solution for our more general model whenever b ? is piecewise constant.

Ž .Specifically, let 0 s d - d - d - ??? - d s N, and suppose that b z s0 1 2 m
w . Ž . y1b ) 0 for z g d , d k s 0, 1, . . . , m y 1 . In the following, let r s gb ,k k kq1 k k

� Ž . 4 Ž . Ž .t s inf t G 0: z t s d , n s x t , a s y t and N s n q a . Then fork k k k k k k k k
w . Ž .t g t , t k s 0, 1, . . . , m y 1 , if r s 1 we obtaink kq1 k

x t s n exp ya b t y t rN ,Ž . Ž .Ž .k k k k k

y t s a exp ya b t y t rN ,Ž . Ž .Ž .k k k k k

z t s N 1 y exp ya b t y t rN q dŽ . Ž .Ž .Ž .k k k k k k

and thus
N Nk k

t s log q t ,kq1 kž /a b N y d y dŽ .k k k kq1 k

while if r / 1, we obtaink

Ž .1r r y1ky1x t s n N n q a exp b y g t y t ,Ž . Ž . Ž .� 4Ž .k k k k k k

Ž .1r r y1ky1y t s a N n q a exp b y g t y tŽ . Ž . Ž .� 4Ž .k k k k k k

=exp b y g t y t ,Ž . Ž .Ž .k k

Ž .r r r y1k ky1z t s N 1 y N n q a exp b y g t y t q dŽ . Ž . Ž .Ž .Ž .½ 5k k k k k k k

and
Ž .r y1 rry1 k ky1t s b y g log a N 1 y d y d rN y n q t .Ž . Ž .Ž .½ 5kq1 k k k kq1 k k k k

By successive evaluation and substitution of the k-dependent quantities t ,k
n , a and N , the above equations provide a complete temporal descriptionk k k
of the epidemic. The total size may also be calculated using this method,

Ž .although in practice it will be easier to proceed directly from equation 2.4 .
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3. Stochastic model.

3.1. Total size. The total size distribution of the modified stochastic epi-
Ž .demic has been studied by Picard and Lefevre 1993 , using the martingale`

Ž .methods of Picard 1980 . It transpires that this approach is also suitable,
with appropriate modifications, for our epidemic. We proceed as follows. For

�Ž Ž . Ž . Ž .. 4t G 0, let FF denote the s-algebra generated by X u , Y u , Z u : 0 F u F t ,t
and for k s 0, 1, . . . , n and u G 0 define

y1˜a u s g k q j kb k q j q g q u k q j ,Ž . Ž . Ž . Ž . Ž .k , j

j s 1, 2, . . . , n q a y k ,

˜Ž . Ž . Ž . Ž .where b z s b n q a y z . For i, j g N, define i s i i y 1 ??? i y j q 1 ,w j x
and set i s 1. The following is a generalization of Picard and Lefevre’s`w0 x
Ž .1993 Proposition 5.1.

LEMMA 3.1. For k s 0, 1, . . . , n and u G 0,

Ž . Ž .X t qY t yk
t

X t a u exp yu Y u du , FF : t G 0Ž . Ž . Ž .w x Ł Hk k , j tž /½ 5ž /ž /0js1

is a martingale.

PROOF. The method of proof is essentially the same of that used by Picard
�Ž Ž . . 4and Lefevre, which we now briefly outline. Now M t , FF : t G 0 will be a` t

martingale provided that, for all t G 0,

dE M tŽ .
3.1 s 0.Ž .

dt

Ž . Ž Ž . Ž .. Ž t Ž . . Ž . Ž . Ž .Let M t s f X t , V t exp yu H Y u du , where V t s X t q Y t . Eval-0
Ž . �Ž Ž . . 4uation of the left-hand side of 3.1 leads us to deduce that M t , FF : t G 0t

will be a martingale if

y1b̃ v xv f x y 1, v y f x , v q g f x , v y 1 y f x , vŽ . Ž . Ž . Ž . Ž .
3.2Ž .

s u f x , v ,Ž .
Ž . �Ž . 2 4 Ž .where x, v g DD s i, j g N : 0 F n, i - j F n q a . Writing f x, v s

Ž . � 4 Ž .x b v , where k g 0, 1, . . . , n , it follows from 3.2 thatw k x

y1˜b v s g vb v y 1 kb v q g q u v .Ž . Ž . Ž . Ž .

The result now follows upon setting

vyk

b v s a u .Ž . Ž .Ł k , j
js1

�Let S denote the time at which the epidemic ceases, so that S s inf t G 0:
Ž . 4Y t s 0 . It follows at once from Lemma 3.1 that for k s 0, 1, . . . , n and
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for u G 0,
Ž .X S yk nqayk

3.3 E X S a u exp yuA S s n a u ,Ž . Ž . Ž . Ž . Ž .Ž .w x Ł Łk k , j w k x k , j½ 5ž /js1 js1

Ž . S Ž .where A S s H Y u du, the final severity of the epidemic. By taking u s 00
Ž .and k s n, n y 1, . . . , 0 in 3.3 we thus obtain a triangular system of linear

Ž . Ž . Žequations in the probabilities Pr T s j j s n, n y 1, . . . , 1 , whence Pr T s
.0 may also be calculated.

3.2. Comparison results. In Section 2, we found that the comparison of
Ž .the total sizes of two deterministic epidemics with different b ? functions

j Ž .y1 Ž .depended upon the relative values of the integral H N y u b u du. For0
the stochastic case, a corresponding relationship seems far harder to estab-
lish. However, we can make progress by imposing a rather stronger condition

Ž .on the two b ? functions, and this is the subject of the following paragraphs.
Ž .We shall proceed by using a coupling method described in O’Neill 1995b .

This approach enables us to generalize our model slightly in two ways. First,
we shall no longer require that the infectious periods have a negative
exponential distribution, and second, the infectious periods of different indi-
viduals need not be identically distributed. In practice, this second feature
can be used to model any discrepancy between the infectious periods of

Ž .initially infective individuals these being measured from time t s 0 and the
infectious periods of those susceptibles who subsequently become infected.
More precisely, the model is now defined as follows. There are initially n
susceptibles and a infectives. An infective individual, j say, remains so for a
period of time L where L is distributed according to some nonnegativej j

random variable. During its infectious period, j infects susceptibles according
Ž Ž .. Ž .Ž Ž . Ž ..y1to a Poisson process of intensity b Z t X t X t q Y t . It follows that

w .the probability of an infection occurring in t, t q d t is the same as for our
Ž Ž .. Ž . Ž .Ž Ž . Ž ..y1 Ž .original model, namely b Z t X t Y t X t q Y t d t q o d t . The epi-

demic ends as soon as there are no more infectives left in the population.
We now describe a method of construction for the above epidemic model.

Ž .Consider a probability space V, FF, P on which are defined a Poisson process
Q of rate 1, and an independent sequence of random variables L ,yŽ ay1.

Ž Ž . Ž . .L , . . . , L , where each L i s y a y 1 , y a y 2 , . . . , n has some ar-yŽ ay2. n i
Ž . Žbitrary distribution. Let the initial infectives be numbered y a y 1 , y a y

˜ ˜.2 , . . . , 0. For the Poisson process Q we denote the points of Q by Q , Q , . . .1 2
w x Ž .and the number of points in 0, s by Q s . We define

t
I t s Q f X u , Z u du ,Ž . Ž . Ž .Ž .Hž /0

0, if j F 0,
t sj ˜½ I , if j G 1,j

Ž .I t

R t s II ,Ž . Ý �t qL F t4j j
Ž .jsy ay1



P. D. O’NEILL96

Ž . Ž . Ž . Ž . Ž . Ž .where f x, z s b z xyr x q y s b z x n q a y x y z r n q a y z ,

X t s n y I t ,Ž . Ž .
Y t s a q I t y R t ,Ž . Ž . Ž .
Z t s R tŽ . Ž .

Ž .and where II denotes the indicator function of the set A. In the above, I tA
Ž .and R t are, respectively, the number of infections and the number of

removals to have occurred by time t. For j G 1, t denotes the time of the jthj

infection, while for j F 0, t s 0 is the time that the jth initial infectivej

begins infecting. Similarly, for j G 1, L is the infectious period of the jthj
susceptible to be infected, while for j F 0, L is the infectious period of initialj
infective j. It is straightforward to verify that the above construction does

w Ž .xindeed yield the required epidemic model see O’Neill 1995b .
Ž1. Ž2. Ž .Consider now two epidemics, E and E , say, constructed on V, FF, P

using the common random variables L , L , . . . , L and the com-yŽ ay1. yŽay2. n
mon Poisson process Q, but with infection rate functions b Ž1. and b Ž2., where

Ž1.Ž . Ž2.Ž . Ž1. Ž2.b z F b z for all z G z. Note that these conditions on b and b˜ ˜
may be equivalently expressed by the requirement that, in the obvious

Ž1.Ž . Ž2.Ž .notation, f x, z F f x, z for all x, where z G z.˜ ˜
For l s 1, 2 let t Ž l . denote the time of the jth infection in EŽ l .. If there arej

a total of m infections in EŽ l ., then set t Ž l . s ` for j ) m. The following resultj
shows that corresponding infections will always occur first in EŽ2., and
furthermore that the time lag between such corresponding infections is
weakly increasing.

LEMMA 3.2. The sequence

t Ž1. y t Ž2. , t Ž1. y t Ž2. , . . .Ž .1 1 2 2

is nonnegative and nondecreasing.

The proof of the above lemma is similar to that of Lemma 4.2 in O’Neill
Ž . Ž .1995b ; full details are available in O’Neill 1995a .

For l s 1, 2 let X Ž l . and Z Ž l . denote, respectively, the numbers of suscepti-
bles and removed individuals in EŽ l .. It follows at once from Lemma 3.2 that

Ž1.Ž . Ž2.Ž .for all t G 0 and v g V, X v, t G X v, t . Further, since the infectious
Ž1.Ž .periods are common in the two epidemics, we also obtain that Z v, t F

Ž2.Ž . Ž1.Ž .Z v, t . This in turn immediately implies that for all t G 0, X t Gst
Ž2.Ž . w Ž1.Ž . Ž2.Ž .x Ž1.Ž .X t i.e., X t is stochastically greater than X t and Z t Fst
Ž2.Ž . Ž2.Z t . Thus, as expected, there is a faster rate of disease spread in E .
It should be noted that our results extend those found in Ball and O’Neill

Ž . .1993 , Section 3.4 , which compare the general and modified stochastic
epidemics, both of which are special cases of our more general model. In
particular, our approach provides additional temporal information, since as
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well as establishing that infections occur sooner in the more severe epidemic,
we have also shown that the time discrepancy between corresponding infec-
tions increases as the two epidemics progress.

Finally, our results can also be used to obtain corresponding results for the
deterministic model. Specifically, we can apply the methods of Kendall and

Ž . Ž1.Ž . Ž2.Ž .Saunders 1983 to obtain that, in the obvious notation, x t G x t and
Ž1.Ž . Ž2.Ž .z t F z t for all t G 0. The details of the method are explained in O’Neill

Ž .1995b , and for brevity we do not include them here.

3.3. Birth-and-death process approximation. It is frequently possible to
linearize an epidemic model in order to create a simpler approximating
process. The best-known example of this is found in the fact that the early
stages of the trajectory of infectives in a general stochastic epidemic may be
well approximated by a linear birth-and-death process. This in turn gives rise
to threshold results, which, broadly speaking, describe conditions under
which the epidemic is likely either to die out quickly or take hold. In recent
years, a number of papers have addressed this area in a broader context,
using coupling arguments to prove strong convergence of a wide range of
epidemic models to branching processes and birth-and-death processes. The
convergence occurs as the initial number of susceptibles increases to infinity,
while the initial number of infectives is held constant. For further details, see

Ž . Ž . Ž .Ball 1983 , Ball and O’Neill 1994 , Ball and Donnelly 1995 and O’Neill
Ž .1996 .

In the following, we shall assume that the infection rate function can also
Ž .depend upon the initial population size, so that b s b Z, n . This assumption

reflects the idea that behavior changes in a population are likely to depend
upon the population size as well as the number of removals.For example, it
seems reasonable to suppose that behavior changes occur in response to the
proportion of individuals in a population that are removed, rather than the
absolute number. Notice that the results of the previous sections remain
unaltered if b is n-dependent, since we have only considered the situation
where the population size is fixed. Our convergence results in this section will

Ž . Ž .apply in the case where b Z, n ª b Z as n ª `. Before stating the results,
we first quickly outline some key ideas; full details are available in the papers
cited.

Ž .Ball and Donnelly’s 1995 paper makes use of the following construction.
A branching process is given, and at each birth time a member of the set of
initially susceptible individuals is chosen uniformly and at random. If this
individual is still susceptible, then it becomes infected and lives for the same
length of time as the corresponding individual that has just been born in the
branching process. If however the individual has previously been infected,
then no infection occurs, and the birth in the branching process is ignored.
This ignored individual is called a ghost. The salient feature of this construc-
tion is that as the number of susceptibles increases, the probability of a ghost
being created tends to zero, yielding a convergence result.
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The above construction has two features which need to be adjusted in
order to proceed. Firstly, the form of the construction implies that the
branching process acts as an upper bound for the number of infectives
created, since infections can only occur as a result of births. As such, if the
infection rate of the epidemic can potentially exceed the birth rate, it becomes
necessary to modify the construction. This can be achieved by generating
extra infections by using suitably time-transformed Poisson processes, as

Ž .described in O’Neill 1996 . The second difficulty, which is somewhat more
Ž .y1technical, is the presence of the X q Y term in the modified epidemic

infection mechanism. This will be dealt with by increasing the infection
probability when a birth occurs in an appropriate manner.

Ž .Let V, FF, P be a probability space on which are defined the following.

1. A birth-and-death process W, with a initial individuals. Individuals live
for a time distributed according to some arbitrary nonnegative random
variable L, during which they give birth to new individuals according to a

Ž Ž .. Ž .Poisson process of rate b D t , where D t denotes the number of deaths
w xduring 0, t . All individuals behave independently of one another, and the

Ž .size of W at time t will be denoted by W t .
Ž .2. Two independent and identically distributed sequences of Uniform 0, 1

random variables U , U , . . . and V , V , . . . .1 2 1 2
3. A Poisson process P of rate 1.
4. An independent and identically distributed sequence of random variables

Ž .L , L , . . . , where L is distributed according to L in 1 above.1 2 j

We now describe the construction of a sequence of epidemic processes
indexed by n. All random variables in the following are deemed to be
evaluated at some fixed v g V, but we shall suppress explicit reference to

u vthis fact. For x g R, x shall denote the least integer greater than or equal to
x. Let the initial susceptibles be labeled 1, 2, . . . , n, and the initial infectives
Ž . Ž . Ž .n q 1 , n q 2 , . . . , n q 1 . For j g N let x denote the jth individual to bej

Ž .born in W, and denote its lifetime by L x . As x is born, consider thej j
uŽ . vn q a U th individual in the initial population. If it is a susceptible that hasj
not yet been infected, then that individual immediately becomes infective.
Conversely, suppose that the chosen individual is either an initial infective or
an initial susceptible that has already been infected. Define

p s p X , Y , Z, D , nŽ .
X n q a b Z, n y X q Y b DŽ . Ž . Ž . Ž .

s min 1, ,½ 5ž / ž /X q Y n q a y X b DŽ . Ž .

where X, Y, Z and D denote, respectively, the current numbers of suscepti-
bles, infectives, removed individuals, and deaths to have occurred in W. Then
an uninfected initial susceptible becomes infected if V - p, where V is anyl l
previously unused member of the V , V , . . . sequence. The susceptible in-1 2
fected in this way is chosen uniformly and at random from those still
available, using another previously unused member of the V sequence. Notice
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that since p s 0 whenever X s 0, an infection cannot occur in this manner if
there are no more susceptibles. If, however, V G p, then no infection occurs,l
and the births of x and all its subsequent offspring are ignored. In this case,j
we refer to x as a ghost. A susceptible that becomes infective as a conse-j

Ž .quence of the birth of x remains so for a time L x before becomingj j
removed.

Infections also arise at the times given by the points of the process

t
P f u du ,Ž .Hž /0

where

b Z u , n X uŽ . Ž .Ž .
f u s max y b D u , 0 Y u .Ž . Ž . Ž .Ž .½ 5X u q Y uŽ . Ž .

When an infection occurs in this way, then a susceptible is chosen at random
from those available by using a fresh member of the V sequence. Following

Ž .O’Neill 1996 , such infectives are referred to as shadow infectives. The jth
shadow infective created remains infectious for a time L and is then re-j

moved. The epidemic ceases as soon as there are no more infectives present in
the population.

We may verify that the above construction gives rise to our epidemic as
follows. The infectious periods are clearly of the desired form, and thus it only
remains to show that the infection mechanism is correct. So let d t be some

Ž .fixed small time interval and suppose that Y t ) 0, so that the epidemic has
Ž . Ž Ž . Ž . Ž .not yet terminated. For f t ) 0 it is easily verified that p X t , Y t , Z t ,

Ž . .D t , n s 1, and so an infection can occur either as the result of a non-ghost
individual giving birth in W, or a shadow infection. Combining these possibil-

w .ities yields that the probability of an infection occurring during t, t q d t is
given by

b Z t , n X tŽ . Ž .Ž .
b D t Y t d t q y b D t Y t d t q o d tŽ . Ž . Ž . Ž . Ž .Ž . Ž .ž /X t q Y tŽ . Ž .

b Z t , n X t Y tŽ . Ž . Ž .Ž .
s d t q o d t ,Ž .

X t q Y tŽ . Ž .
Ž .as required. Alternatively, if f t F 0, then no shadow infections can occur,

so that an infection can only arise as a result of a non-ghost individual having
a non-ghost birth in W. The required probability is thus

X t X tŽ . Ž .
b D t Y t d t q 1 y p X t , Y t , Z t , D t , nŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .ž /ž /n q a n q a

b Z t , n X t Y tŽ . Ž . Ž .Ž .
s d t q o d t .Ž .

X t q Y tŽ . Ž .
The key feature of our construction is that the epidemic process and the
birth-and-death process are identical up until the appearance of either the
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first ghost or the first shadow infective. However, the probability of either of
these events occurring during a finite time interval tends to zero as n tends
to infinity, which leads to the following theorem. We shall denote the number

Ž .of infectives in the nth epidemic at time t by Y t .n

THEOREM 3.3. Let d be any metric on the space of sample paths of W, and
let A be that subset of V on which W ultimately becomes extinct.

Ž .i For P-almost all v g A,

lim sup d W v , t , Y v , t s 0.Ž . Ž .Ž .n
nª` 0FtF`

Ž . cii For P-almost all v g A ,

lim sup d W v , t , Y v , t s 0Ž . Ž .Ž .n
nª` 0FtFT

for all T ) 0.

Ž .PROOF. i Let V be that subset of V on which U / U for all i, j g N1 i j
Ž . Ž .such that i / j, and note that P V s 1. Let v g V l A, T v - ` be the1 1

Ž .duration of W and B v - ` be the number of births to occur during
w Ž .x uŽ . v uŽ . v0, T v . Then for all sufficiently large n, n q a U / n q a U for 1 Fi j

Ž .i, j F B v , i / j, from which it follows that no ghosts can be produced during
w Ž .x0, T v .

It only remains to show that no shadow infections can occur, so suppose for
w Ž .xcontradiction that the first shadow infective appears at time s g 0, T v .

Then if the first point of P occurs at t , we have
s

3.4 f u du s t .Ž . Ž .H
0

w . w xLet t g 0, s , and consider the time interval 0, t . No shadow infections
occur, and for all sufficiently large n, no ghosts are created. It follows that
during this time interval the number of deaths in W and the number of
removals in the epidemic are identical, and further that the number of

Ž .infections and births are the same, the latter being bounded by B v .
Ž . Ž .Combining these observations with the fact that b Z, n ª b Z as n ª `

Ž .yields that we can make f t arbitrarily small by taking n sufficiently large.
In particular, we obtain that

t
f u du - tr2,Ž .H

0

Ž . Ž .for each t g 0, s , which contradicts 3.4 .
Ž .ii Let T G 0, and notice that, with probability 1, only finitely many births

w xoccur in W during 0, T . The result now follows by an identical argument
Ž .found in i above.

3.4. Properties of the limiting birth-and-death process. We shall briefly
consider the behavior of the W process introduced in the previous section. For
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Ž . Ž .t G 0, let W t and D t denote, respectively, the number of individuals in the
population and the total number of deaths to have occurred at time t. We
suppose that each individual has a lifetime distributed according to some
nonnegative random variable L, and that during its lifetime an individual

Ž Ž ..reproduces according to a Poisson process of intensity b D t .
First, it is straightforward to show that W will go extinct with probability

Ž .1 if, for all sufficiently large d, b d F g . However, if this does not occur,
then the process will have some nonzero probability of never becoming
extinct. It is not clear how this probability could be evaluated in general. In
the special case where L is exponentially distributed, so that W is a Markov
process, we can make a little more progress, as follows.

˜For m s 1, 2, . . . let W denote the size of the population immediatelym
˜after the mth death has occurred, and set W s a. Then0

˜ ˜W s W q R y 1,mq 1 m m

where R denotes the number of births that occur between the mth andm
Ž .m q 1 th deaths. Thus for k s 0, 1, . . . ,

k
b m gŽ .

Pr R s k s ,Ž .m ž /ž /g q b m g q b mŽ . Ž .

˜� 4so that W : m G 0 is a time-inhomogeneous Markov chain. The processm
˜ Uterminates as soon as W s 0, and we define M to be the least integer mm

˜such that W s 0. The structure of the process enables us to write down anm
Ž U . Ž .expression for Pr M s k k s a, a q 1, . . . , which we achieve in the follow-

ing manner. First, note that if the process terminates upon the event of the
˜kth death, then W s 1. It follows that R can only be nonzero forky1 m

m s 0, 1, 2, . . . , k y 2. For these values of m, let b G 0 denote the value ofm
R . It follows that for m s 0, 1, . . . , k y 2 we must havem

˜3.5 W s a q b q b q ??? qb y m ) 0,Ž . m 0 1 my1

since the process cannot terminate until the kth death. Further, the total
number of births to occur during the lifetime of the process is k y a, and thus

ky2

3.6 b s k y a.Ž . Ý m
ms0

Denote by B the set of all possible vectors with nonnegative integer compo-
Ž . Ž . Ž .nents b s b , b , . . . , b such that b , b , . . . , b satisfy 3.5 and 3.6 .0 1 ky2 0 1 ky2

It follows that

bmky1 ky2g b mŽ .
UPr M s k s .Ž . Ł Ý Ł½ 5ž / ž /g q b m g q b mŽ . Ž .ms0 ms0bgB
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Finally, the probability that the process ever terminates is given by

`
UPr M s k ,Ž .Ý

ksa

which does not appear to have a simpler form.

4. Example: a sudden change model. In this section we shall consider
Ž . Ž . Ž .a specific choice of b Z , namely that b Z s b if Z - z , and b Z s b1 0 2

otherwise, where b / b . This fairly simple model is based upon the idea1 2
that no change of behavior occurs until the number of removals has reached
some critical value, which seems a plausible feature of real-life epidemics.

Since the results of the previous two sections apply to the sudden change
model, we shall in the following only draw attention to particular points of
interest. The deterministic model admits an explicit closed form solution,
from which the total size is also available. For the stochastic model, we shall

Ž .derive a threshold result based on the approach of Whittle 1955 .

�4.1. Deterministic model. For j s 1, 2 let r s grb , and let t s inf t G 0:j j
Ž . 4z t s z . The following results are easily verified.0

Ž . Ž . w xi r s 1. From Gleissner 1988 we have that for t g 0, t ,1

x t s n exp yab trN ,Ž . Ž .1

4.1 y t s a exp yab trN ,Ž . Ž . Ž .1

z t s N 1 y exp yab trN ,Ž . Ž .Ž .1

Ž .where N s n q a. It follows from 4.1 that

t s Nrab log Nr N y z ,Ž . Ž .1 0

and so

x t s n 1 y z rN ,Ž . Ž .0

y t s a 1 y z rN ,Ž . Ž .0

z t s z .Ž . 0

Since a behavior change occurs at time t , it follows that r / r , so that1 2
Ž .r / 1. From Gleissner 1988 it follows that for t ) t ,2

Ž .1r r y12x t q y t exp b y g t y tŽ . Ž . Ž . Ž .2
x t s x t ,Ž . Ž . ž /x t q y tŽ . Ž .
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Ž . Ž .with similar expressions holding for y t and z t . After a little manipulation
we obtain that

Ž .1r r y12n q a exp b y g t y tŽ . Ž .2
x t s n 1 y z rN ,Ž . Ž .0 ž /n q a

Ž .1r r y12n q a exp b y g t y tŽ . Ž .2
y t s a 1 y z rNŽ . Ž .0 ž /n q a

= exp b y g t y t ,Ž . Ž .2

Ž .r r r y12 2n q a exp b y g t y tŽ . Ž .2
z t s N 1 y z rN 1 y q z .Ž . Ž .0 0ž /n q a

Ž . w xii r / 1. Proceeding as before, we have that for t g 0, t ,1

Ž .1r r y11y1x t s n N n q a exp b y g t ,Ž . Ž .� 4Ž .1

Ž .1r r y11y1y t s a N n q a exp b y g t exp b y g t ,Ž . Ž . Ž .� 4Ž . Ž .1 1

Ž .r r r y11 1y1z t s N 1 y N n q a exp b y g t .Ž . Ž .Ž .Ž .½ 51

By direct calculation,
Ž .y1 r y1 rry1 1 1t s b y g log a N 1 y z rN y n ,Ž . Ž .1 0

Ž .Ž r1y1 .r r1provided that N 1 y z rN y n ) 0. However, this last condition is0
always true if r - 1, whilst if r ) 1 then the condition is equivalent to the1 1

w Ž . r1 rŽ r1y1 .x Ž .statement z - N 1 y nrN s z ` , which says that the epidemic0
does not terminate before the behavior change occurs. Thus when a behavior
change does occur,

1rr1x t s n 1 y z rN ,Ž . Ž .0

1rr1y t s N y z y n 1 y z rN ,Ž . Ž .0 0

z t s z .Ž . 0

Suppose that r / 1; then, for t ) t ,2

1rr 1rŽ r y1.1 2x t s n 1 y z rN A ,Ž . Ž .0

1rr 1rŽ r y1.1 2y t s N y z y n 1 y z rN A exp b y g t y t ,Ž . Ž . Ž . Ž .0 0 2

w r2 rŽ r 2y1 . xz t s N y z 1 y A q zŽ . Ž .0 0

where
Ž .r y1 rr1 1n q N 1 y z rN y n exp b y g t y tŽ . Ž . Ž .0 2

A s .Ž .r y1 rr1 1½ 5N 1 y z rNŽ .0
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Conversely if r s 1 then we obtain that for t ) t ,2

Ž .1rr 1yr rry11 1 1x t s n 1 y z rN exp nN 1 y z rN y 1 b t y t ,Ž . Ž . Ž . Ž .ž /0 0 2

1rr1y t s 1 y z rNŽ . Ž .0

Ž .r y1 rr1 1= N 1 y z rN y nŽ .0

Ž .1yr rry1 1 1=exp nN 1 y z rN y 1 b t y t ,Ž . Ž .ž /0 2

Ž .1yr rry1 1 1z t s N y z 1 y exp nN 1 y z rN y 1 b t y t q z .Ž . Ž . Ž . Ž .ž /½ 50 0 2 0

We may evaluate the total size of the deterministic model without diffi-
culty. First, if r s 1, then1

n , if r - 1,2
4.2 T z sŽ . Ž . Ž .0 r r r y12 2½ n y N y z nrN , if r ) 1.Ž . Ž .0 2

If r / 1, then it is possible for the epidemic to terminate before a behavior1
change occurs. This will happen if the final number of removed individuals in
a modified epidemic of relative removal rate r is not greater than z , that is,1 0
Ž Ž . r1 rŽ r1y1 ..N 1 y nrN F z . We can rewrite this condition in terms of r , so0 1

Ž .that a behavior change does not occur unless r - z z , where1 0

log N y z rNŽ .0
z z s ) 1.Ž .0 log N y z rnŽ .0

We thus obtain that for r / 1,1

¡n , if r - z z , r F 1,Ž .1 0 2

~F z , if r - z z , r ) 1,Ž . Ž .0 1 0 24.3 T z sŽ . Ž .0
Ž .1r r y11¢n 1 y nrN , if r G z z ,Ž . Ž .Ž . 1 0

where
Ž .1r r y12Ž .r yr rr2 1 1F z s n 1 y nrN 1 y z rN .Ž . Ž . Ž .½ 50 0

REMARK. In the following, we suppose, for realism, that r - r . Suppose1 2
Ž Ž . r1 rŽ r1y1 ..that a behavior change actually occurs, so that z - N 1 y nrN s0

z , say. We may investigate the impact of this change upon the progress ofm
˜ ˜Ž . Ž .the epidemic by considering Q z s T y T z , where T is the total size of a0 0

Ž . Ž .modified epidemic with relative removal rate r , and T z is given by 4.21 0
Ž .or 4.3 . If r F 1, then Q s 0, so that no benefit occurs as a result of the2

behavior change. So suppose that r ) 1. If r s 1, then it is easily seen that2 1
Ž .hQ is linear in z . If however r / 1, then Q contains the term 1 y z rN ,0 1 0

Ž . Ž .where h s r y r rr r y 1 ) 0. If r - 1, then h y 1 ) 0, while if r )2 1 1 2 1 1
1, we find that h y 1 - 0. It follows that d2Qrdz2 is positive when r - 10 1

Ž .and negative if r ) 1, yielding that Q z is, respectively, convex or concave1 0
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w .on 0, z . These results can be interpreted as giving an indication of them
effectiveness of altering z , in the following broad sense. Suppose for example0
that r - 1; then the smaller z is, the greater the impact of any reduction of1 0
z upon the epidemic. Conversely, as z approaches z , reductions of z are0 0 m 0
of less benefit.

4.2. Stochastic threshold result. In Section 3.3 we noted the fact that
when considering results that depend upon the initial number of susceptibles

Ž .increasing towards infinity, b Z may be regarded as a function of n. For the
sudden change model there are essentially two possibilities of interest: as

Ž . Ž .n ª `, either z n ª l - ` or z n ª `. In the former case, the limiting0 0
process has birth rate b until l deaths have occurred, and thereafter it has1
birth rate b , with the death rate being g at all times. Consider now the2
latter case, in which the limiting birth-and-death process is simply linear and
homogeneous, with birth rate b and death rate g . In particular, the behavior1
change aspect of the epidemic disappears in the limit as n ª `. In the case

Ž .where z s O n , an alternative method of analysis is given by the methods0
Ž .of Whittle 1955 , and this is the subject of this section. We shall proceed by

Ž .following Whittle’s arguments; see also Ball and O’Neill 1993 for the
corresponding modified stochastic epidemic case.

ŽLet P denote the probability of an epidemic of total size w w sw
.0, 1, 2, . . . , n , and recall that the intensity of an epidemic is defined as the

proportion of the initial susceptibles who ultimately contract the disease. We
define p as the probability that an epidemic of intensity i or less occurs, soi
that

u vni

p s P .Ýi w
ws0

Ž . Ž . Ž .Suppose further that z s z n s c n q a s cN, where c g 0, 1 . This as-0 0
sumption means that a behavior change occurs when some fixed proportion c
of the population becomes removed. In order to ensure that there is some
positive probability of a behavior change actually occurring, we set c - i. Let
t denote the time of behavior change in the nth epidemic, so that t sn n

� Ž . 4inf t G 0: Z t G z . Then if a behavior change occurs in an epidemic of0
intensity i or less we obtain that for all t G t ,n

n 1 y i F X t F N 1 y c ,Ž . Ž . Ž .
and

cN F Z t F a q ni .Ž .

It follows that

b n 1 y i Y t b X t Y t b N 1 y c Y tŽ . Ž . Ž . Ž . Ž . Ž .2 2 2F F ,
N 1 y c X t q Y t n 1 y iŽ . Ž . Ž . Ž .
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which when n is large can be approximated by

b 1 y i Y t b X t Y t b 1 y c Y tŽ . Ž . Ž . Ž . Ž . Ž .2 2 2
4.4 F F .Ž .

1 y c X t q Y t 1 y iŽ . Ž . Ž . Ž .

It follows that for t G t we can think of the epidemic as being sandwichedn
Ž .between two linear birth-and-death processes, with birth rates given by 4.4

and common death rate g . We shall denote the number of individuals ever
born into the upper-bound process by T and the number born into theU
lower-bound process by T .L

Now

Pr a behavior change ever occurs s Pr Z ` G cNŽ . Ž . u vŽ .
s 1 y Pr Z ` F cN y 1Ž . u vŽ .
s 1 y Pr intensity F j ,Ž .

Žu v .where by direct calculation j s cN y a y 1 rn f c for large n. Thus the
Ž .probability of a behavior change occurring is approximately 1 y p r , wherec 1

Ž .p r is the probability that the intensity of a modified stochastic epidemicc 1
with relative removal rate r is not greater than c. From Ball and O’Neill1
Ž .1993 , we have approximate bounds on this quantity when n is large,
namely that

a
r Na 1

min r 1 y c , 1 F p r F min , 1 .� 4Ž . Ž .1 c 1 ½ 5n 1 y cŽ .

Let p U denote the probability of an epidemic of intensity i or less, conditionali
upon the occurrence of a behavior change. Then,

4.5 p s 1 y p r p U q p r ,Ž . Ž . Ž .Ž .i c i c 1

the point here being that if a behavior change does not occur, then the
intensity must automatically be less than i. Let r denote the number ofn

Ž .infections that occur during t , ` . Thenn

Pr T F r F p U F Pr T F r .Ž . Ž .U n i L n

Ž . Ž . Ž . Ž .However, Pr T F r F Pr T - ` , while Pr T F r s Pr T - ` yL n L U n U
Ž Ž ..Pr T g r , ` . A difficulty now arises, since all that can be said about r isU n n

that

0 F r F N i y c q a 1 y i .Ž . Ž .n

However, we may proceed by making use of a further approximation, namely
Ž . Ž . Ž .that X t f x t , where x t is the number of susceptibles in the determin-˜ ˜n n n

istic model at the time of behavior change. Our justification for this is as
follows. One of the main differences between different realizations of a
modified stochastic epidemic is the time taken until the epidemic ‘‘takes off.’’
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Once this has happened however, the epidemic is well approximated by the
corresponding deterministic trajectory. Indeed for the general stochastic epi-

Ž .demic, Metz 1978 has conjectured that the stochastic model is well modeled
by a random time translation of the deterministic model. Thus in some sense,
the stochastic and deterministic models will look similar if compared at
corresponding points of progress, although they might be quite different if
compared at some fixed time point. Regarding the actual time taken until

Ž .take-off, Ball and O’Neill 1993 indicate that the modified stochastic epi-
demic is well approximated by a linear birth-and-death process until around
'n of the initial susceptibles become infected. After this time, the determinis-

w Ž .tic approximation becomes more appropriate see Barbour 1980 for a discus-
xsion of similar piecewise approximations for Markov processes . In the pres-

ent case, however, since at least cN y a infections must have occurred by the
time of the behavior change, the epidemic is certainly at a stage where
the deterministic approximation is reasonable. As further justification for the
present case, Table 1 illustrates deterministic and stochastic numbers of
susceptibles and infectives for various values of r , with n s 999 and a s 1.1
As can be seen from the table, the approximations are quite good.

Returning to our argument, suppose that the actual intensity of the
Ž x Ž . Ž . Ž . Žepidemic is m, where m g c, i . Then r s X t y 1 y m n f x t y 1 y˜n n n

. Ž . Ž . Ž . Ž .1r r1m n s O n , since from Section 4.1, x t s n 1 y c if r s 1 and n 1 y cñ 1
Ž Ž ..otherwise. It follows that Pr T g r , ` ª 0 as n ª `, so that using theU n

standard result for the probability of extinction for a linear birth-and-death
process we obtain the approximate result

Ž . Ž .y t y t˜ ˜n n1 y i 1 y c
U4.6 min r , 1 F p F min r , 1 ,Ž . 2 i 2ž / ž /ž / ž /1 y c 1 y i

Ž . Ž .where y t f Y t , the latter being the initial population size of both theñ n
Ž . Ž .birth-and-death processes. If r s 1, then y t s a 1 y c . Otherwise,˜1 n

TABLE 1
w Ž . Ž .xX t , Y t for modified stochastic epidemics where n s 999 and a s 1

Simulation
[ ( ) ( )]number 1 2 3 4 5 x t , y t˜ ˜

( )i b s 2.0, g s 1.01

Ž . Ž . Ž . Ž . Ž . Ž .z s 250 593, 157 563, 187 556, 194 572, 178 535, 215 562, 1880
Ž . Ž . Ž . Ž . Ž . Ž .z s 500 264, 236 285, 215 247, 253 234, 266 286, 214 250, 2500
Ž . Ž . Ž . Ž . Ž . Ž .z s 750 71, 179 59, 191 66, 184 58, 192 84, 166 62, 1880

( )ii b s 0.8, g s 0.21

Ž . Ž . Ž . Ž . Ž . Ž .z s 250 298, 452 332, 418 302, 448 347, 403 318, 432 316, 4340
Ž . Ž . Ž . Ž . Ž . Ž .z s 500 71, 429 56, 444 62, 438 77, 423 51, 449 62, 4380
Ž . Ž . Ž . Ž . Ž . Ž .z s 750 8, 242 4, 246 3, 247 4, 246 3, 247 4, 2460
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Ž . Ž .y t s O n , so in this case for large n we find that, approximately,ñ

1 y c¡
1, if r G ,2 ž /1 y iU ~p si 1 y i
0, if r - ,2¢ ž /1 y c

Ž . Ž . Ž . Ž . Ž .while if r 1 y i r 1 y c - 1 - r 1 y c r 1 y i then 4.6 does not yield2 2
Ž .any useful bounds. Upon substitution into 4.5 we find that

1 y c¡
1, if r G ,2 ž /1 y i~p si 1 y i
p r , if r - .Ž .c 1 2¢ ž /1 y c

ŽWe may interpret these results as follows. For large n, if r G 1 or r G 1 y1 2
. Ž .c r 1 y i then there is zero probability of an epidemic occurring. However if

Ž . Ž .r - 1 and r - 1 y i r 1 y c then the probability of an epidemic is approx-1 2
imately 1 y r a, for small values of c. Notice that this probability does not1
depend upon the value of r , which is essentially for the following reason:2
once the epidemic has taken off sufficiently for a behavior change to occur,
then there will be a large number of infectives present in the population at
the time of the change, and thus the epidemic is extremely unlikely to die out
suddenly.
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