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A STOCHASTIC SPATIAL PROCESS TO MODEL THE
PERSISTENCE OF SICKLE-CELL DISEASE

BY J. THEODORE COX1 AND RINALDO B. SCHINAZI2

Syracuse University and University of Colorado

We consider a gene with two alleles. Allele A is normal, allele S is
abnormal. Individuals with genotype SS have a severe disease called
sickle-cell disease. Individuals with genotype AS are not sick, and it is
thought that they are more resistant to malarial infection than individu-
als with genotype AA. This could explain why the allele S has persisted in
regions where malaria is endemic. We use a stochastic spatial process to
test this hypothesis. For our model, we show that if the genotype AS has
an advantage over the genotype AA, then the allele S will persist in the
population even if the genotype SS is not viable.

1. Introduction. Consider a population in which each individual has
one of the three genotypes AA, AS and SS, where A denotes the normal allele
and S denotes the abnormal allele. Individuals with genotype AS are not sick.
Individuals with genotype SS have a severe form of anemia called sickle-cell
disease, and have a relatively low fitness. Even so, the allele S has persisted
and reaches frequencies as high as 16 percent in West and Central Africa. It
was observed that the geographical areas where sickle-cell disease is highest
coincide with the areas where malaria has a high incidence. This led Haldane
Ž .1949 to suggest that the heterozygote AS might have an increased resis-
tance to malarial infection. For more on sickle-cell disease, see Cavalli-Sforza

Ž .and Bodmer 1971 . We propose to test Haldane’s hypothesis using a stochas-
tic spatial process that models the evolution of the population. For the model
we consider, we will show that persistence of the allele S is possible even if
the genotype SS is not viable. This is the case for a related disease called
thalassemia for which individuals with genotype SS usually do not reach
reproductive age.

ŽWe assume that individuals can have only genotypes AA and AS SS is not
. dviable . We think of each site of Z , the d-dimensional integer lattice, as

Ž . Žbeing occupied by an individual of type 0 genotype AA or type 1 genotype
.AS . In order to describe the evolution of our ‘‘interacting particle system,’’ we

introduce the following notation. The state of the system at time t is denoted
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� 4Z d
5 5 dby h , an element of 0, 1 . Denote by ? the Euclidean norm on Z , and fort

d � 4Z d
x g Z and h g 0, 1 , define

d 5 5n x , h s y g Z : y y x s 1 and h y s 0 ,� 4Ž . Ž .0

d 5 5n x , h s y g Z : y y x s 1 and h y s 1 ,� 4Ž . Ž .1

< < Ž .where ? denotes cardinality. That is, n x, h is the number of type-ii
individuals in the configuration h in the neighborhood of x. The evolution of

w xthe process depends on two parameters l ) 0 and p g 0, 1 . Each site x,
independently of all other sites, changes its type in the configuration h
according to the following transition rates:

0 ª 1 at rate ln x , h ,Ž .1

1 ª 0 at rate n x , h q l pn x , h .Ž . Ž .0 1

1Ž .

Thus, parents with genotype 1 have birth rate 2 dl, and parents with
genotype 0 have birth rate 2 d. When giving birth, the individual at site x
chooses a site y at random from its 2 d nearest neighbors, and mates with the
individual at that site, replacing that individual with its offspring. If both

Žparents are of type 0, the offspring is of type 0 i.e., the type at y is
.unchanged . If the parent at site x is type 0 and the parent at site y is type 1,

the offspring is type 0. If the parent at site x is type 1, and the parent at site
y is type 0, the offspring is type 1. Finally, if both parents are type 1, then the
offspring is type 0 with probability p and type 1 with probability 1 y p. Of
course, this is a very simple model. In particular, we do not distinguish
between sexes.

The fact that two 1’s may give birth to a 0 reflects the disadvantage in
viability that allele S has. But for l ) 1, S has an advantage over the allele A
in terms of birth rate. Our main concern is to determine whether or not it is
possible for the allele S to survive indefinitely in the population. The follow-
ing result shows that survival is possible for l ) 1 but not possible for l F 1.

Ž .THEOREM 1. a Assume that l ) 1. Then there is p ) 0 such that, ifc
p - p , then the 1’s survive. That is, in any dimension d G 1, there is ac
stationary distribution for h that puts positive mass on configurations witht
infinitely many 1’s.

Ž .b Assume that l F 1 and p ) 0. Then the 1’s die out. That is, in any
dimension d G 1, for every initial configuration h and site x, there is a0

Ž . Ž Ž . .random time T such that h x s 0 for all t G T . For l s 1, P h x s 1 ªx t x t
0 exponentially fast.

Ž .In terms of our original motivation, a shows that the allele S can survive
for p - p if the genotype AS has even a small advantage over AA. Unfortu-c
nately, our method of proof does not give useful bounds on p . Not surpris-c

Ž .ingly, b shows that if AS has no advantage over AA, then the allele S
disappears.
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Ž .Observe that if we set p s 0, then the rates given by 1 specify the
winteracting particle system known as the biased voter model. See Durrett

Ž . x1988 , Chap. 3 for a survey of this model. Interestingly, our theorem shows
that this new model has the same critical value as the biased voter model: the
1’s may survive for l ) 1 and die out for l - 1. Unlike the biased voter
model, our sickle-cell model is not monotone in any apparent way. For
instance, the density of 1’s at time t is not a monotone function of the initial
density of 1’s. The standard coupling does not show any monotonicity in p.

Ž .However, as we will show later, the biased voter model p s 0 can be
coupled to h with any p ) 0 in such a way that the biased voter model hast
more 1’s at any time.

Ž .For l ) 1, Theorem 1 a shows that the 1’s can survive if p is small
enough. It is natural to ask whether or not increasing p sufficiently will
result in extinction of the 1’s. In the next result we show, under some
restrictions, that this is the case.

Ž . Ž .THEOREM 2. Assume that d s 1 and l g 1, 2 . Then, if p ) l y 1 rl,
the 1’s die out. That is, for any initial configuration and every site x in Z,

Ž .there is a random time T such that h x s 0 for all t G T with probabil-x t x
ity 1.

We suspect that the conclusion of Theorem 2 holds for any d G 1 and all
l ) 1, but we are only able to prove a weaker version of this; see Theorem 3

Ž .below. Furthermore, Theorem 1 a and Theorem 2 suggest that, at least for
Ž .d s 1 and l g 1, 2 , there is a ‘‘phase transition’’ in the parameter p, with

survival of 1’s for small p and extinction of 1’s for large p. Unfortunately,
Ž .lack of monotonicity prevents us from proving that there is a p* g 0, 1 with

survival of the 1’s for all p - p* and extinction of 1’s for all p ) p*.
wWe now compare our results to predictions of a ‘‘mean field’’ as in Levin

Ž .xand Durrett 1996 version of our model. Let us start at time 0 with a
translation-invariant distribution, with a positive density of both 0’s and 1’s.

Ž .Then at all times t, the distribution of h x is translation invariant, andt
Ž . Ž Ž . . Ž .u t s P h x s 1 does not depend on x. From the dynamics 1 , it ist

straightforward to derive the differential equation

u9 t s l P h x s 0, h y s 1 y P h x s 1, h y s 0Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Ýt t t t
y : y;x y : y;x

y l p P h x s h y s 1 ,Ž . Ž .Ž .Ý t t
y : y;x

where y ; x means that y is one of the 2 d nearest neighbors of x. If we
assume that the above probabilities factor, and make use of translation
invariance, we obtain the equation

u9 s 2 dlu 1 y u y 2 du 1 y u y 2 dl pu2 ,Ž . Ž .
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or
u9 l y 1

2 s 2 d y 2 d l y 1 q l p .Ž . Ž .2 uu
Ž .For l / 1, setting v s 1ru transforms 2 into

v9 s y2 d l y 1 v q 2 d l y 1 q l p ,Ž . Ž .
which gives

l p l p
y2 dŽly1.t3 v t s 1 q q e v 0 y 1 y .Ž . Ž . Ž .

l y 1 l y 1

Ž . Ž . Ž .Suppose first that l - 1. Then, since v 0 s 1ru 0 ) 1, it follows from 3
Ž . Ž . Ž .that u t s 1rv t ª 0 as t ª `. If l ) 1, then 3 implies that

l y 1
4 lim u t s .Ž . Ž .

l y 1 q l ptª`

Ž .In the critical case l s 1, the solution of 2 is

u 0Ž .
u t s ,Ž .

1 q 2 dl ptu 0Ž .
Ž .and we see that u t tends to 0 at rate 1rt. This contrasts with the conclusion

of Theorem 1b, in which there is exponential convergence to 0.
Ž .We note that the limit in 4 is strictly positive for all l ) 1 and all p ) 0.

Thus, we do not see the ‘‘phase transition’’ in p that holds for the spatial
w Ž . xmodel in dimension 1 Theorems 1 a and 2 . This is a rather unusual

phenomenon and one might suspect that this happens only for the model in
d s 1. As the following theorem shows, this is not so.

X ŽTHEOREM 3. In any d G 1 and for any l ) 0, there is p possibly largerc
. Xthan 1 such that, if p ) p , then the 1’s die out.c

ŽOf course, the interpretation of the model changes if we allow p ) 1 note
Ž . .that the rates 1 still make sense in this case . One may think of the model

Žwith p ) 1 as a demographic model 1 represents an individual, 0 represents
.a vacant site , where crowding is taken into effect.

Ž .2. Proof of Theorem 1. Following Harris 1972 , we give a ‘‘graphical’’
� x, y x, yconstruction of h and some auxiliary processes. Let S , T : x, y gt

d 5 5 4Z , x y y s 1 be independent Poisson processes, where the intensities of
x, y x, y � Ž .S and T are 1 and l, respectively. In addition, let U x, y , x, y gn
d 5 5 4Z , x y y s 1, n G 1 be independent Bernoulli random variables with

parameter p. At each arrival time of S x, y, if there is a 0 at x and a 1 at y,
then the 1 at y is replaced by a 0. At the nth arrival time of T x, y, if there is a
1 at x and a 0 at y, then the 0 at y is replaced by a 1. If there is a 1 at x and

Ž .a 1 at y, and U x, y s 1, then the 1 at y is replaced by a 0. Given an initialn
configuration h , this gives a construction of our sickle-cell process h . For0 t
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A ; Zd, h A will denote the process with initial state h A s 1 . It will bet 0 A
convenient to regard h as a set-valued process by identifying h witht t
� Ž . 4x: h x s 1 .t

Using the same Poisson processes, we construct another process which we
denote j . The transition rules for j are the same as those for h , except thatt t t

Ž . Ž .the rule involving the U x, y is not used so a 1 cannot kill a 1 in j . Thus,n t
j is the biased voter model, and is the same process as h when p s 0. Fort t

Ž < �04 < .l ) 1, P j ) 0, ;t ) 0. It is clear from the construction that for any p, if
h ; j , then, with probability 1, h ; j for all times t.0 0 t t

Ž .PROOF OF THEOREM 1 a . The basic idea is to show that the sickle-cell
process h for p s 0 dominates, in a precise sense, a supercritical orientedt
percolation process. This will imply, by continuity, that there is a p ) 0 suchc
that this domination also holds for all p - p . Furthermore, whenever thisc
domination holds, h has a stationary distribution which puts positive masst
on configurations with infinitely many 1’s. We follow the treatment of this
‘‘renormalization’’ method, which was introduced in Bramson and Durrett
Ž . Ž .1988 , given in Chapter 4 of Durrett 1995 .

Fix l ) 1. For finite, positive L and r, let j L, r denote the biased votert
model, modified so that no transitions from a 0 to a 1 are allowed at any site

Ž . Ž . w x doutside of B rL , and which has initial state 1 . Here B K s yK, KBŽL.
l Zd. We will prove the following: there exists a finite constant r G 3 such
that, for d ) 0, there exist finite positive constants L and T such that

5 P j L , r x s 1 for all x g B 3L ) 1 y d .Ž . Ž . Ž .Ž .T

Ž . w xSince B rL = 0, T is a bounded region of space-time, we may choose
Ž . L, r L, rp ) 0 such that, for all p - p , 5 holds with h replacing j . Byc c T T

Ž .Theorem 4.4 of Durrett 1995 , it follows that, for p - p , h must have ac t
stationary distribution which puts positive mass on configurations with
infinitely many 1’s.

Ž . ŽTo prove 5 , we need some results from Bramson and Griffeath 1980,
.1981 . In these papers, an asymptotic shape theorem for the biased voter

Ž .model is proved. That is, Theorem 1 of Bramson and Griffeath 1980 states
that, for l ) 1, there is a norm on Rd, with unit ball B, such that, for all
« ) 0,

P 1 y « tB l Zd ; j �04 ; 1 q « tB l ZdŽ . Ž .Ž t
6Ž .

< < �04 <for all large t j ) 0, ;t s 1..
Ž .In order to prove 5 , we need two results used in the proof of the shape

Ž .theorem 6 .
Ž . Ž .The first result we need is 19b in Bramson and Griffeath 1980 , which

shows that j BŽL. must grow at a certain minimal rate. The result says thatt
there are finite positive constants r, C , a and L such that, for all L G L ,1 1 0 0

7 P B rt ; j BŽL. , ;t G 0 G 1 y C exp ya L .Ž . Ž . Ž .Ž .t 1 1
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Ž . Ž . Ž .Since B rt > B 3L for t G 3Lrr, it follows from 7 that, for T s 3Lrr,

8 P B 3L ; j BŽL. ª 1 as L ª `.Ž . Ž .Ž .T

The second result we need is a special case of Lemma 1 of Bramson and
Ž . BŽL.Griffeath 1980 , which shows that j cannot grow too fast. The resultt

says that there are finite positive constants R, c , C , a and L such that,2 2 2 0
for all L G L and all t G 0,0

9 P j BŽL. o B Rt q c L , ;s F t F C exp ya t .Ž . Ž . Ž .Ž .s 2 2 2

Ž Ž .. Ž .If we set r s c q 3Rrr k 3, then 9 implies that, for T s 3Lrr, as2
L ª `,

10 P j BŽL. o B rL , ;s F T ª 0 as L ª `.Ž . Ž .Ž .s

Ž . Ž . Ž .Clearly, 8 and 10 imply 5 . I

Ž .PROOF OF THEOREM 1 b . Consider first the case l - 1 and p ) 0. Then,
regardless of the initial condition, h must have infinitely many 0’s at timet

Žt s 1 with probability 1. Each 0 at time zero has positive probability of
remaining a 0 for one time unit. Hence, if there are infinitely many 0’s at
time 0, there will be infinitely many at time 1. On the other hand, each
nearest-neighbor pair of 1’s has positive probability of creating, before time 1,
a 0 that will survive until time 1. If there are infinitely many such pairs at

.time 0, there will be infinitely many 0’s at time 1. Now we construct a new
process j , t G 1. We set j s h , and then, for t ) 1, we let j follow thet 1 1 t
same transition rules as j . Thus, j , t G 1, is a biased voter model, but now,t t
since l - l, 0’s are the favored type. Furthermore, h ; j for t G 1.t t

Ž .The Bramson]Griffeath shape theorem 6 still applies, but with the role of
1’s and 0’s reversed. That is, there is an r ) 0 such that each 0 in j has1
positive probability of creating a process of 0’s that contains, for all t

Ž .sufficiently large, a box of side 2r t y 1 . Since there are infinitely many 0’s
in j , there is probability 1 that some 0 will create such a process. That1

Ž .means that, for each site x, j x will be 0 with probability 1 for all large t.t
Since h ; j , the same conclusion holds for h .t t t

Now we consider the critical case l s 1 and p ) 0. To facilitate our proof,
� x, y x, y d 5we give a different construction of h and j . Let V , W : x, y g Z , x yt t

5 4 x, yy s 1 be independent Poisson processes, where the intensities of V and
W x, y are 1 and p, respectively. We define j as follows. At each arrival timet
of V x, y, the value at site y is replaced by the value at site x. We use the
same transition rules in defining h , but also, at the arrival times of W x, y, ift
there is a 1 at both x and y, the 1 at site y is changed to a 0. It is easy to see

w Ž .that j is the basic voter model see Durrett 1988 , Chapter 3 or Liggettt
Ž . x1985 , Chapter V , h is our sickle-cell process, and if h ; j , then, witht 0 0
probability 1, for all times t, h ; j .t t

Ž .For a given site z and time t, the value of j z is easily determined byt
x, y wreading the Poisson processes V backwards in time from time t Durrett

Ž .x1988 . We may define a random walk Z , s F t, such that Z s z, Z iss 0 s
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x, y w xindependent of the arrivals in the V in 0, t y s , completely independent
x, y Ž . Ž .of the W , and j z s j Z . We will show that the path of Z is ‘‘exposed’’t 0 t s

to many events determined by the W x, y Poisson processes that will, with
Ž .high probability, prevent the occurrence of h z s 1. Here are the details.t

Let V x, y denote the nth arrival time of V x, y, and let W x, y denote the nthn n
arrival time of W x, y. For times t G 1 and sites z, define

y , z 5 5 y , zt z , t s sup V : y y z s 1, V F t .� 4Ž . n n

y, z� 4We put t s ` if the event is empty. On the event t - t, t s V , put y s y,n
so that y is the random site that last influences z before time t using only
the V x, y Poisson processes. Now define

y , z y , zs z , t s inf W : W ) t .� 4Ž . k k

y, xThat is, s is the first time after t that an arrival in W can cause the 1 at
x to be replaced by a 0. For t G 1 and site z, we define the event

¡t y 1 - t z , t - t ,Ž .
s z , t - t ,Ž .~G z , t sŽ . x , yV , l G 1 l t z , t , s z , t s B, ; x ,� 4 Ž . Ž .Žl

x , y¢W , l G 1 l t z , t , s z , t s B, ; x .� 4 Ž . Ž .Žl

Ž . w x x, yThe event G z, t is independent of the arrivals during 0, t y 1 in the V
x, y Ž . Ž .and W Poisson processes. Furthermore, h z s 0 on G z, t , since the 1 att

Ž .y kills the 1 at site z just before time t, and « s P G ) 0.
w xLet t denote the greatest integer less than or equal to t. For i s
w x0, 1, . . . , t y 1, define

G s G Z , T y i .Ž .i i

Ž .Then, by construction, the events G are independent, P G s « for each ii i
Ž .and h z s 0 if any of the G occur. Thus, no matter what the initial state ht i 0

is,
w xt y1P h z s 1 F 1 y « .Ž . Ž .Ž .t

Ž Ž . .This shows that P h z s 1 tends to zero exponentially fast, and it is at
Ž .standard argument to show that there must be a last random time that

Ž .h z can be 1. It

3. Proof of Theorem 2. In this proof we follow Andjel and Schinazi
Ž .1996 . Recall that d s 1. For a given initial configuration h , we will0
construct a family of sickle-cell processes h j, j g Z, such that at all times t,t
h ; D h j. Then, we will obtain exponential estimates on the growth of thet j t

j Ž .h which will imply that, for any site x, h x must be 0 for all large times t.t t
Fix an arbitrary initial configuration h . Let0

f 0 s inf x G 0: h x s 1� 4Ž . Ž .0

and
f j s inf x ) f j y 1 : h x s 1 for j G 1.� 4Ž . Ž . Ž .0
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Similarly, let

f y1 s sup x - 0: h x s 1� 4Ž . Ž .0

and

f j s sup x - f j q 1 : h x s 1 for j F y2.� 4Ž . Ž . Ž .0

With the same Poisson processes and random variables used in our original
j j � Ž .4construction of h , let h denote the sickle-cell process with h s f j . Lett t 0

r j s sup x : h j x s 1 , l j s inf x : h j x s 1 ,Ž . Ž .� 4 � 4t t t t

j w j j x dand B s l , r l Z . We note that, by construction,t t t

h ; h jDt t
j

Ž .strict inclusion may hold because a 1 may kill a 1 , and

11 h ; B j .Ž . Dt t
j

We turn now to an analysis of the B j. The process r j jumps to the rightt t
j Ž Ž j . .one unit with rate l since there is a 0 to the right of r i.e., h r q 1 s 0 .t t t

On the other hand, r j jumps to the left at least one unit with rate 2, if botht
r j ’s nearest neighbors are 0’s, or rate 1 q l p, if r j ’s nearest neighbors are a 0t t
and a 1. Thus, if

l - min 2, 1 q l p ,Ž .
then r j can be coupled to a random walk with a drift to the left. Conse-t
quently, for

l y 1
12 l g 1, 2 and p ) ,Ž . Ž .

l

standard random walk estimates imply that there exist finite, positive con-
stants C and g such that

13 P 't G 0: r j s f j q k F Ceyg k .Ž . Ž .Ž .t

Ž .By symmetry, 12 also implies

14 P 't G 0: l j s f j y k F Ceyg k .Ž . Ž .Ž .t

Furthermore, since r j has a drift to the left, and l j has a drift to the right,t t
each B j will be empty with probability 1 for all large t.t

Ž . Ž .Now fix x g Z. If j is such that x ) f j , then by 13 ,

P 't G 0: x g B j s P 't G 0: r j s x F Ceyg Ž xyf Ž j.. .Ž . Ž .t t

Ž . Ž .Similarly, if j is such that x - f j , then 14 implies

P 't G 0: x g B j s P 't G 0: l j s x F Ceyg Ž f Ž j.yx . .Ž . Ž .t t

These inequalities imply that

P 't G 0: x g B j - `.Ž .Ý t
j
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By the Borel]Cantelli lemma, with probability 1, there exists a positive
< < jinteger J such that, for all j ) J and all times t G 0, x f B . But this factt

Ž . Ž . j < <and 11 imply that if h x s 1, then x g B for some j F J. But each of thes s
j < < jB , j F J, will eventually be empty. Let T be the first time at which all B ,s x s

< < Ž .j F J, are empty. Thus, h x s 0 for all s G T . Is x

4. Proof of Theorem 3. For this result, p can be any positive number.
Because of that, the construction given in Section 2 above does not apply, so

� x, y x, y x, y d 5we give another graphical construction. Let S , T , V : x, y g Z , x
5 4 x, yy y s 1 be independent Poisson processes, where the intensities of S ,

T x, y and V x, y are 1, l and l p, respectively. At each arrival time of S x, y, if
there is a 0 at x and a 1 at y, then the 1 at y is replaced by a 0. At each
arrival time of T x, y, if there is a 1 at x and a 0 at y, then the 0 at y is
replaced by a 1. At each arrival time of V x, y, if there is a 1 at x and a 1 at y,
then the 1 at y is replaced by a 0. Given an initial configuration h , this gives0
a construction of the process h for any p ) 0.t

Let A be a finite subset of Zd. We will show that the following holds for
Ž .large p. There exists an a.s. finite random time T such that the space-timeA

w . Ž d w ..region A = T , ` : Z = 0, ` contains no 1’s. We prove this in the caseA
d s 2; no new difficulties emerge when d G 3 or d s 1.

The following type of argument was introduced by Durrett and Schinazi
Ž .1993 . We define two space]time regions:

2 2w x w x w x w xAA s y2 L, 2 L = 0, 2T , BB s yL, L = T , 2T ,

where L and T are integers to be chosen later. Define CC to be the part of the
‘‘boundary’’ of the box AA:

< < < <CC s m , n , t g AA: m s 2 L or n s 2 L or t s 0 .� 4Ž .
We will compare the process h to a certain dependent percolation process ont

2 � 4 Ž .the set LL s Z = Z , where Z s 0, 1, 2, . . . . We say that the site k, m, nq q
Ž .in LL is wet if there are no 1’s in the box kL, mL, nT q BB, regardless of the

Ž . �Ž .states of sites in the boundary kL, mL, nT q CC. Note that the event k, m, n
4 Ž .is wet depends only on the existence or not of paths of 1’s within AA. We

require this uniformity on the states of the boundary in order to ensure that
the percolation process in LL , although dependent, has an interaction with
only finite range. Sites which are not wet are called dry.

Let « ) 0. We will show that there exist L, T and pX ) 0 such thatc

15 P k , m , n is dry - « if p ) pX .Ž . Ž .Ž . c

We start by showing that the probability estimate above holds for the case
p s `. Then, using a continuity argument, we will deduce that it must hold
for sufficiently large p. By translation-invariance, it suffices to consider the

Ž .site 0, 0, 0 g LL .
Assume that p s `. For this process, as soon as two 1’s become nearest

Ž .neighbors, one of them is selected at random each with probability 1r2 , and
instantly replaced by a 0. In particular, each time a 1 gives birth to a new 1,
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the parent or the child is immediately replaced by a 0. Let h y be the processt
starting from a single 1 at site y at time 0, and note that

h ; h y .Dt t
ygh0

We let

t y s inf t ) 0: h y x s 0 for all x ,� 4Ž .t

and claim that

16 P t y ) t s ey4 t .Ž . Ž .

This is so because at all times t, h y has at most one 1, and the transition ratet
Ž .for that 1 to become a 0 is always 4 2 d in d s 2 .

Next, we claim that there are finite positive constants C and g such that

17 P h y x s 1 for some t G 0 F Ceyg 5 yyx 5 .Ž . Ž .Ž .t

To see this, we start with the inequality

P h y x s 1 for some t G 0Ž .Ž .t

y 5 5F P t ) c y y xŽ .18Ž .
y 5 5 yq P t F c y y x , h x s 1 for some t G 0 ,Ž .Ž .t

where c is a constant to be chosen later. Up to time t y, the process h y hast
5 5exactly one 1. For this 1 to be at x, we need at least y y x successive births,

and these ‘‘births’’ occur at rate 4l. Let X denote a Poisson random variable
5 5with mean 4lc y y x . Then

y 5 5 y 5 5P t F c y y x , h x s 1 for some t G 0 F P X G y y x .Ž . Ž .Ž .t

We choose c so that 4lc - 1r2. By a standard exponential estimate, there
are finite positive constants C9 and g 9 such that

5 5 yg 95 yyx 5P X G y y x F C9e .Ž .
Ž . Ž . Ž .It follows from this inequality, 16 and 18 that 17 must hold for suitable C

and g .
Ž . Ž .Suppose now that x, t g BB is such that h x s 1. Then, there must existt

Ž . Ž . Ž . Ž .some point x9, t9 g CC such that a h x9 s 1 and b there exists a ‘‘chain’’t 9

Ž . Ž . Ž .of 1’s from x9, t9 to x, t lying entirely within AA. Such x9, t9 must lie
Ž . Žeither on the ‘‘bottom’’ of CC i.e., have t9 s 0 , or on one of its ‘‘sides’’ i.e.,

. x 9 Ž .have t9 / 0 . In the former case, the process h originating at x9, t9 mustt
Ž x 9 .have survived at least time T i.e., t ) T before it reaches BB. In the latter

case, it must create a 1, at some time, a distance at least L away from its
Ž . Ž .starting point. It follows from 16 and 17 that

2yg L y4TP 0, 0, 0 is dry F 8CT 4L q 1 e q 4L q 1 e .Ž . Ž . Ž .Ž .
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We may set T s L, and take L sufficiently large so that

P 0, 0, 0 is dry F «r2 for p s `.Ž .Ž .
For fixed l, since AA is a bounded space]time region, it is easy to see that, for
finite p, the above probability converges as p ª ` to the probability for

X Ž .p s `. Thus, there is a finite p such that 15 holds.c
We now position oriented edges between sites in LL in order to obtain a

Ž . Ž .percolation model. Let AA k, m, n s kL, mL, nT q AA. For each pair
Ž . Ž . Ž . Ž .k, m, n , x, y, z g LL , we draw an oriented edge from k, m, n to x, y, z if

Ž . Ž .and only if n F z and AA k, m, n l AA x, y, z / B. The wet sites on the
Ž .ensuing directed graph constitute a dependent percolation model. There

exists an absolute constant K, depending only on the number d of dimen-
Ž .sions here, d s 2 , such that any set of sites of LL have independent states

whenever the graph-theoretic distance between any pair of such sites exceeds
K. Furthermore, there exist positive finite constants d , n such that the
following two statements hold. First, the number of self-avoiding oriented
paths on LL , having length r and any given endpoint, is no larger than d r.
Second, any self-avoiding path of length r contains at least n r sites, the
distance between any pair of which exceeds K.

2 Ž .Let x g Z and let T be the supremum of all times t such that h x s 1.x t
We claim that T is a.s. finite if p is sufficiently large. Suppose that T ) TM.x 0

Ž . Ž .Then there exists m G M y 1 with the property that 0, 0, m is the
endpoint of an oriented dry path of LL whose other endpoint has the form
Ž . 2x, y, 0 for some x, y g Z . By the above remarks,

19 P T ) TM F d rk n r ,Ž . Ž . Ý Ý0
rGmmGMy1

ŽŽ . . Ž . Xwhere k s P 0, 0, 0 is dry . By 15 , we may choose p such that thec
Ž . Xright-hand side of 19 is finite whenever p ) p and M G 2. When this holds,c

the right-hand side approaches 0 as M ª `, implying that T is a.s. finite as0
required. I
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