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ASYMPTOTICS OF FIRST PASSAGE TIMES FOR
RANDOM WALK IN AN ORTHANT1

By D. R. McDonald

University of Ottawa

We wish to describe how a chosen node in a network of queues over-
loads. The overloaded node may also drive other nodes into overload, but
the remaining “super” stable nodes are only driven into a new steady state
with stochastically larger queues. We model this network of queues as
a Markov additive chain with a boundary. The customers at the “super”
stable nodes are described by a Markov chain, while the other nodes are
described by an additive chain. We use the existence of a harmonic func-
tion h for a Markov additive chain provided by Ney and Nummelin and
the asymptotic theory for Markov additive processes to prove asymptotic
results on the mean time for a specified additive component to hit a high
level l. We give the limiting distribution of the “super” stable nodes at this
hitting time. We also give the steady-state distribution of the “super” sta-
ble nodes when the specified component equals l. The emphasis here is
on sharp asymptotics, not rough asymptotics as in large deviation theory.
Moreover, the limiting distributions are for the unscaled process, not for
the fluid limit as in large deviation theory.

1. Introduction. The following introduction describes the model and
states the main theorems. It is highly recommended that the Flatto–Hahn–
Wright example in Section 3.1 be read in parallel with this introduction.
Unless a proof immediately follows the statement of a result, it is deferred to
Section 2.3. The symbol for a Markov chain W may be twisted, in which case
it will be written in script letters as W . The chain W may be transformed
into a free process, in which case it will be noted by W∞. The time reversal
will be denoted by W∗. We will use this convention for a variety of symbols
throughout the paper.

1.1. Definitions. Many large stochastic systems are modeled as a Harris
recurrent (irreducible) Markov chain W with a state space �S;S � with a
stationary probability distribution π and kernel K. Let L x= K − I be the
discrete generator. We are often interested in the measure π�F� of some rare,
forbidden set F ∈ S , where π�F� > 0. Alternatively, we may consider the
expected value of the time TF until the chain reaches F. We may also be
interested in the hitting distribution on F.

The problem of finding the mean time m�x� for the chain to hit F starting
from any initial point x means solving the linear system

Lm�x� = −1 for x ∈ B x= Fc and m�x� = 0 for x ∈ F:(1.1)
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The problem of finding eA�x�, the probability of hitting F in A ⊆ F (where
A ∈ S ) starting from x, means solving the problem

LeA�x� = 0 for x ∈ B; eA�x� = 1 for x ∈ A
and eA�x� = 0 for x ∈ F \A:

(1.2)

If the space is high-dimensional, then both of these problems may become
numerically intractable. Worse, if π�F� is small, then they cannot even be
solved by simulation because it would take so long to simulate the event of
interest; that is, an entrance into F!

Here we consider a sequence of forbidden sets Fl ≡ F such that π�F� →
0. We address the problem of how to give the exact asymptotics of the ex-
pected value of the time TF to reach the forbidden set F. Our second prob-
lem is to find the limiting hitting distribution on F, and the third problem
is to give an asymptotic expression for π on F. The main results in this
paper, Theorems 1.10, 1.13 and 1.6, give answers to these three problems
for Markov chains which may be viewed as a Markov additive chain with a
boundary.

Given the kernel K, we can always construct the kernel K′ x= �K + I�/2.
Note that this new kernel has null transitions with probability 1/2. Both
K and K′ have stationary distribution π. Moreover, let L′ be the discrete
generator associated with K′ and let m′ and e′A be the solutions of the systems
(1.1) and (1.2) with L′ replacing L. Clearly, m′�x� = 2m�x� and e′A�x� = eA�x�.
Consequently, by adjusting the time scale, we may as well assume our Markov
chain W has null transitions with probability 1/2.

We note that our results apply to continuous-time Markov jump processes
on �S;S � with bounded generators G [see Iscoe and McDonald (1994a) for
definitions]. We may construct a Markov chain W on �S;S � with discrete
generator L x= G/q, where q is the event rate of the generator G. W has the
same stationary probability distribution as the jump process. Moreover, the
hitting distribution onF byW is the same as that of the original jump process.
Finally, the time until the jump process hits F is the same as the time for the
uniformization of the Markov chain W to hit F. By calculation, the expected
time for the uniformized chain to hit F is m�x�/q. If we assume the time
scale is such that q = 1, then the results for Markov chains immediately
imply corresponding results for Markov jump processes.

Consider a Markov additive chainW∞ ≡ � �W∞; �W∞� defined on a probability
space ��;F ;P�. W∞ is a Markov chain with kernel K∞ on the measurable
space �S∞;S ∞� x= �Rr× �S;Br⊗ Ŝ �, where R and B respectively denote the
integers and subsets of the integers in the discrete-time case (in the discrete
case, the integers are also denoted by Z) or the reals and the Borel sets in the
continuous time case (in the continuous case, the reals are also denoted by
R). The Markovian component �W∞ is a ψ-recurrent [see Meyn and Tweedie
(1993) for the definition], aperiodic Markov chain with state space � �S; Ŝ �. The
additive component �W∞ can be viewed as a multidimensional random walk
taking values in �Rr;Br�.
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Decompose a point x ∈ S∞ as x = �x̃; x̂� ≡ �x1; x2; : : : ; xr; x̂�, where x̃ ∈ Rr,
x̂ ∈ �S: If 0 ∈ Br and �A ∈ Ŝ , then the kernel of W∞ satisfies

K∞�x; 0× �A� = P
( �W∞�1� ∈ �A; x̃+ �W∞�1� − �W∞�0� ∈ 0� �W∞�0� = x̂

)
:

Let L∞ denote the generator of W∞. As above, W∞ decomposes into compo-
nents � �W∞; �W∞�. Let m denote the counting measure in the discrete case and
the Lebesgue measure in the continuous case.

Define the additive increment associated with the jump from state
�W∞�n− 1� to �W∞�n� to be X∞�n� x= �W∞�n� − �W∞�n− 1�. Hence, if �W∞�0� =
X∞�0�, �W∞�n� = ∑n

i=0X
∞�i� describes the sum of the increments associated

with getting to state �W∞�n� in n steps. The components of the increment X∞

may, of course, be negative or zero.
Now consider a Markov chain W with probability transition kernel K, sta-

tionary probability measure π and state space S ⊂ S∞. We assume the exis-
tence of a boundary N ⊂ S∞ such that the probability transition kernel K of
the Markov chain W in S has transitions which agree with those of K∞ within
the interior of S; that is, K�x;C� = K∞�x;C� if x ∈ S∞ \ N and C ⊂ S∞ \ N.
Let the edge of the boundary N be denoted by M ≡ N ∩ S. In many cases, S
will be the measurable product space of the positive orthant times �S given by
�S;S � x= ��R+�r × �S; �B+�r ⊗ Ŝ �, where R+, respectively B+, denotes the
nonnegative integers (also denoted by N0), respectively subsets of nonnegative
integers in the discrete case and the nonnegative reals (also denoted by R+),
respectively the Borel sets on the nonnegative reals, in the continuous case.

Decompose W into components � �W; �W�, where �W ∈ �S. We shall systemati-
cally use an upper index of∞ to indicate kernels (likeK∞) or chains (likeW∞)
which are free in the sense that the additive components are unconstrained in
Rr. Let the origin D be such that π�D� > 0 and such that D ⊆ M. For any set
C ∈ S , let πC�·� x= π�· ∩ C�/π�C� and let EC x=

∫
C πC�dz�Ez. Of course, Ez

will always represent the expectation operator for a chain started at state z.
In some examples, there is a natural extension of this theory. It is not

necessary that �W∞ be an additive process. Instead, the kernel K∞ could have
the following decomposition:

K∞
(
�z1; z2; : : : ; zr; ẑ�y �z1 + dx1; dx2; : : : ; dxr; dx̂�

)

= �K∞�ẑ; dx̂�k1�dx1�ẑ; x̂�k̃
(
�z2; : : : ; zr�y �dx2; : : : ; dxr��ẑ; x̂; z1; x1

)
;

where k̃ is a probability transition kernel conditioned on the transitions of
�W∞. Hence, given the transition of �W∞, the components W∞2 ; : : : ;W

∞
r make

a Markovian transition dependent on the additive first component. In this
extension, there is no general methodology for finding the harmonic function
required in Section 1.2; however, if Conditions 1–7 given below hold, then
we can redo the proofs of Theorems 1.6, 1.13 and 1.10. Only Theorem 2.10
requires an extra hypothesis.

1.2. Hypotheses. Suppose there exists a positive function h such that
h�x� =

∫
y∈S∞K

∞�x; dy�h�y�. Hence h is harmonic for K∞. Perform the h-
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transform to construct the twisted kernel K ∞�x; dy� x=K∞�x; dy�h�y�/h�x�.
Let the generator of the associated twisted chain W ∞ be L ∞. In Section 2.1,
we use the theory in Ney and Nummelin (1987a) to construct a harmonic
function for K∞ of the form h�x� = exp�αx1�â�x̂�. We shall systematically
denote any object which has been twisted with script letters.

Decompose W ∞ as a Markov additive chain �W̃ ∞; Ŵ ∞�. The Markov chain
Ŵ ∞ has state space �S. The vector W̃ ∞�n� can be viewed as a multidimensional
additive component taking values in Rr. Define the increment associated with
the jump from state Ŵ ∞�n−1� to Ŵ ∞�n� to be X ∞�n� x= W̃ ∞�n�− W̃ ∞�n−1�.
Hence, if W̃ ∞�0� = X ∞�0�, then W̃ ∞�n� =∑n

i=0 X ∞�i� describes the sum of the
increments to get to state Ŵ ∞�n� in n steps. The pairs �W̃ ∞�n�; Ŵ ∞�n��∞n=0

define a Markov chain on S∞ x= Rr× �S. If 0 ∈ Br and �A ∈ Ŝ , then the kernel
of �W̃ ∞�n�; Ŵ ∞�n�� satisfies

K ∞�x; 0× �A� = P�Ŵ ∞�1� ∈ �A; x̃+ W̃ ∞�1� − W̃ ∞�0� ∈ 0�Ŵ ∞�0� = x̂�:
The associated twisted generator applied to a bounded measurable function

g satisfies

L ∞g�x� x=
∫

y∈S ∞
�g�y� − g�x��K∞�x; dy�h�y�

h�x�

=
∫

y∈S ∞

[
h�y�
h�x�g�y� − g�x�

]
K∞�x; dy�

x= 1
h�x�L

∞�h · g��x�

(1.3)

for all x ∈ S∞.
We recall that, without loss of generality, we may assume K has a null

transition with probability 1/2. Hence �K∞ and K̂ ∞, the kernels of the chains
�W∞ and Ŵ ∞, are aperiodic. We impose the following conditions.

Condition 1. Ŵ ∞ is a ψ-recurrent Markov chain with a stationary prob-
ability measure ϕ [see Meyn and Tweedie (1993) for definitions].

Condition 2. The Markov additive chain �W̃ ∞�n�; Ŵ ∞�n�� satisfies Con-
ditions M1 and N1 in Section 2.1. In the discrete case, W̃ ∞ is aperiodic as
defined in Condition P1, while in the continuous case, W̃ ∞ is spread out as
defined in Condition P2.

Condition 3. d̃1 > 0, where

d̃ ≡
∫
ẑ
ϕ�dẑ�E�0̃; ẑ�X ∞�1�

=
∫
ẑ
ϕ�dẑ�

∫
ŵ

∫
ũ
ũK ∞��0̃; ẑ�; dũ× dŵ�:

(If S = �R+�r × �S, then d̃ > 0 componentwise to satisfy Condition 4.)
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Condition 4. There exists a set C ⊆ M such that π�C� > 0 and such that,
for z ∈ C, Pz�T ∞

N = ∞� > 0, where T ∞
N is the first return time to N by W ∞.

Condition 5.
∫
�S â
−1�ẑ�ϕ�dẑ� <∞.

Condition 6. The measure λ�dx� x=
∫

z∈M π�dz�K�z; dx�χ�x ∈ Mc�h�x� is
finite.

Condition 7. If â−1 is unbounded, we require that the measure λ̂�dx̂� x=∫
x̃ λ�dx̃; dx̂� is â−1-regular for the chain Ŵ ∞ as defined in Meyn and Tweedie

[(1993), Chapter 14.1].

Let f�z� x= χM�z� ·
∫

x∈McK�z; dx�h�x�. To verify Condition 6, we must verify∫
z f�z�π�dz� <∞. This can be done using Lyapounov functions [see Meyn and

Tweedie (1993), Theorem 14.3.7].

Lemma 1.1. Suppose there exist positive functions V and s on S such that

LV�y� ≡KV�y� −V�y� ≤ −f�z� + s�y�:(1.4)

Then
∫

z f�z�π�dz� ≤
∫

x s�x�π�dx�.

Typically, s�x� = b · χC�x�, where b is a positive constant and C ∈ S .
In many examples, χ�z∈M�K�z; dx�χ�x∈Mc�=χ�z∈M�K∞�z; dx�χ�x∈Mc�.

In this case, the measure λ becomes λ�dx� =
∫
M π�dz�h�z�K ∞�z; dx�χ�x ∈

Mc�, so to check Condition 6, it suffices to verify that
∫
M π�dz�h�z� <∞ (using

Lemma 1.1).
To check λ̂�dx̂� is â−1-regular for the chain Ŵ ∞, we need to find a petite

set �C ∈ Ŝ such that

Eλ̂

[ τ �C∑
n=1

â−1�Ŵ ∞�n��
]
<∞:(1.5)

The most practical method to verify that the sum (1.5) is finite is to check
condition (V3) given in Meyn and Tweedie (1993). It is sufficient to find a
constant b and an extended real-valued function �Vx �S→ �0;∞� such that

∫
K̂ ∞�ŷ; dẑ� �V�ẑ� − �V�ŷ� ≤ −â−1�ŷ� + bχ �C�ŷ�;

and such that
∫ �V�x̂�λ̂�dx̂� <∞.

A natural candidate for �V is a multiple of â−1. Just note that
∫
ẑ
K̂ ∞�ŷ; dẑ�â−1�ẑ� =

∫
z
K∞��0̃; ŷ�; �dz̃; dẑ�� exp�αz1�

â�ẑ�
â�ŷ� â

−1�ẑ�

=
(∫

z
K∞��0̃; ŷ�; �dz̃; dẑ�� exp�αz1�

)
â−1�ŷ�:
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If it can be shown that
∫

zK
∞��0̃; ŷ�; �dz̃; dẑ�� exp�αz1� < 1 uniformly outside

a petite set �C and uniformly bounded in ŷ on �C, then we can take �V to be
some multiple of â−1.

1.3. Stochastic networks. The main application of our work is the esti-
mation of rare event probabilities for stochastic networks. The Flatto–Hahn–
Wright example in Section 3.1 is a special case of the networks considered
below. Consider a network with r +m nodes which is modeled as a Markov
jump process with a state space S ≡ �Nr0;Nm0 �, where N0 denotes the nonneg-
ative integers. If β = �i1; i2; : : : ; ib�, we say x is on the boundary Sβ if xi = 0
for i ∈ β but xi > 0 for i 6∈ β. We assume the jump process modeling the
stochastic network is the uniformization of a (homogeneous) nearest-neighbor
random walk W in the orthant Nr+m0 having transition kernel K:

K�x;y� =
{
J�y − x�; if x 6∈ Sβ for any β 6= \;

Jβ�y − x�; if x ∈ Sβ:
Here J�x� gives the nearest-neighbor jump probability in the direction x in
N = ��x1; x2; : : : ; xr+m�x xi ∈ �−1;0;1��. On a boundary Sβ, we can only
allow transitions in the directions Nβ = ��z1; z2; : : : ; zr+m�x zi ∈ �−1;0;1�; i ∈
βcy zi ∈ �0;1�; i ∈ β�. So Jβ is of the form

Jβ�z� =





J�z�; if z ∈ Nβ and z 6= 0;

1−
∑

s∈Nβ\�0�
J�s�; if z = 0:

We assume the kernel K is associated with an irreducible Markov chain W
with a stationary probability distribution π. LetD = ��0;0; : : : ;0��. We are in-
terested in the rare event when the first node overloads; that is, when the first
coordinate of W exceeds a level l. When the first node overloads, other nodes
may remain stable even though they are subject to higher loads. The coordi-
nates corresponding to these “super” stable nodes are assumed to be coordi-
nates r+1 through r+m. Unfortunately, when the first overloads, it may drive
other nodes into overload. We assume these nodes correspond to coordinates 2
through r. We look for a harmonic function of the form h�x� x= exp�αx1�â�x̂�
since, in addition to twisting the first component to become transient, we must
judiciously twist only those other components which remain recurrent after
twisting. Furthermore, the twist must make nodes 1 through r transient to
plus infinity.

To find h, we take N = �xx xi ≤ 0; i = 1; : : : ; ry xi ≥ 0; i = r + 1; : : : ;m�,
thus removing the boundaries for the first r coordinates. Hence S∞ = Zr×Nm0 ,
where Z represents the integers. If β ⊆ �r+1; : : : ; r+m� and xi = 0 for i ∈ β
but xi > 0 for i ∈ �r+ 1; : : : ; r+m� \β, then x ∈ S∞β . Extend K to K∞ on S∞

by defining

K∞�x;y�=
{
J�y−x�; if x 6∈S∞β for any β⊆�r+1; : : : ; r+m�;
Jβ∩�r+1;:::;r+m��y−x�; if x∈S∞β∩�r+1;:::;r+m�:
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Finding a harmonic function h for K∞ of the form exp�αx1�â�x̂� is possible
in great generality, as is seen in Section 2.1. However, since K∞ is the tran-
sition kernel of a nearest-neighbor walk with steps outside the boundary M
replaced with null transitions, it is often possible to find h in exponential form.
For x = �x1; : : : ; xr+m� ∈ S∞; define h�x� x= ax ≡ ax1

1 a
x2
2 · · ·a

xr+m
r+m; where a =

�a1; a2; : : : ; am� is a vector of positive constants such that a2 = 1; : : : ; ar=1.
If h is harmonic at x ∈ int�S∞�, then

∑
z∈N

azJ�z�=1; where N is the set of nearest neighbors to the origin.(1.6)

Similarly, for y ∈ S∞β , harmonicity yields the constraint
∑

z∈Nβ

azJ∞β �z� = 1:(1.7)

In general, this means 2m constraints! Of course, there is always the solution
ai = 1 for all i, but in general, another positive solution may not exist.

Fortunately, solutions do exist in many interesting cases! For example, we
may further assume that J�z� = 0 when at least two coordinates zi and zj
are −1 among i ≥ r+ 1, j ≥ r+ 1. In this case, satisfying the constraint (1.7)
gives a condition on each boundary S�k�; k ≥ r+ 1:

∑
z∈N�k�

azJ�z� =
∑

z∈N�k�
J�z�:(1.8)

Subtracting this from (1.6) gives
∑

z∈D�k�
a−1
k

∏
i6=k
a
zi
i J�z� =

∑
z∈D�k�

J�z�; where D�k� = N c
�k�:(1.9)

The m constraints given by (1.9) plus the constraint (1.6) are equal to the m
constraints given by (1.8) plus the constraint (1.6).

Now subtract the general constraint given in (1.7) from (1.6). Hence,
∑

z∈Dβ

azJ�z� =
∑

z∈Dβ

J�z�;(1.10)

where Dβ = N c
β . However, since we are assuming at most one negative jump

among the coordinates �r+ 1; : : : ; r+m�, it follows that
∑

z∈Dβ

azJ�z� =
∑
k∈β

∑
z∈D�k�

azJ�z�;

∑
z∈Dβ

J�z� =
∑
k∈β

∑
z∈D�k�

J�z�:

This means the constraint (1.10) can be obtained by summing the constraints
(1.9) over k ∈ β. Consequently, all the constraints are equivalent to the m
constraints given in (1.9) plus (1.6); that is, m constraints in all. Consequently,
there is at least one solution.

Of course, the solution h must produce a twisted process such that W̃ ∞

drifts to plus infinity while Ŵ ∞ must be a stable Markov chain! If this fails,
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then we must try again by twisting another set of coordinates; that is, we
must redefine the super stable nodes.

1.4. Steady state. Recall that T ∞
l = min�n ≥ 1x W̃ ∞

1 �n� ≥ l� is W ∞’s first
hitting time at F x= �x ∈ S∞; x1 ≥ l� and we denote the hitting time at N
by T ∞

N . Let R∞�l� = W̃ ∞
1 �T ∞

l � − l denote the excess beyond l of the ladder
height. The following is shown in Section 2.2.

Lemma 1.2. Under Conditions 1–6,

Pz
(
Ŵ ∞�T ∞

l � ∈ dŷ; R∞�l� ∈ du; T ∞
l < T ∞

N
)
→H�z�µ�du;dŷ�

in total variation;

where H�z� ≡ Pz�T ∞
N = ∞�. This means that, given W ∞ hits F, µ is the

limiting hitting distribution of �R∞; Ŵ ∞�.

It is not necessary to impose the spread-out condition in Condition 2.

Lemma 1.3. Let fx x �0;∞� × �S → R be a bounded measurable function
such that f�u; ŷ� is continuous (or piecewise continuous) in u. Then, in the
continuous case under Conditions 1–6 but without assuming the spread-out
condition,

Ez
(
f�R∞�l�; Ŵ ∞�T ∞

l ��χ�T ∞
l < T ∞

N �
)
→H�z�

∫ ∫
f�u; ŷ�µ�du;dŷ�:

The proof follows by Athreya, McDonald and Ney [(1978), Theorem 3.1]. In
Theorems 1.5, 1.6 and 1.7, we will need the above convergence for functions
which are continuous or piecewise continuous in the (first) additive component.
Consequently, these theorems could be proved without the spread-out condi-
tion. On the other hand, the convergence in total variation in Theorem 1.13
will fail without the mixing condition, Condition P2. We assume the stronger
mixing condition for simplicity.

The uniform integrability afforded by Condition 7 gives the following.

Lemma 1.4. If Conditions 1–7 hold, then

lim
l→∞

∫
x
λ�dx�Ex

(
χ�T ∞

l < T ∞
N � exp�−αR∞�l��â−1�Ŵ ∞�T ∞

l ��
)

=
∫

x
λ�dx�H�x� ·

∫
ŷ

∫
u≥0

exp�−αu�â−1�ŷ�µ�du;dŷ�:

It is well known [see Orey (1971), Theorem 7.2, (7.2), or Meyn and Tweedie
(1993), Theorem 10.0.1] that we can represent the probability of A ⊆ F as the
expected number of visits to A before returning to M:

π�A� =
∫
M
π�dz�Ez

( TM∑
n=1

χA�W�n��
)
; where TM is the first time W hits M.

We use this representation of π�A� to prove the following theorem.
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Theorem 1.5. Consider a set A in B ⊗Rr−1 ⊗ Ŝ (hence measurable with
respect to x1 and x̂) such that m∞A �u; ŷ� x= E�u;0;:::;0;ŷ��

∑∞
n=0 χA�W∞�n��� is

uniformly bounded in u and ŷ. Assuming Conditions 1–7, we have
∫
A
π��l+ dx1� ×Rr−1 × dx̂�

∼ e−αlf
∫
ŵ

∫
u≥0

â−1�ŵ�e−αum∞A �u; ŵ�µ�du;dŵ�;

where

f x=
∫

z∈M
π�dz�

∫
x 6∈M

K�z; dx�h�x�H�x�:

We see the asymptotics of π��l + 0� × Rr−1 × �A� are given by exp�−αl�
as long as the right-hand side of the above expression is strictly positive.
This is the case as long as H�x� is strictly positive and this follows from
Condition 4. Remark that if �S is countable and A = �0 ≤ x1 ≤ L; x̂ = p̂�,
then m∞A �u; ŷ� is maximal at u = L and ŷ = p̂. For general state spaces, if
A ⊆ �0;L� ×Rr−1 ×C′k0

for some k0 and L <∞, where

C′k =
{
x = �0̃; x̂� ∈ S∞x Px� �W∞1 �m� ≥mk−1 for all m ≥ k� ≥ 1/4

}
;

then A is directly Riemann integrable as defined in Kesten (1974), and by
Kesten [(1974), Lemma 6], m∞A �u; ŷ� is uniformly bounded above.

The asymptotic expression in Theorem 1.5 can be reevaluated to give the
following.

Theorem 1.6 (Steady state). Assume Conditions 1–7 and assume that A
is as in Theorem 1.5. Then

∫
A
π��l+ dx1� ×Rr−1 × dx̂� ∼ e−αlf

∫
x̂

∫
x1≥0

χA�x1; x̂�â−1�x̂�ϕ�dx̂�

× 1

d̃1

exp�−αx1�m�dx1�;

where ϕ is the stationary distribution of Ŵ ∞ given by Condition 1.

This means that, for large l, the stationary measure π��l+dx1�×Rr−1×dx̂�
is a constant times exp�−αl� times a product of the measures â−1�x̂�ϕ�dx̂� and
exp�−αx1�m�dx1�.

1.5. Hitting Times. We wish to describe the hitting time when W1, the
first coordinate of W, reaches some high level l. Let Tl ≡ TF and let TD
denote the hitting time at D. Let f�x� denote the probability that, starting
from x ∈ B \ �D ∪F�, W hits D before F; that is,

f�x� = Px
(
W hits D before F

)
= Px�TD < TF�:(1.11)
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f can be extended to all S to satisfy the following Dirichlet problem:




Lf�x� = 0; in x ∈ B \Dy
f�x� = 0; in x ∈ Fy
f�x� = 1; in x ∈ D:

(1.12)

Using the fact that f satisfies (1.12), we have that

3 x=
∫

y∈F
π�dy�

∫
x∈B

K�y; dx�f�x�

=
∫
D
π�dz�

∫
x
K�z; dx��1− f�x��:

(1.13)

Using the above expression, we can interpret 3/π�D� as the probability start-
ing in steady state in D that the chain leaves D and does not return before
hitting F. Call this probability pD.

Define the Palm measure PF�→D�0 associated with the stationary point pro-
cess of returns to D after passing through F. The associated expectation
E
F�→D�
0 Tl is a natural measure of the time until overload starting from the

point in D reached after the last recovery from overload. By the Hitting Time
Theorem in Baccelli and McDonald (1996), we have the following.

Corollary 1.7. As π�F� → 0, �EF�→D�
0 TF�−1 ∼ 3.

This result is an extension of Lemma 1 in Meyn and Frater (1993). With
additional hypotheses, Baccelli and McDonald (1996) show when E

F�→D�
0 TF

is asymptotic to EDTF.
It seems using Corollary 1.7 and (1.13) to estimate EF�→D�

0 TF is useless
without an expression for π, and if visits to the forbidden set are rare events,
then even simulating π on F is practically impossible. On the other hand,
if f is bounded away from 0 and 1 on F, then E

F�→D�
0 TF clearly has the

same rough asymptotics as π�F�. In fact, we can say much more because
we can perform and approximate h transformation on W. Next, we replace
f�x� by a good guess! Let ρ�x� denote the probability that the random walk
W, starting at x, hits M before hitting F. Like f, the function ρ satisfies a
Dirichlet problem:





Lρ�x� = 0; in x ∈ B \ My
ρ�x� = 0; in x ∈ Fy
ρ�x� = 1; in x ∈ M:

(1.14)

On B \ M, the equation Lρ�x� = 0 is equivalent to the equation L∞ρ�x� = 0
because the jump kernels K and K∞ agree inside S \ M and ρ is constant on
the edge M.

Assuming for the moment that ρ�x� is sufficiently close to f�x�, we may
approximate

3 =
∫

y∈F
π�dy�

∫
x∈B

K�y; dx�f�x�
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by

b x=
∫

y∈F
π�dy�

∫
x∈B

K�y; dx�ρ�x�

=
∫

z∈M
π�dz�Lρ�z�

=
∫

z∈M
π�dz�

∫
x
K�z; dx��1− ρ�x��:

(1.15)

The above equivalence follows from the Hitting Time Theorem in Baccelli and
McDonald (1996) by identifying M and D.

The fact that 3 and b are close is shown in the following key lemma.

Lemma 1.8 (Comparison lemma). If Conditions 1–7 hold, then liml→∞ �3−
b�/b = 0:

Using Corollary 1.7 and Lemma 1.8, we have the following.

Corollary 1.9. If Conditions 1–7 hold, then 3 = π�D�pD, b = π�M�pM
and

E
F�→D�
0 TF ∼ 3−1 ∼ b−1 ∼ EF�→1�

0 TF;

where pM is the probability starting in equilibrium on M of hitting F before M.

Using the fact that h is harmonic for L∞, define 9 ≡ 9l by

ρ�x� = 1− exp�−αl�h�x�9�x�:(1.16)

ρ is harmonic for L∞ on B \N, so 9 is harmonic with respect to L ∞ on B \N:
Moreover, we then have the following boundary-value problem for 9, defined
through (1.16):





L ∞9�x� = 0; x ∈ B \ Ny
9�y� = exp�αl�h�y�−1; y ∈ Fy
9�z� = 0; z ∈ N:

(1.17)

The boundary-value problem (1.17) has a probabilistic solution. Hence,

9�x� = Ex
[
â−1�Ŵ ∞�T ∞

l �� exp�−αR∞�l��χ�T ∞
l < T ∞

N �
]

for x ∈ S \ �M ∪F�:
(1.18)

Evaluating (1.15), we see

b =
∫

y∈M
π�dy�Lρ�y�

=
∫

z∈M
π�dz�e−αl

∫
x∈B\N

K�z; dx�h�x�9�x�

=
∫

z∈M
π�dz�e−αl

∫
x∈B\M

K�z; dx�h�x�

×Ex
[
â−1�Ŵ ∞�T ∞

l �� exp�−αR∞�l��χ�T ∞
l < T ∞

N �
]
:

(1.19)
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The above expression has no closed-form expression, although it can be es-
timated by simulation. The expression for 9 near the origin is obtained by
simulating W ∞ with absorption on N.

Using Theorem 2.5, expression (1.19) and Corollary 1.7, we shall prove the
following.

Theorem 1.10 (Mean Hitting Time). Under Conditions 1–7,

E
F�→D�
0 Tl ∼ exp�αl�g−1 as l→∞;

where

g ≡
∫

z∈M
π�dz�

∫
x 6∈M

K�z; dx�h�x�H�x�
∫
ŷ

∫
u≥0

â−1�ŷ�e−α·uµ�du;dŷ�;(1.20)

where H�x� is the probability W ∞, starting at x, never hits N.

The rough asymptotics of EF�→D�
0 Tl are given by exp�αl�. The constant g

can be obtained by simulation. This is not too onerous because we only need
π on M and W ∞ is transient toward F.

1.6. Hitting Distribution. Let the time reversal of the Markov chain W
with respect to π be denoted by W∗ and let the kernel of the time reversal
be K∗. Let f∗�x� denote the probability that W∗, starting from x ∈ B, hits D
before F. We denote the first entrance time by W∗ into F by T∗F. T∗D denotes
the first entrance time at D. By time reversal, we have the following.

Lemma 1.11. If A ∈ S and A ⊆ F, then

PD
(
W�TF� ∈ A�TF < TD

)
= 1
π�D�pD

∫
y∈A

π�dy�
∫

x∈B
K∗�y; dx�f∗�x�;

where pD =
∫
D π�dz�Pz�TF < TD�/π�D�.

To apply Lemma 1.11, we again make an approximation. This time, substi-
tute ρ∗�x� for f∗�x�, where ρ∗�x� is the probability W∗ hits M before returning
to F. The error introduced in the hitting distribution on F is shown to be
asymptotically small.

Proposition 1.12. If A ∈ S and A ⊆ F, then
∫

y∈A
π�dy�

∫
x∈B

K∗�y; dx�f∗�x� ∼
∫

y∈A
π�dy�

∫
x∈B

K∗�y; dx�ρ∗�x�:

We therefore investigate the expression

1
π�D�pD

∫
A
π�dy�

∫
x∈B

K∗�y; dx�ρ∗�x�

= π�M�pM
π�D�pD

PM
(
W�TF� ∈ A�TF < TM

)
;

(1.21)
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using Corollary 1.11 with D replaced by M. By Corollary 1.9,

π�M�pM/π�D�pD→ 1;

so asymptotically, PD�W�TF� ∈ A�TF < TD� and PM�W�TF� ∈ A�TF < TM�
are the same.

Now take A = �l+ 0� ×Rr−1 × �A in S . By a change of measure, we see

PM
(
W�TF� ∈ A; TF < TM

)

= 1
π�M�

∫
z∈M

π�dz�
∫

x 6∈M
K�z; dx�

∫
A
Px
(
W∞�T∞l � ∈ dy; T∞F < T

∞
N
)

= 1
π�M�

∫
z∈M

π�dz�
∫

x 6∈M
K�z; dx�h�x�

×
∫
A
â−1�ŷ� exp�−αy1�Px�W ∞�T ∞

l � ∈ dy; T ∞
F < T ∞

N �

= e−αl

π�M�
∫

z∈M
π�dz�

∫
x 6∈M

K�z; dx�h�x�

×
∫
�A

∫
u∈0

â−1�ŷ�e−αuPx�Ŵ ∞�T ∞
l � ∈dŷ; R∞�l� ∈du; T ∞

F <T ∞
N �:

Similarly,

PM�TF < TM� =
1

π�M�
∫

z∈M
π�dz�

∫
x 6∈M

K�z; dx�h�x�

×
∫
A
h−1�y�Px�Ŵ ∞�T ∞

l � ∈ dŷ; T ∞
F < T ∞

N �

= e−αl 1
π�M�

∫
x
λ�dx�

∫
ŷ

∫
u≥0

â−1�ŷ� exp�−αu�

×Px�Ŵ ∞�T ∞
l � ∈ dŷ; R∞�l� ∈ du; T ∞

F < T ∞
N �:

Cancelling out exp�−αl�, we see PD� �W�Tl� ∈ A�Tl < TM� is estimated by
[∫

x∈Mc
λ�dx�

∫
�A

∫
u∈0

h−1�ŷ� exp�−αu�

×Px

(
Ŵ ∞�T ∞

l � ∈ dŷ; R∞�l� ∈ du; T ∞
F < T ∞

N

)]

×
(∫

x∈Mc
λ�dx�9�x�

)−1

:

(1.22)

Again this provides a practical solution to the hitting problem since the above
expression can be simulated quickly.

Lemma 1.12 gives the following theorem.
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Theorem 1.13 (Hitting distribution). Under Conditions 1–7 above, as
l→∞;

1
π�D�

∫
z∈D

π�dz�Pz� �W�Tl� ∈ dŷ; R�Tl� ∈ du � Tl < TD�

→ â−1�ŷ�e−α·uµ�du;dŷ�
/(∫

ŷ

∫
u≥0

â−1�ŷ�e−α·uµ�du;dŷ�
)
;

where µ�du;dŷ� is the stationary distribution of �R∞�l�; Ŵ ∞�T∞l ��.

1.7. Literature review. The main technique used here is to find a func-
tion h which is harmonic outside some boundary N in order to perform an
h-transformation or twist of the Markov chain. The h-transform, introduced
by Doob (1959), has a long history. In the case of random walk on the line,
the twist is the associated random walk discussed in Feller [(1971), Section
XII.4]. Kesten [(1974), Section 4] studied the asymptotics of a Markov additive
process using the twist. Ney and Nummelin (1987a, b) used the twist to study
large deviations of the additive component of a Markov additive process.

The representation of the steady-state measure of a rare event A ⊆ F
employed in Section 1.4 is the basis of the M-cycle (called A-cycle there)
technique in importance sampling exploited by Nicola, Shahabuddin, Heidel-
berger and Glynn (1992). M-cycles consist of trajectories which start in M, the
edge of N in S, and end just before a return to M. The equilibrium measure
π on M is unknown (unless M is a single point), but by generating N (un-
twisted) M-cycles, it can be estimated. Just sample W whenever it returns to
M. Let TM�k�, k = 1; : : : ;N, denote the return times to M in the N untwisted
M-cycles.

Each return by an untwisted M-cycle determines the start of a twisted M-
cycle and we alternate between untwisted and twisted M-cycles. At the start
of the kth twisted M-cycle, first generate a step K and next generate steps
using the twisted kernel K ∞ until W ∞ either hits N or it hits F at time T ∞

l .
If it hits N before F, set Vk = 0. If W ∞ hits F before N, then turn off the twist
and count Nk, the number of visits to A before W∞ returns to M. In this case,
let

Vk x= â−1�Ŵ ∞�T ∞
l �� exp�−αR∞�l��Nk:

The expected value exp�−αl�π�M�EMVk is precisely expression (2.31). Hence,

N∑
k=1

Vk

/ N∑
k=1

TM�k�

is an asymptotically unbiased estimator of exp�αl�π�A�. This application of
the twist and M-cycles to produce an importance sampling estimator is de-
scribed in detail in Bonneau (1996). Also see the survey paper by Heidelberger
(1995). Note also that the M-cycle technique may be used to estimate constants
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such as

f ≡
(∫

z∈M
π�dz�

∫
x 6∈M

K�z; dx�h�x�H�x�
)
;

g ≡
∫

z∈M
π�dz�

∫
x 6∈M

K�z; dx�h�x�H�x�
∫
ŷ

∫
u≥0

â−1�ŷ�e−α·uµ�du;dŷ�;

in Theorem 1.6 and Theorem 1.10.
Note that if Conditions 1–7 hold, the importance sampling estimator above

will have a standard deviation of order O�1/
√
N�. If the conditions fail, the

asymptotics of π�A� are not given by exp�−αl�. In practice, the importance
sampling technique will fail because M-cycles will abort by hitting M before F.

Glasserman and Kou (1995) described problems with importance sampling
when estimating the probability of overloading a network. In the two-node ex-
ample discussed in Glasserman and Kou [(1995), Section 4.1], these problems
arise because cycles end when the network empties. The likelihood ratio is
poorly controlled on the boundary when the second queue empties. We would
take M = ��x1; x2�x x2 = 0� and the problem would be eliminated (but of course
we have to estimate π on M).

The mean time until a rare event occurs is another useful descriptor. By
Lemma 1.7 and Corollary 1.9, the inverse of the mean time for the chain in
equilibrium to hit F, starting from the first return point in D after visiting F,
is asymptotic to b = π�M�pM, where pM is the probability starting in equilib-
rium on M of hitting F before M. We can estimate π�M� by the average number
of steps TM in an untwisted M-cycle. The importance sampling estimator of b
is obtained by remarking that

b = π�M�pM = π�M�PM�Tl < TM�

=
∫

z∈M
π�dz�

∫
x 6∈M

K�z; dx�h�x�Ex�h−1�W ∞�T ∞
l ��χ�T ∞

F < T ∞
N ��

= exp�−αl�
∫

z∈M
π�dz�

∫
x 6∈M

K�z; dx�h�x�

×Ex
(
â−1�Ŵ ∞�T ∞

l �� exp�−αR∞�l��χ�T ∞
F < T ∞

N �
)
:

(1.23)

This can be estimated as above. At the start of the kth M-cycle, generate first
a step K and then generate steps using the twisted kernel K ∞ until W ∞

either hits N or it hits F at time T ∞
l . If it hits N before F, set Vk = 0. If W ∞

hits F before N, then set Vk = â−1�Ŵ �Tl�� exp�−αR�l��. The expected value
exp�−αl�π�M�EMVk is precisely expression (1.23). Consequently,

N∑
k=1

Vk

/ N∑
k=1

TM�k�

is an asymptotically unbiased estimator of exp�αl�b. Again, this importance
sampling estimator will have a standard deviation of order O�1/

√
N� if Con-

ditions 1–7 hold.
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Parekh and Walrand (1989) and Frater, Lennon and Anderson (1991) calcu-
lated the change of measure or twist associated with a large deviation of the
total number of customers in a Jackson network. They employed this twist to
implement the above M-cycle technique to find importance sampling estimates
of the probability of the rare event when the total number of customers exceeds
some level l as well as an estimate of the mean time until the network over-
loads. They showed that in some cases these estimates have optimally small
standard deviation. Labrèche (1995) and Labrèche and McDonald (1995) found
a harmonic function for a Jackson network in order to study overloads. The
associated twist is precisely the one found by Frater, Lennon and Anderson
(1991).

The main thrust of our work is exact asymptotics. Exact asymptotics for
the steady-state probabilities of rare events have been studied previously
by Höglund (1991) for ruin problems and by Shwartz and Weiss (1993) in
the special case of the FHW queueing network originally proposed by Flatto
and Hahn (1985). Recently, Sadowsky and Szpankowski (1995) gave the exact
asymptotics of a fast teller queueing system using methods similar to those
employed in Section 1.4. Here we analyze the FHW example.

Our method is to cut out the boundary N where W fails to be a Markov
additive chain. This represents a broader point of view than that taken in
Sadowsky and Szpankowski (1995) (or in previous works) since the boundary
there is simply those states where a (one-dimensional) queue is empty. Using
the theory of Ney and Nummelin (1987a, b), one can then find a harmonic func-
tion on the complement of N. The associated h-transform produces the twisted
process. The main novelty is Theorem 1.10, giving the exact asymptotics of
the mean time until a rare event occurs and Theorem 1.13, giving the limit-
ing hitting distribution. The main ingredient in the proof is the Comparison
Lemma, which shows we may replace an arbitrary starting set with an initial
steady-state distribution on M. The generality of the boundary makes Condi-
tions 4–7 necessary. The representation of the limiting steady-state probability
of a rare event given in Theorem 1.6 is also new, as is the Joint Bottlenecks
Theorem 2.10.

The range of applications is quite large. In Section 3, we find the har-
monic function associated with a simple example, the Flatto–Hahn–Wright
model. The fast teller model was studied in Beck, Dabrowski and McDonald
(1997). The join-the-shortest-queue model was partially analyzed in McDonald
(1996). The harmonic function was given explicitly and Conditions 1–5 were
checked. Conditions 6 and 7 were verified in Foley and McDonald (1997). In
Huang and McDonald (1996), the representation in Theorem 1.6 was used to
give the asymptotics of the queue length distribution of an M�D�1 queue. Also,
the key heuristic of guessing ρ for f can be used in conjunction with the theory
in Iscoe and McDonald (1994a, b) to give error bounds for the estimated mean
exit time.

In Section 2.1, we review the conditions necessary for determining a twist.
In Section 2.2, we recall the asymptotic theory of Markov additive chains.
Section 2.3 gives all the proofs which were deferred in earlier sections. In
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Section 2.4, we determine the behavior of the queues at those nodes which
become transient when the first is overloaded. In Section 3, we apply the
above results to the FHW example.

2. Tools and proofs.

2.1. The twist. We now show why we may expect that there exists a har-
monic function h for K∞ of the form h�x� = exp�αx1�â�x̂�. To make the con-
nection to the work of Ney and Nummelin (1987a, b) easier, we make the
identification � �W∞; �W∞� ≡ �V;Z� throughout this section [the superscript ∞
would be redundant since �V;Z� is always free]. The generating function �K∞γ
of the transition kernel of the Markov additive chain �V;Z� is given by

�K∞γ �x̂; �A� = E�exp�γ ·X�1��χ�Z�1� ∈ �A��Z�0� = x̂�;

where X�1� x= �V�1� −V�0��. The existence of eigenvalues and eigenvectors
for this “Feynman–Kac” operator was studied in Ney and Nummelin (1987a,
b) under Condition M1 below.

Condition M1. There exists a probability measure ν on � �S; Ŝ � and a fam-
ily of (positive) measures �h�x̂; ·�� on � �S; Ŝ � such that

∫
ψ�dx̂�h�x̂;R� > 0

and

h�x̂; 0�ν� �A� ≤K∞��0̃; x̂�; 0× �A�

for all x̂ ∈ �S, 0 ∈ Br and �A ∈ Ŝ .

Under this hypothesis, Ney and Nummelin [(1984), Lemma 3.1] constructed
a regenerative structure for the Markov additive chains.

Lemma 2.1. Under Condition M1, there exist random variables 0 < T0 <
T1 < · · · with the following properties:

(i) �Ti+1 −Tiy i = 0;1; : : :� are i.i.d. random variables;
(ii) the random blocks

�Z�Ti�; : : : ;Z�Ti+1 − 1�;X�Ti + 1�; : : :X�Ti+1��; i = 0;1; : : : ;

are independent;
(iii)

Px�Z�Ti� ∈ �A�FTi−1;X�Ti�� = ν� �A�;

for �A ∈ Ŝ , where Fn is the σ-algebra generated by �Z�0�; : : : ;Z�n�;X�1�; : : : ;
X�n��.
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At times �Ti�, the process Z behaves as if it has returned to an atom in the
state space. This generates a succession of cycles from �Ti−1;Ti�. The incre-
ments ofV between successive returns to this atom are therefore independent.
Define

τν =D Ti+1 −Ti; and S�τν� =D V�Ti+1� −V�Ti�; i = 1;2; : : : :

The variables τν and S�τν� have a joint distribution which can be obtained as
above from any of the identical regenerative cycles.

Define ς x= Suppν�S�τν�/τν�, where Suppν�Y� is the convex hull of the sup-
port of the measure Pν�Y ∈ ·�. To ensure that Ti is genuinely r-dimensional,
we assume the following.

Condition N1. The interior of ς is nonempty.

We now impose mixing conditions so that two independent copies of �V1;Z�
with different initial distributions may be coupled together from some Ti on-
ward.

Condition P1. In the discrete case, we assume the distribution of S1�τν�,
the (marginal) distribution of the first component of S�τν�, is aperiodic.

Condition P2. In the continuous case, we suppose that the distribution of
S1�τν� is spread out so it has a nonsingular component relative to Lebesgue
measure.

In the continuous case, we could impose the sufficient condition such as (iii)
given in Sadowsky and Szpankowski [(1995), Appendix A]. It would suffice
that the measure h in Condition M1 satisfy

h�x;dy� ≥ c
r∏
k=1

�bk − ak�−1χ�ak; bk��yk�m�dy� for some constant c:

In fact, we could dispense with a mixing condition, Condition P2, altogether
and the Theorems 1.5, 1.6 and 1.7 will still hold using Theorem 3.1 in Athreya,
McDonald and Ney (1978). On the other hand, the convergence in total vari-
ation in Theorem 1.13 will fail without the mixing condition, Condition P2.
Lemma 1.3 indicates how the theory goes under these weaker conditions.

Under Condition M1, we may define the generating function

ψ�γ; ζ� = Eν exp�γ ·S�τν� − ζτν�:
Let U x= ��γ; ζ� ∈ Rr+1x ψ�γ; ζ� <∞� and define 3�γ� = inf�ζx ψ�γ; ζ� ≤ 1�.

We impose the following conditions.

Condition M2. U is an open set.

Condition M3. EνV1�τν� < 0.
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If Conditions M1 and M2 hold, then by Ney and Nummelin [(1987a), The-
orem 4.1], ψ�γ;3�γ�� = 1 and exp�3�γ�� is an eigenvalue of �K∞γ associated
with the right eigenvector r�x̂yγ�. We study the case where γ = �γ1;0; : : : ;0�
and we wish to find γ1 other than 0 such that 3�γ� = 0.

By Ney and Nummelin [(1987a), Lemma 3.3], we have that

∇3�0� = �Eντν�−1EνV�τν�:
Hence, if Condition M3 holds, then the derivative of 3 with respect to γ1 is
negative at γ1 = 0. Naturally, 3�0� = 0. Moreover, the function 3�α� is strictly
convex by Ney and Nummelin [(1987), Corollary 3.3]. Hence, 3�γ1;0; : : : ;0�
passes through 0 at most at two points, 0 and α > 0. If we impose the con-
dition that Pν�S1�τν� > 0� > 0, then by the definition of ψ and the fact that
ψ�γ;3�γ�� = 1, we have 3�γ1;0; : : : ;0� → ∞ as γ1 →∞. Finally, by Condition
M2, 3�γ1;0; : : : ;0� increases continuously to infinity, so α exists.

We note the following in passing.

Lemma 2.2. If Condition M3 holds, then ∇3�α;0; : : : ;0� · �1;0; : : : ;0� > 0.

Proof. By strict convexity,

3�0� > 3�α;0; : : : ;0� + ∇3�α;0; : : : ;0� · �−α;0; : : : ;0�:
The result follows since 3�0� = 3�α;0; : : : ;0� = 0. 2

α is the uniquely chosen value for γ1 ensuring that the associated Perron–
Frobenius eigenvalue of �K∞γ is 1! Let a x= �α;0; : : : ;0�. Hence there exists
a positive Perron–Frobenius eigenvector â�x̂� ≡ r�x̂ya� satisfying â�x̂� =∫ �K∞γ �x̂; dŷ�â�ŷ�. We may therefore define a positive harmonic function for
the additive chain �V;Z� by h�x� x= exp�a · x̃�â�x̂� ≡ exp�αx1�â�x̂�. To show
it is harmonic for K∞, pick �x̃; x̂� ∈ S∞ such that x1 = s, so
∫
K∞�x; dy�h�y� =

∫
�ṽ;ŷ�∈S∞

K∞��x̃; x̂�y �x̃+ dṽ; dŷ��â�ŷ� exp�α · �s+ ṽ1��

= exp�αs�
∫
ŷ

�K∞a �x̂; dŷ�â�ŷ�

= exp�αs�â�x̂� = h�x�;

since â is a right eigenvector for �K∞a associated with the eigenvalue 1.
The kernel K̂ ∞ and the stationary distribution ϕ are denoted by Q�α� and

π�α� in Ney and Nummelin (1987a). The increment of the additive chain is
denoted by S1 in Ney and Nummelin (1987a), so the expression

d̃1 ≡ EŴ ∞
ϕ X1�1� = E

Q�α�
π�α�S1 = ∇3�α;0; : : : ;0�(2.24)

follows by Lemma 5.3 there.
Let the stationary distribution of �K∞ be denoted by π̂∞.
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Lemma 2.3 (Drift). If Conditions M1 and M2 hold and if Eπ̂∞X1�1� < 0,
then d̃1 > 0.

Proof. π̂∞ is denoted by π�0� in Ney and Nummelin (1987). By Lemma
5.3, Eπ̂∞X1�1� = ∇3�0�. It follows from the hypothesis that ∇3�0� · �1;0; : : : ;
0� < 0. Hence Condition M3 holds. Therefore, by Lemma 2.2, ∇3�α;0; : : : ;0� ·
�1;0; : : : ;0� > 0. The result follows from the above expression for d̃1. 2

Condition M2 is too strong for many applications. By direct computation, it
may be possible to find the left and right Perron–Frobenius eigenmeasure and
eigenfunction associated with the eigenvalue exp�3�γ�� of �K∞γ . The left and
right eigenmeasure and eigenfunction are denoted by π̂γ and r�·; γ�, respec-
tively, and we suppose that

∫
r�x̂; γ�π̂γ�dx̂� = 1. It may be that π̂γ is not even

a probability measure! The conditions of Lemma 5.3 in Ney and Nummelin
(1987) may not be checkable but (2.24) still holds. Take the derivate of the
expression

∫ ∫
π̂γ�dx̂� �K∞γ �x̂; dŷ�r�ŷ; γ� = exp�3�γ��:

We get

3′�γ� exp�3�γ�� =
∫ d

dγ
π̂γ�dx̂�r�x̂; γ� exp�3�γ��

+
∫
π̂γ�dŷ� exp�3�γ�� d

dγ
r�ŷ; γ�

+
∫ ∫

π̂γ�dx̂�
d

dγ
�K∞γ �x̂; dŷ�r�ŷ; γ�:

But,

d

dγ

(∫
π̂γ�dx̂�r�ŷ; γ�

)
= d

dγ
1 = 0

and
∫ ∫

π̂γ�dx̂�
d

dγ
K∞��0̃; x̂�; �dỹ; dŷ��y1 exp�γy1�r�ŷ; γ�

=
∫ ∫

π̂γ�dx̂�K∞��0̃; x̂�; �dỹ; dŷ��y1 exp�γy1�
r�ŷ; γ�
r�x̂; γ�r�x̂; γ�:

Evaluating at a, where 3�a� = 0, gives
∫
r�x̂; α�π̂α�dx̂�

∫
K ∞��0̃; x̂�; �dỹ; dŷ��y1

=
∫
ϕ�dx̂�

∫
K ∞��0̃; x̂�; �dỹ; dŷ��y1

= d̃1:

Therefore, d̃1 = 3′�a�, so we can establish d̃1 > 0 from the convexity of 3.
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2.2. Asymptotics of Markov additive processes. In this section, we apply
the results in Kesten (1974) to obtain the asymptotic behavior of W ∞. To make
the connection easier, we identify �W̃ ∞; Ŵ ∞� ≡ �V ;Z� [again the superscript
∞ is redundant since �V ;Z� is always free]. Following Kesten (1974), consider
a two-sided process �X �n�#;Z�n�#y −∞ < n < ∞� with probability measure
P# determined by

P#�Z�k+ i�# ∈ dẑi; 0 ≤ i ≤ n; X #�k+ i� ∈ dλi; 1 ≤ i ≤ n�
= ϕ�dẑ0�K ∞��0̃; ẑ0�; dλ1 × dẑ1�
·K ∞��0̃; ẑ1�; dλ2 × dẑ2� · · ·K ∞��0̃; ẑn−1�; dλn × dẑn�;

for any sequence of states �ẑi; 0 ≤ i ≤ n� in �S and any sojourn times �λi; 0 ≤
i < n� and any integer k. The pairs ��X �n�#;Z�n�#��−∞<n<∞ form a stationary
Markov chain and, in particular,

P#�Z�k�# ∈ dẑ� = ϕ�dẑ�:
Moreover, given Z�k�# = ẑ, it follows that �X �k + n�#; Z�k + n�#�1≤n<∞ has
the same law as �V �n� − V �n− 1�; Z�n��1≤n<∞ given Z�0� = ẑ.

Define

V �n�# =





n∑
i=1

X �i�#; if n > 0;

0; if n = 0;

−
0∑

i=n+1

X �i�#; if n < 0;

and ladder indices for the sequence �V �n�#�−∞<n<∞:

ν#
0 = max

{
n ≤ 0x V1�n�# > sup

j<n

V1�j�#
}
;

ν#
i+1 = min

{
n > ν#

i x V1�n�# > V1�ν#
i �#
}
:

(2.25)

The index ν#
0 represents the time, n ≤ 0, when the last strict maximum of

V1�n�# occurred.
We now construct the Markov chain Y�n�# = Z�ν#

n�# which records the po-
sition of the chain Z�n�# after each ascending ladder height. Kesten [(1974),
Lemma 2] showed that, for ẑ ∈ �S,

ψ�dẑ� = P#�ν#
0 = 0; Z�0�# ∈ dẑ�

= P#
(

sup
n<0

V1�n�# < 0; Z�0�# ∈ dẑ
)(2.26)

is an invariant measure for the chain Y�n�#. He also showed q x= P#�ν#
0 =

0� > 0, so ψ�ẑ�/q is the stationary probability of Y�n�#. Moreover,
∫
ẑ
ψ�dẑ�Eẑ�ν#

1� = 1 and
∫
ẑ
ψ�dz�EẑV1�ν#

1� = d̃1 > 0:(2.27)
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Also, as in Kesten [(1974), Lemma 4], define

µ�du;dŷ� x= d̃−1
1

∫
ẑ
ψ�dẑ�Pẑ�Y�1�# ∈ dŷ; V1�ν#

1�# ≥ u�m�du�:

This is a probability distribution by (2.27). By the stationarity of Y#, this is
equivalent to

µ�du;dŷ� = d̃−1
1 P#�ν#

0 = 0; Z�0�# ∈ dŷ; V1�ν#
1�# ≥ u�:(2.28)

This representation will prove useful later.

Proposition 2.4.

µ�du;dŷ� = d̃−1
1 P#�ν#

0 = 0; Z�0�# ∈ dŷ; V1�ν#
1�# ≥ u�m�du�

≤ 1

d̃1

ϕ�dŷ�m�du�P#�V1�ν#
1�# ≥ u�Z�0�# = ŷ�

≤ 1

d̃1

ϕ�dŷ�m�du�:

We can couple �V1�n�;Z�n�� to �V1�n�#;Z�n�#� [or alternatively, apply Kesten
(1974), Theorem 1, and in particular (1.19)] to show the following.

Theorem 2.5. Under Conditions 1–3, �R�l�;Z�Tl�� converges in total vari-
ation to µ as l → ∞; that is, the hitting distribution on F converges in total
variation to µ (R�l� = V1Tl − l).

By Condition 3, the mean increment d̃ of V is positive. Moreover, by Con-
dition 1, Z has a stationary probability measure ϕ. Next, by Condition 2, we
may construct a sequence of stopping times Ti such that, relative to a starting
measure ν, the increments

τν =D Ti+1 − Ti and S �τν� =D V �Ti+1� − V �Ti�; i = 1;2; : : : ;

are i.i.d. By Ney and Nummelin [(1987), Lemma 5.2], Eν�S �τν��/Eν�τν� = d̃.
By the law of large numbers, it follows that V �Ti�/Ti→ d̃ as i→∞. It follows
that V �n�/n→ d̃ almost surely. The average behavior of V �n� is summarized
as follows.

Lemma 2.6. If Conditions 1–3 are satisfied, then V �n�/n→ d̃ almost surely
in each component as n→∞.

Next, recall T∞l = inf�nx V1�n� ≥ l�. By the renewal theorem, T∞l /l→ d̃1.
Consequently,

lim
l→∞

1
l
V �T∞l � =

(
lim
l→∞

1
T∞l

V �T∞l �
)(

lim
l→∞

1
l
T∞l

)

= d̃ · 1

d̃1

;

since V �n�/n→ d̃/d̃1. This gives the following.
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Lemma 2.7. If Conditions 1–3 are satisfied, then almost surely V �T ∞
l �/l→

d̃/d̃1 as n→∞.

2.3. Proofs. In Theorem 2.5, we showed the distribution of Ŵ ∞�T ∞
l � con-

verges in total variation as l→∞. We will need to show the following.

Lemma 2.8. If Conditions 1–7 hold, then â−1�Ŵ ∞�T ∞
l �� converges in

L1�λ�, where T ∞
l = min�nx W ∞

1 �n� ≥ l�.

Proof. This is automatic if â−1 is bounded, and fortunately the tools in
Meyn and Tweedie [(1993), Chapter 14.1] apply if â−1 is unbounded. Using
Theorem 2.5, â−1�Ŵ ∞�T ∞

l �� converges in distribution. We will use the Regen-
erative Decomposition (14.6) in Meyn and Tweedie (1993) to show convergence
in L1�λ�. Extending (14.8) in Meyn and Tweedie (1993), we need to show

Eλ�â−1�Ŵ ∞�T ∞
l ��χ�τ �C ≥ T ∞

l �� → 0(2.29)

as l→∞.
By Meyn and Tweedie [(1993), Theorem 14.0.1], using Condition 5, there

exists a petite set �C ∈ Ŝ such that

Ex

[ τ �C−1∑
n=0

â−1�Ŵ ∞�n��
]
<∞

for all x = �0̃; x̂� and such that the above is uniformly bounded for x̂ ∈ �C. Next,
λ̂ is â−1-regular by Condition 7, so by definition, (1.5) holds. If n = T ∞

l ≤ τ �C,
then the nth term in (1.5) is â−1�Ŵ ∞�T ∞

l ��, so the sum in (1.5) bounds the
one term in (2.29). This gives (2.29) and the result. 2

Proof of Lemma 1.2. Pick �A ∈ Ŝ and 0 ∈ B. Clearly, χ�T ∞
l < T ∞

N � →
χ�T ∞

N = ∞�, so pick an l sufficiently large that the difference in probability
is less than ε. Now consider the limit, as l→∞, of

Pz
(
Ŵ ∞�T ∞

l � ∈ �A; R∞�l� ∈ 0; T ∞
N = ∞

)
:

The Markov chain �Ŵ ∞�T ∞
l �; R∞�l�� converges in total variation to its sta-

tionary measure regardless of the initial distribution. It therefore has a trivial
tail field, and by Orey [(1971), Theorem 4.1], the above limit is H�z�µ�0× �A�.
This means the limit, as l→∞, of

Pz
(
Ŵ ∞�T ∞

l � ∈ �A; R∞�l� ∈ 0; T ∞
l < T ∞

N
)

is within ε of H�z�µ�0× �A�. The proof follows. 2

Proposition 2.9. Under Conditions 1–7,

9l�x� ≡ 9�x� →H�x�
∫
ŷ; u≥0

â−1�ŷ� exp�−α · u�µ�du;dŷ� for x ∈ S \ �M ∪F�

as l→∞, where H�x� x= Px�T ∞
N = ∞�.
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Proof. By Lemma 1.2, the chain �R∞�l�; Ŵ ∞�Tl�� converges to
â−1�ŷ� exp�−α · u�µ�du;dŷ� in distribution. Next, by Proposition 2.4,

µ�dy1; dŷ� ≤m�dy1�ϕ�dŷ�/d̃1:

Consequently,
∫
ŷ

∫
y1≥0

â−1�ŷ� exp�−αy1�µ�dy1; dŷ� ≤
α

d̃1

∫
ŷ
â−1�ŷ�ϕ�dŷ� <∞

by Condition 5. By Meyn and Tweedie [(1993), Theorem 14.0.1], we have that

Ex
(
χ�T ∞

l < T ∞
N �â−1�Ŵ ∞�Tl�� exp�−αR∞�l��

)

→H�x�
∫
ŷ

∫
y1≥0

â−1�ŷ� exp�−αy1�µ�dy1; dŷ�

for any starting point x. 2

Proof of Lemma 1.4. By Proposition 2.9, we have that

9l�x� →H�x�
∫

y

∫
y1≥0

â−1�ŷ� exp�−αy1�µ�dy1; dŷ�

for any starting point x. The sequence 9l�x� is uniformly integrable with
respect to λ if Exâ

−1�Ŵ ∞�T ∞
l �� is, and this follows from Lemma 2.8. 2

Proof of Theorem 1.5. Since W agrees with W∞ on S∞ \ N, we have

π�M�EM
( TM∑
n=1

χA�W�n��
)

=
∫

z∈M
π�dz�

∫
x 6∈M

K�z; dx�Ex

( T∞M∑
n=1

χA
(
W∞�n�

))

=
∫

z∈M
π�dz�

∫
x 6∈M

K�z; dx�
∫

y∈F
mA�l; u; ŷ�

×Px� �W∞�T∞l � ∈ dŷ; R∞�T∞l � ∈ du; T∞l < T∞M �;

(2.30)

where we have conditioned on the point where W∞ overshoots l, that
is, at y = �ỹ; ŷ�, where u = y1 − l, and we have defined mA�l; u; ŷ� =
Ey�

∑TM
n=1 χA�W∞�n��� to be the expected rewards for hitting A obtained by

W∞ (or W) after hitting F before returning to N.
By a change of measure,

Px� �W∞�T∞l � ∈ dŷ; R∞�l� ∈ du; T∞l < T∞M �
= h�x�Ex

(
h−1�W ∞�T ∞

l ��
× χ�Ŵ ∞�T ∞

l � ∈ dŷ; R∞�l� ∈ du; T ∞
l < T ∞

M �
)

= h�x� exp�−αl�â−1�ŷ� exp�−αu�
×Px

(
Ŵ ∞�T ∞

l � ∈ dŷ; R∞�T ∞
l � ∈ du; T ∞

l < T ∞
M
)
:
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Substituting the above expression into (2.30), we get
∫
A
π��l+ dx1� ×Rr−1 × dx̂�

= e−αl
∫

x
λ�dx�

∫
y∈F

mA�l; u; ŷ�â−1�ŷ�e−αu

×Px�Ŵ ∞�T ∞
l � ∈ dŷ; R∞�l� ∈ du; T ∞

l < T ∞
M �:

(2.31)

Now, for any y = �ỹ; ŷ�, y1 > l,

mA�l; u; ŷ� →m∞A �u; ŷ� x= E�u;0;:::;0; ŷ�
( ∞∑
n=0

χA
(
W∞�n�

))
as l→∞;

by monotone convergence. By hypothesis, m∞A is uniformly bounded above so,
using Lemma 1.4, we see that

eαl
∫
A
π��l+ dx1� ×Rr−1 × dx̂�

→
∫

x
λ�dx�H�x� ·

∫
ŷ∈ �S

∫
u≥0

â−1�ŷ�e−αum∞A �u; ŷ�µ�du;dŷ�: 2

Proof of Theorem 1.6. By Theorem 1.5,
∫
χA�x1; x̂�π��l+ dx1� ×Rr−1 × dx̂�

∼ e−αl
∫

z∈M
π�dz�

∫
x 6∈M

K�z; dx�h�x�H�x�

×
∫
ŷ

∫
u≥0

â−1�ŷ�e−αum∞A �u; ŷ�µ�du;dŷ�;

(2.32)

where m∞A �u; ŷ� x= E�u;0;:::;0; ŷ��
∑∞
n=0 χA�W∞�n���.

For y = �u;y2; : : : ; yr; ŷ�,

Py
(
W∞�n� ∈ dw

)
= �K∞�n�y; dw1 ×Rr−1 × dŵ�

= exp�α�u− v�� â�ŷ�
â�ŵ��K

∞�n�y; dv×Rr−1 × ŵ�:

Hence,

m∞A �u; ŷ� = E�u;0;:::;0; ŷ�
( ∞∑
n=0

χA
(
W∞�n�

))

=
∫
v≥0

∫
ŵ

exp�α�u− v�� â�ŷ�
â�ŵ�χA�v; ŵ�E�u;0;:::;0; ŷ�

×
( ∞∑
n=0

χ�W ∞�n� ∈ dv×Rr−1 × dŵ�
)
:
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Substituting this into (2.32) gives

exp�αl�π�A� → f
∫
ŷ

∫
u≥0

µ�du;dŷ�
∫
v≥0

∫
ŵ

1
â�w� exp�−αv�χA�v; ŵ�E�u;0;:::;0; ŷ�

×
( ∞∑
n=0

χ�W ∞�n� = dv×Rr−1 × dŵ�
)

= f
∫
v≥0

∫
ŵ

1
â�w� exp�−αv�χA�v; ŵ�

∫
ŷ

∫
u≥0

µ�du;dŷ�E�u;0;:::;0; ŷ�

×
( ∞∑
n=0

χ�W ∞�n� ∈ dv×Rr−1 × dŵ�
)

= f
∫
ŵ

∫
v≥0

χA�v; ŵ�â−1�ŵ�ϕ�dŵ� 1

d̃1

exp�−αv�m�dv�;

since ϕ is the steady state of K̂ ∞, so

m�dv�ϕ�dŵ�
d̃1

=
∫
ŷ; u

µ�du;dŷ�E�u;0;:::;0; ŷ�
( ∞∑
n=0

χ�W ∞�n� ∈ dv×Rr−1 × dŵ�
)

is the mean number of visits of W ∞ to dv × Rr−1 × dŵ. The asymptotics of
π�dy� conditioned on y1 ∈ l+ 0 follow from the above by summing. 2

Note that 5�dx�K∗�x; dy� = 5�dx��K∞�∗�x; dy� = 5�dy�K ∞�y; dx� for
x;y ∈ S∞ \ N, where we denote the measure h�y�π�dy� by 5�dy�. From
Theorem 1.6, we have that, as l tends to infinity,

5�du×Rr−1 × dx̂� → g

(∫
ŷ;v
â−1�ŷ�e−α·vµ�dv;dŷ�

)−1

ϕ�dx̂� × m�du�
d̃1

;

where we recallm denotes counting measure in the discrete case and Lebesgue
measure in the continuous case. Consequently, K∗�x; dy1 × Rr−1 × dŷ� is
given asymptotically by the time reversal of K ∞ with respect to the measure
m�dx1� × ϕ�dx̂�.

This connects the results in Section 2.2 and Corollary 1.11. By Corollary
1.11, the probability that W hits the set du×Rr−1 × dŷ is asymptotically

1
π�D�pD

∫
y2;:::;yr

π�du× dy2 × · · · × dyr × dŷ�
∫
x1<l

K∗�y; dx�f∗�x�

where f∗�x� is probability the time reversal of W hits D before F

∼ eαlg−1
∫
y2;:::;yr

π�du×dy2× · · · ×dyr×dŷ�Py
(
W∗ never returns to F

)
:

Using the asymptotic expression for 5�du×Rr−1×dx̂�, the above expression
is asymptotic to

(∫
ŷ; v
â−1�ŷ�e−α·vµ�dv;dŷ�

)−1

× â−1�ŷ�e−αuPy� �W ∞�∗ never returns to F �ϕ�dŷ� × m�du�
d̃1

;
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since the time reversal of W ∞ with respect to ϕ�dŷ� × �m�du�/d̃1� is asymp-
totically the same as W∗ and since the probability that the time reversal of
W ∞ leaves y and never returns to F is independent of y2; : : : ; yr. Finally,

Py�the time reversal of W ∞ never returns to F�ϕ�dŷ� × m�du�
d̃1

is equal to (2.28), so the above expression collapses to

â−1�ŷ�e−αuµ�du;dŷ�
(∫

ŷ; v
â−1�ŷ�e−α·vµ�dv;dŷ�

)−1

;

which we already know is asymptotic to the probability W hits y ∈ F.

Proof of Lemma 1.8. Since D ⊆ M, it follows that ρ ≥ f. In fact, for any
x, the difference ρ�x�−f�x� is the probability of those trajectories of W which
start at x and hit M \D and then climb back to F before finally returning to
D. This is because the chain W is Harris recurrent so that it will eventually
hit either D or F.

These trajectories must hit M \D for the last time before returning to F.
Decomposing over this last exit time (say m) and the return time to F (say
n+m), we can represent the probability

∫
y∈F

π�dy�
∫
x∈B

K�y; dx��ρ�x� − f�x��

by
∑
m;n

∫
y∈F

π�dy�
∫

z∈M\D
Py

(
W�1� 6∈F∪D; : : : ;W�m−1� 6∈F∪D; W�m� ∈dz;

W�m+1� 6∈M∪F; : : : ;W�m+n−1� 6∈M∪F;

W�m+ n� ∈ F
)
:

For m, n and z fixed, the above sum decomposes as the past and future around
the time point m. Use time reversal on the past before time m and then sum
over all m and n to get

∫
y∈F

π�dy�
∫
x∈B

K�y; dx��ρ�x� − f�x��

=
∫

z∈M; z6∈D
π�dz�Pz

(
W�n� ∈ B \D;−1 ≤ n ≤ −T∗l y

W�n� 6∈ M; 1 ≤ n ≤ Tl
)
;

where T∗l is the first time the time-reversed process W∗ reaches F.
Therefore, since the future of a Markov chain is independent of the past

when we condition on the present, we have

Pz�W�n� ∈ B \D; −1 ≤ n ≤ −T∗l y W�n� 6∈ M; 1 ≤ n ≤ Tl� = U∗�z� ·V�z�;
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where

U∗�z� = Pz
(
W∗ hits F before D

)
(2.33)

and

V�z� = Pz
(
W�n� ∈ B \ M; 1 ≤ n < Tl

)
(2.34)

=
∫

x
K�z; dx��1− ρ�x��:(2.35)

Hence,

b− 3 =
∫

z∈M; z6∈D
π�dz�U∗�z� ·V�z�

=
∫

z∈M; z6∈D
π�dz�U∗�z� · e−αl

∫
x
K�z; dx�h�x�9�x�

by (1.19) and the definition of ρ.
By (1.15),

b =
∫

z∈M
π�dz�

∫
x
K�z; dx��1− ρ�x��

=
∫

z∈M
π�dz�V�z�(2.36)

=
∫

z∈M
π�dz�e−αl

∫
x
K�z; dx�h�x�9�x�:(2.37)

We conclude that

�b− 3�/b =
∫

z∈M; z6∈D π�dz�U∗�z� ·
∫

xK�z; dx�h�x�9�x�
∫

z∈M π�dz�
∫

xK�z; dx�h�x�9�x� :

By Lemma 1.4,
∫

z∈M

∫
x
π�dz�K�z; dx�h�x�9�x�

≡
∫

x
λ�dx�9�x� →

∫
x
λ�dx�H�x�

∫
ŷ

∫
y1≥0

â−1�ŷ� exp�−αy1�µ�dy1; dŷ�:

By Condition 4, the set of x such that H�x� > 0 has positive measure, so the
above limit is strictly positive. Hence, the denominator of the above expression
tends to a positive constant. On the other hand, U∗�z� → 0 for any z fixed
as l → ∞. Using the fact that 9l converges in L1�λ�, it follows that the
numerator of the above expression tends to 0. This gives the result. 2

Proof of Theorem 1.10.

lim
l→∞

eαlb = lim
l→∞

eαl
∫

y∈M
π�y�Lρ�y�

= g ≡
∫

z∈M
π�dz�

∫
x 6∈M

K�z; dx�h�x�H�x�

×
∫
ŷ

∫
y1≥0

exp�−αy1�â−1�ŷ�µ�dy1; dŷ�:

(2.38)
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By Lemma 1.8 and Lemma 1.7, EF�→D�
0 Tl ∼ b−1 ∼ eαlg−1. The result now

follows from Corollary 1.9. 2

Proof of Proposition 1.12. We made a substitution ρ∗�x� for f∗�x�,
where ρ∗�x� is the first entrance time of the walk W∗ into M. The error
introduced in calculating the probability of hitting F in A is

∫
A
π�dy�

∫
x∈B

K∗�y; dx� �ρ∗�x� − f∗�x�� =
∫
A
π�dy�Py�T∗M < T∗l < T∗D�;

since ρ∗�x� > f∗�x� because of trajectories of W∗ which hit M \ D and then
climb back up to F before finally hitting D. Conditioning on the first entrance
time in M \D and using time reversal, the above expression is equal to

∫
z∈M\D

π�dz�VA�z�U∗�z�;

where U∗ was defined at (2.33) and VA�z� x= Pz�W�TF� ∈ A, TF < TM�.
Again by time reversal,

∫
A
π�dy�

∫
x∈B

K∗�y; dx�ρ∗�x� =
∫

z∈M
π�dz�VA�z�:

By the same argument as in the proof of Lemma 1.8, we have
∫

z∈M\D π�dz�VA�z�U∗�z�∫
z∈M π�dz�VA�z�

→ 0:

This gives the result. 2

Proof of Theorem 1.13. The conditional hitting distribution

PD�R�l� ∈ 0; �W�Tl� ∈ �A�Tl < TD�
is asymptotically the same as (1.22). Using Lemma 1.4, the limit as l→∞ of
(1.22) is

f

g

∫
�A

∫
0

exp�−αu�â−1�ŷ�µ�du;dŷ�:(2.39)

Since the sum over u and ŷ of this limit must be 1, it follows that the above
expression is just a constant times the density exp�−αy1�â−1�ŷ�µ�dy1; dŷ�.
This gives the result. 2

2.4. Asymptotics of the twisted process. If Conditions 1–3 hold, then by
Lemma 2.7, V ∞�T ∞

l � → d̃/d̃1 as l → ∞. Using this, we can also give some
information about the nodes which are not “super” stable.

Theorem 2.10 (Joint Bottlenecks). If Conditions 1–7 hold, then the con-
ditional distribution of �W�Tl�/l, given Tl < TD, converges to a unit point
measure at d̃/d̃1.
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This result means the nodes driven into overload by the first grow linearly
with the length of the queue at the first node. Of course, much more could
be said about the conditional limiting distribution of �W�Tl�, but we will not
pursue that enquiry here.

Proof of Theorem 2.10. By definition, d̃=�d̃1; : : : ; d̃r�. Let ε̃=�ε; : : : ; ε�,
where 0 < ε < min�d̃1; : : : d̃r�. LetA denote the set �z ∈ Fx z̃/l ∈ �d̃−ε̃; d̃+ε̃��.
The conditional distribution of �W�Tl�/l given Tl < TD is close to d̃ can be
expressed as

PD

( �W�Tl�
l
∈ �d̃− ε̃; d̃+ ε̃�;Tl < TD

)/
PD�Tl < TD�

= PD�
�W�Tl� ∈ A ∩ �Tl < TD��
PD�Tl < TD�

:

Now by Lemma 1.9,

3 = π�D�PD �Tl < TD� = π�D�pD ∼ π�M�pM = π�M�PM
(
Tl < TM

)
= b:

By time reversal,

π�D�PD
(
�W�Tl� ∈ A ∩ �Tl < TD�

)
=
∫
A
π�dz�

∫
B
K∗�z; dx�f∗�x�

and

π�M�PM
( �W�Tl� ∈ A ∩ �Tl < TM�

)
=
∫
A
π�dz�

∫
B
K∗�z; dx�ρ∗�x�;

where f∗ and ρ∗ are defined in Section 1.5. The difference between the two
expressions above is bounded by

∫
F
π�dz�

∫
B
K∗�z; dx� �ρ∗�x� − f∗�x�� :

The above expression was shown to be o�b� in the proof of Theorem 1.10.
Consequently,

PD� �W�Tl� ∈ A ∩ �Tl < TD��
PD�Tl < TD�

∼ PM�
�W�Tl� ∈ A ∩ �Tl < TM��

PM�Tl < TM�

= PM�
�W∞�T∞l � ∈ A ∩ �T∞l < T∞N ��

PM�T∞l < T∞N �

=
∫
λ�dx�Ex�χ� �W∞�T∞l � ∈ A ∩ �T ∞

l < T ∞
N �� · �h−1�W ∞�T ∞

l ����∫
λ�dx�Ex�χ�T ∞

l < T ∞
N � · �h−1�W ∞�T ∞

l ����
:

By Lemma 2.7, liml→∞ W̃ ∞�T ∞
l �/l = d̃/d̃1. Hence,

Px�W ∞�T ∞
l � ∈ A� → 1 as l→∞:
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If we cancel out the factor exp�−αl� from the numerator and denominator of
the above ratio, we see that both the numerator and denominator converge in
L1�λ� to the same limit using Conditions 4–7. Consequently, the conditional
distribution of �W�Tl�/l given Tl < TD is concentrated arbitrarily close to d̃
as l→∞. This is what we wanted to prove. 2

If the kernel K ∞ has decomposition given at the end of Section 1 and if,
in addition to Conditions 1–7, we can also show that W̃ ∞�T ∞

l �/l → d̃/d̃1 as
l→∞ for some mean drift d̃, then the above proof of Theorem 2.10 still works.

3. Examples.

3.1. Flatto–Hahn–Wright model. In the Flatto–Hahn–Wright model, cus-
tomers arrive at nodes 1 and 2 according to two independent Poisson processes
with rates λ and η, respectively. There is also a third independent Poisson
stream with rate ν which feeds both nodes simultaneously. The service rates
at node 1 and node 2 are exponential with rates α and β, respectively, and
the customers queue until they are served. Let �x;y� denote the number of
customers waiting or being served at queue 1 and queue 2. The above Markov
jump process has jump rates given by Figure 1.

Using standard methods, Wright (1992) showed the stationary distribution
π of this jump process exists precisely when max��λ + ν�/α; �η + ν�/β� < 1.
The generator L of this jump process is given as an operator on a bounded
function g on S.

Lg�x;y� = λ�g�x+ 1� − g�x;y�� + ν�g�x+ 1; y+ 1� − g�x;y��
+ η�g�x;y+ 1� − g�x;y�� + α�x��g�x− 1; y� − g�x;y��
+ β�y��g�x;y− 1� − g�x;y��;

Fig. 1. Rates for the FHW model.
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where β�x� = β if x ≥ 1 and 0 otherwise and where α�y� is defined analo-
gously. The event rate of this jump process is q = λ + ν + η + β + α. If we
regard L as the discrete generator of a Markov chain W on S, then the FHW
jump process is precisely the homogenization of this chain. In other words, the
transition kernel at time t of the FHW jump process is given by exp�qtL�. Con-
sequently, π is also the stationary distribution of W. W is a nearest-neighbor
random walk in S. Without loss of generality, we shall assume q = 1, so we
can simply confound the generators of the two processes.

In this model, S = N0 × N0. Take S∞ = Z× N0 and N = ��x;y�x x ≤ 0; x ∈
Z; y ∈ N0�. To calculate the twist constants, remark that the constraint in
the interior, int�S�, is

λa1 + νa1a2 + ηa2 + αa−1
1 + βa−1

2 = 1:

The constraint on the x-axis, S�2�, is

λa1 + νa1a2 + ηa2 + αa−1
1 = λ+ ν + η+ α:(3.40)

Subtracting the latter constraint from the first yields βa−1
2 = β, which cor-

responds to (1.9). Consequently, a2 = 1. Substituting into the first constraint
gives a1 = α/�ν + λ�. (Of course, the other solution is a1 = 1.) If the chain is
stable, a1 > 1.

We can now check the conditions for Theorem 1.10. The twisted kernel K ∞

is given by

J�1;0� = λa1 = λα/�ν + λ�; J�1;1� = νa1 = να/�ν + λ�;
J�0;1� = η; J�−1;0� = αa−1

1 = ν + λ; J�0;−1� = β:

The kernel K̂ ∞ of the y-coordinate process Ŵ ∞ is as follows: for y ≥ 1,

K̂ ∞�y;y+ 1� = η+ ν α

ν + λ;

K̂ ∞�y;y� = λ α

ν + λ + �ν + λ�;

K̂ ∞�y;y− 1� = β:

For y = 0,

K̂ ∞�0;1� = η+ ν α

ν + λ;

K̂ ∞�0;0� = λ α

ν + λ + ν + λ+ β:

The latter is a transition kernel because of constraint (3.40). K̂ ∞ is the kernel
of a positively recurrent aperiodic chain on N0 as long as

γ x= η+ ν α

ν + λ < β:(3.41)
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Take ψ =m, wherem counts the points in N0. It is trivial to check Condition
M2 in Condition 2 since Ŵ ∞ is ψ-recurrent. It suffices to take points �0̃; â�
and �b̃; b̂� such that c x=K ∞��0̃; â�; �b̃; b̂�� > 0 and define

ν�dŷ� x= Mb̂�dŷ� and h�x̂; dỹ� x= cχâ�x̂�Mb̃�dỹ�:
Condition 3 follows because the mean drift is

d̃1 = �λ+ ν�a1 − αa−1
1 = α− �λ+ ν�;

and this is strictly positive when the chain is stable. Condition 4 follows by the
law of large numbers since the increments X ∞�n� have positive expectation by
(3.41). Condition 5 holds since a2 = 1. Condition 6 holds for the same reason,
as does Condition 7.

We can now apply Theorem 1.10 to conclude that as long as (3.41) holds,
the mean time to reach the forbidden set F is asymptotically

al1g
−1 = g−1

(
α

ν + λ

)l
;

where the constant f can be obtained by simulating the twisted process W ∞

having kernel K ∞. This is not much of a surprise because the first node
behaves like an M�M�1 queue with load �λ+ ν�/α.

We may also apply Theorem 1.13 to show the hitting distribution on F
converges to a measure proportional to µ (since a2 = 1), where µ is the hit-
ting distribution of the twisted process on F. This can be obtained quickly by
simulation.

Finally, applying Theorem 1.6, we see that, as l → ∞, π�l; y�/∑y π�l; y�
converges to

a
−y
2 ϕ�y�

/(∫
z
a−z2 ϕ�z�

)
=
(

1− γ
β

)(
γ

β

)y
:

Now suppose the rates are such that γ > β, so when the first node is
overloaded the second also overloads. To treat this case, create a fictitious
node which neither receives nor serves customers. In other words, consider
a state space S = N0 × N0 × �0�. The chain W = �W1;W2; �W� is such that
�W�t� ≡ 0, while �W1�t�;W2�t�� represents the number of customers queued at

the first and second nodes, respectively. To construct W∞, simply extend the
transition probabilities of W to S∞ x= Z× Z× �0� by taking N = ��x;y�x x ≤
0 or y ≤ 0y x;y ∈ Z�.

Now twist W∞ with twist coordinates �a1;1; a3�. Since �W∞ has only one
state, a3 = 1, and the only equation to be satisfied is �λ+ν�a1+�η+β�+αa−1

1 =
λ+ ν + η+ β+ α. The only solution other than a1 = 1 is a1 = α/�ν + λ�. This
is the same twist as was obtained above. The stationary distribution of �W∞
is a unit mass at 0 so �d̃1; d̃2� = �α − �ν + λ�; ν + να/�ν + λ� − β� by adding
the components of �W ∞

1 ;W ∞
2 �. Hence d̃1 and d̃2 are positive, since we are

assuming γ ≥ β, so Conditions 1–5, 7 are automatic.
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To check Condition 6, we must show that
∞∑
x=0

h�x;0�π�x;0� <∞ and
∞∑
y=0

h�0; y�π�0; y�:

The second sum is surely finite, since h�0; y� = 1 for y ≥ 0. Next,

∞∑
x=0

h�x;0�π�x;0� =
∞∑
x=0

∞∑
y=0

f�x;y�π�x;y� where f�x;y� x= ax1 · χ�y = 0�:

By Lemma 1.1, it suffices to find a positive function V�x;y� such that
MV�x;y� ≤ −f�x;y� + s�x;y�, where s is a positive function such that∑
x;y s�x;y�π�x;y� <∞.
Define a function V�x;y� x= �ax1�β/γ�y�/�γ − β�. It is easy to check that

MV�x;y� = 0 if x > 0 and y > 0. Next, if x > 0, then MV�x;0� = �β −
γ�V�x;0� = −ax1 = −f�x;0�. Finally, if y > 0, then

MV�0; y� = �α− �ν + λ��V�0; y� = �α− �ν + λ���β/γ�y/�γ − β�
and

MV�0;0� = �β− γ + α− �ν + λ��V�0;0� = �β− γ + α− �ν + λ��/�γ − β�:
Define

s�x;y� = �α− �ν + λ���γ − β� �β/γ�y · χ�x = 0�

+
[
1+ �β− γ + α− �ν + λ���γ − β�

]
· χ�x = 0; y = 0�:

Note that s is positive because α > λ+ν and β > ν+η by hypothesis. It follows
that MV�x;y� ≤ −f�x;y� + s�x;y�. The last step is to verify that

∑
x;y

s�x;y�π�x;y� =
[
1+ �β− γ + α− �ν + λ���γ − β�

]
π�0;0�

+
∞∑
y=1

�α− �ν + λ��
�γ − β� �β/γ�yπ�0; y� <∞;

but this holds because β < γ.
Applying Theorem 1.10, we get that EMTl is of order al1. Again, this is not

very surprising because the first node behaves like anM�M�1 queue with input
rate ν + λ and service rate α. Applying Theorem 2.10, we get that W2�Tl�/l
grows linearly in l with a rate of d̃2/d̃1.
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