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We introduce two new types of random field. The cross correlation
Ž .field R s, t is the usual sample correlation coefficient for a set of pairs of

Gaussian random fields, one sampled at point s � � M, the other sampled
N Ž .at point t � � . The homologous correlation field is defined as R t �

Ž .R t, t , that is, the ‘‘diagonal’’ of the cross correlation field restricted to the
same location s � t. Although the correlation coefficient can be trans-
formed pointwise to a t-statistic, neither of the two correlation fields
defined above can be transformed to a t-field, defined as a standard
Gaussian field divided by the root mean square of i.i.d. standard Gaussian
fields. For this reason, new results are derived for the geometry of the
excursion set of these correlation fields that extend those of Adler. The

Žresults are used to detect functional connectivity regions of high correla-
. Ž .tion in three-dimensional positron emission tomography PET images of

human brain activity.

1. Introduction. Figure 1 illustrates the idea behind this paper. Two
Ž . Ž .sets of � � 20 i.i.d. smooth time series X s , Y t , i � 1, . . . , � are showni i

parallel to the axes of the figure. The interior two-dimensional image is the
usual sample cross correlation coefficient between the two sets of time series

Ž .evaluated for data at all pairs of times s, t on the axes,

Ýn X s Y tŽ . Ž .i�1 i i
R s, t �Ž .

2 2n n'Ý X s Ý Y tŽ . Ž .i�1 i i�1 i

Ž . Ž .see Section 10.1 for more details . The set of points s, t where the correla-
tion is greater than 0.5 is the interior of the contours, and local maxima of the
correlations inside this region are indicated by crosses. In fact, three of these

Ž .correspond to true nonzero correlations joined by dotted lines and the rest
are noise. Our main aim in this paper is to provide tests for detecting these
pairs of highly correlated regions and distinguishing them from the back-
ground noise. We shall be particularly interested in the case where the time
series are smooth isotropic Gaussian random fields.
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FIG. 1. Illustration of a correlation field in M � N � 1 dimensions. Two sets of � � 20 i.i.d.
Ž Ž . Ž . .smooth Gaussian time series X s , Y t , i � 1, . . . , � are shown parallel to the axes. Thei i

2 2Ž . Ž . Ž . 'interior two-dimensional image R s, t � Ý X s Y t � Ý X s Ý Y t is the cross correla-Ž . Ž .i i i i i i i
tion field of sample correlation coefficients between X and Y for all pairs of time points. The

Ž . Ž .homologous correlation field R t � R t, t is restricted to the diagonal. Three nonzero correlations
Žwere added at points linked by the dotted lines. Contours at R � 0.5 are shown the interior is the

. Ž .excursion set together with local maxima crosses; large crosses are significant at P � 0.05
Žinside the excursion set the sizes of the three largest connected components are significant at

.P � 0.05 .

The motivation for this work came from a problem in the analysis of
Ž .positron emission tomography PET images of cerebral blood flow, a measure

of brain activity. In one experiment, subjects were given an arithmetic task
Žand a mental rotation task a task designed to measure the ability to perceive

.three-dimensional objects , and each was compared to a baseline or rest task
Ž .Petrides, 1998, private communication . The hypothesis was that arithmetic
ability and mental rotation ability are correlated across individuals; that is,
those who are good at one task should also be good at the other. The
experimenters were thus interested in detecting those areas of the brain
which showed a high correlation between PET measures of brain activity
during performance of the two tasks. A natural measure of this is the usual
sample correlation coefficient, calculated at each voxel to produce an image of
correlation coefficients. The regions of the brain where the correlation coeffi-
cient exceeded a fixed high threshold value was used to detect regions of high
correlation. Their statistical significance was assessed both by the height of
local maxima above the threshold and the size of connected components of the
thresholded region. The main statistical question addressed in this paper is
how to find approximate null distributions for these two test statistics.
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We subsequently realized that this was related to similar problems in
‘‘functional connectivity,’’ a term used to describe regions of the brain whose
blood flows are highly correlated, perhaps due to direct neuronal connections
between the regions, or because these two regions are implicated in the same

� Ž .task Friston, Frith, Liddle and Frackowiak 1993 , Strother, Anderson,
Ž .�Schaper, Sidtis, Liow, Woods and Rottenberg 1995 . Again images are

acquired either on the same subject or over different subjects, with the goal of
detecting those pairs of regions that have highly correlated measures. Previ-
ous methods have studied these autocorrelations indirectly through principal

� Ž .�components analysis Friston, Frith, Frackowiak and Turner 1995 , or
directly through structural equations models for a small number of prese-

�lected regions see Horwitz, Grady, Mentis, Pietrini, Ungerleider, Rapoport
Ž . Ž .and Haxby 1996 ; McIntosh and Gonzalez-Lima 1994 ; Friston, Buchel,¨

Ž .�Fink, Morris, Rolls and Dolan 1997 . Bullmore, Rabe-Hecketh, Morris,
Ž .Williams, Gregory, Gray and Brammer 1996 have looked at more extensive

matrices of correlations between activated voxels, but no thresholding is
attempted. In this paper we propose a direct analysis of the autocorrelations
between all possible pairs of voxels. Of course we exclude autocorrelations
between neighboring voxels which can be attributed to spatial correlation.
Once again the statistical question is to find the null distribution of local
maximum autocorrelations, searched across all pairs of well-separated voxels
in the brain, and the size of connected components of voxels above a high
threshold level.

Finally, we realized that both problems are related to the more general
question of detecting cross correlations between two sets of images, as

Ž . Ž Ž . Ž .. M Ž .follows. Let X s � X s , . . . , X s �, s � S � � and Y t �1 � x
Ž Ž . Ž .. NY t , . . . , Y t �, t � S � � , be vectors of � independent identically dis-1 � y
tributed smooth stationary Gaussian random fields with mean 0. The cross

Ž .correlation field R s, t is defined as

X s �Y tŽ . Ž .
1.1 R s, t � .Ž . Ž . 'X s �X s Y t �Y tŽ . Ž . Ž . Ž .

For M � N, S � S � S, say, the homologous correlation field is defined asx y
Ž . Ž .R t � R t, t . If s and t are discrete parameters, then the cross correlation

field can be thought of as the matrix of all pair-wise correlation coefficients,
whereas the homologous correlation field is just the diagonal of this matrix
Ž . Ž .see Figure 1 and Section 10.1 . If X � Y, then R s, t is the autocorrelation
field that measures functional connectivity between all pairs of points. We
shall not study autocorrelation fields in this paper, but if s and t are far
apart, so that the spatial correlation is close to zero, then the local behavior of
the autocorrelation field is well approximated by that of the cross correlation
field for independent X and Y.

At first glance, it might be felt that the study of these correlation fields is
not too difficult. The sample correlation can be transformed to a t-statistic
with � � 1 degrees of freedom, and the geometry of the t-field has been
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Ž . Ž .extensively studied in Worsley 1994 and Cao 1999 . However we shall see
later that although these t-transformed correlations have a t-distribution at

Žeach point, they do not form a t-field in the free parameter in the sense of
these papers, a t-field is defined as a standard Gaussian field divided by the

.root mean square of i.i.d. standard Gaussian fields . However, note that if
� Ž .�either s or t are fixed in Figure 1, these are the rows and columns of R s, t ,

then it is easy to see that the t-transformed correlations do form a t-field in
the free parameter as defined above.

In Section 2 we shall justify the choice of local maximum correlation as a
statistic for detecting positive correlation by finding a model for which this is
Ž .almost the likelihood ratio test statistic. In Section 3 we shall show how the
geometry of the excursion set provides a way to find a very good approxima-
tion to the upper tail probability of the maximum correlation. The key

Ž .quantity is the expected Euler characteristic EC of the excursion set, which
in turn depends on the distribution of the random field and its first two
derivatives. Starting with the cross correlation field, the first step is to find a

Ž .representation for these derivatives Section 4 and then to find the expected
Ž .EC Section 5 . Section 6 investigates the shape of the random field near local

maxima and gives the null distribution of the size of the largest connected
component of the excursion set. Sections 7�9 repeat the previous three
sections for the homologous correlation field. Section 10 gives some simple
simulations and two applications of the theory to some PET data.

2. Models and test statistics. We are interested in detecting local
regions of positive correlations in a background of zero correlations, so a
natural estimator is the set of local maximum correlations that are larger
than a prescribed threshold. To avoid false positives, that is, detecting
positive correlations when none are present, the threshold should be set so
that the probability of detecting any positive correlations above the threshold,
where none are present, is controlled to be, say, 0.05. Even if there are some
positive correlations confined to a small region, this procedure is conserva-
tive, since the probability of detecting further correlations outside this region
Ž .where there are no correlations is clearly smaller than detecting correla-

Ž .tions in the whole region when there are no correlations . Thus we are
interested in the test statistics,

˜2.1 R � max R s, t , R � max R t ,Ž . Ž . Ž .max max
s�S , t�S t�Sx y

and their upper tail probabilities under the null hypothesis of zero correla-
tions everywhere in the region.

We shall now find a model of the correlation structure for which the test
Ž . Ž .statistics 2.1 are almost likelihood ratio test statistics. This will suggest

Ž .the local correlation structure that 2.1 is most powerful at detecting. Con-
sider the model,

2.2 X s � � s � s , Y t � � t � t ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .i x i i y i
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Ž . Ž . Ž . Ž .where � s , � t are unknown positive parameters, and � s , � t are sta-x y i i
tionary Gaussian random fields with mean zero, variance one, and known

Ž . Ž .spatial autocorrelation functions f s , f t , respectively. In Figure 1 and thex y
applications in Section 10, f and f are the Gaussian-shaped functions,x y

2.3 f s � exp �s�� s�2 , f t � exp �t�� t�2 ,Ž . Ž . Ž . Ž . Ž .x x y y

where � , � are known M � M, N � N matrices that control the spatialx y
extent of the correlations. Suppose further that

2.4 Cor X s , Y t � � f s � s f t � t ,� 4Ž . Ž . Ž . Ž . Ž .i i x 0 y 0

� � Ž .where � is an unknown parameter restricted to � � 1 to ensure that 2.4 is
Ž .indeed a valid model for the correlation structure. In other words, 2.4

Ž .specifies a local correlation structure between X s in the neighborhood of si 0
Ž .and Y t in the neighborhood of t , whose extent matches the spatiali 0

Ž . Ž .autocorrelation of X s and Y t . Such a correlation structure has beeni i
added to Figure 1 in three different places.

Assume initially that the locations of the correlations s , t are known, so0 0
Ž . Ž .that the unknown parameters are � s , � t and �. Then it can be shownx y

that the likelihood depends on � only through the marginal likelihood of
Ž . Ž .X s , Y t , i � 1, . . . , � . This can easily be demonstrated for discrete pa-i 0 i 0

rameter random fields where s, t take a finite set of values; moving to Hilbert
�spaces completes the proof for the continuous parameter case Siegmund and

Ž .� Ž .2Worsley 1995 . The maximum marginal likelihood estimators of � s ,x 0
Ž .2 Ž .2 Ž .2 Ž .� t and � are then Ý X s �� , Ý Y t �� and R s , t , respectively.y 0 i i 0 i i 0 0 0

Unfortunately, these are not the full m.l.e.’s because the likelihood of
� Ž . Ž . 4 Ž . Ž .X s , Y t : s � s , t � t conditional on X s , Y t still depends oni i 0 0 i 0 i 0
Ž . Ž . Ž .2 Ž .2 Ž� s , � t . Nevertheless, estimating � s , � t marginally and consis-x 0 y 0 x y

. Ž .2 Ž .2tently by Ý X s �� , 	 Y t �� for all s, t and substituting these into thei i i i
Ž .full log likelihood leaves an expression that depends on s , t only through0 0

Ž . � Ž .24the additive term � ��2 log 1 � R s , t . Maximizing this over all s , t is0 0 0 0
Ž .equivalent to maximizing R s , t , which justifies R both as an estimator0 0 max

of � and as a test statistic for the null hypothesis that � � 0. The same
˜arguments apply to R by restricting s � t . However, more importantmax 0 0

than these optimality properties is the fact that the distribution of the
Ž . Ž . Ž .random field R s, t does not depend on � s , � t , which makes exactx y

inference possible.

3. Geometry of the excursion set. For the applications presented
above, the main interest is to find good approximations for the null probabil-
ity that the maximum correlation exceeds a high threshold value. We obtain
an accurate approximation for this via the geometry of the excursion set, the
set of points where the correlation field exceeds the threshold value. For high
thresholds, the excursion sets consists of isolated regions containing no

Ž .‘‘holes,’’ so that the Euler or Euler�Poincare characteristic EC of the´
excursion set counts the number of connected components of the excursion
set. For higher thresholds, near the maximum of the field, the EC becomes an
indicator for the event that the maximum exceeds the threshold, taking the
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value one if the maximum is above the threshold and zero if it is below. Thus
for these high thresholds, the expected EC approximates the upper tail

� Ž . Ž .�probability of the maximum Hasofer 1978 ; Worsley 1995a . Although it is
not quite what we want, the expected EC of the excursion set has several
advantages over other approximations to the upper tail probability of the

�maximum: it is very accurate there has been a recent breakthrough on this
Ž .longstanding conjecture: Adler 1998 , has shown that the expected EC for

�Gaussian random fields is accurate to as many terms in its expansion ; in
� Ž .�some discrete situations, it is exact see Naiman and Wynn 1992 ; in many

cases it is possible to find an exact expression for the expected EC of the
excursion set for all threshold levels; the EC of the excursion set has
inherent interest as a tool for studying the clustering behavior of random

� Ž .fields and point processes, particularly in astrophysics Torres 1994 ; Vogley,
Ž . Ž .�Park, Geller, Huchra and Gott 1994 ; Worsley 1995a .

Before we proceed, we shall introduce some notation used throughout the
paper. For a function of z, derivatives with respect to z will be indicated by
dot notation and second derivatives with two dots. If z is partitioned into two

Ž .parts, that is, z � s, t , to avoid confusion and to denote the differentiation
with respect to s or t explicitly, we shall replace the dots by s or t respec-
tively. Where appropriate, a single derivative with respect to s or t should be
interpreted as a column vector, and two derivatives in a single expression,
either a second derivative or a product of single derivatives, should be
interpreted as a matrix. Hence if f is a scalar, we define

s 2st s t
 f 
 f 
 f 
 f
f � , f � , f f � .


 s 
 s 
 t� 
 s 
 t�

In more complex expressions, matrix operations take precedence over differ-
entiation.

Wherever there is no confusion, we shall drop the dependence of a random
Ž .field on its arguments. That is, we shall write R � R s, t for the cross

Ž .correlation field or R � R t for the homologous correlation field. For a vector,
�we shall use subscripts j and j to represent the jth and first j components.

�For a symmetric n � n matrix B, we shall use the subscript j to represent
the submatrix composed of the first j rows and columns. We shall also use

Ž .detr B to denote the sum of the determinant of all j � j principal minors ofj
Ž . Ž . Ž . Ž . Ž .B, so that detr B � det B , detr B � tr B and we define detr B � 1.n 1 0

Wherever possible, we shall use lower case letters for scalars and vectors, and
upper case letters for matrices; the exceptions are X, Y and R. Finally, we
shall let x�� x if x � 0 and 0 otherwise.

3.1. The homologous correlation field. To make the formal presentation
clearer, we shall start with the homologous correlation field. We shall assume
that the correlation field satisfies the regularity conditions given in Adler
Ž . N1981 , Theorem 5.2.2. Let S � � be a closed compact set with a twice

� Ž . 4differentiable boundary. Let A � t � S: R t 	 r be the excursion set ofr
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Ž .the homologous correlation field above the threshold r, inside S. Let � A be
Ž .the Euler or Euler�Poincare characteristic EC of a set A. We are interested´

� Ž .4in finding the expectation of the EC of the excursion set, E � A .r
It is possible to find a simple result for the expectation of the EC of the

excursion set when the field is isotropic in t. Define the j-dimensional EC
intensity as

¨ ˙� r � E R 	 r det �R 
 R � 0  0Ž . Ž . Ž .½ 5ž /j � j � j � j

˙� ¨ ˙� E R det �R 
 R � 0, R � r � 0, r ,Ž .½ 5ž /j � j�1 � j�1 � j�1

3.1Ž .

˙ ˙Ž . Ž .where  � is the density of R and � �, � is the joint density of R� j � j � j�1 � j�1
and R; the equivalence of the two definitions is demonstrated in Worsley
Ž . Ž .1995 . The word ‘‘intensity’’ is chosen to emphasize the derivation of 3.1
from Morse theory as the expectation of a point process in � N taking values

Ž . � Ž . Ž .��1 at turning points of R t Adler 1981 ; Worsley 1995a . Let a �j
j�2 Ž . Ž . j Ž .2� �� j�2 be the surface area of a unit j � 1 -sphere in � . Let C S be

the inside curvature matrix of S at a point t, and for j � 0, . . . , N � 1 define
the j-dimensional measure, proportional to the Minkowski functional, of S as

1
� S � detr C S dt,� 4Ž . Ž .Hj N�1�ja 
SN� j

Ž . � � Ž . Ž .and define � S � S , the Lebesgue measure of S. Note that � S � � SN 0
Ž .by the Gauss�Bonnet theorem, and � S is half the surface area of S.N�1

Then the expected EC is given by
N

3.2 E � A � � S � r ,� 4Ž . Ž . Ž . Ž .Ýr j j
j�0

Ž . � 4 � Ž .�where we define � r � P R 	 r Worsley 1995 . Our main task, therefore,0
Ž . Ž .is to evaluate � r from 3.1 .j

Ž .3.2. The cross correlation field. The result 3.2 needs to be extended to
Ž .the cross correlation field R s, t . First, even if we assume that the bound-

aries of S and S are twice differentiable, the boundary of the search regionx y
S � S is not twice differentiable, and second, even if we assume that thex y
field is stationary, isotropic in s for fixed t, and isotropic in t for fixed s, the

Ž .field is not isotropic in s, t . We therefore need the following special result.

Ž .LEMMA 3.1. Suppose R s, t is a stationary random field as defined in
Ž . Ž .1.1 , satisfying the regularity conditions of Adler 1981 , Theorem 5.2.2.

� Ž . 4Define the excursion set as A � s � S , t � S : R s, t 	 r . Thenr x y
M N

E � A � � S � S � r ,� 4Ž . Ž . Ž .Ž .Ý Ýr i x j y i j
i�0 j�0

Ž . Ž .where � r is the same expression as 3.1 but for the parameters of thei j
random field restricted to the first i components of s and the first j components
of t.
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Ž .PROOF. The proof closely follows that used to derive 3.1 . This in turn
Ž .follows from the expected point-set representation for � A from Morser

theory, which we now present for a stationary field inside a set S with a
˙� Ž .�twice differentiable boundary Worsley 1995a . Let R be the derivative of�

˙ ¨R in the direction of the outside normal to 
S, let R and R be the first andT T
˙Ž .second derivatives in the tangent plane to 
S, let  � be the density of RT T

˙Ž .and let  � be the density of R. Then

˙ ¨ ˙ ˙�E � A � E R 	 r R � 0 det �R � R C S R � 0� 4Ž . Ž . Ž .Ž .H ½ 5žr � T � T

S3.3Ž .

¨ ˙� �� 0 dt � S E R 	 r det �R 
 R � 0  0 ,Ž . Ž . Ž .Ž .� 4T

where logical expressions in parentheses take the value one if true and zero if
false. Extending this to S � S � S , it can easily be seen that the last termx y

Ž .of 3.3 corresponds to the i � M, j � N term in the lemma; the remaining
terms come from the boundary.

We break up the boundary of S into three disjoint pieces: S� � 
S ,x y

S � S� and 
S � 
S . We shall first deal with the ‘‘edge’’ 
S � 
Sx y x y x y
where the boundary is not twice differentiable. The derivative with respect to

s
s in the direction of the outside normal to 
S is denoted by R and thex �
derivative with respect to t in the direction of the outside normal to 
S isy

t
denoted by R . Let m � M � 1 and n � N � 1. The vector of the remaining�

˙Ž .m � n derivatives tangent to 
S and 
S is denoted by R , and thex y T
¨Ž . Ž . Ž .m � n � m � n matrix of second derivatives is denoted by R . Let  �T T

˙ Ž . Ž .be the density of R . Let B be an m � n � m � n block diagonal matrixT
s t

Ž . Ž .with two blocks R C S , R C S . Then the contribution to the expected� x � y
EC is

s t
E R 	 r R � 0 R � 0Ž .H � �ž / ž /½


S �
 Sx y3.4Ž .
� ¨ ˙det �R � B 
 R � 0  0 ds dt.Ž .Ž .T T T5

Since the field is isotropic in s for fixed t, and in t for fixed s, we can rotate
the coordinates s and t so that the outside normals to 
S and 
S arex y
aligned with the Mth and Nth coordinate axes of s and t, respectively. We
can further rotate S and S in their tangent planes so that B is diagonal,x y
which by isotropy will not affect the integrand, so without loss of generality
we shall assume that B is diagonal. The determinant in the integrand can

Ž .then be expanded in terms of products of the determinant of each i � j �
¨Ž . Ži � j principal minor of �R i from the first m rows and columns, j fromT

.the second n rows and columns with the determinant of the remaining
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s
Ž .m � i rows and columns of R C S and the remaining n � j rows and� x

t
Ž .columns of R C S not included in the principal minor. Again by isotropy,� y

¨the distribution of any principal minor of �R is the same as the distributionT
¨of �R , the second derivative with respect to the first i components of s and� i j

Ž .the first j components of t. Thus the expectation in 3.4 becomes

m n

detr C S detr C S� 4Ž . � 4Ž .Ý Ý m� i x n�j y
i�0 j�0

n� jm�is t s t
� � ¨� E R 	 r R R det �R R � 0, R � 0 .Ž . ž /M N � i j � m � nž / ž / /½ 5

Ž .The rest of the proof follows closely that of Theorem 4 of Worsley 1995a , to
give the terms for 0 � i � M, 0 � j � N in the lemma.

It is straightforward to extend this to the remaining two portions of the
boundary S� � 
S and 
S � S�. For example, the curvature matrix ofx y x y

� Ž . Ž .S � 
S is simply the M � N � 1 � M � N � 1 matrix formed by addingx y
Ž .M rows and columns of zeros to C S . Expanding the determinant in they

¨integrand in terms of products of the determinant of principle minors of RT
and the determinant of the principle minors of the curvature matrix produces
the terms corresponding to i � M, 0 � j � N. Similar arguments for 
S � S�

x y
lead to the remaining terms for 0 � i � M, j � N.

4. Representations of the first two derivatives of the cross correla-
tion field. First some notation. Let � � 1 if i � j and 0 otherwise, and leti j

Ž .I be the d � d identity matrix. Let Normal �, 	 represent the multivari-d d
ate normal distribution on � d with mean � and variance 	, and if A is an
n � m matrix whose elements are normally distributed we shall write Nor-
mal . Let � 2 represent the � 2 distribution with � degrees of freedom, letn�m �

Ž .Wishart 	, � represent the Wishart distribution of a d � d matrix withd
Ž .expectation � 	 and degrees of freedom � , let Beta n, m represent the Beta

D
distribution with parameters n, m. Finally, we shall let � represent equality
in law between two random variables.

� Ž . � Ž .LEMMA 4.1 Adler 1981 , page 31 . Let � � � t be an isotropic standard
N ˙Ž . Ž . Ž .Gaussian random field on � with E � � 0, Var � � 1 and Var � � �.

We shall assume that � satisfies the regularity conditions of Theorem 5.2.2 of
Ž .Adler 1981 which ensure that realizations of � are sufficiently smooth. Then

we can write the second derivative of � at a fixed point t in terms of
independent random variables as follows:

D
�̈ � � �� � H ,

˙where H is a symmetric N � N matrix, independent of � and � . The ijth
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elements of H, denoted by h , are jointly normally distributed with mean zeroi j
and covariance,

4.1 Cov h , h � � i , j, k , l � � � ,Ž . Ž .Ž .i j k l i j k l

Ž .where � is the ijth element of � and � i, j, k, l is symmetric in its argu-i j
Ž .ments, i, j, k, l � 1, . . . , N. We shall refer to this type of covariance 4.1 as

Ž . Ž Ž ..V � , and write H 	 Normal 0, V � .N� N

Let � and � be the variance matrices of the first derivative of thex y
Ž . Ž .components of X s and Y t , respectively.

Ž .LEMMA 4.2. The first two derivatives of the cross correlation field R s, t
can be written in terms of independent random variables as follows:

s tD D1�2 1�22 �1�2 1�2 2 �1�2 1�2a R � 1 � R a � z , R � 1 � R c � z .Ž . Ž . Ž .x x y y

ss D 1�2
 
 
1�2 �1 �1 2 �1b R � � �Ra z z � Ra Q � 1 � R a z w � w zŽ . Ž . Ž .½x x x x x x x x

1�22 �1�2 1�2� 1 � R a H � ,Ž . 5x x

tt D 1�2
 
 
1�2 �1 �1 2 �1R � � �Rc z z � Rc Q � 1 � R c z w � w zŽ . Ž .½y y y y y y y y

1�22 �1�2 1�2� 1 � R c H � ,Ž . 5y y

st D �1�2 �1�2
1�2 1�2R � � �R ac z z � ac Q � ,Ž . Ž .½ 5x x y x y y

where D � M � N and

z , w 	 Normal 0, I , z , w 	 Normal 0, I ,Ž . Ž .x x M M y y N N

H 	 Normal 0, V I , H 	 Normal 0, V I ,Ž . Ž .Ž . Ž .x M�M M y N�N N

Q �Qx x y2a, c 	 � , Q � 	 Wishart I , � � 2 ,Ž .
� D D�Q Qž /x y y

independently, and independent of R.

PROOF. Let a � X �X, b � X �Y and c � Y �Y. Then

s s s ss t t t tts ss t tt
a � 2 X �X , a � 2 X � X � 2 X �X , c � 2 Y � Y , c � 2 Y � Y � 2 Y � Y ,
s s t t ss ss st s t tt tt
b � X �Y , b � Y � X , b � X �Y , b � X � Y , b � Y �X .
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Let u � a�1�2 X and v � c�1�2 Y, then R � a�1�2c�1�2 b � u�v. It is easy to
show that a, c, u and v are independent and hence a, c and R are
independent. Therefore,

s s ss s1 1�1�2 �1�2 �3�2 �1�2 �1 �1R � a c b � a c b a � R b b � a a ,2 2ž /
4.2Ž . t t tt t1 1�1�2 �1�2 �3�2 �1�2 �1 �1R � a c b � a c b c � R b b � c c .2 2ž /

Let RR � I � uu� and RR � I � vv�, and note that Y � a�1 bX � RR Y andu � v � u
X � c�1 bY � RR X, thenv

s s t t
�1�2 �1�2R � a X � RR v , R � c Y � RR u.u v

Let

s t�1�2 �1�22 �1�2 2 �1�2z � 1 � R � X � RR v , z � 1 � R � Y � RR u ,Ž . Ž .x x u y y vž / ž /
Ž . Ž .then z 	 Normal 0, I , z 	 Normal 0, I independent of u, v andx M M y N N
Ž .hence R. Therefore a follows.

It is easy to see that
ss s s ss s sss s s1 1�1 �1 �1 �2 �2R � R R R � R b b � a a � b b b � a a a ,2 2ž /
tt t t tt t ttt t t1 1�1 �1 �1 �2 �2R � R R R � R b b � c c � b b b � c c c ,2 2ž /
st s t st s t

�1 �1 �2R � R R R � R b b � b b b .ž /
ss ttD D˜ ˜From Lemma 4.1, X � � � H and Y � � � Y � H , where the compo-x x y y

˜ ˜nents of H and H corresponding to each component of X and Y are i.i.d.x y
Ž Ž .. Ž Ž ..Normal 0, V � and Normal 0, V � , respectively. Note thatM� M x N�N y

RR u � RR v � 0 and sou v

ss s s ss ss s s
�1 �1 �1 �1R � R R R � R b X �Y � a X �X � a X � Xž

s s s s
�2 �2�b X �YY � X � 2 a X �XX� X /

s sD 
�1 �1�2 ˜� R R R � a H RR vx u

s s�1 2 2� Ra X � R I � vv� � 2 R uu� X ,Ž . Ž .�
4.3Ž .

tt t tD 
�1 �1�2 ˜R � R R R � c H RR uy v

t t�1 2 2� Rc Y � R I � uu� � 2 R vv� Y ,Ž . Ž .�

st s t s t
�1 �1R � R R R � b X � RI � vu� Y ,Ž .�
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˜
� �where H RR v is understood to be the M � M matrix equal to the linearx u
˜combination of the components of H corresponding to each component of Xx

˜
� �with the components of RR v. H RR u is defined in a similar way. Define Hu y v x
and H to be M � M and N � N matrices such thaty

�1�2 
2 �1�2 �1�2˜H � 1 � R � H RR v � ,Ž .x x x u x
4.4Ž .

�1�22 �1�2 �1�2˜H � 1 � R � H RR u � ,Ž .y y y v y

Ž Ž .. Ž Ž ..so that H 	 Normal 0, V I and H 	 Normal 0, V I indepen-x M�M M y N�N N
dent of a, c, R. Let

s t
�1�2 �1�2w � � X �u , w � � Y �v .x x y yž / ž /

Ž .It is easy to see that conditional on R, u, v then z , w 	 Normal 0, Ix x N M
Ž .and z , w 	 Normal 0, I , all independently. Let W be the � � 2 matrixy y N N

Ž .�1whose columns are u and v, and let RR � I � W W �W W �. Define�

s s t t
�1�2 �1�2 �1�2 �1�2Q � � X � RR X � , Q � � Y � RR Y � ,x x x y y yž / ž /

s t
�1�2 �1�2Q � � X � RR Y � .x y x yž /

Then conditional on R, u, v,

Q Qx x y
	 Wishart I , � � 2 .Ž .
 D DQ Qž /x y y

Furthermore, since RRu � RR RR v � RRv � RR RR u � 0 then Q , Q , Q areu v x x y y
also independent of z , z , w , w conditional on R, u, v. Note thatx y x y

s s
2 2X � R I � 2 R uu� � vv� XŽ .�

1�2
 
 
1�2 2 2 1�2� � R Q � z z � 1 � R R z w � w z � ,Ž . Ž .x x x x x x x x x

t t
2 2Y R I � uu� � 2 R vv� YŽ .�4.5Ž .

1�2
 
 
1�2 2 2 1�2� � R Q � z z � 1 � R R z w � w z � ,Ž . Ž .y y y y y y y y y

s t

1�2 1�2X � RI � vu� Y � � RQ � z z � ,Ž . Ž .� x x y x y y

Ž . Ž . Ž . Ž .then b follows after combining 4.3 , 4.4 and 4.5 . �

5. The expected Euler characteristic for the cross correlation field.
We shall derive results for general � and � . The main part is to evaluatex y

¨ ˙ ˙� Ž . 4E det R 
 R � 0, R � r . Conditional on R � r, R � 0, a, c, Lemma 4.2 has
¨written R as a sum of two independent random matrices A � B where A is

composed of Q , Q , Q and B of H , H . Our method of attack is to breakx y x y x y
down its determinant into a sum of determinants of principal minors of A
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times determinants of principal minors of B. The result is given in Lemma
˙A.4. To complete the calculation, this is combined with R and the density ofD

Ṙ in Theorem 5.1 and the final result is obtained by taking expectations� D�1
over a and c.

THEOREM 5.1. Let D � M � N. For � � D, N � 0, the expected EC inten-
sity for the cross correlation field is

� � � ���2�D M�2 n�2 n�2 j21�21�2 i�j�k
� r � det � det � �1Ž . Ž . Ž .Ž . Ý Ý ÝM , N x y D �2�1� i�0 j�0 k�0

ŽŽ . .��D�1 �2 �i�j�kD�1�2 i�2 j�2 k 2�r 1 � rŽ .
� � � M �2 � i � � � N �2 � j M !n!Ž . Ž .Ž . Ž .

� ,
i! j!k! ��D�1�2 i�2 j�k ! M�2 i�k ! n�2 j�k !Ž . Ž . Ž .

where n � N � 1.

PROOF. For simplicity we shall assume that � � I and � � I . Thex M y N
result can be easily generalized to any � and � by a simple change ofx y
coordinates of s and t. Let d � D � 1. From Lemma 4.2,

1�2�1�2� 2 �1�2˙ �E R R � r , a, c � 2� 1 � r c ,Ž . Ž .� 4D

and conditional on a, c,

� ��2Ž . Ž .� D���2 �2�d �2 �D �2 2 M �2 n �2�� 0, r a, c � 2 � 1 � r a c .Ž . Ž .� d � � � 1 �2Ž .Ž .
˙From the same lemma we have conditioned on R � r, R � 0, a, c,� d

�1�2�1�1�2 �ra Q ac QŽ .a H 0 x x y �x1�2 n2R̈ � 1 � r � ,Ž .� d �1�2 �1�2 
 �10 c Hž / � 0ac Q �rc Qy � Ž .n x y � y �n n

˙independent of R . Applying Lemma A.4 with N replaced by n, D replacedD
Ž 2 .1�2 �1�2by d, � replaced by � � 2, � replaced by 1 � r a , � replaced by1 2

Ž 2 .1�2 �1�2 �1 Ž .�1�2 �11 � r c , � by �ra , � by ac , � by �rc and � by1 2 3 4
1 � 1�r 2,

¨ ˙E det �R 
 R � 0, R � r , a, c½ 5ž /� d � d

� � � �M�2 n�2 n�2 j
i� j�ki�j�k �Ž i�j. d�2 i�2 j�2 k 2 �M�i �n�j� �1 2 r 1 � r a cŽ . Ž .Ý Ý Ý

i�0 j�0 k�0

� � 2 !M !n!Ž .
� .

i! j!k! � � 2 � d � 2 i � 2 j � k ! M � 2 i � k ! n � 2 j � k !Ž . Ž . Ž .
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˙ ¨ ˙Note that R and R are independent conditional on R � 0, R, a, c, henceD � d � d
putting these together gives

˙� ¨ ˙� �E R det �R R � 0, R � r , a, c � 0, r a, cŽ .Ž .½ 5D 
 d � d � d

� � � �M�2 n�2 n�2 j� ��2Ž . i� j�k�D �2 �ŽD�1.�2 �Ž i�j.� 2 � �1 2Ž .Ý Ý Ý
� � � 1 �2Ž .Ž . i�0 j�0 k�0

ŽŽ . .D���1 �2 �i�j�kd�2 i�2 j�2 k 2 �M �2�i �N�2�j�r 1�r a cŽ .

�
� � 2 !M !n!Ž .

.
i! j!k! � � 2 � d � 2 i � 2 j � k ! M � 2 i � k ! n � 2 j � k !Ž . Ž . Ž .
� l4 � l4 l ŽŽ . . Ž .Note that E a � E c � 2 � ��2 � l �� ��2 and so taking expectations

over a and c gives

˙� ¨ ˙�� r � E R det �R R � r , R � 0 � 0, rŽ . Ž .½ 5ž /M , N D � d � d � d

� � � �M�2 n�2 n�2 j
i� j�k�D �ŽD�1.�2� 2 � �1Ž .Ý Ý Ý

i�0 j�0 k�0

ŽŽ . .D���1 �2 �i�j�kd�2 i�2 j�2 k 2� r 1�rŽ .
� � � � M �2 � i � � � N �2 � j � � 2 !M !n!Ž . Ž . Ž .Ž . Ž .
� � � � 1 �2 � ��2 i! j!k! � � 2 � d � 2 i � 2 j � k !Ž . Ž . Ž .Ž .

�1
� M � 2 i � k ! n � 2 j � k ! .Ž . Ž .

The result then follows by the factorization

x!� 2 x � x � 2 �2 � x � 1 �2 �� 1�2 .� 4 � 4Ž . Ž .
�

For the applications in Section 10, we need the EC intensities up to three
dimensions. Evaluating the summations in Theorem 5.1 is not easy to do
without making algebraic mistakes, so we give explicit expressions checked

Ž .using a computer algebra package MAPLE in the following corollary.

Ž .COROLLARY 5.2. The EC intensities � r for M � 3, N � 3 areM , N

� � ��2Ž . Ž .��3 �22� r � 1 � u du,Ž . Ž .H0, 0 1�2� � � � 1 �2Ž .Ž .r

Ž .��2 �21�2 �1 2� r � det � 2� 1 � r ,Ž . Ž . Ž .Ž .0, 1 y

� ��2Ž . Ž .��3 �21�2 2� r � det � r 1 � r ,Ž . Ž .Ž .0, 2 y 3�22� � � � 1 �2Ž .Ž .
Ž .��4 �21�2 �2 2 2� r � det � 2� 1 � r � � 1 r � 1 ,Ž . Ž . Ž . Ž .Ž .0, 3 y
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� � � 1 �2Ž .Ž . Ž .��3 �21�21�2 2� r � det � det � r 1 � r ,Ž . Ž . Ž .Ž .1, 1 x y 3�22� � � � 2 �2Ž .Ž .
Ž .��4 �21�21�2 �2 2 2� r � det � det � 2� 1 � r � � 2 r � 1 ,Ž . Ž . Ž . Ž . Ž .Ž .1, 2 x y

� � � 1 �2Ž .Ž . Ž .��5 �21�21�2 2� r � det � det � r 1 � rŽ . Ž . Ž .Ž .1, 3 x y 2 5�22 � � � � 2 �2Ž .Ž .
� 2� � 1 r � 3 ,Ž .

� � � 2 �2Ž .Ž . Ž .��5 �21�21�2 2� r � det � det � r 1 � rŽ . Ž . Ž .Ž .2, 2 x y 3 5�22 � � � � 1 �2Ž .Ž .

�
2 2� � 2 r � 3� � 8 ,Ž . Ž .

Ž .��6 �21�21�2 �3 2� r � det � det � 2� 1 � rŽ . Ž . Ž . Ž .Ž .2, 3 x y

� 4 2� � 1 � � 2 r � 3 2� � 5 r � 3 ,Ž . Ž . Ž .
� � � 3 �2Ž .Ž . Ž .��7 �21�21�2 2� r � det � det � r 1 � rŽ . Ž . Ž .Ž .3, 3 x y 4 7�22 � � � � 2 �2Ž .Ž .

2 4 2� � � 1 � � 3 r � 2 � � 3 5� � 11 r � 3 5� � 17 .Ž . Ž . Ž . Ž . Ž .

6. The size of the largest connected component of the excursion set
for the cross correlation field. In this section, we are interested in the
limiting distribution of the size or Lebesgue measure C of the largestmax

Ž .connected component of the excursion set of the cross correlation field R s, t
above level r as r � 1. As explained in the introduction of the paper, this is
often used as an alternative test statistic for localized signal in a random
field. We approach this by studying the distribution of the size C of individual
connected components of the excursion set and then use the Poisson clumping

� Ž .�heuristic Aldous 1989 to obtain an approximation of the distribution
of C .max

To obtain the limiting distribution of C, we shall study the behavior of
Ž .R s, t in the vicinity of high local maxima. This is done by studying the

Ž . Ž .behavior of the conditional field R s, t , defined as R s, t E , where E isr r r
Ž .the event that R s, t has a local maximum at s � 0, t � 0 with height r

approaching 1. The essential tool for this study is the notion of horizontal
Ž . Ž .window HW conditioning which is introduced by Kac and Slepian 1959 . It

�is a conditioning based on the ergodic-sense Slepian model process see Adler
Ž . Ž .1981 , Sections 6.5, 6.6, and Lindgren 1972 for illustrations and explana-

�tions . To distinguish the HW conditioning from the conditioning in the usual
 Žsense, we shall use the notation introduced in Aronowich and Adler 1986,

.1988 to denote it.
In what follows, we shall consider the case when M, N � 0. For cases

when M � 0 or N � 0, the cross correlation field can be transformed to a t
Ž .field so that the results on C and C from Cao 1999 for a t field apply.max
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Ž .LEMMA 6.1. Given that the cross correlation field R s, t with � � M,
� � N has a local maximum at s � 0, t � 0 with height r, then as r � 1, the

¨limiting HW conditional distribution of R at s � 0, t � 0 is

¨ ˙ ¨R R � r , R � 0, R � 0 converges to

a�1�2�1�2 0 a�1�2�1�2 0x x� Q ,�1�2 1�2 �1�2 1�20 c � 0 c �ž / ž /y y

2 2 Ž .where a 	 � , c 	 � and Q 	 Wishart I , � independently.��M ��N D D

PROOF. For simplicity, we shall assume � � I and � � I . Sincex M y N
s � 0, t � 0 is a local maximum of R of height r, then by Lemma 4.2, at
s � 0, t � 0,

�1�2�1�1�2 �ra Q ac QŽ .a H 0 x x yx1�22R̈ � 1 � r � .Ž . �1�2 �1�2 
 �10 c Hž / � 0ac Q �rc Qy Ž . x y y

Let Q be the matrix composed of Q , �Q , �Q
 , Q in the same way as inx x y x y y
Lemma 4.2. Following the same arguments as in the proof of Theorem 6.3.1 of

Ž .Adler 1981 , page 134, we can see that

a�1�2I 0 a�1�2I 0M MR̈ converges to � Q�1�2 �1�2ž / ž /0 c I 0 c IN N

as r � 1. We now need to find the joint HW conditional distribution of a, c, Q.
For any symmetric matrix A, let A  0 denote the condition that A is
negative definite, and let A� equal A if A  0 and zero otherwise. By
applying the corollary in Section 5.1 and the results of Sections 6.5 and 6.6

Ž .from Adler 1981 , the joint HW conditional distribution of a, c and Q at
s � 0, t � 0 is

˙ ¨ .f a, c, Q R � r , R � 0, R  0Ža , c , Q

�1 ¨� ˙� � E det �R 
 R � r , R � 0, a, c, Q f r , 0, a, c, QŽ .Ž .Ž .
� ��1a�M c�N det Q f r , 0, a, c, Q ,Ž . Ž .

˙ ˙Ž .where f R, R, a, c, Q is the joint distribution of R, R, a, c, Q and � is the
derivative of the expected number of local maxima of R above s as a function
of s at a level s � r. By Lemma 4.2,

�f r , 0, a, c, Q � f r f a f c f Q f 0 r , a, c ,Ž . Ž . Ž . Ž . Ž . Ž .
˙Ž � .where f � r, a, c is the density of R conditional on R � r, a, c that follows

a�1I 0M2˙�R r , a, c 	 Normal 0, 1 � r .Ž .D �1ž /ž /0 c IN
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Hence as r � 1,

˙ ¨f a, c, Q R � r , R � 0, R  0Ž .a , c , Q

Ž .��M�N�1 �2 1ŽŽ��M .�2.�1 �a�2 ŽŽ��N .�2.�1 �c�2� a e c e det Q exp tr � Q ,Ž . Ž .Ž .2

which proves the lemma. �

Ž .Applying Lemma 6.7.2 of Adler 1981 , we can represent the finite-dimen-
¨Ž . Ž .  Ž .sional distribution of R s, t in terms of distributions R 0, 0 R 0, 0 � r,r

˙ ¨ ˙ ¨Ž . Ž . Ž . � Ž . Ž . Ž .R 0, 0 � 0, R 0, 0  0 and R s, t R 0, 0 , R 0, 0 , R 0, 0 . For the first term,
we have already obtained its limiting distribution in Lemma 6.1. We shall
now derive the conditional distribution in the second term and combine these
results to give the limiting sample path behavior of the conditional field

Ž .R s, t near high local maxima. First, we need the following lemma forr
Ž . Ž .smooth stationary Gaussian fields from Adler 1981 and Cao 1999 .

Ž . MLEMMA 6.2. Let X s , s � � be a smooth stationary Gaussian random
˙Ž . Ž .field satisfying the regularity conditions, then conditional on X 0 , X 0 and

¨Ž . Ž .X 0 , X s has the same distribution as
1˙ ¨X 0 � X 0 s � s�X 0 s � � s � K s ,Ž . Ž . Ž . Ž . Ž .X X2

2 ˙Ž . Ž  . � � Ž . �  Ž .where � s � m � o s is deterministic with m � max X 0 , X 0 ,X
¨ 4 Ž .4 Ž . Ž  .X 0 , and K s is normal with mean 0 and covariance of o s for sX

near 0.

We shall say that a sequence of surfaces Y converges to a surface Y *u
 uniformly as u � a if, for each h � 0 and t � h, we have

P lim sup Y t � Y * t � 0 � 1.Ž . Ž .u½ 5
u�a  t �h

Ž .THEOREM 6.3. Given that a cross correlation field R s, t with � � M,
� � N has a local maximum at s � 0, t � 0 with height r, then as r � 1,

l�2 1 � R2 ls, lt converges uniformly toŽ .Ž .r

�1�2 1�2 � �1�2 1�2a � s a � sx x
1 � Q ,�1�2 1�2 �1�2 1�2c � t c � tž / ž /y y

2 2 2' Ž .where l � 1 � r and a 	 � , c 	 � , Q 	 Wishart I , � indepen-��M ��N D D
dently.

Ž . Ž .PROOF. We shall prove this for the case � � I , � � I . Let X s , Y t ,x M y N i i
i � 1, . . . , � be the Gaussian component fields in the definition of the cross

Ž . Ž .correlation field R s, t 1.1 . Let

a s � X s �X s , b s, t � X s Y t , c t � Y � t Y t ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .
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and for simplicity if s � 0, t � 0, we shall drop the dependence on s, t, writing

a 0 � a, b 0, 0 � b , c 0 � c.Ž . Ž . Ž .
2'Let l � 1 � r . It is easy to see from Lemma 6.2 that

22l

˙ ¨a ls � X 0 � lX 0 s � s�X 0 s � � ls � K ls .Ž . Ž . Ž . Ž . Ž . Ž .i i i X Xi i½ 52

Ž . 2  As r � 1 and hence l � 0, K ls �l goes to 0 uniformly on s � h for anyX xi
Ž 2 Ž .. Ž 4.h � 0, since K is twice differentiable and E K ls � o l . Furthermore,x X Xi i
Ž .given that s � 0, t � 0 is a local maximum of R s, t , it can be shown that the

limiting HW distribution of X and its derivatives at s � 0 are bounded withi
probability one as r � 1. Hence,

l 2
s ss

6.1 a ls � a � ls� a � s� a s � error ,Ž . Ž . x2

2  where error �l converges to 0 uniformly on s � h . Applying the samex x
arguments, it can be easily shown that

l 2
t tt
6.2 c lt � c � lt c � t� c t � error ,Ž . Ž . y2

l 2
� �s s s¨6.3 b ls, lt � b � l b � b � error ,Ž . Ž . x yž / ž / ž /t t t2

2 2    where error �l and error �l converges to 0 uniformly on s � h , t � h .y x y x y
Following the proof of Lemma 4.2 and using the same notation as in the
lemma, we have at the local maximum s � 0, t � 0,

s ts t1�2 1�2 1�2 1�2a � 2 a w , c � 2c w , b � rc w , b � ra w ,x y x y

ss 
 1�2a � 2 Q � w w � aI � a G ,Ž .x x x M x

tt 
 1�2c � 2 Q � w w � cI � c G ,Ž .y y y N y

ss 1�21�2 1�2 1�2 2b � �a c rI � c 1 � r H � rG ,Ž .½ 5M x x

tt 1�21�2 1�2 1�2 2b � �a c rI � a 1 � r H � rG ,Ž .½ 5N y y

st

b � Q � rw w ,x y x y

where G , G are defined asx y


 
˜ ˜G � H u , G � H v .x x y y



GEOMETRY OF CORRELATION FIELDS 1039

Ž . Ž . Ž .Plugging the above equalities in 6.1 , 6.2 and 6.3 , it can be shown that

2a s c t � b s, tŽ . Ž . Ž . �1 �1converges to 1 � a s�Q s � c t�Q tx y2l a s c tŽ . Ž .
� 2 a�1�2c�1�2s�Q tx y

   uniformly as r � 1 for s � h , t � h . Define Q as in previous cases to bex y

 Ž .the matrix composed of Q , �Q , �Q , Q see Lemma 4.2 , then thex x y x y y

theorem follows by using the HW conditional distributions of a, c, Q derived
in Lemma 6.1. �

Ž .Let C be the size of one connected component of the excursion set of R s, t
above level r. We now have the following theorem about its limiting distribu-
tion as r � 1.

Ž .THEOREM 6.4. For the cross correlation field R s, t with � � M, � � N, as
r � 1,

�D�2 �1�2�1�2 �1�22 M �2 N�2 D �21 � r C � b det � det � a c B det Q ,Ž . Ž . Ž .Ž .D x y

where b is the Lebesgue measure of the D-dimensional unit ball, a 	 � 2 ,D ��M
2 Ž Ž . . Ž .c 	 � , B 	 Beta 1, � � D � 1 �2 and Q 	 Wishart I , � indepen-��N D D

dently.

PROOF. Assume � � I , � � I . Let J be the connected component ofx M y N 0
Ž .the excursion set of R s, t above level r that contains s � 0, t � 0 as a local

maximum. We are interested in the distribution of C defined as the Lebesgue
� �measure of J , that is, C � J . By Theorem 6.3, with probability approach-0 0

Ž .ing one as r � 1, R s, t has the following representation over J :0

R2 s, t � R2 0, 0 � a�1�2s�, c�1�2 t� Q a�1�2s�, c�1�2 t� � � o 1 � r 2 .Ž . Ž . Ž . Ž . Ž .
Hence, we can represent J by0

2 2�1�2 �1�2 R 0, 0 � rŽ .�1 �a s a s2J � s, t : 1 � r Q � o 1 � .Ž . Ž . Ž .0 2�1�2 �1�2½ 5ž / ž / 1 � rc t c t

Given that s � 0, t � 0 is a local maximum with height greater than r, it can
be easily shown using similar arguments as in Lemma 6.1 that the distribu-

12 2 2Ž Ž . . Ž . Ž Ž ..tion of R 0, 0 � r � 1 � r converges to Beta 1, � � D � 1 as r � 1,2

independent of a, c, Q. The theorem then follows from Theorem 6.3, and
the fact that Lebesgue measure is continuous with respect to almost sure
convergence. �

Let L be the number of connected components of the excursion set of the
Ž .cross correlation field R s, t above level r and let C be the size of themax

largest one of them. Then the following approximations from Friston, Wors-
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Ž . Ž .ley, Frackowiak, Mazziotta and Evans 1994 and Cao 1998 also hold for
high level excursion sets of the cross correlation field,

exp E L P C 	 x � exp �E L� 4 � 4Ž . Ž . Ž .
�6.4 P C � x L 	 1 � .Ž . Ž .max 1 � exp �E L� 4Ž .

�This approximation is obtained via the Poisson clumping heuristic Aldous
Ž .�1989 : for high threshold r, the centers of individual connected components
can be seen as generated from a multidimensional Poisson process. For

Ž .smooth Gaussian random fields, Adler 1981 gave a detailed treatment of
this heuristic in Section 6.9 and more references will follow from there. Often,

Ž . Ž Ž ..we approximate E L by E � A , where A is the excursion set of the fieldr r
above r. For the cross correlation field, this can be easily obtained by
applying Theorem 5.1 and Lemma 3.1. As in Friston, Worsley, Frackowiak,

Ž .Mazziotta and Evans 1994 , we can also correct for the mean of C to improve
the overall approximation of the distribution of C using what Aldousmax
Ž .1989 referred as the fundamental identity,

� �6.5 E L E C � E A .Ž . Ž . Ž . Ž .r

In the case of the cross correlation field, the right-hand side of the above
2 �1�2'� � Ž . � � Ž Ž . . Ž .equality is S P R 	 r � S F � � � 1 r 1 � r , where F � is��1 ��1

the cumulative distribution function of a t distribution with � � 1 degrees of
freedom.

7. Representations of the first two derivatives of the homologous
correlation field. Let � and � be the variance matrices of the firstx y

Ž . Ž .derivative of the components of X t and Y t , respectively.

LEMMA 7.1. R and its first two derivatives can be written in terms of
independent random variables as follows:

D 1�22 �1�2 1�2 �1�2 1�2Ṙ � 1 � R a � z � c � zŽ . Ž .x x y y

D �12¨ ˙ ˙R � � R 1 � R RR�Ž .
1�22 �1�2 1�2 1�2 �1�2 1�2 1�2� 1 � R a � H � � c � H �Ž . Ž .x x x y y y

1�2 
 
�1 1�2 2 1�2� a � RQ � 1 � R z w � w z �Ž . Ž .x x x x x x x

1�2 
 
�1 1�2 2 1�2� c � RQ � 1 � R z w � w z �Ž . Ž .y y y y y y y

�1�2 
1�2 1�2 1�2 1�2� ac � Q � � � Q � ,Ž . Ž .x x y y y x y x

where
z , z , w , w 	 Normal 0, I , H , H 	 Normal 0, V I ,Ž . Ž .Ž .x y x y N N x y N�N N

Q Qx x y2a, c 	 � , 	 Wishart I , � � 2 ,Ž .
� 2 N 2 NQ Qž /x y y

independently, and independent of R.
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The result follows immediately from the more general representations for
Ž .derivatives of the cross correlation field R s, t given in Lemma 4.2, on setting

s � t.

7.1. Isotropic fields. The representations for the derivatives given by
Lemma 7.1 can be simplified if the component random fields are isotropic.
We shall now assume that � � � I and � � � I , where � and � arex x N y y N x y
nonnegative scalars.

LEMMA 7.2.

D 1�22 1�2Ṙ � 1 � R s zŽ . 1 1

D 1�2
 2 1�2R̈ � � Rs z z � 1 � R s H � e Q � e QŽ .1 1 1 3 1 1 2 2

1�2 
 
 
 
 
 
2 1�2� 1 � R s z w � w z � z w � w z � s z w � w z ,Ž . Ž . Ž .� 42 1 1 1 1 2 2 2 2 4 1 2 2 1

where

� � � � �2 �2 � �x y x y x y x y
s � � , s � , s � � , s � � ,1 2 3 4a c ac a c a c

and e , e are the solutions of the following two equations:1 2

e � e � Rs , e e � � 1 � R2 sŽ .1 2 1 1 2 2

and

z , z , w , w 	 Normal 0, I , H 	 Normal 0, V I ,Ž . Ž .Ž .1 2 1 2 N N N�N N

a, c 	 � 2 , Q , Q 	 Wishart I , � � 2 ,Ž .� 1 2 N N

independently, and independent of R.

PROOF. Let

� � � �x y y x�1�2 �1�2z � s z � z , z � s z � z ,( ( ( (1 1 x y 2 1 x yž / ž /a c c a

� � � �y x x y�1�2 �1�2w � s w � w , w � s w � w .( ( ( (1 1 x y 2 1 x yž / ž /c a a c

Ž .Then z , z , w , w are i.i.d. Normal 0, I . The result for the first deriva-1 2 1 2 N N
tive is immediate. For the second derivative, it can be shown that

� �x y
 
 
 
z w � w z � z w � w zŽ . Ž .x x x x y y y ya c

� � � �x y x y
 
 
 
 
 
� z w � w z � z w � w z � � z w � w z .Ž . Ž .( 1 1 1 1 2 2 2 2 1 2 2 1ž /ac a c
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Note that

�1�2 
�1 1�2 1�2 �1 1�2 1�2 1�2 1�2 1�2 1�2Ra � Q � � Rc � Q � � ac � Q � � � Q �Ž . Ž .x x x y y y x x y y y x y x

� � � �x y x y 
� R Q � Q � Q � QŽ .(x y x y x yž /a c ac

� e Q � e Q ,1 1 2 2

Ž .where Q , Q 	 Wishart I , � � 2 independently, since e , e are the1 2 N N 1 2
eigenvalues of

R� �a � � � � acŽ .'x x y
.

� � � � ac R� �cŽ .� 0' x y y

Finally, we have

1�22 2� � � �x y x y�1�2 1�2 1�2 �1�2 1�2 1�2a � H � � c � H � � H � H � � H ,x x x y y y x y ž /' ' a ca c

Ž Ž ..where H 	 Normal 0, V I . Putting these together gives the result forN� N N
the second derivative. �

8. The expected Euler characteristic for the homologous correla-
tion field. To find the expected EC, again we need to evaluate expressions

¨ ˙� Ž . 4of the form E det R 
 R � 0, R � r . The method of attack follows closely
that in Section 5, but in this case a closed form expression can only be

˙obtained for some situations. Conditional on R, a, c and R � 0, Lemma 7.2
¨has written R as a sum of four independent random matrices involving Q ,1

Q , H and z w
 � w z
 . Like the previous case, to find the expectation of its2 2 2 2 2
Ž .determinant, we write the expectation of det A � B in terms of the expecta-

Ž . Ž . Ž .tions of detr A and detr B Lemma A.5 . This is applied to Q and Qj N�j 1 2
Ž . 
 
 Ž .Lemma A.6 , then to H and z w � w z Lemma A.8 . Finally we combine2 2 2 2

¨ ˙� Ž . � 4these two to get an expression for E det R R � 0, R � r, a, c involving
Ž .three nested summations Lemma A.9 . The rest of the calculation is carried

out in Theorem 8.1, but unlike the cross correlation field, the final integrals
over a and c cannot be done analytically. Integrating over t � a � c is
straightforward, but the last integral over q � a�t cannot be done analyti-
cally, except when N � 2 or when � � � . Fortunately the case � � � isx y x y
the most important for the applications presented in Section 10, and so a

Ž .corollary displays the resulting EC intensities up to three dimensions N � 3 .
The algebra in this section and the preceding ones is quite heavy. Careful

cross-checking was done to ensure that the results were correct. One check is
Ž .to compare the results with those for a t-field given in Worsley 1994 . For the

2Ž . Ž . Ž . Ž .case of � � 0, Y t � Y 0 , and so T t � R t � � 1 � 1 � R t is a'Ž . Ž .Ž .y

t-field with m � � � 1 degrees of freedom. For this case, the representations
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for the derivatives in Lemmas 7.1 and 7.2 were checked with results for the
Ž . �t-field in Lemma 5.1 of Worsley 1994 note that there is a typographical

Ž . 1�2 �error in Lemma 5.1 b of this paper: the first factor of m should be m . The
computer algebra software MAPLE was used to evaluate the expression for

Ž .� r in Theorem 8.1 and to integrate over q to get the results in theN
Ž .Corollary. Finally, results for � r for the case where � � 0 were checkedN y

Ž .with the t-field results of Theorem 5.4 of Worsley 1994 .

THEOREM 8.1. Let n � N � 1. Then for � � N, N � 0, the expected EC
intensity for the homologous correlation field is

� ��2 n!Ž .
� r �Ž .N Žn�2.�2� � � � 1 �2 � � 1 !Ž . Ž .Ž .

� � � � � �n�2 n�2 �i n�2 �i�j
i� j �n�i�j n�2 i�2 j�2 k� �1 4 rŽ .Ý Ý Ý

i�0 j�0 k�0

� � � i � n � 3 �2Ž .Ž .ŽŽ . .��n �2 �1�i�j2� 1 � rŽ .
1 � � i!Ž .n�2 i , 2 j

� � 2 � � 2 n � 2 i � 2 j
� ž / ž / ž /j n � 2 i � j 2k

ŽŽn�1.�2.�2 i�2 j�2 k �j i�1�E s s s ��i� n�3 �2 s �isŽ .Ž .˜ ˜ ˜ ˜ ˜½q 1 2 3 3 2

k2 2 2� r s � 4 1 � r s ,Ž .˜ ˜ 51 2

where

� � � � �2 �2
x y x y x y

s � � , s � , s � � ,˜ ˜ ˜1 2 3q 1 � q q 1 � q q 1 � qŽ .

Ž .and q 	 Beta ��2, ��2 .

Ž . 2PROOF. Let t � a � c and q � a� a � c , then t 	 � independently of2�

Ž .q 	 Beta ��2, ��2 . From Lemma 7.2,

1�2 �1�2� 2 �1�2 1�2˙ �E R R � r , q , t � 1 � r t s 2� ,Ž . Ž .� 4 ˜N 1

and conditional on q, t,

�n�2 �n�22 n �2 �n �2�� 0, r q , t � 1 � r t s 2�Ž . Ž .Ž . ˜� n 1

� ��2Ž . Ž .��3 �22� 1 � r .Ž .1�2� � � � 1 �2Ž .Ž .
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˙From the same lemma, we have conditional on R � 0, R � r, q, t,� n

1�2 
 
2 1�2R̈ � � 1 � r s z w � w zŽ . Ž .� n 2 2 � n 2 � n 2 � n 2 � n

1�22 1�2� 1 � r s H � e Q � e Q .Ž . 3 � n 1 1 � n 2 2 � n

Ž 2 .1�2 1�2Applying Lemma A.9 with g replaced by � 1 � r s , h replaced by2
Ž 2 .1�2 1�2 Ž 2 .1 � r s , s replaced by rs , p replaced by � 1 � r s , � replaced3 1 2
by � � 2 and N by n, we get

¨ ˙�E det R R � 0, R � r , q , t½ 5ž /� n � n

n� i�j� � � � � �n�2 n�2 �i n�2 �i�j �1 n!Ž .
� Ý Ý Ý Žn�i�2 j�1.2 i! 1 � �Ž .n�2 i , 2 ji�0 j�0 k�0

� � 2 � � 2 n � 2 i � 2 j
� ž / ž / ž /j n � 2 i � j 2k

i� j n�2 i�2 j�2 k2 j i�1� 1 � R Rs s sŽ . Ž .˜ ˜ ˜1 2 3

k2 2 2 �Žn�i�1.� R s � 4 1 � R s t s t � 2 is ,Ž .˜ ˜ ˜ ˜Ž .1 2 3 2

where

s � s t , s � s t 2 , s � s t ,˜ ˜ ˜1 1 2 2 3 3

˙�Ž .depend stochastically only on q. Note from Lemma 7.2, R is independentN
¨of R conditional on R, q, t. Therefore, putting these results together we� n

have

˙� ¨ ˙� �E R det �R R � 0, R � r , q , t � 0, r q , tŽ .½ 5ž /N � n � n � n

� ��2Ž . Ž .��2�n �2Ž .� n�1 �2�Žn�1.�2 2� s 2� 1 � rŽ . Ž .1̃ 1�2� � � � 1 �2Ž .Ž .
i� j� � � � � �n�2 n�2 �i n�2 �i�j �1 n!Ž .

� Ý Ý Ý Žn�i�2 j�1.2 i! 1 � �Ž .n�2 i , 2 ji�0 j�0 k�0

� � 2 � � 2 n � 2 i � 2 j
� ž / ž / ž /j n � 2 i � j 2k

ki�j n�2 i�2 j�2 k2 j i�1 2 2 2� 1 � r rs s s r s � 4 1 � r sŽ . Ž .Ž .˜ ˜ ˜ ˜ ˜1 2 3 1 2

�t�Ž n�2 i�3.�2 s t � 2 is .˜ ˜Ž .3 2
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� l4 l Ž . Ž .Note that E t � 2 � � � l �� � and so taking expectations over t,

˙ ¨ ˙� �E R det �R R � 0, R � r , q � 0, r qŽ .½ 5ž /N � n � n � n

� ��2Ž . Ž .��2�n �2Žn�1.�2 2� s 1 � rŽ .1̃ Žn�2.�2� � � � 1 �2Ž .Ž .

�

i� j� � � � � �n�2 n�2 �i n�2 �i�j �1 n!Ž .
Ý Ý Ý Žn�i�j.4 i! 1 � �Ž .n�2 i , 2 ji�0 j�0 k�0

n � 3
� � � i � s � is˜ ˜3 2ž /2

� � � i � n � 3 �2Ž .Ž . � � 2 � � 2 n � 2 i � 2 j
� ž / ž / ž /j n � 2 i � j 2k� �Ž .

ki�j n�2 i�2 j�2 k2 j i�1 2 2 2� 1 � r rs s s r s � 4 1 � r s .Ž . Ž .Ž .˜ ˜ ˜ ˜ ˜1 2 3 1 2

Ž .Finally, taking expectations over q gives � r . �N

There is no simple expression for this last integral over q, except for the
case N � 2. The EC intensities for N � 3 are in the following.

COROLLARY 8.2.
� � ��2Ž . Ž .��3 �22� r � 1 � u du,Ž . Ž .H0 1�2� � � � 1 �2Ž .Ž .r

2��3� � � 1�2Ž .Ž . Ž .��2 �22� r � 1 � rŽ . Ž .1 3�2� � � � 1Ž .

�

1�2� �1 x y Ž .��2 �2� q 1 � q dq,Ž .H ž /q 1 � q0

� � � � ��2Ž . Ž .x y ��3 �22� r � 1 � r r ,Ž . Ž .2 3�22 � � � � 1 �2Ž .Ž .
�1�2��52 � � � 3�2 � �Ž .Ž . 1Ž . x y��4 �22� r � 1 � r �Ž . Ž . H3 5�2 ž /q 1 � q� � � � 1Ž . 0

�

2� �x y2� � 2 � � 3 r �Ž . Ž . ž /½ q 1 � q

2 2� � � �x y x y2� 1 � r 2� � 2 � 2� � 3 �Ž . Ž . Ž . 5ž /q 1 � q q 1 � qŽ .

�
Ž .��2 �2q 1 � q dq.Ž .
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For two important special cases, the integrals can be evaluated.

COROLLARY 8.3. For � � � � �,x y

�1�2 � � � 1�2Ž .Ž . Ž .��2 �22� r � 1 � r ,Ž . Ž .1 2��1 1�22 � � ��2Ž .
�3�2 � � � 3�2Ž .Ž . Ž .��4 �22� r � 1 � rŽ . Ž .3 2��1 3�22 � � ��2Ž .

� 2 24� � 12� � 11 r � 4� � 5 .Ž . Ž .
For � � �, � � 0,x y

�1�2
Ž .��2 �22� r � 1 � r ,Ž . Ž .1 2�

3�2� Ž .��4 �22 2� r � 1 � r � � 1 r � 1 .Ž . Ž . Ž .3 22�Ž .

9. The size of the largest connected component of the excursion set
of the homologous correlation field. Using the approach developed in
Section 6, we can also study the behavior of the homologous correlation field
Ž .R t in the vicinity of high local maxima and derive the limiting distribution

˜ ˜Ž . Ž .of the size of the individual C and the largest C connected componentmax
of the excursion set above level r as r � 1. Since there is little to gain by
giving the details of the proofs, we shall simply state these results.

2 ˜ Ž . Ž Ž . .Let u 	 � , Q 	 Wishart I , � , v 	 Beta 1, � � N � 1 �2 and let2��N N N
the density of q be

N�2 ��2�1� �2�19.1 f q � � �q � � � 1 � q q 1 � q ,Ž . Ž . Ž . Ž .q x y

ŽŽ .all independently distributed. Note that if � � � , then q 	 Beta � � N �2,x y
Ž . . ŽŽ . .� � N �2 ; if � � 0, then q 	 Beta � � N �2, ��2 . Finally, let s � � �q˜y 1 x

Ž . Ž . N� � � 1 � q . Given that the homologous correlation field R t , t � � has ay
local maximum at t � 0 with height r, then as r � 1, the limiting HW

¨conditional distribution of R at t � 0 is

¨ ˙ ¨ �1 ˜R R � r , R � 0, R  0 converges to �u s Q,1̃

�2 2 �1 ˜l 1 � R lt converges uniformly to 1 � u s t�Qt,Ž . 1̃

2'where l � 1 � r , and
�1�2�N�22 N�2 �N�2 N�2˜ ˜1 � r C � b u s v det Q ,Ž . ˜ Ž .N 1

where b is the Lebesgue measure of the N-dimensional unit ball. Finally weN
˜note that an approximation of the distribution of C can be obtained in amax

Ž .similar way as illustrated in Section 6 using the approximation 6.4 and the
Ž .correction 6.5 .
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10. Applications.

10.1. Simulated one-dimensional field. Figure 1 illustrates these concepts
for the simplest case of M � N � 1. It is worth explaining exactly how this

� �was done. � � 20 random fields were simulated on S � S � 0, 64 accord-x y
Ž . Ž .ing to the model 2.2 � 2.4 with � � � � 1 and � � � � 1�18. This wasx y x y

achieved by first simulating � pairs of independent white noise processes
Ž . Ž .u s , v t , on a larger region and � pairs of scalar normal random variablesi i

U , V with zero mean, unit variance and correlation �, independent ofi i
˜Ž . Ž .u s , v t , i � 1, . . . , � . Let f be a Gaussian function scaled so that thei i

˜ Ž .convolution of f with itself is f � f � f as in 2.3 . Then it can be checkedx y
that

˜ ˜X s � f s � s u s ds � f s � s U � f s u s ds ,Ž . Ž . Ž . Ž . Ž . Ž .H Hi 1 i 1 1 0 i 1 i 1 1ž /
˜ ˜Y t � f t � t v t dt � f t � t V � f t v t dtŽ . Ž . Ž . Ž . Ž . Ž .H Hi 1 i 1 1 0 i 1 i 1 1ž /

Ž .has the required correlation structure 2.4 . In fact three such correlation
Ž . Ž . Ž . Ž .‘‘signals’’ were added at points s , t � 48, 48 , 16, 32 , 32, 16 by adding0 0

Ž . Ž .three terms to X s , Y t above, instead of one, each with an independent U ,i i i
V with a correlation of � � 0.85. It can be checked that provided the pointsi
are well separated then the correlation structure is the sum of three terms of

Ž .the form 2.4 , one for each point. The locations of the correlations were
chosen so that the first one was a homologous correlation at s � t � 48,0 0
and the other two were cross correlations.

Ž .Contour lines at the threshold R s, t � 0.5 are shown. The enclosed
excursion set has an Euler characteristic of 5, one less than the number of

Ž .local maxima greater than 0.5 indicated by crosses . Applying the above
theory, only the two local maxima indicated by large crosses are significant at

Ž .P � 0.05 the critical threshold is 0.744 ; a third local maximum of the
Žhomologous correlation field is significant at P � 0.05 not shown; critical

.threshold is 0.614 . All three local maxima are within one pixel of the
locations of the peak correlation ‘‘signals.’’ Finally, the sizes of the three
largest connected components of the excursion set are significant at P � 0.05
Ž 2critical size is 42.9 pixels for the cross correlation field and 3.66 pixels for

.the homologous correlation field .

10.2. Homologous correlation field. There is some evidence that arith-
metic ability is correlated with the ability to do mental rotation. Petrides
Ž . .1998 , private communication conducted a PET study to see if this correla-
tion occurred at the same location in the brain. PET measures of cerebral
blood flow on nine subjects were obtained while the subjects performed four

Ž . Ž . Ždifferent tasks: 1 mental arithmetic, 2 no mental arithmetic reading
. Ž . Ž . Ž .numbers , 3 mental rotation, 4 no mental rotation fixation on the shapes .

Ž . Ž . Ž .Blood flow values 1 minus 2 gave nine images of arithmetic activation, 3
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Ž .FIG. 2. Homologous correlations R t for functional connectivity between mental rotation and
arithmetic ability. Solid regions are the excursion set above 0.75, chosen to be the uncorrected
P � 0.01 threshold value. The transparent region is the search region S, chosen to be the cortex,
excluding white matter and ventricles.

Ž .minus 4 gave nine images of rotation activation. The sample correlation
Ž . Žgives the homologous correlation field R t with � � 8 minus 1 for subtract-

.ing the mean .
An example of the excursion set above 0.75, chosen to be the uncorrected

P � 0.01 threshold value, is shown in Figure 2. To calculate the expected EC,
the images were assumed to be isotropic with � estimated to be 1.07 cm�2

Ž .using methods in Worsley 1995b . The search region S was taken as the
Ž .upper part of the cortex rendered transparent in Figure 2 , with Minkowski

Ž . Ž . Ž . 2 Ž .functionals � S � �6, � S � 2.688 cm, � S � 586.9 cm , � S �0 1 2 3
858.5 cm3. Note that the interior holes due to ventricles and white matter,
visible in Figure 2, make the EC of S negative.

The observed and expected EC are plotted in Figure 3. For the threshold of
r � 0.75 shown in Figure 2, the observed EC is 23 and the expected EC is
54.6. Note that there is overall reasonable agreement, suggesting that there
is no evidence for correlations between the two tasks. This was confirmed by

˜the value of R � 0.965, which gives an expected EC of 1.91, close to themax
value expected by chance alone. The size of the largest connected EC of 1.91,
close to the value expected by chance alone. The size of the largest connected
component above a threshold of 0.75 was 4.85 cm3, visible as the largest blob
in the right frontal of Figure 2. In this case the P-value was 0.018, which was
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FIG. 3. Observed and expected Euler characteristic of excursion sets of the homologous correla-
tions data in Figure 2.

the only significant signal that was found at the 0.05 level using this method.
Thus there seems to be some evidence for an extended region of activation in
the right frontal area that was detected using its size, but not its peak value.

10.3. Cross correlation field. Paus, Zatorre, Hofle, Zografos, Gotman,
Ž .Petrides and Evans 1997 undertook a study to find functional connectivity

Žbetween distant brain regions while performing a vigilance task attending to
.an intensity drop in an audio signal . Changes in cerebral blood flow were

measured by PET on eight subjects, each scanned six times while performing
the vigilance task. A subject mean effect was subtracted from the data before
analysis, leaving � � 40 effectively independent scans. Paus, Zatorre, Hofle,

Ž .Zografos, Gotman, Petrides and Evans 1997 focused on two regions, the
thalamus and the right ventro-lateral frontal. Correlations between these

Žregions and all other regions was transformed to a t field as outlined in
.Section 8 and previous theory for t fields was used to assess the significance

of local maxima.
To illustrate the method, we focused on interhemispheric functional con-

nectivity by looking at cross correlations between all points in the left and
right hemispheres. The images X and Y were the blood flow changes in the
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FIG. 4. Cross correlations for functional connectivity between the two hemispheres while perform-
Ž .ing the vigilance task. The search regions are the left hemisphere S and the right hemispherex

Ž . Ž .S , minus a 20 mm slice either side of the midline top view; transparent . Rods are the localy
Ž .maximum correlations above 0.75 light colors and local minimum correlations below �0.75

Ž .dark colors .

left and right hemispheres, respectively. The search regions S and S werex y
symmetric left and right regions that covered most of the brain except for a
20 mm wide slice either side of the midline, to remove points whose correla-
tions were due to spatial smoothing of the data across the midline. The

Ž . Ž . Ž .Minkowski functionals of S and S were � S � � S � 1, � S �x y 0 x 0 y 1 x
Ž . Ž . Ž . 2 Ž . Ž . 3� S �32.3 cm, � S �� S �233.3 cm , � S �� S �424.4 cm .1 y 2 x 2 y 3 x 3 y

The images were assumed to be isotropic with � estimated to be 0.738 cm�2

Ž .using methods in Worsley 1995b .
All cross correlations were calculated, and Figure 4 shows the 10 local

Ž .maximum correlations above 0.75 light colors , and the five local minimum
Ž .correlations below �0.75 dark colors . The critical threshold for R ismax

0.783, and only two local maxima exceeded this threshold; both were connec-
tions in the visual cortex at the back of the brain, visible in Figure 4. It was
not possible to render the excursion set of all correlations greater than 0.75
because there were too many, but the observed Euler characteristic was 9
Ž .close to the 10 local maxima , while the expected was only 0.254, indicating
some evidence that the 10 local maxima above 0.75 are not all due to chance
alone. A plot of the Euler characteristic for thresholds r � 0 is given in
Figure 5, which shows reasonable agreement between observed and expected
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FIG. 5. Observed and expected Euler characteristic of excursion sets of the cross correlations data
in Figure 4.

except at the upper tail, which again indicates some evidence of nonnull
correlations.

APPENDIX A

� Ž . � Ž Ž ..LEMMA A.1 Adler 1981 , Lemma 5.3.2 . Let H 	 Normal 0, V IN�N N
and H be any j � j principal minor of H. Then for any nonnegative integer i,j

i�1 2 i !Ž . Ž .
E det H � , E det H � 0.� 4 � 4Ž . Ž .2 i 2 i�1i2 i!

LEMMA A.2. Let A be the following D � D matrix:

� Q � Q1 x 2 x y
A � ,
� Q � Qž /2 x y 3 y

where Q , Q , Q are M � M, M � N, N � N matrices withx x y y

Q Qx x y
Q � 	 Wishart I , � ,Ž .
 D DQ Qž /x y y
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and � , � , � are fixed scalars. Then1 2 3

N � !M !N !
M N kE det A � � � � ,� 4Ž . Ý 1 3 4 k! � � D � k ! M � k ! N � k !Ž . Ž . Ž .k�0

2 Ž .where � � 1 � � � � � and division by the factorial of a negative integer4 2 1 3
is treated as multiplication by zero.

PROOF. Let G � Q
 Q� 1Q and G* � Q � G. Since Q 	x y x x y y
Ž .Wishart I , � , by standard results from multivariate statistics, Q 	D D x
Ž . Ž . Ž .Wishart I , � , G 	 Wishart I , M and G* 	 Wishart I , � � M , in-M M N N N N

dependently. Then using Lemma A.5,

E det A � � M� N E det Q E det � G � G*� 4 � 4 � 4Ž . Ž . Ž .1 3 x 4

N� ! M ! � � M !Ž .NM N k� � � �Ý1 3 4 ž /k� � M ! M � k ! � � D � k !Ž . Ž . Ž .k�0

and hence the result. �

LEMMA A.3. Let A be the same matrix as in Lemma A.2 and B be a fixed
D � D matrix as follows:

� H 01 x
A.1 B � ,Ž . 0 � Hž /3 y

where � , � are fixed scalars, and H and H are fixed symmetric M � M1 3 x y
and N � N matrices, respectively. Then

N�jM N
i j M�i N�j kE det A � B � � � � � � detr H detr H� 4Ž . Ž . Ž .Ý Ý Ý 1 3 1 3 4 i x j y

i�0 j�0 k�0

� ! M � i ! N � j !Ž . Ž .
� ,

k! � � D � i � j � k ! M � i � k ! N � j � k !Ž . Ž . Ž .
where division by the factorial of a negative integer is treated as multiplica-
tion by zero.

PROOF. Let
U 0x

U � 0 Už /y

be an orthonormal matrix such that B* � U�BU is diagonal. It is easy to see
that U� AU has the same distribution as A and hence

D
det A � B � det U� AU � B* � det A � B* .Ž . Ž . Ž .

The determinant on the right-hand side then becomes the summation of the
product of the determinant of any l � l principle minor B� of B* and thel

Ž . Ž .determinant of the D � l � D � l principle minor A of A, formedD� l
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from the remaining D � l rows and columns not included in B�. For B�, let il l
be the number of rows or columns from the upper M � M diagonal matrix
and j � l � i be the number of rows or columns from the N � N lower
diagonal matrix of B*. From Lemma A.2,

E det A� 4Ž .D� l

N�j � ! M � i ! N � j !Ž . Ž .
M� i N�j k� � � � .Ý 1 3 4 k! � � D � i � j � k ! M � i � k ! N � j � k !Ž . Ž . Ž .k�0

Summing up over all principal minors we get
N�jM N

i j M�i N�j kE det A � B* � � � detr H detr H � � �� 4Ž . Ž . Ž .Ý Ý Ý1 3 i x j y 1 3 4
i�0 j�0 k�0

� ! M � i ! N � j !Ž . Ž .
� . �

k! � � D � i � j � k ! M � i � k ! N � j � k !Ž . Ž . Ž .

LEMMA A.4. Let A be the D � D matrix as in Lemma A.2 and let B be a
Ž Ž ..random D � D matrix as in Lemma A.3 where H 	 Normal 0, V Ix M�M M

Ž Ž ..and H 	 Normal 0, V I independently of A. Theny N�N N

� � � �M�2 N�2 N�2 j
i� j �Ž i�j. 2 i 2 j M�2 i N�2 j kE det A � B � �1 2 � � � � �� 4Ž . Ž .Ý Ý Ý 1 3 1 3 4

i�0 j�0 k�0

� !M !N !
� ,

i! j!k! ��D�2 i�2 j�k ! M�2 i�k ! N�2 j�k !Ž . Ž . Ž .
where division by the factorial of a negative integer is treated as multiplica-
tion by zero.

PROOF. Applying Lemmas A.1 and A.3,
i� j� � � �M�2 N�2 N�2 j �1 2 i ! 2 j !Ž . Ž . Ž .NM2 i 2 jE det A � B � � �� 4Ž . Ý Ý Ý 1 3 i�jž / ž /2 j2 i 2 i! j!i�0 j�0 k�0

�� M� 2 i� N�2 j� k
1 3 4

� ! M�2 i ! N�2 j !Ž . Ž .
� .

k! ��D�2 i�2 j�k ! M�2 i�k ! N�2 j�k !Ž . Ž . Ž .
The result then follows after proper simplifications. �

LEMMA A.5. Let A, B be symmetric N � N matrices, with A fixed and
D

B � U�BU for any fixed orthonormal matrix U. Let B be any j � j principalj
minor of B. Then

N

E det A � B � detr A E det B .� 4Ž . Ž . � 4Ž .Ý j N�j
j�0
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PROOF. Write A � ULU�, where the columns of U are the eigenvectors of
A and L is a diagonal matrix of eigenvalues. Then

D
det A � B � det ULU� � B � det L � U�BU � det L � B .Ž . Ž . Ž . Ž .

Since each principal minor of B has the same distribution, then
N

E det L � B � detr L E det B .� 4Ž . Ž . � 4Ž .Ý j N�j
j�0

Ž . Ž .Since detr L � detr A then the result follows. �j j

Ž .LEMMA A.6. Let Q , Q 	 Wishart I , � independently and e , e be1 2 N N 1 2
fixed scalars satisfying e � e � s and e e � p. Then1 2 1 2

� �N�2
� � �1j �ŽN�2 j�1.E det e Q � e Q � N ! p 2 1 � �� 4Ž . Ž .Ý1 1 2 2 N , 2 jž / ž /j N � j

j�0

� �N�2 �j
kN � 2 j 2 N�2 j�2 k� s � 4 p s .Ž .Ý ž /2kk�0

PROOF. Condition on Q and apply Lemma A.5, then take expectations1
over Q to get1

N 2� !N j N�jE det e Q � e Q � e e� 4Ž . Ý1 1 2 2 1 2ž /j � � j ! � � N � j !Ž . Ž .j�0

� �N�2
� � �1j� N ! e e 1 � �Ž . Ž .Ý 1 2 N , 2 jž / ž /j N � j

j�0

e N�2 j � e N� 2 j .Ž .1 2

Solving the quadratic,
2 2' 'e � s � s � 4 p �2, e � s � s � 4 p �2.ž / ž /1 2

In terms of s, p we have
i

1�2 lii i �i 2 i�le � e � 2 s � 4 p s 1 � �1Ž .Ž . Ž .Ý1 2 ž /l
l�0

� �i�2
ki�Ž i�1. 2 i�2 k� 2 s � 4 p s ,Ž .Ý ž /2k

k�0

which leads to the result. �

Ž .LEMMA A.7. For z, w 	 Normal 0, I independently,N N

1, j � 0,�
0, j � 1,�E detr zw� � wz� �Ž .� 4j �N N � 1 , j � 2,Ž .�0, j 	 3.
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PROOF. For j � 1,

detr zw� � wz� � tr zw� � wz� � 2 z�w ,Ž . Ž .1

whose expectation is zero. For j � 2 and N 	 2, the rank of zw� � wz� is 2
Ž . Žwith probability 1 , so there are two nonzero eigenvalues. Hence detr zw� �2

.wz� is the product of these two eigenvalues. Let U be the 2 � N matrix
   whose columns are the orthonormal vectors z� z and w� w , where w �˜ ˜

Ž .I � zz��z�z w is orthogonal to z. ThenN

detr zw� � wz� � det U� zw� � wz� UŽ . Ž .Ž .2

   2 z�w z w̃� det � � z�z w�w .Ž . Ž .˜ ˜ž /   z w 0˜

Since z�z 	 � 2 and w
 w 	 � 2 independently, the result follows. For j 	 3˜ ˜N N�1
Ž .and N 	 3, detr zw� � wz� � 0 with probability 1. �j

Ž .LEMMA A.8. Let z, w 	 Normal 0, I independently, and G be anyN N j
j � j principal minor of zw� � wz�. Then for any fixed scalars g, h and
nonnegative integer i,

i�1 2 i !Ž . Ž .
2 i 2 2 i�2E det gG � hH � h � 2 ig h ,� 4Ž . Ž .2 i 2 i i2 i!

E det gG � hH � 0.� 4Ž .2 i�1 2 i�1

PROOF. Condition on G and apply Lemma A.5, then take expectationsj
over G using Lemma A.7,j

E det gG � hH � h jE det H � j j � 1 g 2h j�2 E det H .Ž .� 4 � 4 � 4Ž . Ž . Ž .j j j j�2

The result follows on applying Lemma A.1, noting that the above is zero
unless j � 2 i. �

LEMMA A.9. Let g, h, s, p be fixed scalars and e , e be the solutions1 2
Ž .of equations e � e � s, e e � p. Let z, w 	 Normal 0, I , H 	1 2 1 2 N N

Ž Ž .. Ž .Normal 0, V I and Q , Q 	 Wishart I , � independently. ThenN�N N 1 2 N N

E det g zw� � wz� � hH � e Q � e Q� 4Ž .Ž .1 1 2 2

� � � � � �N�2 N�2 �i N�2 �i�j
� � N � 2 i � 2 j� Ý Ý Ý ž / ž / ž /j N � 2 i � j 2ki�0 j�0 k�0

N� i�1 N !Ž .
� ŽN�i�2 j�1.2 1 � � i!Ž .N�2 i , 2 j

k2 i 2 2 i�2 N�2 i�2 j�2 k j 2� h � 2 ig h s p s � 4 p .Ž . Ž .
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Ž .PROOF. From Lemma A.5 applied to A � g zw� � wz� � hH and B �
�e Q � e Q , we get:1 1 2 2

E det g zw� � wz� � hH � e Q � e Q� 4Ž .Ž 1 1 2 2

� �N�2
N� 2 i� �1 E det gG � hH E detr e Q � e Q� 4 � 4Ž . Ž . Ž .Ý 2 i 2 i N�2 i 1 1 2 2

i�0

i� �N�2 �1 2 i !Ž . Ž .N� 2 i N 2 i 2 2 i�2� �1 h � 2 ig hŽ . Ž .Ý iž /2 i 2 i!i�0

� � jN�2 �i p� �
� N � 2 i !Ž .Ý N� 2 i�2 j�1ž / ž /j N � 2 i � j 2 1 � �Ž .N� 2 i , 2 jj�0

� �N�2 �i�j
kN � 2 i � 2 j 2 N�2 i�2 j�2 k� s � 4 p s .Ž .Ý ž /2kk�0

Proper simplification will lead to the result. �
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