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Let Xi be nonnegative, independent random variables with finite expec-
tation, and X∗

n = max{X1, . . . ,Xn}. The value EX∗
n is what can be obtained

by a “prophet.” A “mortal” on the other hand, may use k ≥ 1 stopping rules
t1, . . . , tk , yielding a return of E[maxi=1,...,k Xti ]. For n ≥ k the optimal re-
turn is V nk (X1, . . . ,Xn) = supE[maxi=1,...,k Xti ] where the supremum is
over all stopping rules t1, . . . , tk such that P(ti ≤ n) = 1. We show that
for a sequence of constants gk which can be evaluated recursively, the in-
equality EX∗

n < gkV
n
k (X1, . . . ,Xn) holds for all such X1, . . . ,Xn and all

n ≥ k; g1 = 2, g2 = 1 + e−1 = 1.3678 . . . , g3 = 1 + e1−e = 1.1793 . . . ,
g4 = 1.0979 . . . and g5 = 1.0567 . . . . Similar results hold for infinite se-
quences X1,X2, . . . .

1. Introduction and summary. The classical ratio “prophet inequality”
states that for nonnegative independent random variables, not all identically zero,
with known distributions and finite expectations, the inequality

E(X∗
n) < 2V (X1, . . . ,Xn)(1)

holds, where X∗
n = max(X1, . . . ,Xn) = X1 ∨ · · · ∨ Xn, V (X1, . . . ,Xn) =

supt∈Tn E(Xt), and Tn is the collection of all stopping rules based on X1, . . . ,Xn.
[A stopping rule t is in Tn if the event {t = k} depends only on X1, . . . ,Xk and
possibly some external randomization, and P (t ≤ n)= 1.] Inequality (1) extends
nonstrictly to infinite sequences of random variables, with maximum replaced
by supremum, provided E(supXi) < ∞, where the rules are required to satisfy
P (t <∞)= 1. Inequality (1) cannot hold with a smaller constant replacing 2, and
thus 2 is known as a “best bound.” See, for example, Hill and Kertz (1981) and
some earlier references mentioned there. The term “prophet inequality” stems from
the fact that EX∗

n may be considered the return to a “prophet” who has complete
foresight and can thus choose the best (largest) observation, while V (X1, . . . ,Xn)

is the value obtained by a “mortal” (henceforth called “statistician”), who must de-
cide whether to stop or not as the sequence unfolds, with no possibility of recalling
any passed-up observations.

In the present paper we consider a situation where the statistician is given k,
k ≤ n, opportunities to choose variables by means of k stopping rules. The return
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is defined as the expected value of the largest of the k choices. Multiple stopping
rules, in a general setting, are studied by Stadje (1985). In connection with prophet
inequalities they are studied by Kennedy (1987). The present problem is studied in
Assaf and Samuel-Cahn (2000). They show that there exist simple k-choice rules
for the statistician, called “threshold rules,” with valuesWn

k (X1, . . . ,Xn), such that
for any independentXi ≥ 0 the inequality

E(X∗
n) <

(
k + 1

k

)
Wn
k (X1, . . . ,Xn)(2)

holds. Since threshold rules are usually not optimal, clearly,

E(X∗
n) <

(
k+ 1

k

)
V nk (X1, . . . ,Xn),(3)

where V nk (X1, . . . ,Xn) is the optimal k-choice value. It turns out that, except when
k = 1, the constant (k + 1)/k is not the best constant in this inequality. In the
present paper we prove Theorem 1.1, which provides a sequence of improved
constants.

We assume henceforth that all random variables in the stopping sequences
considered have known distributions and are independent, nonnegative with finite
expectation and not all identically zero.

THEOREM 1.1. For k = 1,2, . . . , let gk = gk(0) where the functions gk(x)
are defined recursively by (8). Then for all n≥ k and any X1, . . . ,Xn,

E(X∗
n) < gkV

n
k (X1, . . . ,Xn).(4)

The first six values of the gk sequence are g1 = 2, g2 = 1 + e−1 = 1.3678 . . . ,
g3 = 1 + e1−e = 1.1793 . . . , g4 = 1.0979 . . . , g5 = 1.0567 . . . , g6 = 1.0341 . . . .

For X1,X2, . . . , an infinite sequence of such variables with value
V∞
k (X1,X2, . . .), the inequality

E

(
sup

i=1,2,...
Xi

)
≤ gkV

∞
k (X1,X2, . . .)(5)

holds provided the left-hand side of (5) is finite.

That Theorem 1.1 gives considerable improvement over (3) is supported by
numerical results and Assertion 3.1. However, except for k = 1, no claim about
having a best bound is made here. We prove Theorem 1.1 by induction on n for
each fixed k, and by solving a differential equation, as explained in Section 3. In
principle, once the result (4) for some k is known, it is a simple matter to obtain
(at least numerically) the result (4) for k+ 1.

In our proofs we need a generalization of (1), which is also of interest in its own
right.
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THEOREM 1.2. For n≥ 2 and x = P (X∗
n = 0) < 1,

EX∗
n < (2 − x)V n1 (X1, . . . ,Xn).(6)

In the infinite case, with x = P (supi=1,2,... Xi = 0),

E

(
sup

i=1,2,...
Xi

)
≤ (2 − x)V∞

1 (X1,X2, . . .).(7)

The expression 2 − x is a best bound.

Similar to the generalization of (1) to (6) we have a generalization of
Theorem 1.1 to 1.3; this requires the following definition. For 0 ≤ y < 1, let

u1(y)= 0 and define for k ≥ 1,

uk+1(y)= −
∫ 1

y
e−uk(s) ds, hk(y)= euk(y) and

gk(y)= hk(y)+ 1 − y.

(8)

THEOREM 1.3. The functions gk are strictly decreasing. If n ≥ k and x =
P (X∗

n = 0) < 1, then

EX∗
n < gk(x)V

n
k (X1, . . . ,Xn).(9)

In particular, for 0 ≤ y < 1 we have

g1(y)= 2 − y,(10)

g2(y)= e−(1−y) + 1 − y,(11)

g3(y)= exp{1 − e1−y} + 1 − y,(12)

g4(y)= exp{e−1[Ei(1)− Ei(e1−y)]} + 1 − y,(13)

where

Ei(y)= –
∫ y

−∞
ez

z
dz, y > 0.(14)

See Abramowitz and Stegun (1966), Section 5.1.2. Similar statements to (9) hold
nonstrictly for the infinite case by taking limits.

Since the functions gk(y) are decreasing, Theorem 1.1 follows from Theo-
rem 1.3. The reason the functions gk(y) are given explicitly only for k = 1,2,3,4
is that further functions can be obtained only through numerical evaluation.
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2. Preliminaries. In the following, we make the nontriviality

ASSUMPTION 2.1. The value V n−1
k (X2, . . . ,Xn) cannot be attained with less

than k choices. That is,

V n−1
k (X2, . . . ,Xn) > V

n−1
k−1 (X2, . . . ,Xn).

(Clearly our results hold also without this assumption, once established with the
assumption.)

We also need the following definition.

DEFINITION 2.1. Let X2, . . . ,Xn be given, and k < n. The value bk =
bk(X2, . . . ,Xn) is called the indifference value for the k-choice problem if one
is indifferent between (i) picking bk as a first choice and being left with k − 1
choices among X2, . . . ,Xn, and (ii) not choosing bk and having k choices among
X2, . . . ,Xn. Thus,

V nk (bk,X2, . . . ,Xn)= V n−1
k (X2, . . . ,Xn)= V n−1

k−1 (X2, . . . ,Xn ∨ bk).(15)

The requirement that k < n in the definition of an indifference value is needed,
since for k ≥ n the trivial relation V nk (X1, . . . ,Xn)=EX∗

n holds.

Assumption 2.1 has the following important consequence.

PROPOSITION 2.1. For n > k, the function

φ(z)= V n−1
k−1 (X2, . . . ,Xn ∨ z)(16)

is strictly increasing in z for z ∈ [c,∞) for any c≥ 0 such that

P (max{X2, . . . ,Xn} ≤ c) > 0.(17)

In particular, under Assumption 2.1, φ(z) is strictly increasing in z for z ∈
[bk,∞), and the indifference value bk is unique and positive.

PROOF. Let z ≥ c. By (17), P (max{X2, . . . ,Xn} ≤ z) > 0, and there is
positive probability that the best k − 1 choice rule for (X2, . . . ,Xn ∨ z) will
choose z. With z < y, let Ṽ n−1

k−1 (X2, . . . ,Xn ∨ y) be the value of the optimal k− 1
choice rule for (X2, . . . ,Xn ∨ z) applied to (X2, . . . ,Xn ∨ y). Hence,

φ(y)= V n−1
k−1 (X2, . . . ,Xn ∨ y) ≥ Ṽ n−1

k−1 (X2, . . . ,Xn ∨ y)
> V n−1

k−1 (X2, . . . ,Xn ∨ z)= φ(z).

Furthermore, P (max{X2, . . . ,Xn} ≤ bk) > 0. If not, then for some j ≥ 2 we
must have P (Xj > bk) = 1. However, in that case one would use one of the k
choices to pick Xj rather than to pick X1 = bk , contradicting the definition of bk
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as an indifference value. Hence, bk is unique, as if b and b∗ are both indifference
values, with, say, b∗ < b, from (15) and (16) it would follow that φ(b)= φ(b∗),
contradicting the strict monotonicity of φ in [b∗,∞).

To see that bk is positive, note that bk = 0 would, by use of (15), contradict
Assumption 2.1. �

The interpretation of bk(X2, . . . ,Xn) in relation to the optimal k-choice rule for
X1, . . . ,Xn is as follows. When an X1 > bk(X2, . . . ,Xn) is observed, the optimal
action is to pickX1 as a first choice. When X1 = bk(X2, . . . ,Xn) one is indifferent
about pickingX1 or not, and ifX1 < bk(X2, . . . ,Xn) thenX1 should not be picked.

We introduce the following notation. Let

Dn
k (X1, . . . ,Xn)= EX∗

n − V nk (X1, . . . ,Xn),(18)

Rnk (X1, . . . ,Xn)= EX∗
n

V nk (X1, . . . ,Xn)
.(19)

In the following series of lemmas our aim is to replace the given sequence of
random variables X1, . . . ,Xn by another sequence X̂1, . . . , X̂n, say, so that

Rnk (X1, . . . ,Xn)≤Rnk (X̂1, . . . , X̂n).(20)

Since

Rnk (X1, . . . ,Xn)= Dn
k (X1, . . . ,Xn)

V nk (X1, . . . ,Xn)
+ 1,(21)

to prove (20) it suffices that

Dn
k (X1, . . . ,Xn)≤Dn

k (X̂1, . . . , X̂n) and V nk (X1, . . . ,Xn)≥ V nk (X̂1, . . . , X̂n).

Thus our lemmas will be stated in terms of the differences Dn
k and values V nk ,

rather than directly in terms of Rnk .

LEMMA 2.1. For k < n and any X1,X2, . . . ,Xn with bk = bk(X2, . . . ,Xn),

Dn
k (X1, . . . ,Xn)≤Dn

k (bk,X2, . . . ,Xn)(22)

and

V nk (X1, . . . ,Xn)≥ V nk (bk,X2, . . . ,Xn).(23)

PROOF. Let F be the distribution function of X1. Clearly,

E[X1 ∨ · · · ∨Xn] =
∫
E[x ∨X2 ∨ · · · ∨Xn]dF (x),
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and since the value x of X1 will be known before a decision whether to pick it
or not must be made,

V nk (X1, . . . ,Xn)=
∫
V nk (x,X2, . . . ,Xn) dF (x).

It follows that Dn
k (X1, . . . ,Xn) = ∫

Dn
k (x,X2, . . . ,Xn) dF (x), and hence it

suffices to show (22) and (23) for X1 = x, where x is any constant.

Case 1. x ≤ bk . Then

V nk (x,X2, . . . ,Xn)= V n−1
k (X2, . . . ,Xn)= V nk (bk,X2, . . . ,Xn).

Thus (23) holds, and since E[x ∨X2 ∨ · · · ∨Xn] ≤E[bk ∨ · · · ∨Xn], (22) holds.
Case 2. x > bk. Here (23) is trivial. Also, for any t2, . . . , tk ∈ Tn strictly greater

than one,

E[x ∨Xt2 ∨ · · · ∨Xtk ]
= E[bk ∨Xt2 ∨ · · · ∨Xtk ] +E[x − (bk ∨Xt2 ∨ · · · ∨Xtk )]+
≥E[bk ∨Xt2 ∨ · · · ∨Xtk ] +E[x − (bk ∨X2 ∨ · · · ∨Xn)]+.

(24)

Taking supremum over t2, . . . , tk first on the left and then on the right-hand side of
(24) yields

V nk (x,X2, . . . ,Xn)≥ V nk (bk,X2, . . . ,Xn)

+ E[x − (bk ∨X2 ∨ · · · ∨Xn)]+.(25)

On the other hand,

E[x ∨X2 ∨ · · · ∨Xn] = E[bk ∨X2 ∨ · · · ∨Xn]
+ E[x − (bk ∨X2 ∨ · · · ∨Xn)]+.(26)

Clearly (26) and (25) yield (22) for this case. �

LEMMA 2.2. LetX1, . . . ,Xn be given, bk = bk(X2, . . . ,Xn) and P (X1 = 0)=
1 − α. Let

X̃1 =
{

0, with probability 1 − α,
bk, with probability α.

Then

Dn
k (X1, . . . ,Xn)≤Dn

k (X̃1,X2, . . . ,Xn)(27)

and

V nk (X1, . . . ,Xn)≥ V nk (X̃1,X2, . . . ,Xn).(28)
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PROOF. Let X̂1 have the conditional distribution of X1, given X1 �= 0. Since

V nk (X1, . . . ,Xn)= (1 − α)V n−1
k (X2, . . . ,Xn)+ αV nk (X̂1,X2, . . . ,Xn)

and

Dn
k (X1, . . . ,Xn)= (1 − α)Dn−1

k (X2, . . . ,Xn)+ αDn
k (X̂1,X2, . . . ,Xn)

the result follows immediately from Lemma 2.1. �

LEMMA 2.3. Let X2, . . . ,Xn be given, n > k, and let bk = bk(X2, . . . ,Xn).
Let X̂i =XiI (Xi > bk), i = 2, . . . , n, and let b̂k = bk(X̂2, . . . , X̂n). Then

bk ≥ b̂k.(29)

PROOF. We have that

V n−1
k−1 (X̂2, . . . , X̂n ∨ bk)= V n−1

k−1 (X2, . . . ,Xn ∨ bk)= V n−1
k (X2, . . . ,Xn)

≥ V n−1
k (X̂2, . . . , X̂n)= V n−1

k−1 (X̂2, . . . , X̂n ∨ b̂k),
where the inequality is a consequence of Xi ≥ X̂i a.s. Inequality (29) now follows
by Proposition 2.1 for c= 0. �

That the above lemmas can be used together is the content of Lemma 2.4.

LEMMA 2.4. For anyX1, . . . ,Xn, n > k such that P (X∗
n = 0)= x, 0 ≤ x < 1,

there exist X̃1, . . . , X̃n and b̃k = bk(X̃2, . . . , X̃n) such that:

(i) P (X̃∗
n = 0)= x,

(ii) X̃i = X̃iI (X̃i > b̃k) for i = 2, . . . , n,
(iii) X̃1 takes the values b̃k and 0 only,
(iv) Dn

k (X1, . . . ,Xn) ≤ Dn
k (X̃1, . . . , X̃n) and V nk (X1, . . . ,Xn) ≥

V nk (X̃1, . . . , X̃n).

PROOF. Let bk = bk(X2, . . . ,Xn). By Lemma 2.2 we may without loss of
generality assume that X1 = 0 and bk with probabilities 1 − α and α, respectively.
Let X̂i = XiI (Xi > bk), i = 2, . . . , n. With α̂ given in (33) determined so that
P (X̂∗

n = 0)= x, let X̂1 = 0 and bk with probability 1 − α̂ and α̂, respectively. We
shall show that

Dn
k (X1, . . . ,Xn)≤Dn

k (X̂1, . . . , X̂n) and
V nk (X1, . . . ,Xn)≥ V nk (X̂1, . . . , X̂n).

(30)

Let b̂k = bk(X̂2, . . . , X̂n). Then by Lemma 2.3, bk ≥ b̂k and thus it follows that
X̂i = X̂iI (X̂i > b̂k), i = 2, . . . , n. Thus if we set X̃i = X̂i for i = 2, . . . , n then
b̃k = b̂k , and (ii) holds. Now let X̃1 = 0 and b̃k with probability 1 − α̂ and α̂,



k CHOICE PROPHET INEQUALITIES 979

respectively. Thus (i) and (iii) are satisfied. Now (iv) will follow from the first
inequality in (30) together with Lemma 2.2.

The second inequality in (30) follows since by the definition of bk and (15),

V n−1
k−1 (X̂2, . . . , X̂n ∨ bk)= V n−1

k−1 (X2, . . . ,Xn ∨ bk)
= V n−1

k (X2, . . . ,Xn)= V nk (X1, . . . ,Xn),
(31)

whereas clearly V n−1
k (X̂2, . . . , X̂n)≤ V n−1

k (X2, . . . ,Xn) and thus

V nk (X̂1, . . . , X̂n)= α̂V n−1
k−1 (X̂2, . . . , X̂n ∨ bk)+ (1 − α̂)V n−1

k (X̂2, . . . , X̂n)

≤ V nk (X1, . . . ,Xn),
(32)

which is the second inequality in (30). For any X1, . . . ,Xn let

X∗[2,n] =X2 ∨ · · · ∨Xn and X̂∗[2,n] = X̂2 ∨ · · · ∨ X̂n.
Let r = P (X∗[2,n] = 0) and s = P (0 < X∗[2,n] ≤ bk). Then x = P (X∗

n = 0) =
(1 − α)r , and also x = P (X̂∗

n = 0)= (1 − α̂)(r + s). Thus,

(1 − α̂)= (1 − α)r/(r + s) and α̂ = 1 − (1 − α)r/(r + s).(33)

Thus, using (33),

EX̂∗
n =EX̂∗[2,n] + bk(r + s)α̂ =EX̂∗[2,n] + bk(s + αr),(34)

whereas

EX∗
n = (1 − α)EX∗[2,n] + αE[X∗[2,n] ∨ bk]

= (1 − α)EX∗[2,n] + α{bk +E[X̂∗[2,n] − bk]+}
= (1 − α)EX∗[2,n] + α{bk +EX̂∗[2,n] − (1 − r − s)bk}
= (1 − α)EX∗[2,n] + αEX̂∗[2,n] + bkα(r + s)

≤ (1 − α)(EX̂∗[2,n] + sbk)+ αEX̂∗[2,n] + bkα(r + s)

= EX̂∗[2,n] + bk(s + αr)

= EX̂∗
n,

(35)

by (34). Hence, together with (iv), we have (30). �

3. The differential equation approach.

PROOF OF THEOREM 1.2. We prove Theorem 1.2 by induction on n. For
n= 1, we have

EX∗
1

V 1
1 (X1)

= 1< 2 − x = g1(x) for all 0 ≤ x < 1.

With x = P (X∗[2,n] = 0), assume as our induction hypothesis that

EX∗[2,n]
V n−1

1 (X2, . . . ,Xn)
< 2 − x.(36)
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Without loss of generality, we may assume the variables are as the X̃’s in
Lemma 2.4; letting

X1 =
{

0, with probability 1 − α,
b1, with probability α,

where b1 is the indifference value, that is, satisfies b1 = V n−1
1 (X2, . . . ,Xn), we

have

EX∗
n = b1αx +EX∗[2,n].

Since

V n1 (X1, . . . ,Xn)= V n−1
1 (X2, . . . ,Xn)= b1,

we have by (36),

EX∗
n

V n1 (X1, . . . ,Xn)
= b1αx +EX∗[2,n]

b1
< αx + 2 − x = 2 − (1 − α)x,

which is g1((1 − α)x). Now the induction in complete, since (1 − α)x =
P (X∗

n = 0).
To see that 2 − x is the best bound, let n = 2, 0 < µ ≤ 1, and X1 take the

values µ and 0 with probabilities 1 − x and x, respectively, and X2 take the values
1 and 0 with probabilities µ and 1 − µ, respectively. Then V 2

1 (X1,X2) = µ and
E(X∗

2)=µ+ (1 −µ)µ(1 − x) and thus

E(X∗
2)/V

2
1 (X1,X2)= 2 − x −µ(1 − x),

P (X∗
2 = 0)= (1 −µ)x.

Letting µ→ 0 we have E(X∗
2)/V

2
1 (X1,X2)→ 2 − x while P (X∗

2 = 0)→ x. �

Note that Theorem 1.2 shows that inequality (37) of Lemma 3.1 is satisfied for
k = 1 by g1(y)= 2 − y.

LEMMA 3.1. Suppose that for a fixed k there exists a function gk(y) such that,
for any n≥ k and any Y1, . . . , Yn, the inequality

EY ∗
n < gk(x)V

n
k (Y1, . . . , Yn)(37)

holds for x = P (Y ∗
n = 0) < 1. Then for any X2, . . . ,Xn, n ≥ k + 1, with Xi =

XiI (Xi > a), i = 2, . . . , n, for some constant a > 0, we have that
{(
gk(x)− 1 + x

)
a+EX∗[2,n]

}
/gk(x) < V

n
k+1(a,X2, . . . ,Xn),(38)

where x = P (X∗[2,n] = 0).
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PROOF. Let Yi = [Xi − a]+, i = 2, . . . , n, and Y ∗[2,n] = Y2 ∨ · · · ∨ Yn. Note
that EY ∗[2,n] = EX∗[2,n] − (1 − x)a. Thus, by (37), since P (Y ∗[2,n] = 0)= P (X∗[2,n]= 0)= x,

V nk+1(a,X2, . . . ,Xn) ≥ a+ V n−1
k (Y2, . . . , Yn) > a +EY ∗[2,n]/gk(x)

= a+ (
EX∗[2,n] − (1 − x)a

)
/gk(x)

= {(
gk(x)− 1 + x

)
a+EX∗[2,n]

}
/gk(x). �

(39)

We now derive an inequality for k + 1 choices. By Lemma 2.4 for n >
k + 1 we need only consider random variables such that X1 = bk+1 and 0 with
probabilities α and 1 − α, respectively, and Xi = XiI (Xi > bk+1) where bk+1 =
bk+1(X2, . . . ,Xn). For short, write V nk+1 = V nk+1(X1, . . . ,Xn). Then

V nk+1 = V nk+1(X1, . . . ,Xn)= V n−1
k+1 (X2, . . . ,Xn).(40)

From (38) with a = bk+1 we have

bk+1 <
gk(x)V

n
k+1 −EX∗[2,n]

gk(x)− 1 + x
,(41)

where x = P (X∗[2,n] = 0).
The following lemma is the key step in establishing Theorem 1.3.

LEMMA 3.2. Suppose that for a fixed k there exists a function gk(x) such
that for all n ≥ k and all X1, . . . ,Xn, EX∗

n < gk(x)V
n
k (X1, . . . ,Xn) for x =

P (X∗
n = 0), 0 ≤ x < 1, and let

hk(x)= gk(x)− 1 + x.(42)

Suppose that a solution hk+1 in [0,1) exists to

h′
k+1(x)=

hk+1(x)

hk(x)
,(43)

such that h′
k+1(x) is nondecreasing, and such that

gk+1(x)= hk+1(x)+ 1 − x > 1 for all 0 ≤ x < 1.(44)

Then

EX∗
n < gk+1(x)V

n
k+1(X1, . . . ,Xn)

for all n≥ k + 1 and all X1, . . . ,Xn, where x = P (X∗
n = 0).

(45)

PROOF. Again, by Lemma 2.4, we need only consider random variables
such that X1 = bk+1 and 0 with probabilities α and 1 − α, respectively, and
Xi =XiI (Xi > bk+1) where bk+1 = bk+1(X2, . . . ,Xn). We proceed by induction
on n for fixed k + 1. For our base case n= k + 1 the only requirement for (45) to
hold is that gk+1(x) > 1, for 0 ≤ x < 1, which is assumed. Now assume that (45)



982 D. ASSAF, L. GOLDSTEIN AND E. SAMUEL-CAHN

holds for some n−1 ≥ k+1, and considerX1, . . . ,Xn; let x = P (X∗[2,n] = 0). For
n≥ k + 2 we have, by use of (41),

EX∗
n = αxbk+1 +EX∗[2,n]

<
αx(gk(x)V

n
k+1 −EX∗[2,n])

gk(x)− 1 + x
+EX∗[2,n]

= αxgk(x)V
n
k+1 +EX∗[2,n](gk(x)− 1 + (1 − α)x)

gk(x)− 1 + x
.

The induction assumption and (40) yield that

EX∗[2,n] < gk+1(x)V
n−1
k+1 = gk+1(x)V

n
k+1,(46)

hence,

EX∗
n <

αxgk(x)V
n
k+1 + gk+1(x)V

n
k+1(gk(x)− 1 + (1 − α)x)

gk(x)− 1 + x

=
{
αx[gk(x)− gk+1(x)]

gk(x)− 1 + x
+ gk+1(x)

}
V nk+1.

(47)

Our induction will be complete if we can show that for any 0 ≤ x < 1 and any
0< α ≤ 1 the value in the curly bracket on the right-hand side of (47) is less than
or equal to gk+1(x − αx), since P (X∗

n = 0) = (1 − α)x = x − αx. Rearranging
terms, it suffices to show

gk+1(x)− gk+1(x − αx)

αx
≤ gk+1(x)− gk(x)

gk(x)− 1 + x
.(48)

We can simplify the approach somewhat by rewriting (48) in terms of the functions
hk and hk+1 using (42),

hk+1(x)− hk+1(x − αx)

αx
≤ hk+1(x)

hk(x)
.(49)

By the mean value theorem, the value of the left-hand side of (49) is h′
k+1(x− θx)

for some 0< θ < α, and hence, since by our assumption h′
k+1(x) is nondecreasing,

hk+1(x)− hk+1(x − αx)

αx
= h′

k+1(x−θx)≤ h′
k+1(x)=

hk+1(x)

hk(x)
. �

PROOF OF THEOREM 1.3. We show that the functions defined in (8) satisfy
the conditions of Lemma 3.2. First, since hk+1 in (8) is positive, it satisfies (43) of
Lemma 3.2 if and only if

u′
k+1(x)= e−uk(x)(50)

for

uj (x)= loghj (x), j = k, k + 1.(51)
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Since we want the smallest solution gk+1(x), we take hk+1(1) = 1 and therefore
have chosen in (8) the solution for which uk+1(1)= 0.

To verify the properties of these functions claimed in Theorem 1.3 we begin
by proving that u′

ke
uk < 1 for all k ≥ 1, for the functions uk defined in (8). The

case k = 1 for u1(x) = 0 is trivial, and we proceed by induction, assuming the
inequality is true for k. Then

u′
k(x) < e

−uk(x),

and integrating from x to 1 and using that uk(1)= 0 we derive that

exp
{
−

(
uk(x)+

∫ 1

x
e−uk(y) dy

)}
< 1,

which is equivalent to u′
k+1e

uk+1 < 1.
We can now verify the claim made in Theorem 1.3 that the functions gk defined

in (8) are strictly decreasing; we have g′
k < 0 if and only if h′

k < 1, if and only if
u′
ke
uk < 1.

Next we show that the functions h′
k+1 are nondecreasing. The inequality

u′
ke
uk < 1, or u′

k < e
−uk is equivalent to u′

k < u
′
k+1. Hence

h′
k

hk
<
h′
k+1

hk+1
,

which with (43) yields

h′′
k+1(x)=

h′
k+1hk − hk+1h

′
k

h2
k

> 0,

and that h′
k+1 is increasing.

Next, we need to show that gk+1(x) > 1 for 0 ≤ x < 1. Since gk+1 is strictly
decreasing, for 0 ≤ x < 1 we have

gk+1(x) > gk+1(1)= hk+1(1)= euk+1(1) = 1.

Last, Theorem 1.2 gives the base step for the induction with g1(x) = 2 − x, and
therefore h1(x)= 1, and u1(x)= 0. For k = 2 we have

u2(x)= −
∫ 1

x
1dy = −(1 − x), h2(x)= e−(1−x),

and so

g2(x)= e−(1−x) + 1 − x.

Then

u3(x)= −
∫ 1

x
e1−y dy = 1 − e1−x, h3(x)= exp(1 − e1−x)
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and

g3(x)= exp(1 − e1−x)+ 1 − x.

Thus

u4(x)= −e−1
∫ 1

x
ee
(1−y)

dy = e−1[Ei(1)− Ei(e1−x)],(52)

where Ei(y) is defined in (14).
In particular for x = 0 we get u4(0)= e−1[Ei(1)− Ei(e)] = −2.32337 . . . and

thus g4 = g4(0) = 1.0979 . . . as in Theorem 1.1. Further numerical integration
yields the values g5 = 1.0567 . . . , g6 = 1.0341 . . . .

We conclude the paper with Assertion 3.1, asserting that the bounds derived
here are strictly better than the bounds of Assaf and Samuel-Cahn (2000), for all
k ≥ 2. The proof follows by induction and can be found in Assaf, Goldstein and
Samuel-Cahn (2001).

ASSERTION 3.1. For k ≥ 2, gk(0) < (k + 1)/k.
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