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NORMAL CONVERGENCE PROBLEM? TWO MOMENTS AND A
RECURRENCE MAY BE THE CLUES1

By Boris Pittel

Ohio State University

To Irina, my wife of forty years

For various global characteristics of large size combinatorial struc-
tures, such as graphs, trees, one can usually estimate the mean and the
variance, and also obtain a recurrence for the generating function, with the
structure size n serving as the recursive parameter. As a heuristic principle
based on our experience, we claim that such a characteristic is asymptot-
ically normal if the mean and the variance are “nearly linear” in n. The
technical reason is that in such a case the moment generating function
(the characteristic function) of the normal distribution with the same two
moments “almost” satisfies the recurrence. Of course, an actual proof may
well depend on a magnitude of the relative error, and the latter is basically
determined by degree of nonlinearity of the mean and the variance. We pro-
vide some new illustrations of this paradigm. The uniformly random tree on
n-labelled vertices is studied. Using and strengthening the earlier results
of Meir and Moon, we show that the independence number is asymptoticaly
normal, with mean ρn and variance σ2n� �σ2 = ρ�1−ρ−ρ2��1+ρ�−1�; here
ρ ≈ 0�5671 is the root of xex = 1. As a second example, we prove that—in
the rooted tree—the counts of vertices with total progeny of various sizes
form an asymptotically Gaussian sequence. This is an extension of Rényi’s
result on asymptotic normality of the number of leaves in the random
tree. In both cases we establish convergence of the generating function.
Finally we show that the overall number of ways to extend, totally, the
tree–induced partial order is lognormal in the limit, with mean and vari-
ance roughly log n!−an and bn log n. The proof is based on convergence of
the cumulants of the generating function.

1. Introduction. It is not uncommon that a global characteristic of a
large random structure (like a graph) is asymptotically normal, even though
it seems unlikely that such a random variable, albeit additive in nature, can
be constructively represented as a sum of many independent, or even weakly
dependent, terms. In the author’s experience, the argument usually involves
sharp asymptotic estimates of the mean and variance, which turn out to be
nearly linear in n, the structure size, and a demonstration that the normal dis-
tribution with that same parameters very nearly satisfies a recurrence equa-
tion for the moment generating function (m.g.f.). (See, for instance, [18], [19],
[12], [6].) Such a demonstration appears to be possible largely due to the ex-
ponential form of the m.g.f. for the normal distribution and the asymptotic
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linearity of the mean and the variance. In fact, sometimes the simplest way
to estimate the first two moments sharply is by making a m.g.f. of a nor-
mal distribution fit closely the recurrence for the actual m.g.f.; see [18], for
example.

In this paper we use the approach to analyze some characteristics of the
uniformly random tree on n vertices labelled 1�2� � � � � n. One such parameter,
Xn, is the cardinality of a largest independent subset of vertices of the random
tree. [A set of vertices is called independent (stable) if no two of them are
adjacent.] To introduce other parameters we transform our random tree into
the random rooted tree by marking uniformly at random one of its vertices.
Let us orient the tree edges away from the root. The orientation induces a
partial order (≺) on the vertex set, so that i ≺ j iff j is a descendant of i.
Introduce Zn = �Znk	1≤k≤n, where Znk is the number of vertices each having
total progeny (including itself) of size k; Znn = 1 and Zn1 is the number of
leaves. Combinatorially, Znk is the total number of filters of cardinality k in
our partially ordered set. We also define Yn as the the overall number of ways
to extend the partial order to a total order. It is known ([9], Chapter 5, Exercise
20) that

Yn = n!∏n
k=1 k

Znk
�(1.1)

In a nutshell, our aim is to show thatXn and logYn are asymptotically normal
and that Zn is asymptotically Gaussian.

Meir and Moon [13] were the first to study the independence number Xn.
They proved that

EXn = ρn+O(n1/2)� ρeρ = 1(1.2)

and that

Xn

n
→ P ρ� n→ ∞�(1.3)

Later they obtained similar results for a broader class of random trees known
as “simple trees” and also for unlabelled random trees [14], [15], [16]. A sim-
ple tree (on n-labelled vertices) appears naturally when one considers the
“genealogical” tree of a branching process, conditioned on the event “ tree size
is n.” If the immediate family size distribution is Poisson, that tree is uni-
form. This important case is the subject of our present study. The techniques
we develop can be used, however, for any simple tree.

Here are some preliminaries from [13] which we will need in this paper.
Let T be a rooted tree, and let X�T� denote its independence number. If
every independent set of X�T� vertices contains the root, T is classified as
a type I tree; all other trees become type II trees. Introduce gnk (fnk� resp.)
the total number of rooted trees T type I (type II, resp.) on n vertices such
that X�T� = k; 1 ≤ k ≤ n. Then tnk = gnk + fnk is the total number of
the rooted trees with X�T� = k; gn = ∑n

k=1 gnk (fn = ∑n
k=1 fnk, resp.) is the
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total number of the rooted trees type I (type II, resp.). In particular,
∑n
k=1 tnk =

nn−1. Set

t�z� x� = ∑
n≥1

( n∑
k=1

tnkz
k

)
xn

n!
�

G�z� x� = ∑
n≥1

( n∑
k=1

gnkz
k

)
xn

n!
�

F�z� x� = ∑
n≥1

( n∑
k=1

fnkz
k

)
xn

n!
�

(All three series converge for �z� ≤ 1� �x� ≤ e−1, since

∑
n≥1

nn−1e−n

n!
= 1��

Lemma.

G = zxeF�(1.4)

F = x�eG − 1�eF�(1.5)

The proof of these remarkable identities is based on an ingenious obser-
vation that a rooted tree T is type I iff all the rooted subtrees T1� � � � �Tj
obtained by the deletion of the root of T are type II, in which case

X�T� = 1 +
j∑
i=1

X�Tj��

The summand 1 is dropped when T is type II.

Note 1. Let f̃nk be the total number of rooted trees type II such that there
is at least one largest independent set which does contain the root. For such
a tree T, exactly one of the subtrees T1� � � � �Tj is type I. So, introducing

F̃�z� x� = ∑
n≥1

(
n∑
k=1

f̃nkz
k

)
xn

n!
�

instead of (1.5) we obtain

F̃ = xGeF�(1.6)

It follows from this lemma that g�x� = G�1� x� satisfies

geg = � �x��(1.7)
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where � �x� = G�1� x� + F�1� x� is the well-familiar tree function � �x� =∑
n≥1 n

n−1xn/n!� ��x� ≤ e−1�, known to satisfy

t = xet�(1.8)

Since each tree on n vertices can be rooted in the same number of ways, Xn

has the same distribution as X�T�, where T is the uniformly random rooted
tree on n vertices. It should be clear then that

t�z� x� = ∑
n≥1

E
(
zXn

)
nn−1x

n

n!
�

So, differentiating (1.4), (1.5) with respect to z at z = 1 and adding the results
we get

∑
n≥1

�EXn�nn−1x
n

n!
= g�x�

1 − � �x� �(1.9)

the relation which led Meir and Moon [13] (via repeated application of La-
grange’s inversion formula) to

EXn =
n∑
k=1

(
n
k

)(−k
n

)k−1

�!��

[The authors attribute the lemma and (1.8) to de Bruijn.] The relation (1.9)
and an analogous identity for the second factorial moment E�Xn�2, namely

∑
n≥1

(
E�Xn�2

)
nn−1x

n

n!
= � g2

�1 − � �3
+ 2� g2

�1 + g��1 − � �2
�(1.10)

were used in [13] to prove the key relations

EXn = nρ+O�n1/2�� E�Xn�2 = n2ρ2 +O�n3/2��(1.11)

Here are the results of the present paper. We sharpen (1.11) to

EXn = nρ+ ρ2�ρ+ 2�
2�ρ+ 1�3

+O(n−1)�(1.12)

E�Xn�2 = n2ρ2 − nρ(1 − �ρ+ 1�−3)+O�1��(1.13)

thus

VarXn = nσ2 +O�1��

σ2 = ρ�1 − ρ− ρ2�
�ρ+ 1�2

�
(1.14)

The total number of the rooted trees type I is given by

gn = nn−1 ρ

ρ+ 1
+ nn−2ρ

2�ρ+ 4�
2�ρ+ 1�5

+O(nn−3)�(1.15)
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therefore, since fn = nn−1 − gn,

P�T is type I	 = ρ

ρ+ 1
+O(n−1)�

P�T is type II	 = 1
ρ+ 1

+O(n−1)�(1.16)

Using (1.6) we show that f̃n =
∑n
k=1 f̃nk (see Note 1) is asymptotic to 2nn−1ρ2/

�1+ρ�. So, conditioned on the event �T is type II	, the probability that at least
one largest independent set contains the root ofT is asymptotic to 2ρ2 ≈ 0�643.

Our main result for the independence number is that, conditioned on the
event �T is type I	 (�T is type II	 resp.), X�T� is asymptotically Gaussian
with mean nρ and variance nσ2, with σ2 defined in (1.14). This means that
the tree T’s type and �X�T� − nρ�/�σn1/2� are asymptotically independent.
Consequently, Xn is also Gaussian in the limit, with parameters ρn and σ2n.

As Meir and Moon notice, any result on X�T� can be translated into the
related statement for M�T�, the maximum matching number of the tree T,
because X�T� +M�T� = n. Thus we obtain that in the limit the distribution
of M�T� is the normal � �n�1 − ρ�� nσ2�.

Note 2. (i) It is well known that, for c < 1, the uniformly random graph
G�n� cn/2� on n vertices with cn/2 edges is, with high probability, a forest plus
a few unicyclic components bounded in size. This allowed us [19] to use the
Moon–Meir results [13] to prove that the independence number In is asymptot-
ically normal with mean nα�c� and variance nβ�c�. Because of the connection
between the independence number and the matching number of a tree, the
matching number Mn of the random graph is also normal in the limit, with
mean n�1 − α�c�� and the same variance nβ�c�.

(ii) Dyer, Frieze and Pittel [6] studied an average-case performance of two
greedy matching algorithms for G�n� cn/2� and random trees. It was shown
that in each case the resulting matching number is asymptotically Gaussian,
with both mean and variance linear in n. For a (statistically) better algorithm
out of those two, in the case of random trees the matching number is close to
n�e− 1�/�2e− 1� ≈ 0�387n, which is about 89 percent of the likely maximum
M�T��≈ �1 − ρ�n�.

(iii) The salient feature of the greedies in [6] is that at each step an edge
to be added to the current matching set is chosen at random among all edges
present. Karp and Sipser [8] (see also [3]) designed and studied a more elab-
orate algorithm for the graphs that turns out to be asymptotically optimal
with high probability for the random graph G�n� cn/2�. Mn was shown to be
asymptotic, in probability, to f�c�n, [f�c� = 1 − α�c�, for c < 1]. It was conjec-
tured in [3] thatMn remains asymptotically normal for every c > 0. One of the
rules is “ include into the matching set an edge incident to a randomly chosen
pendant vertex, if any is present.” Such an algorithm applied to a tree would
certainly determine M�T� precisely. Is there a version of this algorithm that
can be used for an alternative proof of asymptotic normality of M�T� based
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on a recurrence? Any such recurrence may not be simpler than those we use
in this paper, since after the very first step of any algorithm from this class
we end up, usually, with a forest.

Turn to Zn and Yn. Introduce

p�k� = kk−1e−k

k!
� q�k� = kke−k

k!
�(1.17)

(�p�k�	 is the probability distribution of the total population in the critical
Poisson branching process.) We will prove that the sequence �n−1/2�Znk −
np�k��	k≥1 is Gaussian in the limit, with zero means and covariance function,

K�j� k� = p�j�(q�k− j� − �j+ k�p�k�)� j ≤ k�(1.18)

As for Yn, the number of total orders on the vertex set compatible with the
tree-induced partial order, we will prove that logYn is asymptotically normal
with mean log n! − an and variance bn log n, where

a = ∑
k≥1

p�k� log k� b = 4 log
e

2
�(1.19)

We prove this result using (1.1). The double series
∑
j� k K�j� k� log j log k di-

verges, which makes the formula Var logYn ≈ bn log n less surprising. This
divergence is also the reason why we will have to prove the normality of logYn

separately, not directly invoking the limiting distribution of Zn. What is more,
in contrast to Xn and Zn, we prove convergence of logYn by showing conver-
gence of its scaled cumulants (semiinvariants) rather than of its m.g. function.
However, it is a properly chosen recurrence for the m.g. function that makes
the cumulants an efficient tool.

The curious reader may wish to show, via (1.1) and the exponential gener-
ating functions, that

EYn = �n!�2

nn
� E Y2

n = 2�n!�3

2nnn
�

(That EY2
n � E2Yn explains why we need to deal with logYn in order to

obtain the distributional results.)

Note 3. (i) The asymptotic normality ofZn1 was established by Rényi [21].
Later Steele [22] proved, via Harper’s method, a local limit theorem forZn1, in
the more general case of a Gibbs’ distributed random tree. Devroye [5] proved,
using a different approach, the limit theorems for Znk in a case of a random
binary search tree.

(ii) Alon, Bollobás, Brightwell and Janson [2] proved an analogous result
for a partial order induced by the random acyclic graph. (In their case, the
variance was asymptotically linear in n, the number of vertices.)

(iii) Conceptually close is a study of the total number of the Young tableaux
for a random diagram (frame) of size n, [23] and [20]. We conjectured that the
logarithm of this number is also asymptotically normal, with variance of order
about n3/2.
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(iv) Fill [7] obtained the asymptotics of E logYn and Var logYn for a binary
search tree, either grown from a random permutation of n keys, or uniform.
Very recently Meir and Moon [17] did the same for a broad class of random
simple trees, of which the uniformly random tree on n-labelled vertices and the
uniform binary tree are the special cases. Fill also proved asymptotic normality
of logYn for the tree from the random permutation.

2. Independence number.

2.1. Asymptotics for tree counts, expectations and variances. Consider first
EXn and E�Xn�2.

Observe that �zez�′ = 0 at z = −1 only. Therefore the relation heh = t
defines a function h�t� analytic in t plane with a cut �t = u + iv v = 0� u ≤
−e−1	. Clearly, h�1� = ρ where ρeρ = 1, and elementary computations show

h′ = h

t�1 + h� � h′′ = −�h′�2 2 + h
1 + h�

h′′′ = (h′)3 1 + 2�2 + h�2

�1 + h�2
�

(2.1)

so that

h′�1� = ρ

ρ+ 1
� h′′�1� = −ρ

2�ρ+ 2�
�ρ+ 1�3

�

h′′′�1� = ρ3
[
1 + 2�ρ+ 2�2

]
�ρ+ 1�5

�

(2.2)

Since �te−t� > e−1 for all t from the cut, and∣∣� �x�e−� �x�∣∣ = �x� ≤ e−1�

for �x� ≤ e−1, from (1.7) we obtain that g�x� = h�� �x�� for �x� ≤ e−1. Introduce

� = {x = te−t t = reiθ� θ ∈ �−π�π�}�
it is easy to see that, for rer < e−1, � is a simple closed contour in the complex
plane x which encloses the origin and lies within the circle �x �x� ≤ e−1	. By
(1.9) and Cauchy’s integral formula (applicable to any such contour), we have

nn−1

n!
EXn = �2πi�−1

∮
�

g�x�
xn+1�1 − � �x�� dx�

or, substituting x = te−t, and using �
(
te−t

) = t for �t� ≤ r,

nn−1

n!
EXn = �2πi�−1

∮
�t�=r

h�t�e−t�1 − t�
�1 − t��te−t�n+1

dt

= �2πi�−1
∮
�t�=r

h�t�e−t
�te−t�n+1

dt�

(2.3)
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With the factor 1 − t in the denominator gone, we switch to a new contour
of integration. It consists of the arc L = �t = eiθ − π < θ < π	 traversed
counterclockwise and the cut �t = u+ i0  u ∈ �−1�−e−1�	, which is traversed
twice, from left to right along the upper shore of the cut, and from right
to left along the lower shore of the cut. On the cut, the integrand is of order
O�exp�n−n/e�� at most. Consider L. Setting t = eiθ, and using 1−cos θ ≥ aθ2�
a > 0, ∣∣∣∣

∮
�θ�≥n−1/3

h�t�e−t
�te−t�n+1

dt

∣∣∣∣ ≤ const en
∫
�θ�≥n−1/3

exp
(−n�1 − cos θ�)dθ

= O
(
exp�n− an1/3�)�

(2.4)

For �θ� ≤ n−1/3 we pick an integer l and estimate

�2πi�−1
∫
�θ�≤n−1/3

=
l∑

j=0

h�j��1�
j!

Inj +O
(
Rnl

)
�

Inj = �2πi�−1
∫
�θ�≤n−1/3

�t− 1�j e
nt

tn+1
dt�

Rnl = en
∫
�θ�≤n−1/3

∣∣1 − eiθ∣∣l+1
exp

(−anθ2�dθ�

(2.5)

Here [cf. (2.4)],

Inj = �2πi�−1
∫
L
�t− 1�j e

nt

tn+1
dt+O(exp�n− an1/3�)

= �tn�(�t− 1�jent)+O(exp�n− an1/3�)
=

j∑
k=0

�−1�j−k
(
j
k

)
nn−k

�n− k�! +O
(
exp�n− an1/3�)�

(2.6)

and

Rnl ≤ en
∫ ∞

−∞
�θ�l+1 exp�−anθ2�dθ

= O
(
enn−�l+2�/2)�(2.7)

Combining (2.3) and (2.5), (2.6), we get

nn−1

n!
EXn =

l∑
j=0

h�j��1�
j!

j∑
k=0

�−1�j−k
(
j
k

)
nn−k

�n− k�!
+O(enn−�l+2�/2)�

(2.8)

Choosing here l = 4 and using (2.2) we obtain (1.12). [The contributions of the
terms h�3��1�� h�4��1� turn out to be absorbed by the remainder term O

(
n−1

)
in (1.12).]
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Analogously to (2.3), it follows from (1.10) that

nn−1

n!
E�Xn�2 = �2πi�−1

∮
�t�=r

[
th2�t�
�1 − t�3

+ 2th2�t�
�1 + h�t���1 − t�2

]
d�te−t�
�te−t�n+1

�(2.9)

The relation looks quite intimidating. Fortunately, one can observe that, ac-
cording to (2.1), the expression in the square brackets equals

t

1 − t
d

dt

(
h2�t� t

1 − t
)
�

Plugging this into (2.9) and integrating by parts, we get a much simpler for-
mula,

nn−1

n!
E�Xn�2 = n�2πi�−1

∮
�t�=r

h2�t�
�te−t�n dt�

With this relation at hand, we proceed as in the case of EXn and get easily
(1.13). Similarly, (1.15) [whence the relations (1.16)] follows from

gn
n!

= �xn�g�x� = �2πi�−1
∮
�

g�x�
xn+1

dx

= �2πi�−1
∮
�t�=r

h�t��1 − t�e−t
�te−t�n+1

dt�

[Unlike (2.3) and (2.9), however, the contribution of h�3��1�-term influences the
second leading term in (1.15) and thus cannot be neglected, a very consequen-
tial fact brought to my attention by a thoughtful reviewer.]

Let f̃n = ∑n
k=1 f̃nk stand for the total number of rooted trees type II with

the root in at least one largest independent set (i.e., the root being “usable,”
so to speak). By (1.6) and (1.4), f̃n is given by

f̃n
n!

= �xn�g2�x� = �2πi�−1
∮
�t�=r

h2�t��1 − t�e−t
�te−t�n+1

dt�

This results in

f̃n = nn−1 2ρ2

ρ+ 1
+O(nn−2)�

Since by (1.15),

fn = nn−1 − gn = nn−1 1
ρ+ 1

+O(nn−2)�
we have proved that

P
{
root is usable � tree is type II

} = f̃n
fn

→ 2ρ2�
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Let T�1� (T�2�� resp.) denote the uniformly random rooted tree of type I (type II,
resp.), and let X�i�

n =X�T�i��� i = 1�2. From the definitions of the generating
functions F and G we see that

∑
n≥1

fn EX�2�
n
xn

n!
= F′

z�1� x��
∑
n≥1

fn E
[
X

�2�
n

]
2

xn

n!
= F′′

z�1� x��

Very straightforward, but tedious, computations, based on (1.4), (1.5), show
that

F′
z�1� x� =

g�

�1 + g��1 − � � �

F′′
z�1� x� =

�

1 − �

[
� �2g2 + g3�

�1 − � ��1 + g�3
+ g2

�1 + g��1 − � �2

]
�

Like the square brackets part of (2.9), it can be seen that the expression in
the square brackets equals [after setting � = t and g = h�t�] to

d

dt

(
t2

1 − t
h2�t�

1 + h�t�
)
+ h2�t�

1 + h�t� �

So, following the same script, we eventually get

fn
n!

EX�2�
n = nn

n!
ρ

ρ+ 1
+ nn−1

n!
−ρ�ρ2 + 2�
2�ρ+ 1�5

+O
(
nn−2

n!

)
�

fn
n!

E
[
X

�2�
n

]
2 = nn+1

n!
ρ2

ρ+ 1
− nn

n!

[
3�ρ3 + 2ρ2�
2�ρ+ 1�3

+ ρ3 + 4ρ2

2�ρ+ 1�5

]

+O
(
nn−1

n!

)
�

(2.10)

[The reviewer alerted me to a possibility of error in (2.10), and indeed the
coefficient by nn−1/n! in the first equation needed an important correction.]

Then we get analogous formulas for the moments of X�1�
n via

gn EX�1�
n + fn EX�2�

n = nn−1 EXn�

gn E�X�1�
n �2 + fn E�X�2�

n �2 = nn−1 E�Xn�2
and (1.12), (1.13). Using (1.15), we arrive finally at

EX�1�
n = nρ+ ρ3 + 2ρ2 + 2

2�1 + ρ�3
+O�n−1��

EX�2�
n = nρ+ ρ3 + 2ρ2 − 2ρ

2�1 + ρ�3
+O�n−1��

(2.11)
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and

E
[
X

�1�
n

]
2 = n2ρ2 + n

[
−ρ

2�3 + 2ρ�
2�1 + ρ�2

+ ρ�ρ+ 4��1 − ρ�
2�1 + ρ�3

]
+O�1��

E
[
X

�2�
n

]
2 = n2ρ2 + n

[
−3ρ2�2 + ρ�

2�1 + ρ�2
− ρ2�ρ+ 4��1 − ρ�

2�1 + ρ�3

]
+O�1��

The difference between the expectations isO�1�, but the second-order factorial
moments differ by constn. However, using

VarX = E�X�2 + EX− �EX�2�

we find after some algebra that, contrary to our intuition (and the initial
formulas),

VarX�i�
n = σ2n+O�1�� i = 1�2�

σ2 = ρ�1 − ρ− ρ2�
�1 + ρ�2

�
(2.12)

the same σ2 as in the formula (1.14) for VarXn!

2.2. Asymptotics for distributions. Introduce

gn�z� =
n∑
k=1

zkgnk� fn�z� =
n∑
k=1

zkfnk�

Probabilistically,

gn�z� = gn E zX
�1�
n � fn�z� = fn E zX

�2�
n �

where gn and fn is the total number of trees type I and type II, respectively
(X�2�

1 = 0, by definition).
Consider X�2�

n first. Since fν�z�/ν! = �xν�F�z� x� and (see the lemma)

F�z� x� = x
(
exp

(
zx exp

(
F�z� x�))− 1

)
exp

(
F�z� x�)�

we have a recurrence for fν�z�: f1�z� = 0 and for ν ≥ 2�

fν�z�
ν!

= �xν�
(
x
∑
j≥1

�zxeF�j
j!

eF
)

= �xν�
(
x
∑
j≥1

zjxj

j!
e�j+1�F

)

=
ν−1∑
j=1

zj

j!

∑
k≥0

[
xν−1−j]�j+ 1�kFk

k!

= zν−1

�ν − 1�! +
ν−2∑
j=1

zj

j!

∑
k≥1

�j+ 1�k
k!

∑
l1+···+lk=ν−1−j

k∏
t=1

flt
�z�

lt!
�

(2.13)
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F = F�z� x�. In particular, setting z = 1,

fν
ν!

= 1
�ν − 1�! +

ν−2∑
j=1

1
j!

∑
k≥1

�j+ 1�k
k!

∑
l1+···+lk=ν−1−j

k∏
t=1

flt

lt!
�(2.14)

Notice that, for ν fixed,

fν�eu� = fν E exp�uXν� = fν
(
1 + uaν + u2bν/2 +O(�u�3))�

aν = EX�2�
ν � bν = E

(
X�2�
ν

)2
�

So, setting z = eu in (2.13), expanding both of its sides in powers of u and
equating first the coefficients by u and second by u2 we obtain the recurrencies
for aν and bν, the latter involving aµ� µ ≤ ν� of course. We do not have to solve
those complicated recurrencies though, since the asymptotics of an� bn have
already been obtained in Section 2a. Instead we observe that

φν�u� = exp
(
uaν + u2 VarX�2�

ν /2
) = 1 + uaν + u2bν/2 +O(�u�3)�

as well. Therefore if in (2.13) we replace fν�eu� by hν�u� = fνφν�u�, the
ratio of the sides is 1 +O��u�3�, as u→ 0. The combination of the recurrence
and “almost linearity” of EX�2�

ν � VarX�2�
ν will be seen as a key reason why,

uniformly for ν ≤ n,

E exp
(
vX

�2�
ν

n1/2

)
= �1 + o�1�� exp

(
vEX�2�

ν

n1/2
+ v2 VarX�2�

ν

2n

)
�(2.15)

for a fixed v ∈ �. By a theorem due to Curtiss [4], the relation (2.15) (with
ν = n) implies that

X
�2�
n − an

Var1/2X
�2�
ν

⇒ � �0�1��

To fulfill the program, we must find a way to sharply estimate fν�u� for u =
O�n−1/2� in a full diapason of ν, from 1 to n.

Our first step is the following lemma.

Lemma 1. Let sn = �n/ log log n�1/2. The overall contribution to the sum in
(2.14) made by the summands with k + j ≥ sn is O��fν/ν!� exp�−c√n�� for
every positive c > 0, uniformly for ν ∈ �3� n�.



1272 B. PITTEL

Proof. Motivated by the derivation of (2.14), we introduce F�x� = F�1� x�
=∑ν≥1 fνx

ν/ν! and compute[
xνy

j
1y

k
2

](
x
(
exp

(
xy1 exp�y2F�x��)− 1

)
exp�y2F�x��

)

= [xνyk2]
(
x

(
x exp�y2F�x��)j

j!
exp�y2F�x��

)

= [xνyk2]
(
xj+1 exp�y2F�x��j+ 1��

j!

)

= [xν](xj+1

j!

[
yk2
]

exp�y2F�x��j+ 1��
)

= [xν](xj+1

j!
Fk�x�
k!

�j+ 1�k
)
= �j+ 1�k

j!k!

[
xν−1−j]Fk�x�

= �j+ 1�k
j!k!

∑
l1+···+lk=ν−1−j

k∏
t=1

flt

lt!
�

This is precisely the generic �k� j�th term of the sum in (2.14). Consequently
the sum of the terms with j+ k = r (r given), equals

aνr =
[
xνyr

](
x
(
exp�xyeyF�x�� − 1

)
exp�yF�x��

)
�(2.16)

So, using the idea of Chernoff ’s method, we bound the sum of the terms with
j+ k ≥ sn (denote it Snν) as follows: ∀x ∈ �0� e−1�� ∀y > 1,

Snν ≤
x exp�yF�x�� exp�xyeyF�x��

xνysn
≤ x exp�y� �x�� exp�xyey� �x��

xνysn
�

Selecting x = e−1 and using � �e−1� = 1, we have

Snν ≤ eν
ψeψ

ysn
� ψ = yey−1�

To get the most out of this bound we need to select y that (almost) minimizes
it. A near optimal choice turns out to be y = log sn − 2 log log sn, for which

Snν ≤ exp
(
ν − �1/2�n1/2�log log n�1/2)�

It remains to recall that fν is of order νν−1, so that fν/ν! is of order eν/ν3/2. ✷

The next estimate shows that when the generic �k� j�th term in (2.14) is
multiplied by �j+ k�3, the new sum remains of essentially the same order.

Lemma 2. Using the notation (2.16),

∑
r≥1

r3aνr = O

(
fν
ν!

)
�(2.17)
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Proof. According to (2.16),∑
r≥1

r3aνr ≤
∑
r≥1�r+ 1�3aνr

= [xν�(y ∂

∂y

)3 ∑
ν≥1� r≥1

aνrx
νyr+1

∣∣∣∣
y=1

= [xν](y ∂

∂y

)3[
xy exp�yF�x��(exp�xy exp�yF�x��� − 1

)]∣∣∣∣
y=1

≤ �xν�
(
y
∂

∂y

)3

exp�2H�x�y��
∣∣∣∣
y=1
�

(2.18)

where

H�x�η� = xη exp�η� �x���
and �x� ≤ e−1. Since � �x� = xe� �x�,

H�x�η� = ηx1−η� η�x��(2.19)

Notice that

y
∂

∂y
H�x�y� = xy

[
exp�y� �x�� + y� �x� exp�y� �x��]

≺ xy
[
exp�y� �x�� + exp�2y� �x��]

≺ x�2y� exp�2y� �x��
=H�x�2y��

(2.20)

[Given two power series B�x�y� = ∑
ν�r≥1 bνrx

νyr� C�x�y� = ∑
ν� r≥1 cνrx

νyr

with nonnegative coefficients, we write B�x�y� ≺ C�x�y� if bνr ≤ cνr for all ν�
r ≥ 1.] Applying (2.20) repeatedly to (2.18), and using (2.19) at the end, we get∑

r≥1

r3aνr ≤ 20
[
xν
]

exp�2H�x�1��(H3�x�2� +H�x�2�H�x�4� +H�x�8�)
= 160

([
xν+5

]
� 8�x� + [xν+6

]
� 8�x� + [xν+9

]
� 10�x�)

= O

(
νν−1

ν!

)

= O

(
fν
ν!

)
�

[For the penultimate estimate, we have used a well-known formula(∑
m≥1

xm
mm−1

m!

)µ
= ∑

m≥1

xm
µmm−µ−1�m�µ

m!
�

which is essentially equivalent to the Cayley formula for the number of forests
of µ trees on m vertices, each tree containing one of specified µ vertices.] ✷
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Lemmas 1 and 2 allow us to show that our preliminary estimates done for
a fixed ν hold also for all ν ≤ n, if u = O

(
n−1/2

)
.

Lemma 3. Let z = eu� u = vn−1/2� v �= 0 being fixed. Let cn → ∞� cn =
O�n1/2�. Denote by � ±

ν �u� the right-hand side of (2.13) with fl�z� replaced by

h±
l �u� = flφ

±
l �u��

φ±
l �u� = exp

(
ual + u2 VarX�2�

l /2 ± cn�u�3�l − 1�)�
Then for all sufficiently large n and for all ν ∈ �4� n�,

h+
ν �u�
ν!

≥ � +
ν �u�� h−

ν �u�
ν!

≤ � −
ν �u��

Proof. Consider, for instance, the plus case. Let us have a look at the
u-dependent factors of a generic term in the sum in � +

ν �u�. By the definition
of h+

l �u�, for l1� � � � � lk ≥ 1 such that
∑k
t=1 lt = ν − 1 − j, we have

eju
k∏
t=1

h+
lt
�u� = exp

[
u

(
j+

k∑
t=1

alt

)
+ �u2/2�

k∑
t=1

VarX�2�
lt

+cn�u�3�ν − 1 − j− k�
] k∏
t=1

flt
�

Here, applying (2.11) to each EX�2�
lt

�= alt
� and (2.12) to VarX�2�

lt
,

k∑
t=1

alt
= ρ

k∑
t=1

lt + O�k� = ρ�ν − 1 − j� + O�k�

= aν +O�j+ k��
k∑
t=1

VarX�2�
lt

= σ2
k∑
t=1

lt + O�k� = σ2�ν − 1 − j� + O�k�

= VarX�2�
ν +O�j+ k��

So, recalling the definion of h+
ν �u�� φ+

ν �u�,

eju
k∏
t=1

h+
lt
�u� = φ+

ν �u�
( k∏
t=1

flt

)

× exp
(
uRν�j� lll� + �u2/2��ν�lll� − cn�u�3�j+ k�)�

(2.21)
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where cn�j + k� = O�n3/2�, and Rν�j� lll�� �ν�lll� = O�j + k� = O�n� are de-
fined by

Rν�j� lll� = j+
k∑
t=1

alt
− aν�

�ν�lll� =
k∑
t=1

VarX�2�
lt

− VarX�2�
ν �

Since u = O�n−1/2� and cn = O�n1/2�, the exponent is of order O�n1/2�. Then,
by Lemma 1, the total contribution to � +

ν �u� coming from the terms with
j+ k ≥ sn is at most

φ+
ν �u�Snν exp

(
O�n1/2�) = O

(
h+
ν �u�
ν!

exp�−dn1/2�
)
�(2.22)

for every d > 0.
Consider now the u-dependent factors of a generic term in � +

ν �u� with
j + k ≤ sn. Since in this case j + k = o�n1/2�, the exponent in (2.21) is o�1�.
So we can expand the exponential function and get for this term a formula,

φ+
ν �u�

(
k∏
t=1

flt

)(
1 + uRν�j� lll� + �u2/2�(R2

ν�j� lll� +�ν�lll�
)

−cn�j+ k��u�3 +O(�u�3�j+ k�3))�
(2.23)

[For the attentive reader, the remainder term comes from an intermediate
bound O

(�u�3�j + k�3�1 + cn�u��
)
, and the condition cn = O�n1/2�.] We notice

upfront that by Lemma 2 the contribution of the remainder term to � +
ν �u�,

even when the restriction j+ k ≤ sn is dropped, is

O

(
�u�3fνφ

+
ν �u�
ν!

)
= O

(
�u�3h

+
ν �u�
ν!

)
�(2.24)

Furthermore, by Lemma 1, the overall contribution of the explicit terms in
(2.23) for j+ k > sn is (for every d > 0) of order

φ+
ν �u�

fν
ν!

(
1 + �u�ν + �u�2ν2) exp�−d√n�

= O

(
h+
ν �u�
ν!

exp�−d′n1/2�
)

∀d′ < d�
(2.25)

It remains to evaluate the overall contribution of the explicit terms, with the
restriction j+ k ≤ sn being dropped. First, the contribution of −cn�u�3�j+ k�
is, by (2.14), at least

−2cnα�u�3
h+
ν �u�
ν!

� α = 1 − max
j≥4

j

fj
> 0�

which certainly outweighs, for n large enough, the bound given in (2.24). More-
over, since �u�3 being of order n−3/2 dwarfs exp�−δn1/2�� �δ > 0�, the above
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expression absorbs the remainder terms in (2.22) and (2.25). So, for those
n’s, the overall contribution of �u�3 plus those remainder terms is at most
−cnα�u�3h+

ν �u�/ν!.
Let us compute the unrestricted sum of the lower (zero, first, second) de-

gree terms. Like hl�u�, the functions h±
l �u� [substituted for fν�eu�] satisfy, for

a fixed ν, (2.13) within a factor 1 + O
(�u�3). So, dividing both sides of this

approximate equality by φ+
ν �u�, we have

fν
ν!

≈ exp
(
u�ν − 1 − aν� − u2 VarX�2�

ν /2
)

�ν − 1�! +
ν−2∑
j=1

1
j!

∑
k≥1

�j+ 1�k
k!

×∑
lll

( k∏
t=1

flt

lt!

)(
1 + uRν�j� lll� + �u2/2�(R2

ν�j� lll� +�ν�lll�
))
�

The symbol “≈ ” means that the second degree Taylor polynomials of both
sides are the same. (Equating the coefficients of u and then the coefficients of
u2, we get the recurrencies for aν = E X

�2�
ν and VarX�2�

ν .) Therefore the above
sum equals

fν
ν!

− 1
�ν − 1�!

[
1 + u�ν − 1 − aν� +

u2

2

(�ν − 1 − aν�2 − VarX�2�
ν

)]
�

Combining the bounds and the last relation, we conclude that

� +
ν �u� ≤ exp�u�ν − 1��

�ν − 1�!

+φ+
ν �u�

{
fν
ν!

− 1
�ν − 1�!

[
1 + u�ν − 1 − aν� + �u2/2�(�ν − 1 − aν�2

− VarX�2�
ν

)]}

− cnα�u�3
h+
ν �u�
ν!

�

By the definition of φ+
ν �u�, this expression is at most h+

ν �u�/ν! times

1 − cnα�u�3 +
ν

fν

{
exp

[
u�ν − 1 − aν� −

u2

2
VarX�2�

ν

]

−
[
1 + u�ν − 1 − aν� + u2

2

(�ν − 1 − aν�2 − VarX�2�
ν

)]}
�

Let us prove that, for all 4 ≤ ν ≤ n, this can be made less than 1. Recall that
aν� VarX�2�

ν = O�ν�, and u is of order n−1/2 exactly. If ν ≤ n1/2 log−1 n� then the
exponent is o�1� and, approximating the exponential function, we transform
the last expression into

1 − cnα�u�3 +O
(
ν

fν
�u�3ν3

)
= 1 − cnα�u�3 +O

(�u�3) ≤ 1 − �cnα/2��u�3�
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the last inequality holding for large n. If ν ≥ n1/2 log−1 n, then we get

1 − cnα�u�3 +O
(

exp
(
O�νn−1/2�)
νν−2

)
≤ 1 − �cnα/2��u�3�

for all large n. Therefore, for sufficiently large n and all 4 ≤ ν ≤ n,

�
�+�
ν �u�

h+
ν �u�/ν!

≤ 1 − �cnα/2��u�3�

The minus case is completely analogous. ✷

Corollary 1. In the notation of Lemma 3, for ν ∈ �1� n�,

h−
ν �u� ≤ fν�eu� ≤ h+

ν �u��(2.26)

Proof (By induction on ν). We trivially have f1�eu� = h±
1 �u�, since both

sides are zero. Furthermore, X�2�
2 = 1 and X�2�

3 = 2, so VarX�2�
ν = 0 in both

cases, whence

fν�eu� = fν exp
(
uEX�2�

ν

) ∈ [h−
ν �u�� h+

ν �u�
]
� ν = 2�3�

The induction step follows easily from (2.13) and Lemma 3. ✷

Let cn = log n; setting ν = n in (2.26) we arrive at the theorem.

Theorem 1. For every fixed v ∈ �,

E exp
(
vX

�2�
n

n1/2

)
= (1 +O�n−1/2 log n�) exp

(
vEX�2�

n

n1/2
+ v2 VarX�2�

n

2n

)
�

consequently �X�2�
n −EX�2�

n �/
√

VarX�2�
n converges, in distribution and with all

its moments, to the standard normal variable.

Next we have Theorem 2.

Theorem 2. The analogous assertion holds for X
�1�
n .

Sketch of the Proof of Theorem 2. Since the argument is close and
simpler, we just describe the basic steps.

From (1.4), (1.5),

G�z� x� = zx exp
(
z−1(exp�G�z� x�� − 1

)
G�z� x�)�
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so, for ν ≥ 2,

gν�z�
ν!

= z
[
xν−1] exp

(
z−1(exp�G�z� x�� − 1

)
G�z� x�)

= z
∑
j≥1

z−j

j!

[
xν−1](∑

k≥1

Gk+1�z� x�
k!

)j

= z
∑
j≥1

z−j

j!

∑
k

j∏
r=1

1
kr!

[
xν−1]G�k�+j�z� x�� �k� =

j∑
r=1

kr�

= z
∑
j≥1

z−j

j!

∑
k�m

j∏
r=1

1
kr!

�k�+j∏
s=1

gms
�z�

ms!
�

(2.27)

here

kr ≥ 1� 1 ≤ r ≤ j� ms ≥ 1� 1 ≤ s ≤ �k� + j�

�m� =
�k�+j∑
s=1

ms = ν − 1�

so j ≤ �ν − 1�/2, in particular. For z = 1 we get

gν
ν!

= ∑
j≥1

1
j!

∑
k�m

j∏
r=1

1
kr!

�k�+j∏
s=1

gms

ms!
�(2.28)

Lemma 1a. Let sn = �n/ log log n�1/2 and Snν be the contribution to the sum
in (2.28) of the terms with �k� + j ≥ sn. Then Snν = O��gν/ν!� exp�−c√n��, for
every c > 0, uniformly for ν ∈ �2� n�.

The proof is based on the observation that

Snν =
∑
r≥sn

aνr�

where

aν� r =
[
xν−1yr

]
exp

(
yG�x�(exp�yG�x�� − 1

))
≤ exp

(
y� �x��exp�y� �x�� − 1�)

xν−1yr
∀x ∈ �0� e−1�� ∀y > 1�

The next lemmas are the counterparts of Lemmas 2 and 3.

Lemma 2a. ∑
r≥1

r3aνr = O

(
gν
ν!

)
�

Lemma 3a. Let � ±
ν �u� denote the sum in (2.27) with gm�z� replaced by

h±
m�u� = gmφ

±
m�u�� φ±

m�u� = exp
(
uEX�1�

m + u
2

2
VarX�1�

m ±cn�m−1��u�3
)
�
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with cn → ∞� cn = O�n1/2�. Let u = vn−1/2� v �= 0 being fixed. Then for all
sufficiently large n and 2 ≤ ν ≤ n,

h+
ν �u�
ν!

≥ � +
ν �u�� h−

ν �u�
ν!

≤ � −
ν �u��

From the last lemma and the recurrence (2.27) we obtain the corollary.

Corollary 1a. In the notation of Lemma 3a, for n large enough,

h−
ν �u� ≤ gν�eu� ≤ h+

ν �u�� 1 ≤ ν ≤ n�

So Theorem 2 follows. ✷

3. Number of total orders.

3.1. Two moments of vertex counts by progeny. Given a rooted tree on n
labelled vertices, let Zj�T� denote the number of vertices each having progeny
of size j; so Znj = Zj�T� when T is random . If the root has degree d and the
subtrees rooted at its neighbors are T1� � � � �Td then, for j < n,

Zj�T� =
d∑
i=1

Zj�Ti��(3.1)

For a fixed k ∈ �, and z1� � � � � zk ∈ �, introduce a multivariate generating
function

fn�z� = E
( k∏
j=1

z
Znj

j

)
�

Clearly,

fn�z� = Fn�z�
nn−1

�

Fn�z� =
∑
T

k∏
j=1

z
Zj�T�
j �

and, crudely, ∣∣Fn�z�
∣∣ ≤ znnn−1 if z = max

1≤i≤k
�zi� ≥ 1�(3.2)

A standard argument, based on (3.1), shows that, for n > k,

Fn�z�
n!

= Sn�z��

Sn�z� =
∑
j≥1

1
j!

∑
l1�����lj≥1

l1+···+lj=n−1

j∏
i=1

Fli
�z�

li!
�(3.3)
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for n ≤ k,

Fn�z�
n!

= znSn�z��(3.4)

[cf. (2.13), (2.27)]; S1�z� = 1 by definition. Introduce

F�z� x� = ∑
n≥1

Fn�z�
xn

n!
�

by (3.2), the series definitely converges if 1 ≤ z ≤ �e�x��−1, which requires that
�x� ≤ e−1. From (3.3) and (3.4),

F�z� x� = x exp�F�z� x�� +
k∑
i=1

(
1 − z−1

i

)
Fi�z�

xi

i!
�(3.5)

For zi ≡ 1, F�z� x� = � �x� and (3.5) reduces to (1.8). This equation is our
source for the moments formula. Let �x� < e−1. Differentiating both sides of
(3.5) with respect to zk at z = 1, and using Fk�1� = kk−1, we obtain

∞∑
n=1

(∑
T

Zk�T�
)
xn

n!
= ∂F

∂zk

∣∣∣∣
z=1

= kk−1

k!
xk

1 − � �x� �(3.6)

Since

1
1 − � �x� =

∞∑
i=0

ii
xi

i!
�(3.7)

we get from (3.6)

∑
T

Zk�T� =
(
n
k

)
kk−1�n− k�n−k�

whence

EZnk =
(
n
k

)
kk−1�n− k�n−k

nn−1

= np�k� + 1
2
q�k� +O(n−1)�

(3.8)

see (1.17) for the definitions of p�·�� q�·�. Differentiating (3.5) twice with re-
spect to zk and using (3.6), we obtain

∑
n≥1

(∑
T

Zk�T�
(
Zk�T� − 1

))xn
n!

= ∂2F

∂2zk

∣∣∣∣
z=1

=
(
kk−1

k!

)2 x2k� �x�
�1 − � �x��3

�

And using (1.17) and (3.7),

� �x�
�1 − � �x��3

= x
� �x�

x�1 − � �x��3
= x

d

dx

(
1

1 − � �x�
)

=∑
i≥0

ii+1x
i

i!
�
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So, like (3.8),

E
(
Znk

(
Znk − 1

)) = 1
nn−1

(
n
k

)(
n− k
k

) (
kk−1)2�n− 2k�n−2k+1

= n2p2�k� − nkp2�k� +O�1��
(3.9)

Differentiating (3.5) with respect to zk and zj� �j < k�, we compute similarly

E
(
ZnjZnk

) = 1
nn−1

(
n
k

)(
n− k
j

)
jj−1kk−1�n− k− j�n−k−j+1

+ 1
nn−1

(
n
k

)(
k
j

)
jj−1�k− j�k−j�n− k�n−k

= n2p�j�p�k� − n�j+ k�
2

p�j�p�k� + np�j�q�k− j� +O�1��

(3.10)

It follows from (3.8)–(3.10) that, for j ≤ k,

Cov
(
Znj�Znk

) = nK�j� k� +O�1��
K�j� k� = p�j�(q�k− j� − �k+ j�p�k�)�(3.11)

3.2. Limit distribution of vertex counts. For a fixed k ≥ 1, denote �Zn1� � � � �
Znk� = Ztn, t standing for “ transpose,” and let K = �K�µ� ν�	1≤µ� ν≤k denote
the symmetric k× k matrix, with

K�µ� ν� = p�µ�(q�ν − µ� − �µ+ ν�p�ν�)� µ ≤ ν�

Theorem 3. For a fixed vt = �v1� � � � � vk� ∈ �k,

E exp
(
n−1/2(vtZn)) = (1 +O�n−1/2 log n�)

× exp
(
n−1/2(vt E Zn

)+ �2n�−1vtKv
)
�

so, consequently, n−1/2�Zn−nE Zn� is asymptotically Gaussian with the mean
0 and the covariance matrix K.

Corollary 2. The random vector �n−1/2�Znk − np�k��	1≤k≤n converges, in
terms of finite-dimensional distributions, to a Gaussian sequence Z = �Zk	k≥1
with EZk ≡ 0 and the covariance function K�i� j�.

Here is a brief proof sketch. Given u ∈ �k, define fν�u� = E exp�utZν�. Let
T be a uniformly random rooted tree with ν vertices. Analogously to (3.3), for
ν > k,

fν�u� = ν!
νν−1

∑
j≥1

1
j!

∑
l1�����lj≥1

l1+···+lj=ν−1

j∏
i=1

l li−1
i fli

�u�
li!

�
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The counterparts of Lemma 1 (1a) and Lemma 2 (2a) are two estimates:

∑
j≥�n/ log log n�1/2

1
j!

∑
l1�����lj

l1+···+lj=ν−1

j∏
i=1

lll li−1
i

llli!
= O

(
νν−1

ν!
exp�−cn1/2�

)
∀ c > 0�

∑
j≥1

j3

j!

∑
l1�����lj

l1+···+lj=ν−1

j∏
i=1

lll li−1
i

llli!
= O

(
νν−1

ν!

)
�

The bounds can be established as in the proofs of Theorems 1 and 2. Much
more simply, we can reformulate the estimates as

P

{
Dν ≥

√
n

log log n

}
= O

(
exp�−cn1/2�) ∀ c > 0�

ED3
ν = O�1��

(3.12)

where Dν is the degree of the root, and prove them by using the fact that Dν =
1 + Bin

(
ν − 2� ν−1

)
. Using the estimates and linearity (within the remainder

of O�1�) of aν� bν, the mean and the covariance matrix of the vector Zν, we
show finally that for u = n−1/2v� v ∈ �k� v �= 0 and cn → ∞� cn = O�n1/2�,

φ+
ν �u� ≥ � +

ν �u�� φ−
ν �u� ≤ � −

ν �u��
Here

φ±
ν �u� = exp

(
utaν + 1

2utbνu ± cn�ν − 1�(utu)3/2)�
and � ±

ν �u� is the right-hand side of the recurrence with φ±
ν �u� instead of

fν�u�. The proof is completed then just like Theorems 1 and 2. ✷

3.3. Limit distribution of Yn. By (1.1),

logYn = log n! −Ln� Ln =
n∑
k=1

Znk log k�

Now, in view of Theorem 3 and (3.8), (3.11), one would expect that Ln is
asymptotically Gaussian with mean na and variance nσ2, where

a =
∞∑
k≥1

p�k� log k� σ2 = ∑
j�k≥1

K�j� k� log j log k�

However, the double series slowly diverges to infinity, so the variance of Ln
must grow faster than n. It is proved in Appendix that

VarLn = bn log n+ ξ1n+ ξ2n
1/2 log2 n+O(n1/2 log n

)
�(3.13)

and we will use this to show that b = 4 log�e/2�. So indeed VarLn is growing
a bit faster than in a linear fashion. Moreover, unlike the counts of vertices by
progeny, ELn is not nearly linear either. We also show in the Appendix that

ELn = an−
√

2πn+ s1 log n+ s2 +O
(
n−1/2 log n

)
�(3.14)
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and it is the sharpness of this formula which allows obtaining (3.13). The
actual values of the constants ξi� si are immaterial though. (Fill [7] and Meir
and Moon [17] obtained the formulas ELn = αn− βn1/2 +O�log n�, VarLn =
γn + O�n�� respectively, for the uniform binary tree, and the whole class of
simply generated random trees.) In a certain technical sense, it is this n1/2

term in ELn which is “responsible” for the slight superlinearity of VarLn.

Theorem 4. The random variable �Ln − an�/
(
n log n

)1/2
converges in dis-

tribution and with all its moments, to the normal random variable, with zero
mean, and variance equal 4 log�e/2�.

Proof. A natural way to proceed would seem to be the following. In the
notations of Section 3.1, let

L�T� =∑
k

Zk�T� log k�

so L�T� = Lν if T is a uniformly random rooted tree with ν vertices. Clearly,

L�T� = log ν +
Dν∑
t=1

L�Tt��(3.15)

where Dν = D�T� is the root’s degree. Conditioned on Dν and the vertex sets
Vt of the subtrees Tt� �t ≤ Dν�, each L�Tt� is distributed as L�Vt�, indepen-
dently of other subtrees. Introducing fν�u� = E euLν , we obtain a recurrence

fν�u� = exp�u log ν�E

(
Dν∏
t=1

f�Vt��u�
)

= exp�u log ν� ν!
νν−1

∑
j≥1

1
j!

∑
l1�����lj

l1+···+lj=ν−1

j∏
t=1

l lt−1
t flt

�u�
lt!

(3.16)

[cf. (3.3), (3.4)]. The crucial step is to prove that for u of order �n log n�−1/2,

φ±
l �u� = exp

(
ual +

u2

2
bl ± cn�ν − 1��u�3

)

(al� bl being the mean and variance of Ll) satisfy

φ+
ν �u� ≥ � +

ν �u�� φ−
ν ≤ � −

ν �u�� 2 ≤ ν ≤ n�(3.17)

provided that cn → ∞ not too fast. [Needless to say, � ±
ν �u� is obtained from

the right-hand side of (3.16) by replacing fl�u� with φ±
l �u�.] If successful, we

would quickly complete the proof of Theorem 4. However, all our attempts to
prove (3.17) have failed, and now we feel that, for the full range of ν, (3.17)
is not even true. Basically, the roadblock is the “insufficient linearity” of ELν
and VarLν.
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To prove the theorem we derive a much simpler recurrrence for fν�u�, and
use it to show that the cumulants (semiinvariants) of Lν scaled by its standard
deviation converge, as ν → ∞, to those of the standard normal distribution.

Initially we thought that this second recurrence was sufficient to show con-
vergence of the m.g. function, but the careful reviewer found an error in the
argument. The problem in question appears to be an interesting case for the
normal convergence, when the m.g. function does not converge, but the cu-
mulants still do. We emphasize, though, that it is the recurrence for the m.g.
function that makes the cumulants such an efficient tool.

An unrooted tree on ν labelled vertices can be construed as a terminal
state of a process of ν − 1 successive insertions of its ν − 1 edges, one edge
at a time. After t steps (t < ν − 1), we have a forest of ν − t trees, and the
�t + 1�-th step results in two of those trees getting joined by an edge, thus
forming a larger tree. If all νν−2�ν−1�! realizations of this process are equally
likely, the terminal tree is uniformly distributed. In the literature, the random
sequence of forests �Ft	t<ν is known as the random spanning tree model, [24],
[25], [10], [11]. (See [1] for the functional limit theorem for this process.) Let
π�F� denote the partition of �ν� into the vertex sets of trees in a forest F.
Yao discovered that the random sequence

{
π�Ft�

}
t<ν

is a Markov chain. More
precisely, if π is a partition with ν − t subsets, and π ′ is obtained from π by
merging two of its subsets, of sizes i and j say, then

P
(
π�Ft+1� = π ′ � π�Ft� = π

) = i+ j
ν�ν − t− 1� �

Given such a merger, all ij choices of the contact vertices are equally likely.
(For the classic random graph process, due to Erdős and Rényi, the analogous
probability is proportional to the product ij.) Implicit in [24] is another dis-
covery, namely that the (joint) size distribution for the ν− t trees in Ft is the
same as the size distribution for the uniformly random forest of ν − t rooted
trees. By Cayley’s formula, the number of of such forests is(

ν
r

)
rνν−r−1

∣∣∣∣
r=ν−t

=
(
ν
t

)
�ν − t�νt−1�

hence if the trees in F have sizes i1� � � � � iν−t� then

P�Ft = F� =
∏ν−t
j=1 ij(

ν
t

)�ν − t�νt−1
�(3.18)

Consequently ([10], [25]) pνk, the probability that the two trees of the penul-
timate forest Fν−2 have sizes k� ν − k, is given by

pνk =
(
ν
k

)
kk−1�ν − k�ν−k−1

2νν−2�ν − 1� � 1 ≤ k ≤ ν − 1�(3.19)

(The two trees are randomly ordered, and k is the size of the first tree.) It
should be clear that, conditioned on the their vertex sets, the trees are inde-
pendent, each being uniformly distributed.
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To use this construction as a basis for the recurrence we seek, it is only
natural to interpret the random contact vertices of these two trees as their
respective roots, which makes each of them a uniformly random rooted tree.
And we certainly want one of the roots to become the root of the whole tree. A
root selection rule should be such that the resulting rooted tree is uniformly
random. We have come up with the following rule: with probability k/ν (resp.
1−k/ν) the root of the terminal tree is the root of the tree of size ν−k (resp. k).
Not the other way around. (For k = ν/2 we simply flip a fair coin.) Let us prove
that the rule delivers a uniformly random rooted tree. If T is a rooted tree,
let d be the root’s degree, and let k1� � � � � kd be the sizes of subtrees rooted at
the root’s neighbors; clearly,

∑d
j=1 kj = ν − 1. Let F�j� denote a forest of two

trees obtained by deletion of the edge joining the root and its jth neighbor.
By (3.18),

P
(
Fν−2 = F�j�) = kj�ν − kj�

νν−2�ν − 1� �

and, according to the root-selection rule, we obtain

P�Fν−1 = T� =
d∑
j=1

P
(
Fν−2 = F�j�) 1

kj�ν − kj�
kj

ν

= 1
νν−1�ν − 1�

d∑
j=1

kj

= 1
νν−1

�!��

Thus the random tree Fν−1 is indeed uniformly distributed.
In view of this fact, we obtain, conditioned on the vertex sets of the two

trees in Fν−2,

Lν =
{
Lk +Lν−k + log ν − log�ν − k�� with probability k/ν�

Lk +Lν−k + log ν − log k� with probability �ν − k�/ν�

here k� ν − k are the cardinalities of the vertex sets, and Lk� Lν−k are inde-
pendent. Consequently, using pνk = pν� ν−k, we write

fν�u� = exp�u log ν�
ν−1∑
k=1

pνk

[
k

ν

fk�u�fν−k�u�
exp�u log�ν − k��

+ ν − k
ν

fν−k�u�fk�u�
exp�u log k�

]

=
ν−1∑
k=1

qνk exp
(
u log

ν

ν − k
)
fk�u�fν−k�u��

(3.20)
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here

qνk =
(
ν
k

)
kk�ν − k�ν−k−1

νν−1�ν − 1� �(3.21)

Like �pνk	, �qνk	 is a probability distribution. Let Xν be a random variable
such that P�Xν = k� = qνk. Then (3.20) becomes

fν�u� = E
[
exp

(
u log

ν

ν −Xν

)
fXν

�u�fν−Xν
�u�
]
�(3.22)

This is the desired recurrence equation.
Introduce �sνj	j≥1, the sequence of cumulants of Lν, so that

fν�u� = exp
(∑
j≥1

sνj

j!
uj
)
�

in particular

sν1 = ELν� sν2 = VarLν�

and there are general formulas expressing the cumulants through the mo-
ments, and vice versa. Equation (3.22) becomes

exp
(∑
j≥1

sνj

j!
uj
)
=

ν−1∑
k=1

qνk

[
exp

(
u
(
log ν�ν − k�−1 + sk1 + sν−k�1

)

+ ∑
j≥2

skj + sν−k�j
j!

uj
)]
�

(3.23)

So, expanding both sides in powers of u and equating the coefficients by the
same powers, we get (quasilinear) recurrence equations for the cumulants of
any given order. Specificallly, equating the linear terms,

sν1 =
ν−1∑
k=1

qνk

(
log

ν

ν − k + sk1 + sν−k�1

)
�

and we already know that

sν1 =
ν∑
k=1

(
ν
k

)
kk−1�ν − k�ν−k

νν−1

= aν −
√

2πν +O�log ν��
(3.24)

Introduce

?j�ν� k� =




log
ν

ν − k + sk1 + sν−k�1 − sν1� if j = 1�

skj + sν−k� j − sνj� if j ≥ 2�
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Let t ≥ 2. Multiplying both sides of (3.23) by exp�−∑j<t�sνjuj�/j!�, and equat-
ing the coefficients by ut in the resulting equation, we obtain

sνt
t!

= coeffut
ν−1∑
k=1

qνk

t∑
r=1

1
r!

(∑
j<t

uj?j�ν� k� + ut
skt + sν−k� t

t!

)r

=
ν−1∑
k=1

qνk

[
1
t!

(
skt + sν−k� t

)+ t∑
r=2

1
r!

∑
j1+···+jr=t

?j1
�ν� k� · · ·?jr�ν� k�

]
�

(3.25)

So, given the values of the first t− 1 cumulants smj �m ≥ 1� j < t�� (3.25) is a
(nonhomogeneous) linear recurrence for the tth order cumulants smt, subject
to an initial condition s1t = 0. (The latter follows from L1 = 0.)

For t = 2 (3.25) becomes

sν2 =
ν−1∑
k=1

qνk
(
sk2 + sν−k�2

)+Rν2�

Rν2 =
ν−1∑
k=1

qνk?
2
1�ν� k��

(3.26)

Let us use this equation to determine the coefficient b in the asymptotic for-
mula (3.13) for sj2�= VarLj�. To do so, notice first that by (3.21) and Stirling’s
formula,

qνk = q0
νk +O

(
ν3/2

k3/2�ν − k�5/2

)
= O

(
ν1/2

k1/2�ν − k�3/2

)
�

q0
νk = ν1/2

�2πk�1/2�ν − k�3/2
�

(3.27)

We will also use an elementary bound
ν−1∑
k=1

ν−1F�k/ν� −
∫ 1

0
F�x�dx

= O

(
ν−1
∣∣F�ν−1�∣∣+ ν−1

∣∣F�1 − ν−1�∣∣

+
∫
x/∈�ν−1�1−ν−1�

�F�x��dx+ ν−1
∫ 1−ν−1

ν−1
�F′�x��dx

)
�

(3.28)

which follows from the Euler–Maclaurin summation formula.
By (3.26), the definition of ?’s and (3.24),

Rν2 = 2π
ν−1∑
k=1

qνk
(
k1/2 + �ν − k�1/2 − ν1/2)2

+O
(

log ν
ν−1∑
k=1

qνk min
{
k1/2� �ν − k�1/2}+ log2 ν

)
�

(3.29)
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since

0 ≤ k1/2 + �ν − k�1/2 − ν1/2 ≤ min
{
k1/2� �ν − k�1/2}�

Using the cruder bound for qνk in (3.27) and considering the cases k ≤ ν/2
and k > ν/2 separately, we see that the remainder term in (3.29) is O�log2 ν�.
Likewise, replacing qνk in the first sum in (3.29) by the leading term q0

νk in
(3.27) produces an error of order

ν−1∑
k=1

ν3/2

k3/2�ν − k�5/2
min�k� �ν − k�	 = O�1��

In addition, by (3.28), with

F�x� =
(
x1/2 + �1 − x�1/2 − 1

)2
x1/2�1 − x�3/2

�

we see that the difference

2π
ν−1∑
k=1

q0
νk

(
k1/2 + �ν − k�1/2 − ν1/2)2 − �2πν�1/2

∫ 1

0
F�x�dx

is of order

ν1/2
∫ ν−1

0
F�x�dx+ ν1/2

∫ 1

1−ν−1
F�x�dx+ ν−1/2F�ν−1�

+ ν−1/2F�1 − ν−1� + ν−1/2
∫ 1−ν−1

ν−1

∣∣F′�x�∣∣dx
= O�1��

the term O�1� owing to F�x� ∼ const �1−x�−1/2 for x→ 1. Here, substituting
x = sin2 θ� θ ∈ �0� π/2�, and doing elementary integration,

∫ 1

0
F�x�dx = 4 log

e

2
�

Thus the nonhomogeneous term in (3.26) is given by

Rν2 = �2πν�1/24 log
e

2
+O(log2 ν

)
�(3.30)

Let us see how closely we can satisfy (3.26) by using

Sν = αν log ν + βν + γν1/2 log ν� ν ≥ 1�
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instead of sν2. Using (3.27) and (3.28), for ν ≥ 2, we compute

ν−1∑
k=1

qνk
[
ν log ν − k log k− �ν − k� log�ν − k�]

=
(
ν

2π

)1/2 ν−1∑
k=1

ν−1 �k/ν� log�k/ν�−1 + �1 − k/ν� log�1 − k/ν�−1

�k/ν�1/2�1 − k/ν�3/2
+O�log ν�

=
(
ν

2π

)1/2 ∫ 1

0

x log x−1 + �1 − x� log�1 − x�−1

x1/2�1 − x�3/2
dx+O�log ν�

= �2πν�1/2 +O�log ν��

the last integral being computed via substitution x = sin2 θ. The sum corre-
sponding to the linear term in Sν is zero. Furthermore,

ν−1∑
k=1

qνk
[
ν1/2 log ν − k1/2 log k− �ν − k�1/2 log�ν − k�]

= −
ν−1∑
k=1

qνk�ν − k�1/2 log�ν − k� +O�log ν�

= −
(
ν

2π

)1/2 ν−1∑
k=1

log�ν − k�
k1/2�ν − k� +O�log ν�

= −�2π�−1/2
ν−1∑
k=1

log�ν − k�
ν − k +O�log ν�

= −2−1�2π�−1/2 log2 ν +O�log ν��
Therefore, recalling (3.30),

Sν −
ν−1∑
k=1

qνk
(
Sk +Sν−k

)−Rν2

= α�2πν�1/2 − 4�2πν�1/2 log�e/2� − γ2−1�2π�−1/2 log2 ν

+O�log2 ν + α log ν + γ log ν�
= −γ2−1�2π�−1/2 log2 ν +O�log2 ν + γ log ν��

provided that we choose α = 4 log�e/2�, which we do. Note that the bounded
factor implicit in the term O�log2 ν� is independent of γ, and, due to cancella-
tion of linear terms, the parameter β is not present. So, given γ < 0 (γ > 0,
resp.), there exists ν�γ� ∈ N such that the last expression is positive (nega-
tive, resp.) for all ν ≥ ν�γ�, regardless of β. Furthermore, for γ < 0, we select
β > 0 large enough to guarantee that sν2 ≤ Sν for all ν < ν�γ�. Using these
inequalities as the induction basis and the positivity of Sν −

∑ν−1
k=1 qνk�Sk +

Sν−k�−Rν2 �ν ≥ ν�γ�� for the inductive step, we obtain that thus defined Sν is
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an upper bound for sν2 for all ν ≥ 1. Likewise, for γ > 0, we can select β < 0
such that sν2 ≥ Sν for all ν ≥ 1. Hence we have proved that

sν2 = 4 log�e/2�ν log ν +O�ν��
Thus [see (3.13)],

sν2 = 4 log�e/2�ν log ν + ξ1ν + ξ2ν
1/2 log2 ν +O(ν1/2 log ν

)
�(3.31)

It remains to show that, for every fixed j ≥ 3,

sνj = o
(
s
j/2
ν2

)
�

since then the cumulants of �Lν − sν1�/s1/2
ν2 converge to the cumulants of the

standard normal variable. We achieve this by showing that, for every fixed
j ≥ 3, there exists a constant cj such that

sνj = cjν
j/2 +O(ν�j−1�/2 logj 2ν

)
�(3.32)

uniformly for ν ≥ 1. Let t ≥ 3 and suppose (3.32) holds for all j < t. (For t = 3,
the assumption holds true by default.) By (3.25), for ν ≥ 2,

sνt =
ν−1∑
k=1

qνk
(
skt + sν−k� t

)+Rνt�

Rνt =
ν−1∑
k=1

qνk

t∑
r=2

t!
r!

∑
j1+···+jr=t

?j1
�ν� k� · · ·?jr�ν� k��

(3.33)

Here [see (3.24), (3.31), (3.32)]

?j�ν� k� = cjν
j/2[fj�k/ν� + δj�ν� k/ν�]� ν ≥ 2�

c1 = �2π�1/2� c2 = 4 log�e/2��

fj�x� =




1 − x1/2 − �1 − x�1/2� if j = 1�

x log x+ �1 − x� log�1 − x�� if j = 2�

xj/2 + �1 − x�j/2 − 1� if j ≥ 3�

and

δj�ν� x� =



O
(
ν−1/2 logj ν

)
� if j = 1 or j ≥ 3�(

−ξ2

b
f1�x�

)
ν−1/2 log2 ν +O(ν−1/2 log ν

)
� if j = 2�

To estimate Rνt, we need to bound the overall error obtained from dropping
the remainder term in the expression for ?j�ν� k�. Considering (3.27) and the
fact that f1�x� is least smooth among fj�x� at x = 1, we see that the dominant
contribution to such a bound comes from summands with r = 2 and �j1� j2	 =
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�1� t− 1	. For t > 3, it is of order

ν�t−1�/2�log ν�t−1
ν−1∑
k=1

qνk�f1�k/ν�� = O
(
ν�t−2�/2 logt ν

)
�

The estimate holds for t = 3 as well. Importantly, we can do better in this
case, and get (see the definition of δ2) a bound of order

ν�3−1�/2�log ν�3−1
ν−1∑
k=1

qνkf
2
1�k/ν� = O

(
ν1/2 log2 ν

)
�

Likewise, for t > 3,

ν−1∑
k=1

(
qνk − q0

νk

) t∑
r=2

t!
r!

∑
j1+···+jr=t

r∏
m=1

(
νjm/2cjmfjm�k/ν�

)

= O

(ν−1∑
k=1

ν3/2

k3/2�ν − k�5/2
νt/2ft1�k/ν�

)

= O
(
ν�t−3�/2)�

If t = 3 then the total order of magnitude is determined by r = 2 and �j1� j2	 =
�1�2	, and it is O�log2 ν�. Furthermore, applying (3.28),

ν−1∑
k=1

q0
νkν

t/2
r∏

m=1

cjmfjm�k/ν� = γ�j�ν�t−1�/2 +
{
O�log ν�� if t = 3�

O�ν�t−3�/2�� if t > 3�

γ�j� = �2π�−1/2
∫ 1

0
x−1/2�1 − x�−3/2

r∏
m=1

cjmfjm�x�dx�

with O�log ν� for t = 3 coming from r = 2 and �j1� j2	 = �1�2	. Therefore,

Rνt = γ�t�ν�t−1�/2 +O(ν�t−2�/2 logm�t� ν
)
� t ≥ 3�

γ�t� =
t∑

r=2

t!
r!

∑
j1+···+jr=t

γ�j�
(3.34)

[compare with (3.30)]. Here m�t� = t for t > 3, and m�3� = 2.
Introduce Tν = c�1�νt/2 + c�2�ν�t−1�/2 logt 2ν + c�3�ν, with intent to make Tν

satisfy (3.33) as closely as possible. For l ≥ 2, define

Il = �2π�−1/2
∫ 1

0

gl�x�
x1/2�1 − x�3/2

dx�
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where gl�x� = −fl�x� for l ≥ 3 and g2�x� = −3f2�x�. Then Il > 0 for all l ≥ 2.
Using (3.27) and (3.28), we easily obtain, for ν ≥ 2,

Tν −
ν−1∑
k=1

qνk
(
Tk +Tν−k

)−Rνt

= [c�1�It − γ�t�]ν�t−1�/2 + c�2�It−1ν
�t−2�/2 logm�t� ν

+O[ν�t−2�/2(c�1� logm�t� ν + c�2� logm�t�−1 ν
)]
�

Set

c�1� = ct =
γ�t�
It

�

for c�2� > 0 (c�2� < 0� resp.) with �c�2�� sufficiently large, there exists ν�c�2�� ∈ N
such that the last expression is positive (negative, resp.) for all ν ≥ ν�c�2��.
Choose c�3� > 0 (c�3� < 0) with �c�3�� so large that Tν ≥ sνt �≤ sνt� resp.� for all
ν < ν�c�2��. Then, by induction, sνt ≤ Tν �≥ Tν� resp.� for all ν ≥ 1. Therefore,

sνt = ctν
t/2 +O(ν�t−1�/2 logt 2ν

)
� ν ≥ 1�

Hence, for every fixed j ≥ 3,

sνj = cjν
j/2 +O(ν�j−1�/2 logj 2ν

)
� ✷

APPENDIX

Estimates of E log Ln and Var log Ln. We will use the following nota-
tion:

r�j� = e−jjj−1 log j
j!

� S = ∑
j≥1

r�j��

r0�j� =
log j√
2πj3

� S0 = ∑
j≥1

r0�j��

By the asymptotic formula

m! =
√

2πm
(
m

e

)m(
1 + 1

12m
+O(m−2))�(A.1)

we have

?�j� def= r�j� − r0�j� = − log j

12
√

2πj5
+O(j−7/2 log j

)
� j→ ∞�(A.2)

According to the formula for EZnk and the definition of Ln,

E logLn = 1
nn−1

n∑
k=1

(
n
k

)
kk−1�n− k�n−k log k�
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Let S1 and S2 denote the parts of the sum (divided by nn−1) that correspond
to k ≤ n/2 and k > n/2. Applying the asymptotic formula (A.1) to n! and
�n− k�!, we obtain

S1 = n3/2 ∑
k≤n/2

�n− k�−1/2r�k�(1 +O�kn−2�)

= n3/2 ∑
k≤n/2

�n− k�−1/2r�k� +O(n−1/2 log n
)
�

or

S1 = nS− n ∑
k>n/2

r�k� + n3/2 ∑
k≤n/2

r�k�
(

1√
n− k − 1√

n

)

+O(n−1/2 log n
)
�

= nS−S11 +S12 +S13 +O
(
n−1/2 log n

)�
S11 = n

∑
k>n/2

r�k��

S12 = n3/2 ∑
k≤n/2

r0�k�
(

1√
n− k − 1√

n

)
�

S13 = n3/2 ∑
k≤n/2

(
r�k� − r0�k�

)( 1√
n− k − 1√

n

)
�

(A.3)

Let us look at each of S1j. Applying the mean value theorem, we have, uni-
formly for k ≥ 1,

∫ k+1

k

log x
x3/2

dx = log k
k3/2

+O
(

log 2k
k5/2

)
�

Therefore,

S11 = n√
2π

∫ ∞

n/2

log x
x3/2

dx+O(n−1/2 log n
)
�(A.4)

As for S12, a little algebra shows that

S12 = n√
2π

∑
k≤n/2

log k√
k�n− k�(√n− k+√

n
) �

Besides, uniformly for x ∈ �k� k+ 1�� k ≤ n/2,

d

dx

log x√
x�n− x�(√n− x+√

n
) = 1 − �1/2� log x

2nx3/2
+O

(
log 2x
x1/2n2

)
�
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So, using the Euler–Maclaurin formula,

S12 = n√
2π

∫ n/2
1

log x√
x�n− x�(√n− x+√

n
) dx

+
∫ n/2

1
�x	�1/2� log x− 1

2
√

2πx3
dx

+O(n−1/2 log n
)
�

= n√
2π

∫ n/2
0

log x√
x�n− x�(√n− x+√

n
) dx

+ s12 +O
(
n−1/2 log n

)�
s12 =

∫ ∞

1
�x	�1/2� log x− 1

2
√

2πx3
dx�

(A.5)

with �x	 denoting the fractional part of x. Finally, with the same algebra, it
is easy to see that

S13 = s13 +O
(
n−1/2 log n

)
� s13 = 1

2

∑
k≥1

(
e−kkk

k!
− 1√

2πk

)
�(A.6)

Combining (A.4)–(A.6) we get

S1 = nS+ n√
2π

(∫ n/2
0

log x√
x�n− x�(√n− x+√

n
) dx−

∫ ∞

n/2

log x
x3/2

dx

)

+ s1 +O
(
n−1/2 log n

)
� s1 = s12 + s13�

(A.7)

Turn to S2. Leaving the nth term outside of the sum and approximating the
factorials in the sum by (A.1), we have

S2 = n3/2 ∑
n/2<k≤n−1

�n− k�−1/2r0�k�

+ n3/2 ∑
n/2<k≤n−1

log k
k3/2

(
exp�−�n− k���n− k�n−k

�n− k�! − 1√
2π�n− k�

)

+ log n+O(n−1/2 log n
)

= n3/2 ∑
n/2<k≤n−1

�n− k�−1/2r0�k� + s21 log n+O(n−1/2 log n
)�

s21 = 1 + ∑
j≥1

(
e−jjj

j!
− 1√

2πj

)
�

(A.8)

To estimate the last sum sharply, we notice that

�n− k�−1/2 = 2
(�n− k+ 1�1/2 − �n− k�1/2)
+ �n− k�−1/2

(�n− k�1/2 + �n− k+ 1�1/2
)−2
�

(A.9)
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The total contribution to the sum due to the second term in this identity is

log n√
2π

∑
n/2<k≤n−1

�n− k�−1/2(�n− k�1/2 + �n− k+ 1�1/2)−2

+O
(
n3/2 ∑

n/2<k≤n−1

k−5/2�n− k�−1/2 log k
)

= s22 log n+O(n−1/2 log n
)�

s22 = �2π�−1/2 ∑
j≥1

j−1/2(j1/2 + �j+ 1�1/2)−2
�

(A.10)

Summing by parts, we evaluate the contribution due to the first term in (A.9)

n3/2

√
2π

∑
n/2<k<n−1

2
√
n− k

[(
log x
x3/2

)′∣∣∣∣
x=k

+O
(

log k
k7/2

)]

+ n3/2

√
2π

[
2
√
n− n/2log�n/2�

�n/2�3/2
− 2

log n
n3/2

]
+O(n−1/2 log n

)
�

(A.11)

The last sum is easily seen to be

n3/2

√
2π

∫ n
n/2

2
√
n− x

(
log x
x3/2

)′
dx+O(n−1/2 log n

)
�

and, integrating by parts “backwards,” we transform (A.11) into

n3/2

√
2π

∫ n
n/2

log x
x3/2

√
n− x dx− 2√

2π
log n+O(n−1/2 log n

)
�(A.12)

Thus, combining (A.8), (A.10) and (A.12),

S2 = n3/2

√
2π

∫ n
n/2

log x
x3/2

√
n− x dx+ s2 log n+O(n−1/2 log n

)�
s2 = s21 + s22 − 2�2π�−1/2�

(A.13)

So, recalling (A.7), we arrive at

E logLn = nS+ n√
2π

(∫ n
0

log x√
x�n− x�(√n− x+√

n
) dx−

∫ ∞

n

log x
x3/2

dx

)

+ s1 + s2 log n+O(n−1/2 log n
)
�

The value of the first integral, computed via substitution x = n sin2 θ� θ ∈
�0� π/2�, and two rounds of integration by parts, turns out to be �2 log n +
4− 2π�n−1/2. The second integral equals �2 log n+ 4�n−1/2. So the logarithmic
terms cancel out and we obtain

E logLn = nS−
√

2πn+ s1 + s2 log n+O(n−1/2 log n
)
�(A.14)

(The actual values of the constants s1� s2 will not be relevant.)
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Turn now to the estimation of E�logLn�2. We limit ourselves to finding an
asymptotic expansion with a remainder O�n1/2 log n�, with explicit coefficients
for the leading terms only. Not surprisingly in view of (A.14), these will be n2

and n3/2. For brevity, we will pay more attention to the new elements, leaving
out the proofs that can be easily done by mimicking the corresponding lines
in the estimation of E logLn. We will also write A�n� ≈ B�n�, or A�n� is
approximately B�n�, whenever

A�n� = B�n� + ξ1n log n+ ξ2n+ ξ3n
1/2 log2 n+O(n1/2 log n

)
(A.15)

here ξ’s are the constants which may differ from case to case. Moreover, we
will write A�j�n� ≈ B�j�n� if the (weighted) sums

A�n� =∑
j

γ�j�n�A�j�n�� B�n� =∑
j

γ�j�n�B�j�n�

satisfy (A.15), for some weights in question. Similarly,A�j� k�n� ≈B�j� k�n� if
the corresponding double sums [possibly weighted by some weights γ�j� k�n�]
satisfy (A.15).

First,

E�logLn�2 =
n∑
k=1

�log2 k�EZ2
nk + 2

∑
1≤j<k≤n

�log j log k�E
(
ZnjZnk

)
= �1 +�2�

(A.16)

Notice that

EZ2
nk = E

(
Znk�Znk − 1�)+ EZnk

and, analogously to E logLn,

n∑
j=1

(
log2 j

)
EZnj = n

∑
j≥1

r�j� log j+O(n1/2 log n� ≈ 0�

So, using (3.9),

�1 ≈ 1
nn−1

∑
j<n/2

(
n
j

)(
n− j
j

) (
jj−1)2�n− 2j�n−2j+1 log2 j�

Approximating the factorials, one can see that the terms with j ≥ n/3 con-
tribute at most O

(
log2 n

)
to the value of the last sum. So,

�1 ≈ n3/2 ∑
j<n/3

r2�j��n− 2j�1/2(1 +O�j/n2�)
≈ n2 ∑

j≥1

r2�j��
(A.17)
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It remains to estimate sharply �2. According to (3.10),

�2 = �21 +�22�

�21 = 2n−�n−1�∑
k

(
n
k

)
�n− k�n−kkk−1�log k��E logLk�

− 2
∑
k

�log2 k�EZnk�

�22 = n!
nn−1

∑
j �=k

jj−1 log j
j!

kk−1 log k
k!

�n− k− j�n−k−j+1

�n− k− j�! �

(A.18)

Begin with �21. As we have noticed, the second sum in the expression for �21
is ≈ 0. Consider the kth generic term in the first sum, denoting it �21�k�. Let
k ≤ n/2. Using (A.1) for n! and �n− k�! and (A.14) for E logLk, we estimate

�21�k� ≈ 2n3/2�n− k�−1/2r�k�E logLk

= 2n3/2(n−1/2 + �n− k�−1/2 − n−1/2)(r0�k� + ?�k�
)
E logLk

≈ 2nr0�k�E logLk + 2nr0�k�
(�1 − k/n�−1/2 − 1

)
E logLk

≈ 2nr0�k��kS−
√

2πk� + 2nr0�k�
(�1 − k/n�−1/2 − 1

)
kS

= −2nk−1 log k+ 2Sn�2π�−1/2k−1/2�1 − k/n�−1/2 log k�

(A.19)

recall the definition of r0�k�. For k ≥ n/2, we apply (A.1) to k! too, and see
that this time

�21�k� ≈ −2nk−1�n− k�−1/2 log k

+ 2Sn�2π�−1/2k−1/2�1 − k/n�−1/2 log k

≈ 2Sn�2π�−1/2k−1/2�1 − k/n�−1/2 log k�

(A.20)

Combining (A.19), (A.20),

�21 ≈ −2n
∑
k≤n/2

k−1 log k+ 2Sn�2π�−1/2
n−1∑
k=1

k−1/2�1 − k/n�−1/2 log k

≈ −n log2 n+ 2Sn�2π�−1/2
∫ n

0
x−1/2�1 − x/n�−1/2 log xdx

= S�2π�1/2n3/2 log n+ 8S�2π�−1/2n3/2
∫ π/2

0
log sin t dt− n log2 n�

(A.21)

Finally, we turn to the estimation of �22. First let j + k ≤ n/2. Consider
�22�j� k�, the �j� k�th summand. Applying (A.1) to �n− j− k�!, we get

�22�j� k� ≈ n3/2�n− j− k�1/2r�j�r�k�
= n2r�j�r�k� − n3/2

(
n1/2 − �n− j− k�1/2

)
r�j�r�k��
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Now

n2 ∑
j+k≤n/2
j �=k

r�j�r�k�

= n2 ∑
j+k≤n/2

r�j�r�k� − n2 ∑
j≤n/4

r2�j�

≈ n2
(
S2 − ∑

j≥1

r2�j�
)
− n2 ∑

j+k>n/2
r�j�r�k�

= n2
(
S2 − ∑

j≥1

r2�j�
)

− n2

[
2S

∑
j>n/2

r�j� −
( ∑
j>n/2

r�j�
)2

+ ∑
j+k>n/2
j� k≤n/2

r�j�r�k�
]

≈ n2
(
S2 − ∑

j≥1

r2�j�
)

− n2

[
2S

∑
j>n/2

r0�j� −
( ∑
j>n/2

r0�j�
)2

+ ∑
j+k>n/2
j� k≤n/2

r0�j�r0�k�
]

= n2
(
S2 − ∑

j≥1

r2�j�
)
− n2 ∑

m>n/2

(
S0�m� + 2�S−S0�r0�m���

(A.22)

(
Here we set

S0�m� = ∑
j+k=m

r0�j�r0�k��
)

(A.23)

Next

n3/2 ∑
j+k≤n/2
j �=k

(
n1/2 − �n− j− k�1/2)r�j�r�k�

≈ n3/2 ∑
m≤n/2

(
n1/2 − �n−m�1/2)S�m��

(A.24)

where

S�m� = ∑
j+k=m

r�j�r�k��
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Furthermore

S�m� ≈ 2
∑

j≤m/2
r�j�r�m− j�

= 2r0�m� ∑
j≤m/2

r�j� + 2
∑

j≤m/2
r�j�(r0�m− j� − r0�m�)

+ 2
∑

j≤m/2
r�j�?�m− j��

≈ 2r0�m� ∑
j≤m/2

r�j� + 2
∑

j≤m/2
r0�j�

(
r0�m− j� − r0�m�)�

(A.25)

indeed, the difference between the sum in (A.24) and the sum obtained if S�m�
is replaced by (A.25) is ξn+O(n1/2 log n

)
. So we have

S�m� ≈ S0�m� + 2r0�m� ∑
j≤m/2

?�j�

≈ S0�m� + 2r0�m��S−S0��

Consequently,

n3/2 ∑
j+k≤n/2
j �=k

(
n1/2 − �n− j− k�1/2)r�j�r�k�

≈ n3/2 ∑
m≤n/2

(
n1/2 − �n−m�1/2)(S0�m� + 2r0�m��S−S0�

)
�

(A.26)

Combining (A.22) and (A.26) yields

∑
j+k≤n/2
j �=k

�22�j� k�

= n2
(
S2 − ∑

j≥1

r2�j�
)
− n2 ∑

m>n/2

(
S0�m� + 2�S−S0�r0�m�)

− n3/2 ∑
m≤n/2

(
n1/2 − �n−m�1/2)(S0�m� + 2r0�m��S−S0�

)
�

(A.27)

For j + k > n/2 we apply (A.1) to whichever of j� k exceeds n/4, and in a
similar fashion obtain∑

j+k>n/2
j �=k

�22�j� k�

≈ n3/2 ∑
n/2<m≤n

�n−m�1/2(S0�m� + 2�S−S0�r0�m�)�(A.28)
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Putting together (A.27) and (A.28), we conclude that

�22 ≈ n2
(
S2 − ∑

j≥1

r2�j�
)

− n3/2
n−1∑
m=1

(
n1/2 − �n−m�1/2)(S0�m� + 2�S−S0�r0�m�

)

− n2 ∑
m≥n

(
S0�m� + 2�S−S0�r0�m�)�

(A.29)

To use this formula, we need a sharp asymptotic expansion for S0�m� defined
in (A.23). It is immediate that S0�m� is asymptotic to 2S0r0�m�, S0 being∑
j r0�j�. A careful study shows that more precisely,

S0�m� ≈ 2S0r0�m� + A

2π
m−2 log2m+ B

2π
m−2 logm

(with the first omitted term asymptotic to m−2), where

A = −5 +
∫ 1

0

(
y−3/2 − 1

)(�1 − y�−3/2 − 1
)
dy�

B = −8 + 2
∫ 1

0
y−3/2(�1 − y�−3/2 − 1

)
log ydy�

To compute the first integral, we substituted y = sin2 t and found, after several
by parts integrations, that the corresponding antiderivative equals

I�t� = sin2 t+ 2 sin−1 t+ 4 sin2 t− 2 sin t− 2
cos t sin t

�(A.30)

Now I�0+� = −2� I�π/2−� = 3, hence the integral equals 5, and A = 0 (!). To
evaluate the second integral, we write it as

∫ 1

0

(
y−3/2 − 1���1 − y�−3/2 − 1� log ydy+

∫ 1

0

(
y−3/2 − 1

)
log�1 − y�dy�

and compute the first integral here via the same substitution and integration
by parts, using (A.30), and the second integral, by expanding log�1 − y� at
y = 0. The corresponding values are −4π + 3+ 4 log 2 and 1− 4 log 2. So their
sum is 4 − 4π, and B = −8π.

Therefore in (A.29),

S0�m� + 2�S−S0�r0�m� ≈ 2S�2πm3�−1/2 logm− 4m−2 logm�
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We plug this approximation into (A.29) and estimate the resulting sums, like
the expressions E logLn and �21 earlier:

�22 ≈ n2
(
S2 − ∑

j≥1

r2�j�
)

−S�2π�1/2n3/2 log n− 8S�2π�−1/2

×
(
π

2
+
∫ π/2

0
log sin t dt

)
n3/2

+ n log2 n�

(A.31)

Invoking (A.17), (A.21) and (A.31) enables us to conclude that

E�logLn�2 ≈ n2S2 − 2S�2π�1/2n3/2�

Thus [see (A.14)],

VarLn = E�logLn�2 − E2 logLn

= bn log n+ ξ1n+ ξ2n
1/2 log2 n+O(n1/2 log n

)
�
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