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BROWNIAN MOTION IN A BROWNIAN CRACK1

By Krzysztof Burdzy and Davar Khoshnevisan

University of Washington and University of Utah

Let D be the Wiener sausage of width ε around two-sided Brownian
motion. The components of two-dimensional reflected Brownian motion in
D converge to one-dimensional Brownian motion and iterated Brownian
motion, respectively, as ε goes to 0.

1. Introduction. Our paper is concerned with a model for a diffusion in a
crack. This should not be confused with the “crack diffusion model” introduced
by Chudnovsky and Kunin (1987) which proposes that cracks have the shape
of a diffusion path. The standard Brownian motion is the simplest of models
proposed by Chudnovsky and Kunin. An obvious candidate for a “diffusion in a
Brownian crack” is the “iterated Brownian motion” or IBM (we will define IBM
later in the introduction). The term IBM was coined in Burdzy (1993) but the
idea is older than that. See Burdzy (1993, 1994) and Khoshnevisan and Lewis
(1997) for a review of literature and results on IBM. The last paper is the
only article known to us which considers the problem of diffusion in a crack;
however the results in Khoshnevisan and Lewis (1997) have a considerably
different nature from our results.

There are many papers devoted to diffusions on fractal sets. See, for ex-
ample, Barlow (1990), Barlow and Bass (1993, 1997) and references therein.
Diffusions on fractals are often constructed by an approximation process; that
is, they are first constructed on an appropriate ε-enlargement of the fractal
set and then a limit is obtained as the width ε goes to 0. This procedure justi-
fies the claims of applicability of such models, as the real sets are likely to be
“fat” approximations to ideal fractals. The purpose of this article is to provide
a similar justification for the use of IBM as a model for the Brownian motion
in a Brownian crack. We will show that the two components of the reflected
two-dimensional Brownian motion in a Wiener sausage of width ε converge to
the usual Brownian motion and iterated Brownian motion, respectively, when
ε→ 0.

It is perhaps appropriate to comment on the possible applications of our
main result. The standard interpretation of the Brownian motion with reflec-
tion is that of a diffusing particle which is trapped in a set, that is, crack.
However, the transition probabilities for reflected Brownian motion repre-
sent also the solution for the heat equation with Neumann boundary condi-
tions. Our Theorem 1 may be interpreted as saying that inside very narrow
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cracks, the solution of the Neumann heat equation is well approximated by
the solution of the heat equation on the straight line which is projected back
onto the crack. We leave the proof of this claim to the reader.

We proceed with the rigorous statement of our main result. We define “two-
sided” Brownian motion by

X1�t� =
{
X+�t�; if t ≥ 0;

X−�−t�; if t < 0;

where X+ and X− are independent standard Brownian motions starting
from 0. For ε > 0 and a continuous function ηx R→ R, let

D = D�η; ε� =
{
�x;y� ∈ R2x y ∈ �η�x� − ε;η�x� + ε�

}
:

Note that D is open for every continuous function η. Let Yt = Y ε
t , Y0 = �0;0�,

be the reflected two-dimensional Brownian motion in D�X1; ε� with normal
vector of reflection (the construction of such a process is discussed in Section 2).

We will identify R2 with the complex plane C and switch between real and
complex notation.

Informally speaking, our main result is that Re Y �c�ε�ε−2t� converges in
distribution to a Brownian motion independent of X1, where the constants
c�ε� are uniformly bounded away from 0 and ∞ for all ε > 0.

Suppose that X2 is a standard Brownian motion independent of X1. The
process �X�t� =df X

1�X2�t��; t ≥ 0� is called an “iterated Brownian motion”
(IBM). Let % be a metric on C�0;∞� corresponding to the topology of uniform
convergence on compact intervals.

Theorem 1. One can construct X1, X2 and Y ε for every ε > 0 on a com-
mon probability space so that the following holds. There exist c1, c2 ∈ �0;∞�
and c�ε� ∈ �c1; c2� such that the processes �Re Y ε�c�ε�ε−2t�; t ≥ 0� converge in
metric % to �X2

t ; t ≥ 0� in probability as ε→ 0. It follows easily that the pro-
cesses �Im Y ε�c�ε�ε−2t�; t ≥ 0� converge in metric % to the iterated Brownian
motion �Xt; t ≥ 0� in probability as ε→ 0.

We would like to state a few open problems.

1. There are alternative models for cracks; see, for example, Kunin and Gore-
lik (1991). For which processes X1 besides Brownian motion does a result
analogous to Theorem 1 hold?

2. Can one construct Y ε so that the convergence in Theorem 1 holds in the
almost sure sense rather than in probability?

3. Let B�x; r� = �y ∈ R2x �x−y� < r� and D̃�X1; ε� = ⋃t∈RB��t;X1
t �; ε�. Does

Theorem 1 hold for D̃ in place of D?
4. Can Brownian motion on the Sierpiński gasket be constructed as a limit

of reflected Brownian motions on ε-enlargements of the state space? The
standard construction of this process uses random walk approximations,
see, for example, Barlow and Perkins (1988), Goldstein (1987) and Kusuoka
(1987).
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Let us outline the main idea of the proof of Theorem 1. Although the Wiener
sausage has a constant width ε in the vertical direction, the width is not
constant from the point of view of the reflected Brownian motion Y . Large
increments of X1 over short intervals produce narrow spots along the crack.
We will relate the effective width of the crack to the size of X1 increments
and show that the narrow parts of the crack appear with large regularity
due to the independence of X1 increments. This gives the proof the flavor of
a random homogenization problem. Our main technical tool will be the Rie-
mann mapping as the reflected Brownian motion is invariant under conformal
mappings.

The proof of Theorem 1 consists of a large number of lemmas. The first
few lemmas deal with nonrandom domains D�η; ε� and their distortion un-
der conformal mappings onto the strip �z ∈ Cx Im z ∈ �−1;1��. The next set
of lemmas provides more information of the same kind, but more accurate
and more specific as this time we examine the distortion of random Wiener
sausages D�X1; ε�. The lemmas mentioned above provide information on the
hitting probabilities for Y ε which is analogous to the scale function for diffu-
sions on the line. Next, we obtain some information analogous to the speed
measure. This is done in another set of lemmas analyzing how much time the
process spends in small sections of D�X1; ε�. Finally, a few more lemmas and
the final piece of the proof put the estimates together to show that the process
Y ε behaves very much like the simple symmetric random walk on a certain
scale.

We would like to point out that the usually convenient “Brownian scaling”
arguments cannot be applied in many of our proofs. The Brownian scaling
requires a different scaling of the time and state space coordinates. In our
model, time and space for X1 represent two directions in space for Y . In
other words, the versions of Brownian scaling for X1 and Y are incompatible.

The paper has two more sections. Section 2 contains a sketch of the con-
struction of the reflected Brownian motion Y . The lemmas comprising the
proof of Theorem 1 are presented in Section 3.

2. Preliminaries. First we will sketch a construction of the reflected
Brownian motion Y in D. We start by introducing some notation.

The following definitions apply toD�η; ε� for any η, not necessarilyX1. The
resulting objects will depend on η, of course. Let D∗ = �z ∈ Cx Im z ∈ �−1;1��.
The Carathéodory prime end boundaries of D and D∗ contain points at −∞
and +∞ which are defined in the obvious way. Let f be the (unique) analytic
one-to-one function mapping D∗ onto D such that f�∞� = ∞; f�−∞� = −∞
and f��0;−1�� = �0;−ε�.

We owe the following remarks on the construction of Y to Zhenqing Chen
(private communication).

It is elementary to construct a reflected Brownian motion (RBM) Y ∗ in D∗.
We will argue that f�Y ∗t � is an RBM in D, up to a time change.

First, the RBM on a simply connected Jordan domain D can be char-
acterized as the continuous Markov process associated with �H1�D�;E�
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in L2�D;dz�, which is a regular Dirichlet form on D̄, where E�f;g� =
1/2

∫
D ∇f∇gdx [see Remark 1 to Theorem 2.3 of Chen (1992)]. We note that

if �H1�D�;E� is regular on D̄, then the associated process is the unique
continuous strong Markov process in D̄ that is reversible with respect to the
Lebesgue measure, behaves like planar Brownian motion in D and spends
zero time on the boundary.

The Dirichlet form for the process f�Y ∗t � under the reference measure
�f′�z��2 dz is �H1�f−1�D��;E�. Therefore f�Y ∗t � is a time change of the RBM
onD. The last assertion follows from a Dirichlet form characterization of time-
changed processes due to Silverstein and Fitzsimmons [see Theorem 8.2 and
8.5 of Silverstein (1974). The proof seems to contain a gap; see Fitzsimmons
(1989) for a correct proof; see also Theorem 6.2.1 in Fukushima, Oshima and
Takeda (1994)].

We will denote the time change by κ, that is, Y �κ�t�� = f�Y ∗�t��. Unless
indicated otherwise we will assume that Y ∗0 = �0;0�.

The above argument provides a construction of an RBM in D�η; ε� for fixed
(nonrandom) η. However, we need a construction in the case when η is random,
that is, D = D�X1; ε�.

Let �Sn;−∞ < n <∞� be a two-sided simple random walk on integers and
let �St;−∞ < t < ∞� be a continuous extension of Sn to all reals, which is
linear on all intervals of the form �j; j+ 1�. Next we renormalize St to obtain
processes Skt/

√
k, which converge to X1 in distribution as k → ∞. Let Uk

t

agree with Skt/
√
k on �−k; k� and let Uk

t be constant on intervals �−∞;−k�
and �k;∞�. Note that the number of different paths ofUk

t is finite. Fix an ε > 0.
We construct an RBM Y k in D�Uk

t ; ε� by repeating the construction outlined
above for every possible path ofUk

t . We can view �Uk;Y k� as a random element
with values in C�−∞;∞� × C�0;∞�2. It is possible to show that when ηk
converge to η uniformly on compact subsets of R then RBM’s in D�ηk; ε�
starting from the same point converge in distribution to an RBM in D�η; ε�.
It follows that when k → ∞, then �Uk;Y k� converges in distribution to a
process whose first coordinate has the distribution of X1, that is, two-sided
Brownian motion. The distribution of the second component under the limiting
measure is that of reflected Brownian motion in D�X1; ε�.

The above discussion also serves as a construction of a regular conditional
probability for Yt given X1. Alternatively, it is possible to show that the law
of the reflected Brownian motion in D�η; ε� is measurable as a function of η,
using the fact that the mapping f is a continuous function of η. We leave the
proof to the reader.

We will use letters P and E to denote probabilities and expectations for
RBM in D when the function X1 is fixed. In other words, P and E denote
the conditional distribution and expectation given X1. They will also be used
in the situations where we consider a domain D�η; ε� with nonrandom η. We
will use P and E to denote the distribution and expectation corresponding
to the probability space on which X1 and Y are defined. In other words, E
applied to a random element gives us a number while E applied to a random
element results in a random variable measurable with respect to X1.
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We will write PzY to denote the distribution of the process Y starting from
Y0 = z. Analogous notation will be used for other processes. We will write Pz

if the process is clear from the context.
For the convenience of the reader, we state here a version of a lemma proved

in Burdzy, Toby and Williams (1989) which is easily applicable to our argument
below. The notation of the original statement was tailored for the original
application and may be hard to understand in the present context.

Lemma 1 [Burdzy, Toby and Williams (1989)]. Suppose that functions
h�x;y�, g�x;y� and h1�x;y� are defined on product spaces W1×W2, W2×W3
and W1 ×W3, respectively. Assume that for some constant c1, c2 ∈ �0;1� the
functions satisfy for all x, y, x1, x2, y1, y2, z1, z2,

h1�x;y� =
∫
W2

h�x; z�g�z; y�dz;

h�x1; z1�
h�x1; z2�

≥ h�x2; z1�
h�x2; z2�

�1− c1�

and

g�z1; y1�
g�z1; y2�

≥ c2
g�z2; y1�
g�z2; y2�

:

Then

h1�x1; y1�
h1�x1; y2�

≥ h1�x2; y1�
h1�x2; y2�

�1− c1 + c2
2c1�:

For the proof, all we have to do is to translate the original statement to our
present notation. The symbols on the left-hand side of the arrow appeared in
Lemma 6.1 of Burdzy, Toby and Williams (1989). The symbols on the right-
hand side of the arrow are used in the present version of the lemma:

b 7−→ 1; U 7−→ \; k 7−→ x1; 3− k 7−→ x2; v 7−→ z1; w 7−→ z2;

x 7−→ y1; y 7−→ y2; f 7−→ h; g 7−→ g; h 7−→ h1:

For a set A, τ�A� and T�A� will denote the exit time from and the hitting
time of a set A for two-dimensional Brownian motion or reflected Brownian
motion.

3. Proof of the main result. The proof of Theorem 1 will consist of sev-
eral lemmas.

Recall the definitions of D∗ and f from Section 2. Let M∗�a; b� = �z ∈
D∗x a ≤ Re z ≤ b�, M∗�a� = M∗�a; a�, M�a; b� = f�M∗�a; b�� and M�a� =
f�M∗�a��. It is easy to show that f and f−1 can be extended in a continuous
fashion to the closures of their domains.

The closure of the part of D between M�a� and M�a+1� will be called a cell
and denoted C�a�. The closure of the part of D between the lines �zx Re z = a�
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and �zx Re z = b� will be called a worm and denoted W�a; b�. Let W∗�a; b� =
f−1�W�a; b��. The degenerate worm W�a; a� will be denoted W�a�, that is,
W�a� = �z ∈ Dx Re z = a�.

The first three lemmas in this section deal with domains D�η; ε� for arbi-
trary continuous functions η.

Lemma 2. There exists c <∞ independent of η and f such that the diam-
eter of the cell C�a� is less than cε for every a. In particular, the diameter of
M�a� is less than cε for every a.

Proof. It is easy to see that it will suffice to prove the lemma for a = 0.
Moreover, we will assume that ε = 1 because the general case follows by
scaling.

We start by proving the second assertion of the lemma.
Let ∂−M∗�a; b� be the part of ∂M∗�a; b� on the line �Im z = −1� and let

∂−M�a; b� = f�∂−M∗�a; b��. Consider a point z ∈ M∗�0� with Im z ≤ 0. Two-
dimensional Brownian motion starting from z has no less than 1/4 proba-
bility of exiting D∗ through ∂−M∗�−∞;0�. By conformal invariance, Brown-
ian motion starting from f�z� has no less than 1/4 probability of exiting D
through ∂−M�−∞;0�. Find large c1 <∞ so that the probability that Brown-
ian motion starting from f�z� will make a closed loop around B�f�z�;2�
before exiting B�f�z�; c1� is greater than 7/8. Suppose for a moment that
Ref�z� ≥ 0 and the distance from f�z� to �0;−1� is greater than c1 + 2. Then
∂B�f�z�; c1� does not intersect W�0�, and so a closed loop around B�f�z�;2�
which does not exit B�f�z�; c1� has to intersect ∂D \ ∂−M�−∞;0� before hit-
ting ∂−M�−∞;0�. In order to avoid contradiction, we have to conclude that
�f�z�−f��0;−1��� = �f�z�− �0;−1�� ≤ c1+2 in the case Ref�z� ≥ 0. The case
Ref�z� ≤ 0 can be treated in a similar way and we conclude that the diameter
of f��z ∈ M∗�0�x Im z ≤ 0�� cannot be greater than 2�c1 + 2�. By symmetry,
the diameter of the other part of M�0� is bounded by the same constant and
so the diameter of M�0� cannot be greater than 4�c1 + 2�.

The proof of the first assertion follows along similar lines. Consider a point
z in the interval I =df �zx Im z = 0;0 ≤ Re z ≤ 1�. There exists p > 0 such
that Brownian motion starting from z will hit M∗�0� before hitting ∂D∗ with
probability greater than p for all z ∈ I. By conformal invariance, Brownian
motion starting from f�z� will hit M�0� before hitting ∂D with probability
greater than p. Find large c2 < ∞ so that the probability that Brownian
motion starting from f�z� will make a closed loop around B�f�z�;2� before
exiting B�f�z�; c2� is greater than 1− p/2. If the distance from f�z� to M�0�
is greater than c2, then such a loop would intersect ∂D before hitting M�0�.
This would contradict our previous bound on hitting M�0� so we conclude that
the distance from f�z� to M�0� is bounded by c2. Since the diameter of M�0�
is bounded by 4�c1+2�, we see that 4�c1+2�+2c2 is a bound for the diameter
of f�I�. The cell C�0� is the union of sets M�a� for 0 ≤ a ≤ 1, the diameter
of each of these sets is bounded by 4�c1 + 2� and each of these sets intersects
f�I�. Hence, the diameter of C�0� is bounded by 12�c1 + 2� + 2c2. 2
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Lemma 3. For every δ > 0 there exists 0 < c < ∞ with the following prop-
erty. Suppose that η1; η2x R → R are continuous and η1�x� = η2�x� for all
x ≥ −cε. Then Mη2�−∞; a− δ� ⊂Mη1�−∞; a� for all a ≥ 0.

Proof. We will assume that ε = 1. The general case follows by scaling.
Step 1. First we show that for an arbitrary b > −∞ we can find c1 > −∞

(depending on b but independent of η) so that W�−∞; c1� ⊂M�−∞; b�.
Suppose that W∗�c2� intersects M∗�b1� for some b1 > b and c2 ∈ R. Planar

Brownian motion starting from �0;0� can hit the line segment I = �zx Im z =
0; b − 2 < Re z < b − 1� before exiting D∗ with probability p0 = p0�b� > 0.
A Brownian particle starting from any point of I can first make a closed loop
around I and then exit D∗ through the upper part of the boundary before
hitting M∗�b− 3� or M∗�b� with probability p1 > 0. The same estimate holds
for a closed loop around I exiting through the lower part of the boundary.
Since b1 > b and W∗�c2� ∩M∗�b1� 6= \, either a closed loop around I exiting
D∗ through the upper part of ∂D∗ must cross W∗�−∞; c2� or this is true for
the analogous path exiting through the lower part of ∂D∗. We see that the two-
dimensional Brownian motion starting from �0;0� can hit W∗�−∞; c2� before
exiting D∗ with probability greater than p0p1 > 0.

By conformal invariance of planar Brownian motion, it will suffice to show
that for sufficiently large negative c2, Brownian motion starting from f�0;0�
cannot hit W�−∞; c2� before exiting D with probability greater than p0p1/2.

By Lemma 2 the diameter of M�0� is bounded by c3 < ∞. Since f�0;0� ∈
M�0� and M�0� ∩ W�0� 6= \, we have Ref�0;0� > −c3. Find large c4 <
∞ so that the probability that Brownian motion starting from f�0;0� will
make a closed loop around B�f�0;0�;2� before exiting B�f�0;0�; c4� is greater
than 1 − p0p1/2. If such a loop is made, the process exits D before hitting
W�−∞;−c3−c4�. It follows that Brownian motion starting from f�0;0� cannot
hit W�−∞;−c3 − c4� before exiting D with probability greater than p0p1/2.
This completes the proof of Step 1.

Step 2. In this step, we will prove the lemma for a = 0. Recall the notation
∂−M�a; b� and ∂−M∗�a; b� from the proof of Lemma 2.

Reflected Brownian motion (RBM) in D∗ starting from any point of M∗�0�
has a fifty–fifty chance of hitting ∂−M∗�−∞;0� before hitting ∂−M∗�0;∞�. By
conformal invariance, RBM in D�η1;1� starting from any point of M�0� can
hit ∂−Mη1�−∞;0� before hitting ∂−Mη1�0;∞� with probability 1/2.

It follows from Lemma 2 that Mη�0� ⊂ Wη�c0;∞� and W
η
∗ �c0;∞� ⊂

M
η
∗ �c′;∞� for some c0; c

′ > −∞ and all η. An argument similar to that
in the proof of Lemma 2 or Step 1 of this proof easily shows that for any
z ∈ Mη

∗ �c′;∞�, and so for any z ∈ Wη
∗ �c0;∞�, the probability that RBM in

D∗ starting from z can hit Mη
∗ �b� before hitting ∂−Mη

∗ �0;∞� is bounded from
above by p2�b� such that p2�b� → 0 when b→−∞.

Fix an arbitrarily small δ > 0. It is easy to see that for all v ∈M∗�−δ�, we
have

�1� PvY∗�T�∂
−M∗�−∞;0�� < T�∂−M∗�0;∞��� > 1/2+ p3;
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where p3 = p3�δ� > 0. Next find b such that p2�b� < p3�δ�. Find c1 < c0 (in-
dependent of η2) such that Wη2�−∞; c1� ⊂Mη2�−∞; b�, as in Step 1. Suppose
that η1 and η2 agree on the interval �c1;∞�. This assumption and the fact
that Mη1�0� ⊂ Wη1�c0;∞� yield Mη1�0� ⊂ Wη2�c0;∞�. The conformal invari-
ance of RBM implies that for the RBM Y∗ in D∗, RBM Y in D�η2;1� and any
z ∈Mη1�0� and v = f−1

η2
�z�, we have

PvY∗
(
T�∂−M∗�−∞;0�� < T�∂−M∗�0;∞��

)

= PzY
(
T�∂−Mη2�−∞;0�� < T�∂−Mη2�0;∞��

)

≤ PzY
(
T�∂−Mη2�−∞;0�� < T�∂−Mη2�0;∞�� < T�Wη2�c1��

)

+PzY
(
T�Wη2�c1�� < T�∂−Mη2�0;∞��

)
:

Since fη1
��0;−1�� = �0;−1�, and the same holds for fη2

, we have ∂−Mη2�−∞;
0� = ∂−Mη1�−∞;0� and ∂−Mη2�0;∞� = ∂−Mη1�0;∞�. It follows that the last
displayed formula is equal to

PzY
(
T�∂−Mη1�−∞;0�� < T�∂−Mη1�0;∞�� < T�Wη2�c1��

)

+PzY
(
T�Wη2�c1�� < T�∂−Mη2�0;∞��

)
:

Since Wη2�−∞; c1� ⊂Mη2�−∞; b�, this is less than or equal to

PzY
(
T�∂−Mη1�−∞;0�� < T�∂−Mη1�0;∞�� < T�Wη2�c1��

)

+PzY
(
T�Mη2�b�� < T�∂−Mη2�0;∞��

)
:

Let Y ′ denote the RBM in D�η1;1�. In view of our assumption that η1 and
η2 agree on the interval �c1;∞�, the last quantity is equal to

PzY ′
(
T�∂−Mη1�−∞;0�� < T�∂−Mη1�0;∞�� < T�Wη2�c1��

)

+PzY
(
T�Mη2�b�� < T�∂−Mη2�0;∞��

)

≤ PzY ′
(
T�∂−Mη1�−∞;0�� < T�∂−Mη1�0;∞��

)

+PzY
(
T�Mη2�b�� < T�∂−Mη2�0;∞��

)

= 1/2+PzY
(
T�Mη2�b�� < T�∂−Mη2�0;∞��

)
:

We have z ∈Mη1�0� ⊂Wη2�c0;∞�, so the last probability is bounded by p2�b�.
By retracing our steps we obtain the following inequality:

PvY∗
(
T�∂−M∗�−∞;0�� < T�∂−M∗�0;∞��

)
≤ 1/2+ p2�b� < 1/2+ p3�δ�:

This and (1) imply that f−1
η2
�Mη1�0�� lies totally to the right of M∗�−δ�. This

is equivalent to Mη2�−∞;−δ� ⊂Mη1�−∞;0�. We have proved the lemma for
a = 0.

Step 3. We will extend the result to all a ≥ 0 in this step.
The mapping g =df f

−1
η2
◦fη1

is a one-to-one analytic function from D∗ onto
itself. We have proved that g�M∗�0;∞�� ⊂M∗�−δ;∞�. In order to finish the
proof of the lemma it will suffice to show that g�M∗�a;∞�� ⊂ M∗�a − δ;∞�
for every a ≥ 0.
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Let h�z� =df g�z� + δ. It will suffice to show that h�M∗�a;∞�� ⊂M∗�a;∞�
for a ≥ 0. We already know that h�M∗�0;∞�� ⊂M∗�0;∞�. Consider any two
points z ∈ M∗�a� and v ∈ M∗�−∞; a� \M∗�a�. It will suffice to show that
v 6= h�z�. Let u be such that Reu = Re z and Imu = Im v. Suppose for a
moment that Im v ≥ Im z. Consider a planar Brownian motion Y starting
from z. By comparing, path by path, the hitting times of ∂−M∗�0;∞� and
∂M∗�0;∞� for the processes Y and Y + �u − z�, and then for the processes
Y + �u− z� and Y + �u− v�, we arrive at the following inequalities:

Pz
(
T�∂−M∗�0;∞�� ≤ T�∂M∗�0;∞��

)

≥ Pu
(
T�∂−M∗�0;∞�� ≤ T�∂M∗�0;∞��

)

> Pv
(
T�∂−M∗�0;∞�� ≤ T�∂M∗�0;∞��

)
:

Since h�M∗�0;∞�� ⊂M∗�0;∞� and h�∂−M∗�0;∞�� ⊂ ∂−M∗�0;∞�,
Pv
(
T�∂−M∗�0;∞�� ≤ T�∂M∗�0;∞��

)

≥ Pv
(
T�h�∂−M∗�0;∞��� ≤ T�∂M∗�0;∞��

)

≥ Pv
(
T�h�∂−M∗�0;∞��� ≤ T�h�∂M∗�0;∞���

)

= Ph−1�v�(T�∂−M∗�0;∞�� ≤ T�∂M∗�0;∞��
)
:

Hence

Pz
(
T�∂−M∗�0;∞�� ≤ T�∂M∗�0;∞��

)

> Ph
−1�v�(T�∂−M∗�0;∞�� ≤ T�∂M∗�0;∞��

)

and so v 6= h�z�. The case Im v ≤ Im z can be treated in the same way. This
completes the proof of Step 3 and of the entire lemma. 2

Recall the definitions of cells and worms from the beginning of this section.
Let K−�a1; a2� be the number of cells C�k�, k ∈ Z, which lie in the worm
W�a1; a2� and let K+�a1; a2� be the number of cells which intersect the same
worm.

The cell count is relative to the conformal mapping establishing equivalence
of D∗ and D. We will say that a conformal mapping fx D∗→ D is admissible
if f�−∞� = −∞ and f�∞� = ∞.

Lemma 4. There exists c1 < ∞ with the following property. Suppose that
a1 < a2 and η1; η2x R→ R are continuous functions such that η1�x� = η2�x�
for all x ∈ �a1 − c1ε; a2 + c1ε�. Then K−η2

�a1; a2� ≥ K−η1
�a1; a2� − 12 and

K+η2
�a1; a2� ≥ K+η1

�a1; a2� − 12 where the cell counts are relative to any ad-
missible mappings.

Proof. Let c2 be such that the cell diameter is bounded by c2ε (see
Lemma 2). According to Lemma 3 we can find c3 so large that if η3�x� = η1�x�
for x > −c3ε then Mη3�−∞; a−1� ⊂Mη1�−∞; a� for a ≥ 0 and similarly with
the roles of η1 and η3 reversed.
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We can assume without loss of generality that η1�a1− c2ε− c3ε� = η2�a1−
c2ε− c3ε�. Let

η3�x� =
{
η2�x�; for x ≤ a1 − c2ε− c3ε;

η1�x�; otherwise.

The conformal functions f used to define conformal equivalence of D∗ and
D�η; ε� in the proof of Lemma 3 have the property that f��0;−1�� = �0;−ε�,
by assumption. In order to be able to apply Lemma 3 we introduce functions
fnx D∗ → D�ηn; ε� with fn�∞� = ∞, f�−∞� = −∞ and fn��0;−1�� = �a1 −
c2ε;ηn�a1−c2ε�−ε�. Lemma 3 now applies with a suitable shift. Let j0 and j1
be the smallest and largest integers k with the propertyM�k�∩W�a1; a2� 6= \.
Then M�j0; jk� ⊂W�a1 − c2ε; a2 + c2ε�. Now we use Lemma 3 to see that

Mη1�−∞; j0� ⊂Mη3�−∞; j0 + 1�
and

Mη3�−∞; j1 − 1� ⊂Mη1�−∞; j1�;
assuming that these sets are defined relative to fn’s. This implies that
K+η3
�a1; a2� ≥K+η1

�a1; a2� − 2.
It is easy to see that by switching from the mapping fn to any admis-

sible mapping, we change the number K+ηn�a1; a2� by at most 2. Hence,
K+η3
�a1; a2� ≥K+η1

�a1; a2� − 6 with the usual choice of conformal mappings.
The analogous estimate applies to η3 and η2, by the symmetry of the real

axis. Thus K+η2
�a1; a2� ≥K+η1

�a1; a2� − 12.
The proof of the inequality K−η2

�a1; a2� ≥ K−η1
�a1; a2� − 12 is completely

analogous. 2

Before stating our next lemma we introduce some notation. Recall that
�X1�t�;−∞ < t <∞� is a one-dimensional Brownian motion with X1�0� = 0.
Suppose ε > 0 and let S0 = 0,

Sk = �Sk−1 + ε2/4� ∧ inf
{
t > Sk−1x �X1�Sk−1� −X1�t�� ≥ ε/4

}
; k ≥ 1;

Sk = �Sk−1 − ε2/4� ∨ sup
{
t < Sk+1x �X1�Sk+1� −X1�t�� ≥ ε/4

}
; k ≤ −1:

Suppose that b > 2ε2. Let J = J�b; ε� be the smallest k such that Sk ≥ b and
let

Nm =Nm�ε� =
m+1∑
k=0

�Sk −Sk−1�−1:

Lemma 5. We have ENJ�b��ε�k ≤ c�k�bkε−4k for k ≥ 1.

Proof. First we will assume that ε = 1. Since Sk − Sk−1 is bounded by
1/4, we have, for 0 < λ < 1/2,

E exp�−λ�Sk −Sk−1�� ≤ E �1− c1λ�Sk −Sk−1��
= 1− c1λE �Sk −Sk−1� ≤ exp�−c2λ�:
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We see that for λ ∈ �0;1/2� and n ≥ 2,

P �J ≥ n� = P �Sn−1 < b� ≤ exp�λb�E exp�−λSn−1�

= exp�λb�
(
E exp�−λ�Sk −Sk−1��

)n−1 ≤ exp�λ�b− �n− 1�c2��:
Let a = n/b and λ = 1/b to see that for a ≥ 1/b,

�2� P �J ≥ ab� ≤ c3 exp�−c2a�:
For all x > 4,

P �1/�Sk −Sk−1� > x� = P �Sk −Sk−1 < 1/x�

≤ 2P
(

sup
0≤t≤1/x

X�Sk−1 + t� −X�Sk−1� > 1/4
)

≤ 4P �X�Sk−1 + 1/x� −X�Sk−1� > 1/4�
= 4P �X�Sk−1 + 1� −X�Sk−1� >

√
x/4�

≤ 4√
2πx

exp�−x/32�:

Therefore, E exp�1/64�Sk −Sk−1�� ≤ exp�c4� with c4 <∞. Hence for m ≥ 1,

�3�
P
(
Nm ≥ x� ≤ exp�−x/64�E exp�Nm/64�

≤ exp�−x/64��E exp�1/64�Sk −Sk−1���m

≤ exp�−x/64� exp�mc4� = exp�−x/64+mc4�:
Putting (2) and (3) together, for a ≥ 2/b and y > 0,

P
(
NJ ≥ yb

)
≤ P

(
J ≥ ab

)
+P

(
Nab ≥ yb

)

≤ c3 exp�−c2a� + exp�−yb/64+ c4ba�:

Let a = �128c4�−1y. Since a has to be bigger than 2/b and b > 2, the following
estimate holds for y > 128c4,

P
(
NJ/b ≥ y

)
≤ c3 exp�−c5y� + exp�−yb/128� ≤ c3 exp�−c5y� + exp�−y/64�:

We conclude that for all k; b ≥ 1,

E
(
NJ

)k ≤ c�k�bk:

By Brownian scaling, the distribution ofNJ�b��ε� is the same as ε−2NJ�bε−2��1�.
Hence,

ENJ�b��ε�k = ε−2kENJ�bε−2��1�k ≤ c�k�bkε−4k: 2

Let c0 be the constant defined in Lemma 2, that is, c0 is such that the cell
diameter is bounded by c0ε. Recall that K−�a1; a2� (K+�a1; a2�) is the number
of cells C�k�, k ∈ Z, which lie inside (intersect) the worm W�a1; a2�.
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Lemma 6. For D = D�X1; ε�, k ≥ 1 and sufficiently small ε < �a2 −
a1�/�3c0�, we have the following:

(i) EK−�a1; a2� ≥ c1�a2 − a1�ε−3;
(ii) EK−�a1; a2�−k ≤ c�k��a2 − a1�−kε3k;

(iii) EK+�a1; a2�k ≤ c�k��a2 − a1�kε−3k.

Proof. (i) Find p > 0 with the following property. If z1 and z2 lie on the
line L =df �zx Im z = 0� and �z1 − z2� ≤ 2, then two-dimensional Brownian
motion starting from z1 can make a closed loop around z2 before exiting D∗
with probability greater than p. Let c2 < ∞ be such that two-dimensional
Brownian motion starting from z has more than 1 − p/2 chance of making
a closed loop around B�z; ε2� before exiting B�z; c2ε

2�. Note that c2 may be
chosen so that it does not depend on ε > 0 and z ∈ C.

Let tk = a1 + c0ε+ kε2 for k ≥ 0. If the event

Ck
df= �X1�tk+1� > X1�tk� + 3ε�

holds we let bkj =X1�tk� + ε+ jc2ε
2, 1 ≤ j ≤ 1/�c2ε� − 2. Let

0kj = �z ∈ Dx Im z = bkj;Re z ∈ �tk; tk+1��:
Since tk+1 − tk = ε2, the diameter of 0kj does not exceed ε2. Choose a point zkj
which belongs to f�L� ∩ 0kj. Two-dimensional Brownian motion starting from
zkj can make a closed loop around B�zkj; ε2� before exiting B�zkj; c2ε

2� with
probability greater than 1 − p/2. Since the diameter of 0kj is bounded by ε2,
the chance of making a closed loop around znm before exiting D is less than p/2
assuming �n;m� 6= �k; j�. By conformal invariance, the probability that two-
dimensional Brownian motion starting from f−1�zkj� will make a closed loop
around f−1�znm� before exitingD∗ is less than p. Hence, �f−1�zkj�−f−1�znm�� > 2
and so zkj and znm belong to different cells. Therefore K+�a1+c0ε; a2−c0ε� is at
least as big as the number of different points zkj for 0 ≤ k ≤ �a2−a1−2c0ε�/ε2−
2. Note that for small ε we have �a2−a1−2c0ε�/ε2−2 ≥ c3�a2−a1�/ε2. Since
cell diameter is bounded by c0ε we have K−�a1; a2� ≥ K+�a1 + c0ε; a2 − c0ε�
and so

K−�a1; a2� ≥K+�a1 + c0ε; a2 − c0ε� ≥
c3�a2−a1�/ε2∑

k=0

�1/�c2ε� − 2�1Ck
:

Note that P �Ck� = p1 for some absolute constant p1 > 0 and so for small ε,

EK−�a1; a2� ≥ p1�1/�c2ε� − 2�c3�a2 − a1�ε−2 ≥ c4�a2 − a1�ε−3:

(ii) Let Uk = �1/�c2ε� − 2�1Ck
, Vn =

∑n
k=1Uk and n0 = c3�a2 − a1�/ε2. Let

us assume that ε is small so that Uk > �c5/ε�1Ck
. Since Uk’s are independent

we have for λ > 0,

E exp�−λVn� =
(
E exp�−λUk�

)n ≤ pn1 exp�−nc5λ/ε� = exp�nc6 − nc5λ/ε�:
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Hence, for λ > 0, u ≥ 2/�c3c5�,

P ��a2 − a1�ε−3/Vn0
≥ u� = P �Vn0

≤ u−1�a2 − a1�ε−3�

≤ exp�λu−1�a2 − a1�ε−3�E exp�−λVn0
�

≤ exp�λu−1�a2 − a1�ε−3 + n0c6 − n0c5λ/ε�
= exp��a2 − a1�ε−2�λ�uε�−1 + c3c6 − c3c5λ/ε��
≤ exp

(
�a2 − a1�ε−2�c3c6 − c3c5λ/�2ε��

)
:

Now take

λ = 2ε
c3c5

(
u

�a2 − a1�ε−2
+ c3c6

)
:

Then

�a2 − a1�ε−2�c3c6 − c3c5λ/�2ε�� = −u

and so

P ��a2 − a1�ε−3/Vn0
≥ u� ≤ exp�−u�:

This implies that for k ≥ 1,

EK−�a1; a2�−k ≤ EV−kn0
≤ c7�a2 − a1�−kε3k:

(iii) Fix some p0 < 1 such that for every a ∈ R and z ∈M∗�a�, the probabil-
ity that planar Brownian motion starting from z will hit M∗�a−1�∪M∗�a+1�
before exiting from D∗ is less than p0. By conformal invariance of Brownian
motion, the probability that Brownian motion starting from z ∈M�a� will hit
M�a− 1� ∪M�a+ 1� before exiting from D is less than p0.

We choose ρ > 0 so small that the probability that Brownian motion starting
from any point of B�x; rρ� will make a closed loop around B�x; rρ� inside
B�x; r� \B�x; rρ� before exiting B�x; r� is greater than p0. Suppose that two
Jordan arcs V1 and V2 have endpoints outside B�x; r� and they both intersect
B�x; rρ�. Then Brownian motion starting from any point of V1 ∩B�x; rρ� will
hit V2 before exiting B�x; r� with probability greater than p0. It follows that
if B�x; r� ⊂ D then either M�a� or M�a+ 1� must be disjoint from B�x; rρ�.

We slightly modify the definition of Sk’s considered in Lemma 4 by setting
S0 = a1 − c0ε. The rest of the definition remains unchanged, that is,

Sk = �Sk−1 + ε2/4� ∧ inf
{
t > Sk−1x �X1�Sk−1� −X1�t�� ≥ ε/4

}
; k ≥ 1;

Sk = �Sk+1 − ε2/4� ∨ sup
{
t < Sk+1x �X1�Sk+1� −X1�t�� ≥ ε/4

}
; k ≤ −1:

We will connect points �Sk;X1�Sk��, k ≥ 1, by chains of balls. The chain of
balls B�xkj; rkj�, 1 ≤ j ≤ mk, connecting �Sk;X1�Sk�� and �Sk+1;X

1�Sk+1��
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will have centers on the line segments
{
zx Im z =X1�Sk�; Sk ≤ Re z ≤ �Sk +Sk+1�/2

}
;

{
zx Re z = �Sk +Sk+1�/2; Im z ∈ �X1�Sk�;X1�Sk+1��

}
;

{
zx Im z =X1�Sk+1�; �Sk +Sk+1�/2 ≤ Re z ≤ Sk+1

}
:

Here �X1�Sk�;X1�Sk+1�� denotes the interval with endpoints X1�Sk� and
X1�Sk+1�, not necessarily in this order since X1�Sk+1� may be smaller than
X1�Sk�. Let J be the smallest k such that Sk ≥ a2 + c0ε. It is elementary to
check that we can choose the balls so that the following hold:

(a) B�xkj; rkj� ⊂ D;
(b) the set

⋃
1≤j≤mk

B�xkj; rkjρ� is connected and contains �Sk;X1�Sk�� and
�Sk+1;X

1�Sk+1��;
(c) the radii rkj, 1 ≤ j ≤ mk, are not smaller than minm=k;k+1;k+2�Sm −

Sm−1�/2;
(d) so mk is not greater than �4ε/ρ�maxm=k;k+1;k+2 1/�Sm −Sm−1�.
The total number m̃ of balls needed to connect all points �Sk;X1�Sk��,

1 ≤ k ≤ J, is bounded by

J∑
k=1

mk ≤
12ε
ρ

J+1∑
k=0

�Sk −Sk−1�−1:

In the notation of Lemma 5,

m̃ ≤ c8εNJ�a2 − a1 + 2c0ε; ε�:
Since cell diameter is bounded by c0ε (Lemma 1), none of the cells which

touch W�a1; a2� can extend beyond W�a1 − c0ε; a2 + c0ε�. Every curve M�a�
which lies totally inside W�a1 − c0ε; a2 + c0ε� must intersect at least one
ball B�xkj; rkjρ�, 1 ≤ k ≤ J, 1 ≤ j ≤ mk. Since M�a� and M�a + 1� cannot
intersect the same ball B�xkj; rkjρ� it follows that K+�a1; a2� is bounded by
c8εNJ�a2 − a1 + 2c0ε; ε�. Note that a2 − a1 + 2c0ε ≤ c9�a2 − a1� for small ε.
Hence by Lemma 5, for all k ≥ 1,

E �K+�a1; a2��k ≤ E ck8ε
kNk

J�c9�a2 − a1�; ε� ≤ ck8εkck9�a2 − a1�kε−4k

= c10�a2 − a1�kε−3k: 2

Lemma 7. There exist constants 0 < c1 < c2 < ∞ and c�ε� ∈ �c1; c2� such
that for every fixed d > 0, both c�ε�ε3K+�0; d� and c�ε�ε3K−�0; d� converge in
probability to d as ε→ 0.

Remark 1. Since the functions d → K+�0; d� and d → K−�0; d� are
nondecreasing, we immediately obtain the following corollary: the functions
d→ ε3c�ε�K+�0; d� and d→ ε3c�ε�K−�0; d� converge to identity in the met-
ric of uniform convergence on compact intervals, in probability as ε→ 0.
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Proof. Let c3 be the constant defined in Lemma 4. Suppose that α > c3 is a
large positive constant; we will choose a value for α later in the proof. Let ak =
k�2c3 + α�ε for integer k. Let ηk be the continuous function which is equal to
X1 on �ak; ak+1� and constant on �−∞; ak� and �ak+1;∞�. Let Dk = D�ηk; ε�.
For every k find a conformal mapping fkx D∗ → Dk so that fk��0;−1�� =
�ak;X1�ak��, f�−∞� = −∞ and f�∞� = ∞. Let K̃−k =K−�ak+c3ε; ak+1−c3ε�
be defined relative to Dk and fk. Then random variables K̃−k are independent
and identically distributed. According to Lemma 6,

�4�

E K̃−k ≥ c4ε
−2α;

E K̃−k ≤ c5ε
−2α;

E �K̃−k �2 ≤ c6ε
−4α2:

Hence, E K̃−k = c7�ε�ε−2α where c7�ε� are uniformly bounded away from 0 and
∞ for all ε.

Let D = D�X1; ε�. We let K−k =K−�ak+c3ε; ak+1−c3ε� be defined relative
to D and the usual conformal mapping fx D∗→ D. By Lemma 4, �K̃−k −K−k � ≤
12 for every k.

Fix some d > 0 and let k0 be the largest integer such that ak0
≤ d. Then

�k0 − d/�ε�2c3 + α��� < 2:

Note that K−�0; d� ≥ ∑k0
k=1K

−
k . Recall that K̃−k ’s are independent and so

E
∑k0
k=1 K̃

−
k =

∑k0
k=1 E K̃−k and Var

∑k0
k=1 K̃

−
k =

∑k0
k=1 Var K̃−k . We use Cheby-

shev’s inequality and (4) to see that for arbitrary δ;p > 0 one can find ε0 > 0
such that, for ε < ε0,

�5�

P �K−�0; d� > �1− δ�c7�ε�ε−2α�d/�ε�2c3 + α�� − 2��

≥ P

( k0∑
k=1

K−k > �1− δ�c7�ε�ε−2α�d/�ε�2c3 + α�� − 2�
)

≥ P

( k0∑
k=1

K̃−k > �1− δ�c7�ε�ε−2α�d/�ε�2c3 + α�� − 2� + 12k0

)

≥ P

( k0∑
k=1

K̃−k > �1− δ�c7�ε�ε−2α�d/�ε�2c3 + α�� − 2�

+ 12�d/�ε�2c1 + α�� + 2�
)

≥ P

( k0∑
k=1

K̃−k > �1− δ/2�c7�ε�ε−2α�d/�ε�2c3 + α�� − 2�
)
> 1− p:
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In the same way we obtain

P

( k0+1∑
k=−1

K−k < �1+ δ/2�c7�ε�ε−2α�d/�ε�2c3 + α�� + 2�
)
> 1− p/2:

The maximum cell diameter is bounded by c8ε according to Lemma 2. A
cell must either lie inside

⋃
kW�ak + c3ε; ak+1 − c3ε� or intersect

⋃
kW�ak −

c3ε− c8ε; ak + c3ε+ c8ε�. It follows that

K+�0; d� ≤
k0+1∑
k=−1

K−k +
k0+1∑
k=−1

K+k

where K+k =K+�ak − c3ε− c8ε; ak + c3ε+ c8ε� and the cells are counted in D
relative to the usual conformal mapping. By Lemma 6,

EK+k ≤ c92�c3 + c8�ε−2 = c10ε
−2

and so,

P

( k0+1∑
k=−1

K+k ≥ �2/p��d/�ε�2c3 + α�� + 2�c10ε
−2
)
≤ p/2:

Now choose α = α�δ;p� sufficiently large so that for all ε < ε0,

�2/p��d/�ε�2c3 + α�� + 2�c10 < �δ/2�c7�ε�α�d/�ε�2c3 + α�� − 2�:

Then for sufficiently small ε > 0,

P �K+�0; d� < �1+ δ�c7�ε�ε−2α�d/�ε�2c3 + α�� − 2��

≥ P

( k0+1∑
k=−1

K−k +
k0+1∑
k=−1

K+k < �1+ δ�c7�ε�ε−2α�d/�ε�2c3 + α�� − 2�
)

≥ P

( k0+1∑
k=−1

K−k < �1+ δ/2�c7�ε�ε−2α�d/�ε�2c3 + α�� + 2�
)

−P

( k0+1∑
k=−1

K+k ≥ �2/p��d/�ε�2c3 + α�� + 2�c10ε
−2
)

≥ 1− p/2− p/2 = 1− p:

Since δ and p can be taken arbitrarily small and α can be taken arbitrarily
large, a comparison of (5) with the last inequality easily implies the lemma. 2

Lemma 8. There exists c <∞ such that for all b > 0 and small ε,

E
(

inf
x∈W�0�

Ex
(
τ�W�−b; b�� � T�W�−b�� < T�W�b��

))
≥ cb2ε−2:
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Proof. Fix some b > 0. Let G∗A�x;y� be Green’s function for the reflected
Brownian motion (RBM) in D∗ killed on exiting A ⊂ D∗. We define in an
analogous wayGA�x;y� to be Green’s functions for RBM inD killed on exiting
A ⊂ D. Green’s function is conformal invariant, so

GW�−b; b��f�x�; f�y�� = G∗W∗�−b; b��x;y�
for x;y ∈W∗�−b; b�.

Lemma 7 implies that for any p < 1 and c1 > 0 we can find small ε0 such
that for ε < ε0, we have

�6�
�1− c1�K−�0; b�/2 < K−�0; b/2� < �1+ c1�K−�0; b�/2;
�1− c1�K−�−b;0�/2 < K−�−b/2;0� < �1+ c1�K−�−b;0�/2;
�1− c1�K−�−b;0� < K−�0; b� < �1+ c1�K−�−b;0�;

with probability greater than p.
Standard estimates show that G∗M∗�j1; j2��x;y� > c2�j2−j1� for x;y ∈ �j1+

�j2 − j1�/8; j2 − �j2 − j1�/8�.
Suppose that x ∈ W∗�0�. Lemma 2 and (6) easily imply that for small ε,

Rex belongs to the interval with endpoints

�−K−�−b;0�� + �K−�0; b� − �−K−�−b;0���/8
and

K−�0; b� + �K−�0; b� − �−K−�−b;0���/8
with P -probability greater than p. If this event occurs and (6) holds, then

G∗M∗�−K−�−b;0�;K−�0; b���x;y� > c2�K−�0; b� +K−�−b;0�� > c3K
−�0; b�

for y ∈M∗�−K−�−b/2;0�;K−�0; b/2��. By conformal invariance,

GM�−K−�−b;0�;K−�0; b���f�x�; y� > c3K
−�0; b�

for y ∈ M�−K−�−b/2;0�;K−�0; b/2��. Since M�−K−�−b;0�;K−�0; b�� ⊂
W�−b; b�, we have, for z ∈W�0�,

GW�−b; b��z; y� > GM�−K−�−b;0�;K−�0; b���z; y� > c3K
−�0; b�

for y ∈M�−K−�0; b�/4;K−�0; b�/4� ⊂W�−b/2; b/2�, for small ε with proba-
bility greater than p. Since the area of W�−b/2; b/2� is equal to bε, we obtain
for x ∈W�0� with P -probability greater than p,

�7�
Exτ�W�−b; b�� =

∫
W�−b;b�

GW�−b;b��x;y�dy

≥
∫
W�−b/2; b/2�

GW�−b;b��x;y�dy ≥ bεc3K
−�0; b�:

Next we derive a similar estimate for the conditioned process. Assume that
(6) is true. Then the process starting from a point of W�b/2� has at least
1/8 probability of hitting W�−b� before hitting W�b� and the probability is
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even greater for the process starting from W�−b/2�. The probability of hitting
W�−b/2� before hittingW�b/2� for the process starting fromW�0� is very close
to 1/2. The Bayes’ theorem now implies that for the process starting from a
point of W�0� and conditioned to hit W�−b� before hitting W�b�, the chance of
hitting W�b/2� before hitting W�−b/2� is between 1/16 and 15/16. We have
therefore, assuming (6) and using (7),

Ex
(
τ�W�−b; b�� � T�W�−b�� < T�W�b��

)
≥ 1/16Exτ�W�−b/2; b/2��
≥ bεc4K

−�0; b/2�:
Let A denote the event in (6). Using Lemma 6 and assuming that p is large,
we obtain

E 1A cK−�0; b/2� ≤ �1− p�1/2
(
E 1A cK−�0; b/2�2

)1/2

≤ �1− p�1/2c6bε
−3 ≤ 1/2EK−�0; b/2�:

Again by Lemma 6,

E inf
x∈W�0�

Ex
(
τ�W�−b; b�� � T�W�−b�� < T�W�b��

)
≥ E 1A bεc4K

−�0; b/2�

≥ c7b
2ε−2: 2

Lemma 9. There exists c1 < ∞ such that for any continuous function
ηx R→ R and any a ∈ R, ε > 0 and d > 0, if D = D�η; ε�, x ∈M�a� and the
diameter of M�a− 1; a+ 1� is not greater than d, then

ExT�M�a− 1� ∪M�a+ 1�� ≤ c1d
2;

ExT�M�a− 1� ∪M�a+ 1��2 ≤ c1d
4;

Ex
[
T�M�a− 1� ∪M�a+ 1�� � T�M�a− 1�� < T�M�a+ 1��

]
≤ c1d

2;

Ex
[
T�M�a− 1� ∪M�a+ 1��2 � T�M�a− 1�� < T�M�a+ 1��

]
≤ c1d

4:

Proof. First we deal with the case d = 1.
Consider a point x ∈ M�a�. As a consequence of the assumption that the

diameter of M�a− 1; a+ 1� is not greater than d = 1, the set M�a− 1; a+ 1�
lies below or on the line Q = �y ∈ Cx Imy = Imx + 1�. Let L = f��y ∈
D∗x Imy = 0��. Let V be the union of M�a− 1�, M�a+ 1� and the part of L
between M�a− 1� and M�a+ 1�.

Without loss of generality, assume that x lies on or below L. The vertical
component of the reflected Brownian motion Y in D starting from x will have
only a nonnegative drift (singular drift on the boundary) until Y hits the upper
part of the boundary of D. However, the process Y has to hit V before hitting
the upper part of ∂D. Let S be the hitting time of V. Since V lies below Q,
there are constants t0 <∞ and p0 > 0 independent of η and ε and such that
the process Y can hit V before t0 with probability greater than p0. At time
S the process Y can be either at a point of M�a − 1� ∪M�a + 1� or a point
of L.
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Suppose Y �S� ∈ L. It is easy to see that the reflected Brownian motion in
D∗ starting from any point z of �y ∈ D∗x Imy = 0� between M∗�a − 1� and
M∗�a + 1� can hit M∗�a − 1� ∪M∗�a + 1� before hitting the boundary of D∗
with probability greater than p1 > 0 where p1 is independent of z or a. By
conformal invariance, reflected Brownian motion in D starting from any point
z of L∩M�a−1; a+1� can hit M�a−1�∪M�a+1� before hitting the boundary
of D with probability greater than p1.

Since the diameter of M�a − 1; a + 1� is bounded by 1, there exists t1 <
∞ such that two-dimensional Brownian motion starting from any point of
M�a− 1; a+ 1� will exit this set before time t1 with probability greater than
1−p1/2. It follows that the reflected Brownian motion in D starting from any
point z of L ∩M�a− 1; a+ 1� can hit M�a− 1� ∪M�a+ 1� before time t1 and
before hitting the boundary of D with probability greater than p1/2.

Let t2 = t0+t1. Our argument so far has shown that the process Y starting
from x will hit M�a − 1� ∪M�a + 1� and hence exit the set M�a − 1; a + 1�
before time t2 with probability greater than p2 =df p0p1/2.

By the repeated application of the Markov property at times tk2 , we see that
the chance that Y does not hit M�a − 1� ∪M�a + 1� before tk2 is less than
�1 − p2�k. It follows that the distribution of the hitting time of M�a − 1� ∪
M�a+ 1� for reflected Brownian motion in D starting from any point of M�a�
has an exponential tail and so it has all finite moments. This proves the first
two formulas of the lemma in the case d = 1.

The probability that the reflected Brownian motion in D starting from a
point of M�a� will hit M�a− 1� before hitting M�a+ 1� is equal to 1/2. This
and the first two formulas imply the last two formulas when d = 1.

Note that the estimates are independent of η and ε and so we can apply
them for all d with appropriate scaling. 2

Let ν∗a denote the uniform probability distribution on M∗�a� and let νa =
ν∗a ◦ f−1. The area of a planar set A will be denoted �A�.

Lemma 10. There exists c1 <∞ such that for all a,

Eνa
(
T�M�a− 1�� � T�M�a− 1�� < T�M�a+ 1��

)
≤ c1�M�a− 1; a+ 1��:

Proof. Let G∗M∗�a−1;a+1��ν∗a; y� be Green’s function for the reflected Brown-
ian motion in D∗ with the initial distribution ν∗a and killed upon exiting
M∗�a − 1; a + 1�. By analogy, GM�a−1;a+1��νa; y� will denote Green’s function
for the reflected Brownian motion in D with the initial distribution νa and
killed upon exiting M�a− 1; a+ 1�. It is elementary to see that

G∗M∗�a−1; a+1��ν∗a; y� = c2�1− Rey/a�

for y ∈ M∗�a − 1; a + 1�. In particular, G∗M∗�a−1; a+1��ν∗a; y� ≤ c2 < ∞ for all
y. By the conformal invariance of Green’s function, GM�a−1; a+1��νa; f�y�� =
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G∗M∗�a−1; a+1��ν∗a; y�. Thus GM�a−1; a+1��νa; x� ≤ c2 for all x and so

EνaT�M�a− 1� ∪M�a+ 1�� =
∫
M�a−1;a+1�

GM�a−1;a+1��νa; x�dx

≤ c2�M�a− 1; a+ 1��:
The event �T�M�a− 1�� < T�M�a+ 1��� has probability 1/2, so

Eνa�T�M�a− 1�� � T�M�a− 1�� < T�M�a+ 1��� ≤ 2c2�M�a− 1; a+ 1��: 2

Lemma 11. There exists c <∞ such that for all a; b > 0 and small ε,

E
(

sup
x∈W�0�

Ex
(
τ�W�−a; b�� � T�W�−a�� < T�W�b��

))2

≤ E sup
x∈W�0�

Ex
(
τ�W�−a; b��2 � T�W�−a�� < T�W�b��

)
≤ ca�a+ b�3ε−4:

Proof.
Step 1. The estimates in Step 1 of the proof do not depend on X1. In other

words, they are valid in D�η; ε� for any continuous function η.
Let Y ∗t be the reflected Brownian motion in D∗, Y ∗�0� = x0 ∈ M∗�0�, let

T∗0 = 0, let dk be defined by Re Y ∗�T∗k� = dk and let

T∗k = inf
{
t > T∗k−1x Y ∗t ∈M∗�dk−1 − 1� ∪M∗�dk−1 + 1�

}
; k ≥ 1:

Note that �dk� is a simple symmetric random walk.
Fix some sequence �j0; j1; j2; : : :� of integers such that j0 = 0 and �jk −

jk−1� = 1 for all k. We will denote the event �dk = jk;∀k� by J∗.
Note that if �j− k� = 1 then k̂ = 2j− k is different from k and �k̂− j� = 1.
For j and k such that �j − k� = 1 we define gj;k�x;y� for x ∈ M∗�j� and

y ∈M∗�k� by

gj; k�x;y�dy = Px
(
Y ∗�T�M∗�k��� ∈ dy � T�M∗�k�� < T�M∗�2j− k��

)
:

Recall that ν∗a denotes the uniform probability distribution on M∗�a�. It is
easy to see that there exists c1 <∞ such that for all j; k, such that �j−k� = 1
and all x1; x2 ∈M∗�j�, y ∈M∗�k�,

�8� gj; k�x1; y�
gj; k�x2; y�

< c1:

It follows that for all x1; x2 ∈M∗�jk� and y ∈M∗�jk+1�,
Px0�Y ∗�T∗k+1� ∈ dy � J∗;Y ∗�T∗k� = x1�
Px0�Y ∗�T∗k+1� ∈ dy � J∗;Y ∗�T∗k� = x2�

< c1

and so

�9� Px0
(
Y ∗�T∗k+1� ∈ dy � J∗;Y ∗�T∗k� = x1

)
< c2ν

∗
jk+1
�dy�:
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We now introduce a few objects for the reflected Brownian motion in D
which are completely analogous to those defined for Y ∗. Recall that Yt is the
reflected Brownian motion in D. Let Y �0� = y0 = f�x0� ∈ M�0�, let T0 = 0,
let dk be defined by Re Y �Tk� = dk and let

Tk = inf
{
t > Tk−1x Yt ∈M�dk−1 − 1� ∪M�dk−1 + 1�

}
; k ≥ 1:

The dk’s are the same for Y and Y ∗ because Y is an appropriate time change
of f�Y ∗�. The event �dk = jk;∀k� will be called J in this new context. We
obtain from (9)

�10� Py0
(
Y �Tk+1� ∈ dy � J ;Y �Tk� = x1

)
< c2νjk+1

�dy�;

where νa = ν∗a ◦ f−1. Hence for all x ∈M�jk� and m ≥ k+ 1,

Ey0
(
Tm+1 −Tm � J ;Y �Tk� = x

)

≤ c2E
νjm
(
T�M�jm+1�� � T�M�jm+1�� < T�M�2jm − jm+1��

)
:

Lemma 10 yields

Ey0
(
Tm+1 −Tm � J ;Y �Tk� = x1

)
≤ c3�M�jm − 1; jm + 1��

and so

Ey0
(
�Tm+1−Tm��Tk−Tk−1� � J ;F �Tk�

)
≤ c3�M�jm−1; jm+1���Tk−Tk−1�:

If we remove the conditioning on F �Tk� and apply again (10) and Lemma 10,
we obtain the following estimate for all m ≥ k+ 1 and k ≥ 2:

�11�
Ey0

(
�Tm+1 −Tm��Tk −Tk−1� � J

)

≤ c4�M�jm − 1; jm + 1���M�jk−1 − 1; jk−1 + 1��:

By Lemma 9, for all m ≥ 0,

Ey0
(
�Tm+1 −Tm�2 � J

)
≤ c5 diam�M�jm − 1; jm + 1��4

and so, by the Cauchy–Schwarz inequality, for any k ≥ 1, m ≥ 0,

Ey0
(
�Tm+1 −Tm��Tk −Tk−1� � J

)

≤ c6 diam�M�jm − 1; jm + 1��2 diam�M�jk−1 − 1; jk−1 + 1��2:

This and Lemma 2 imply

�12� Ey0
(
�Tm+1 −Tm��Tk −Tk−1� � J

)
≤ c7ε

4:

Fix some integers Ia < 0 and Ib > 0 and let k0 be the smallest integer
such that jk0

= Ia or jk0
= Ib. Let Nk be the number of m such that m ≤ k0
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and k = jm. Let N = maxk Nk. We use (11) and (12) to derive the following
estimate,

Ey0�T2
k0
� J � = Ey0

(( k0−1∑
k=0

Tk+1 −Tk
)2 ∣∣ J

)

≤ Ey0

( k0−1∑
k;m=1
�k−m�≥2

�Tm+1 −Tm��Tk+1 −Tk�
∣∣ J

)

+Ey0

( k0−1∑
k;m=0
�k−m�≤1

�Tm+1 −Tm��Tk+1 −Tk�
∣∣ J

)

+Ey0

(
2
k0−1∑
m=0

�Tm+1 −Tm��T1 −T0�
∣∣ J

)

≤
Ib∑

k;m=Ia
c4Nm�M�m− 1;m+ 1��Nk�M�k− 2; k�� +

k0−1∑
k=0

c8ε
4

≤ c2
4

( Ib∑
m=Ia

N �M�m− 1;m+ 1��
)2

+ c8k0ε
4

≤ c9N 2

∣∣∣∣
Ib⋃

m=Ia
C�m�

∣∣∣∣
2

+ c8k0ε
4:

Now we remove conditioning on J . The quantities N and k0 become random
variables defined relative to the random sequence �dk� in place of �jk�. We
recall that �dk� is a simple random walk on integers and so Ek0 ≤ c10�IaIb�
and EN 2 ≤ c11�IaIb�. This implies that

Ey0T2
k0
≤ c12�IaIb�

∣∣∣∣
Ib⋃

m=Ia
C�m�

∣∣∣∣
2

+ c13�IaIb�ε4:

Before we go to the next step of the proof, we note that the last estimate
applies not only to y0 ∈M�0� but to y0 ∈W�0� as well. To see this, note that
if y0 ∈ W�0�, then y0 ∈ M�k1� where k1 is not necessarily an integer. Then
Tk0

represents the exit time from M�k1 − Ia; k1 + Ib�.
Step 2. Fix some a; b > 0 and apply the last result with Ia = −K+�−a;0�

and Ib = K+�0; b�. With this choice of Ia and Ib we have τ�W�−a; b�� ≤ Tk0

for y0 ∈W�0�. By Lemma 2, cells which intersect the worm W�−a; b� cannot
extend beyondW�−a−c14ε; b+c14ε�. Hence the area of

⋃Ib
m=Ia C�m� is bounded

by c15�a+ b�ε. This yields for small ε,

Ey0T2
k0
≤ c16�IaIb��a+ b�2ε2 + c13�IaIb�ε4 ≤ c17�IaIb��a+ b�2ε2:
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The probability of �T�W�−a�� < T�W�b��� is bounded below by

K−�0; b�/�K+�−a;0� +K+�0; b��:
Thus

Ey0
(
τ�W�−a; b��2 � T�W�−a�� < T�W�b��

)

≤ Ey0
(
τ�W�−a; b��2�K+�−a;0� +K+�0; b��/K−�0; b�

)

≤ Ey0
(
T2
k0
�K+�−a;0� +K+�0; b��/K−�0; b�

)

≤ c17�IaIb��a+ b�2ε2(�K+�−a;0� +K+�0; b��/K−�0; b�
)

≤ c18K
+�−a;0�K+�0; b��a+ b�2ε2(�K+�−a;0� +K+�0; b��/K−�0; b�

)

= c18�a+ b�2ε2
(
K+�−a;0�2K+�0; b�

K−�0; b� + K
+�−a;0�K+�0; b�2

K−�0; b�

)
:

Lemma 6 implies that

E
K+�−a;0�2K+�0; b�

K−�0; b� ≤
(
EK+�−a;0�6

)1/3(
EK+�0; b�3

)1/3(
EK−�0; b�−3)1/3

≤ �c19a
6ε−18�1/3�c20b

3ε−9�1/3�c21b
−3ε9�1/3 = c22a

2ε−6:

We obtain in a similar way

E
K+�−a;0�K+�0; b�2

K−�0; b� ≤ c23abε
−6:

Hence

E
(

sup
y0∈W�0�

Ey0
(
τ�W�−a; b��

∣∣T�W�−a�� < T�W�b��
))2

≤ E sup
x∈W�0�

Ex
(
τ�W�−a; b��2

∣∣T�W�−a�� < T�W�b��
)

≤ c18�a+ b�2ε2(c22a
2ε−6 + c23abε

−6) ≤ c24a�a+ b�3ε−4: 2

The following definitions are similar to those used in the proof of Lemma
11 but not identical to them. Suppose that b > 0. Let Y ∗t be the reflected
Brownian motion in D∗, Y ∗�0� = x ∈ W∗�0�, let T∗0 = 0, let dk be defined by
Re Y ∗�T∗k� = dk and let

T∗k = inf
{
t > T∗k−1x Y ∗t ∈W∗��dk−1 − 1�b� ∪W∗��dk−1 + 1�b�

}
; k ≥ 1:

Fix some sequence �j0; j1; j2; : : :� of integers such that j0 = 0 and �jk−jk−1� =
1 for all k. We will denote the event �dk = jk;∀k� by J∗. The corresponding
definitions for the reflected Brownian motion in D are as follows. Let Yt be
the reflected Brownian motion in D, Y �0� = x ∈ W�0�, let T0 = 0, let dk be
defined by Re Y �Tk� = dk and let

Tk = inf
{
t > Tk−1x Yt ∈W��dk−1 − 1�b� ∪W��dk−1 + 1�b�

}
; k ≥ 1:
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Recall that the process Y is constructed as a time change of f�Y ∗� and so
dk’s are the same for Y and Y ∗. The event J∗ = �dk = jk;∀k� will be also
called J .

Let hk�x;y� be defined for x ∈W�0�, y ∈W�jkb� by

hk�x;y�dy = Px�Y �Tk� ∈ dy � J �:

Lemma 12. There exist ε0; c1; c2 ∈ �0;1� such that

hk�x1; y� ≥ hk�x2; y��1− c1c
k
2�

and

hk�x1; y� ≤ hk�x2; y��1+ c1c
k
2�

for x1; x2 ∈W�0� and y ∈W�jkb� provided ε < ε0.

Proof. Recall that if �j− k� = 1 then k̂ =df 2j− k is different from k and
�k̂− j� = 1.

For j and k such that �j− k� = 1, we define g∗j; k�x;y� for x ∈W∗�jb� and
y ∈W∗�kb� by

g∗j; k�x;y�dy = Px
(
Y∗�T�W∗�kb��� ∈ dy � T�W∗�kb�� < T�W∗��2j− k�b��

)
:

For small ε, the sets W∗�jb� and W∗�kb� are separated by at least two cells
in D∗, by Lemma 2. This and (8) easily imply that there exists c1 < ∞ such
that for all j, k, such that �j− k� = 1 and all x1; x2 ∈W∗�jb�, y ∈W∗�kb�,

�13�
g∗j; k�x1; y�
g∗j; k�x2; y�

< c1:

Let h∗k�x;y� be defined for x ∈W∗�0�, y ∈W∗�jkb� by

h∗k�x;y�dy = Px�Y∗�T∗k� ∈ dy � J∗�:
By the strong Markov property,

�14� h∗k+1�x;y� =
∫
W∗�jkb�

h∗k�x; z�g∗jk; jk+1
�z; y�dz:

We will prove by induction on k that there exist constants 0 < c1, c2 < 1
such that for all x1, x2 ∈W∗�0� and y1, y2 ∈W∗�jkb�,

�15� h∗k�x1; y1�
h∗k�x1; y2�

≥ h
∗
k�x2; y1�
h∗k�x2; y2�

�1− c1c
k
2�:

It is elementary to verify that the inequality holds for k = 1 and some c1; c2 ∈
�0;1� using (8) and the fact that W∗�0� and W∗�j1b� are separated by at least
two cells for small ε.

We proceed with the proof of the induction step. Assume that (15) holds
for k. We have from (13),

�16�
g∗jk; jk+1

�x1; y1�
g∗jk; jk+1

�x1; y2�
≥ c3

g∗jk; jk+1
�x2; y1�

g∗jk; jk+1
�x2; y2�
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for some constant c3 > 0, all k ≥ 1, x1, x2 ∈W∗�jkb� and y1, y2 ∈W∗�jk+1b�.
We can adjust c1 and c2 in (15) for the case k = 1 so that c2 ≥ 1−c2

3. Lemma 1
implies, in view of (14), (15) and (16), that

h∗k+1�x1; y1�
h∗k+1�x1; y2�

≥ h
∗
k+1�x2; y1�
h∗k+1�x2; y2�

��1− c1c
k
2� + c2

3c1c
k
2�

≥ h
∗
k+1�x2; y1�
h∗k+1�x2; y2�

�1− c1c
k+1
2 �

for x1, x2 ∈ W∗�0� and y1, y2 ∈ W∗�jk+1b�. This completes the proof of the
induction step. We conclude that (15) holds for all k.

Formula (15) easily implies

�17� h∗k�x1; y� ≥ h∗k�x2; y��1− c4c
k
5�

and

�18� h∗k�x1; y� ≤ h∗k�x2; y��1+ c4c
k
5�

for x1, x2 ∈W∗�0� and y ∈W∗�jkb�, with c4, c5 ∈ �0;1�.
Now we will translate these estimates into the language of reflected Brown-

ian motion in D. Recall the definition of Tk’s and J given before the lemma.
The function hk�x;y� has been defined for x ∈W�0�, y ∈W�jkb� by

hk�x;y�dy = Px�Y �Tk� ∈ dy � J �:

The conformal invariance of reflected Brownian motion allows us to deduce
from (17) and (18) that for x1; x2 ∈W�0� and y ∈W�jkb�,

hk�x1; y� ≥ hk�x2; y��1− c4c
k
5�

and

hk�x1; y� ≤ hk�x2; y��1+ c4c
k
5�

with c4; c5 ∈ �0;1�. 2

Remark 2. We list two straighforward consequences of the last lemma.
(i) An application of the strong Markov property shows that for m < k, x ∈
W�0�, z1, z2 ∈W�jmb�, y ∈W�jkb�,

�19�
Px�Y �Tk� ∈ dy � Y �Tm� ∈ dz1;J �

≥ �1− c1c
k−m
2 �Px�Y �Tk� ∈ dy � Y �Tm� ∈ dz2;J �

and

�20�
Px�Y �Tk� ∈ dy � Y �Tm� ∈ dz1;J �

≤ �1+ c1c
k−m
2 �Px�Y �Tk� ∈ dy � Y �Tm� ∈ dz2;J �:
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(ii) By averaging over appropriate sequences �jk� we obtain the following
estimate. For every a, b > 0 and δ > 0 we can find small ε0 > 0 such that for
ε < ε0, x1, x2 ∈W�0� and y ∈W�−a�,

�1− δ�Px1�Y �τ�W�−a; b��� ∈ dy � T�W�−a�� < T�W�b���
≤ Px2�Y �τ�W�−a; b��� ∈ dy � T�W�−a�� < T�W�b���
≤ �1+ δ�Px1�Y �τ�W�−a; b��� ∈ dy � T�W�−a�� < T�W�b���:

Lemma 13. For b > 0 and an integer N1 > 1, let bj = bj/N1. There exist
0 < c1 < c2 < ∞ and c�ε� ∈ �c1; c2� independent of b with the following
property. For every δ > 0 and p > 0, there exists N2 < ∞ such that the
following inequalities hold with probability greater than 1−p when N1 > N2
and ε < ε0�N1�:∣∣∣∣1− c�ε�ε

2N1b
−2

×
N1−1∑
j=0

sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1�� � T�W�bj+1�� < T�W�bj−1��

)∣∣∣∣ < δ;

∣∣∣∣1− c�ε�ε
2N1b

−2

×
N1−1∑
j=0

sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1�� � T�W�bj+1�� > T�W�bj−1��

)∣∣∣∣ < δ;

∣∣∣∣1− c�ε�ε
2N1b

−2

×
N1−1∑
j=0

inf
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1�� � T�W�bj+1�� < T�W�bj−1��

)∣∣∣∣ < δ;

∣∣∣∣1− c�ε�ε
2N1b

−2

×
N1−1∑
j=0

inf
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1�� � T�W�bj+1�� > T�W�bj−1��

)∣∣∣∣ < δ:

Proof. Fix some d > 0. Suppose a, δ1, δ2 > 0 are small. For x ∈W�0�,
Ex�τ�W�−d;d�� � T�W�−d�� < T�W�d���

= Ex�τ�W�−a;d�� � T�W�−a�� < T�W�d���
+Ex�τ�W�−d;d�� − τ�W�−a;d�� � T�W�−d�� < T�W�d���:

Remark 2(ii) and the strong Markov property imply that the Radon–Nikodym
derivative for Px1 and Px2 distributions of the post-τ�W�−a;d�� process is
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bounded below and above by 1− δ1 and 1+ δ1 for all x1; x2 ∈W�0� provided
ε is small. Suppose x1 = �0;0�. We use Lemma 11 to see that

�1− δ1�EEx1
(
τ�W�−d;d�� − τ�W�−a;d�� � T�W�−d�� < T�W�d��

)

≤ E inf
x∈W�0�

Ex
(
τ�W�−d;d�� − τ�W�−a;d�� � T�W�−d�� < T�W�d��

)

≤ E inf
x∈W�0�

Ex
(
τ�W�−d;d�� � T�W�−d�� < T�W�d��

)

≤ E sup
x∈W�0�

Ex
(
τ�W�−d;d�� � T�W�−d�� < T�W�d��

)

≤ E sup
x∈W�0�

Ex
(
τ�W�−a;d�� � T�W�−a�� < T�W�d��

)

+ E sup
x∈W�0�

(
τ�W�−d;d�� − τ�W�−a;d�� � T�W�−d�� < T�W�d��

)

≤ c3a
1/2�a+ d�3/2ε−2

+ �1+ δ1�EEx1
(
τ�W�−d;d�� − τ�W�−a;d�� � T�W�−d�� < T�W�d��

)
:

Since a and δ1 can be taken arbitrarily small, the following estimate holds for
any δ2 > 0 provided ε is sufficiently small:

�21�
E sup
x∈W�0�

Ex�τ�W�−d;d�� � T�W�−d�� < T�W�d���

≤ �1+ δ2�E inf
x∈W�0�

Ex
(
τ�W�−d;d�� � T�W�−d�� < T�W�d��

)
:

Lemma 11 applied with a = b shows that

E
[

sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1�� � T�W�bj−1�� < T�W�bj+1��

)]2
≤ c3�b/N1�4ε−4:

Lemmas 8 and 11 imply that the random variables

sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1�� � T�W�bj−1�� < T�W�bj+1��

)

are i.i.d. with the mean bounded below by c3�b/N1�2ε−2 and variance bounded
above by c4�b/N1�4ε−4. Hence the mean is bounded above by c5�b/N1�2ε−2.
The first formula of the lemma now follows easily from the Chebyshev inequal-
ity. The second formula follows by symmetry. The last two formulas follow in
a similar way. The only thing to be checked is that the normalizing constants
c�ε� may be chosen the same for the the last two formulas as for the first ones.
This, however, can be deduced from (21) applied with d = b/N1 since δ2 can
be taken arbitrarily small. 2
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We recall some definitions stated before Lemma 12. For the reflected Brown-
ian motion Y in D with Y �0� = x ∈W�0�, we let T0 = 0, let dk be defined by
Re Y �Tk� = dk and let

Tk = inf
{
t > Tk−1x Yt ∈W��dk−1 − 1�b� ∪W��dk−1 + 1�b�

}
; k ≥ 1:

We consider a sequence �j0; j1; j2; : : :� of integers such that j0 = 0 and �jk −
jk−1� = 1 for all k. The event �dk = jk;∀k� is denoted by J .

Lemma 14. There exists c < ∞ such that for all b > 0, integers n > 1 and
sufficiently small ε > 0,

EEx��Tn −Ex�Tn � J ��2 � J � ≤ cnb4ε−4:

Proof. We start with an estimate for the covariance of Tm − Tm−1 and
Tk −Tk−1 when k− 1 > m+ 1. Remark 2(i) implies that

Ex�Tk −Tk−1 � Y �Tm+1� = y;J � ≥ �1− c1c
k−m
2 �Ex�Tk −Tk−1 � J �

and

Ex�Tk −Tk−1 � Y �Tm+1� = y;J � ≤ �1+ c1c
k−m
2 �Ex�Tk −Tk−1 � J �:

These inequalities imply that

�22� Ex
(
�1k−1T−Ex�1k−1T � J �� � Y �Tm+1�=y;J

)
≤ c1c

k−m
2 Ex�1k−1T � J �

where 1kT = Tk+1 − Tk. For small ε, the sets W�jm+1b� and W�jmb� are
separated by at least two cells, by Lemma 2. Some standard arguments then
show that the ratio of densities of Y �Tm� under conditional distributions given
�Y �Tm+1� = y1�∩J or given �Y �Tm+1� = y2�∩J is bounded above and below
by strictly positive finite constants which do not depend on y1; y2 ∈W�jm+1b�.
It follows that for every y ∈W�jm+1b�,

Ex�1m−1T � Y �Tm+1� = y;J � ≤ c3E
x�1m−1T � J �:

This, (22) and an application of the strong Markov property at Tm+1 yield

Ex
(
��1k−1T−Ex�1k−1T � J ���1m−1T−Ex�1m−1T � J ��� � J

)

≤ c4c
k−m
2 Ex�1k−1T � J �Ex�1m−1T � J �:
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Hence we obtain

Ex��Tn −Ex�Tn � J ��2 � J �

= Ex

(( n−1∑
k=0

�1kT−Ex�1kT � J ��
)2

� J
)

≤ Ex

(
2
n−1∑
m=0

�m+2�∧�n−1�∑
k=m

��1kT−Ex�1kT � J ���1mT−Ex�1mT � J ��� � J
)

+Ex

(
2
n−1∑
m=0

n−1∑
k=m+3

��1kT−Ex�1kT � J ���1mT−Ex�1mT � J ��� � J
)

≤ 2
n−1∑
m=0

�m+2�∧�n−1�∑
k=m

(
Ex��1kT−Ex�1kT � J ��2 � J �

)1/2

×
(
Ex��1mT−Ex�1mT � J ��2 � J �

)1/2

+ 2
n−1∑
m=0

n−1∑
k=m+3

c4c
k−m
2 Ex�1kT � J �Ex�1mT � J �

df= 41 +42:

In order to estimate E41 we apply Lemma 11 to see that

E
(
Ex��1kT−Ex�1kT � J ��2 � J �

)1/2(
Ex��1mT−Ex�1mT � J ��2 � J �

)1/2

≤
(
E
(
Ex��1kT−Ex�1kT � J ��2 � J �

))1/2

×
(
E
(
Ex��1mT−Ex�1mT � J ��2 � J �

))1/2

≤ �c1b
4ε−4�1/2�c1b

4ε−4�1/2 = c1b
4ε−4:

We obtain

E41 = E 2
n−1∑
m=0

�m+2�∧�n−1�∑
k=m+1

(
Ex��1kT−Ex�1kT � J ��2 � J �

)1/2

×
(
Ex��1mT−Ex�1mT � J ��2 � J �

)1/2

≤ 2
n−1∑
m=0

�m+2�∧�n−1�∑
k=m+1

c1b
4ε−4 ≤ c2nb

4ε−4:

Next we estimate E42. We use Lemma 11 again to obtain

EEx�1kT � J �Ex�1mT � J � ≤
(
E �Ex�1kT � J ��2

)1/2(
E �Ex�1mT � J ��2

)1/2

≤ �c1b
4ε−4�1/2�c1b

4ε−4�1/2 = c1b
4ε−4
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and so

E42 = E 2
n−1∑
m=0

n−1∑
k=m+3

c4c
k−m
2 Ex�1kT � J �Ex�1mT � J �

≤ 2
n−1∑
m=0

n−1∑
k=m+3

c4c
k−m
2 c5b

4ε−4 ≤ c6nb
4ε−4:

We conclude that

EEx��Tn −Ex�Tn � J ��2 � J � ≤ E41 + E42 ≤ c7nb
4ε−4: 2

We will need two estimates involving downcrossings of one-dimensional
Brownian motion. For convenience we will state the next lemma in terms of
a special Brownian motion, namely Re Y ∗. Let U∗�x; x+ a; t� be the number
of crossings from x to x+ a by the process Re Y ∗ before time t.

Lemma 15. (i) For every δ;p > 0 there exist ζ0, γ0 > 0 and M0 < ∞ such
that if ζ < ζ0, γ < γ0, M>M0, and for some random time S both events

{ ∞∑
j=−∞

U∗��j− γ�ζ; �j+ 1+ γ�ζ;S� ≤M
}

and
{ ∞∑
j=−∞

U∗��j+ γ�ζ; �j+ 1− γ�ζ;S� ≥M
}

hold with probability greater than 1−p/4, then �1−S/�Mζ2�� < δ with prob-
ability greater than 1− p.

(ii) Let

Qn = min
nN1≤j<�n+1�N1

U∗��j− γ�ζ/N1; �j+ 1+ γ�ζ/N1; �1− η�Mζ2�:

For every δ;p > 0 there exist M0; η0; γ0 > 0 and N2 < ∞ such that for any
ζ > 0, M>M0, η < η0, γ < γ0 and N1 > N2 we have

�1− δ�MN2
1 ≤N1

∞∑
n=−∞

Qn

≤
∞∑

j=−∞
U∗��j+ γ�ζ/N1; �j+ 1− γ�ζ/N1; �1+ η�Mζ2�

≤ �1+ δ�MN2
1

with probability greater than 1− p.
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Proof. (i) Fix arbitrarily small δ;p > 0. Let Lat denote the local time of
the Brownian motion Re Y ∗ at the level a at time t. See Karatzas and Shreve
(1988) for an introduction to the theory of local time. By Brownian scaling,
the distributions of Lat and c−1Lactc2 are the same. We will use the following
inequality of Bass (1987):

�23� P

(
sup

a∈R;t∈�0;T�

∣∣∣∣U
∗�a; a+ ε; t� − 1

ε
Lat

∣∣∣∣ ≥ λ
√
T/ε

)
≤ exp�−c1λ�:

Let S1 = �1 − δ�Mζ2 and suppose that j0 is a large integer whose value
will be chosen later in the proof. The following eqalities hold in the sense of
distributions:

�24�

( ∞∑
j=−∞

U∗��j+ γ�ζ; �j+ 1− γ�ζ;S1�
)
−M

=
∑

�j�>j0

U∗��j+ γ�ζ; �j+ 1− γ�ζ;S1�

+
∑

�j�≤j0

U∗��j+ γ�ζ; �j+ 1− γ�ζ;S1� −
∑

�j�≤j0

1
ζ�1− 2γ�L

�j+γ�ζ
S1

+
( ∑

�j�≤j0

1
ζ�1− 2γ�L

�j+γ�ζ
S1

)
−M

=
∑

�j�>j0

U∗��j+ γ�ζ; �j+ 1− γ�ζ;S1�

+
∑

�j�≤j0

(
U∗��j+ γ�ζ; �j+ 1− γ�ζ;S1� −

1
ζ�1− 2γ�L

�j+γ�ζ
S1

)

+
( �1− δ�M

1− 2γ

∑

�j�≤j0

1√
�1− δ�M

L
�j+γ�/

√
�1−δ�M

1

)

− 1− δ2

1− 2γ
M− δ

2 − 2γ
1− 2γ

M:

Suppose that γ is so small that �δ2−2γ�M/�1−2γ� > �δ2/2�M. Let j0 = c1

√
M

with c1 so large that the probability that the Brownian motion hits �j0+1−γ�ζ
or �j0 + γ�ζ before time S1 is less than p/16. With this choice of j0, the sum

∑

�j�>j0

U∗��j+ γ�ζ; �j+ 1− γ�ζ;S1�

is equal to 0 with probability exceeding 1−p/16. Recall that a→ La1 is almost
surely continuous and has a finite support, and

∫∞
−∞L

a
1 da = 1. Hence, we can

increase the value of c1, if necessary, and choose sufficiently large M so that

∑

�j�≤j0

1√
�1− δ�M

L
�j+γ�/

√
�1−δ�M

1 ≤ �1+ δ�
∫ ∞
−∞

La1 da = �1+ δ�;
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with probability greater than 1− p/16. Then
( �1− δ�M

1− 2γ

∑

�j�≤j0

1√
�1− δ�M

L
�j+γ�/

√
�1−δ�M

1

)
− 1− δ2

1− 2γ
M < 0

with probability greater than 1− p/16.
Let λ = c2/

√
ζ. First choose c2 so small that

2j0λ
√
S1/�ζ�1− 2γ�� = 2c1

√
M�c2/

√
ζ�
√
�1− δ�Mζ2/�ζ�1− 2γ��

≤ �δ2/4�M:

Then assume that ζ is so small that e−cλ ≤ p/16. In view of (23) we have

∑

�j�≤j0

(
U∗��j+ γ�ζ; �j+ 1− γ�ζ;S1� −

1
ζ�1− 2γ�L

�j+γ�ζ
S1

)

≤ 2j0λ
√
S1/�ζ�1− 2γ��

≤ �δ2/4�M;

with probability greater than 1 − e−cλ ≥ 1 − p/16. Combining (24) with the
estimates following it we see that

( ∞∑
j=−∞

U∗��j+ γ�ζ; �j+ 1− γ�ζ;S1�
)
−M< 0;

with probability greater than 1 − 3p/16. The function s→ U∗��j + γ�ζ; �j +
1− γ�ζ; s� is nondecreasing, so if we assume that

( ∞∑
j=−∞

U∗��j+ γ�ζ; �j+ 1− γ�ζ;S�
)
−M< 0;

for some random variable S with probability less than p/4 then it follows
that S ≥ S1 = �1 − δ�Mζ2 with probability greater than 1 − 3p/16 − p/4 >
1−p/2. We can prove in a completely analogous way that S ≤ �1+δ�Mζ2 with
probability greater than 1− p/2. This easily implies part (i) of the lemma.

(ii) We leave the proof of part (ii) of the lemma to the reader. The proof
proceeds along the same lines as the proof of part (i), that is, it uses an ap-
proximation of the number of upcrossings by the local time and the continuity
of the local time as a function of the space variable. 2

Suppose b > 0 and N1 > 1 is an integer. Let T0 = 0, let dk be defined by
Re Y �Tk� = dk and let

Tk = inf
{
t > Sk−1x Yt ∈W��dk−1 − 1�b� ∪W��dk−1 + 1�b�

}
; k ≥ 1:

Let R = �1/b2� and bj = jb/N1. Let U�x; x + a; t� denote the number of
crossings from the level x to x + a by the process Re Y before time t and
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Nj = U�bj; bj+1;TR�. Let

Qn = min
nN1≤j<�n+1�N1

Nj

and N +
j = Nj − Qn�j� where n�j� is an integer such that n�j�N1 ≤ j <

�n�j� + 1�N1.

Lemma 16. For every p; δ > 0 there exist ε0; b0 > 0 and N2 <∞ such that
if ε < ε0, b ≤ b0 and N1 ≥N2 then with probability greater than 1− p,

�1− δ��N1/b�2 ≤N1

∞∑
n=−∞

Qn ≤
∞∑

j=−∞
Nj ≤ �1+ δ��N1/b�2

and so
∞∑

j=−∞
N +
j ≤ δ�N1/b�2:

Proof. Find large M0 as in Lemma 15(i) with δ replaced by η = η0/2 of
Lemma 15(ii). Then suppose that b < M−1/2

0 /2.
LetN0 be so large that if Y ∗0 ∈M∗�0� then the process Re Y ∗ will cross from

−a to a more than R times before hitting −N0a/4 or N0a/4 with probability
greater than 1 − p (N0 does not depend on a by scaling). By Lemma 7, if
ε is sufficiently small, K−�−N0b;0� > N0K

+�−b; b�/4 and K−�0;N0b� >
N0K

+�−b; b�/4 with probability greater than 1−p. The conformal invariance
of reflected Brownian motion then implies that for x ∈W�0�,
�25� TR < T�W�−N0b� ∪W�N0b��
with P x-probability greater than 1− 2p.

Suppose that N1 is greater than N2 in Lemma 15(ii). Let c�ε� be the con-
stants from Lemma 7, let ξ = bc−1�ε�ε−3N−1

1 and recall that bj = jb/N1.
Suppose that γ > 0 is less than both constants γ0 of parts (i) and (ii) of
Lemma 15. Let c1 < ∞ be so large that the diameter of a cell is bounded by
c1ε, as in Lemma 2. We invoke Lemma 7 to see that there exists ε0 > 0 so
small that all of the following inequalities:

�26�

�ε3c�ε�K+�−c1ε; bj + c1ε� − bj� < γb/N1; 1 ≤ j ≤ 2N0N1;

�ε3c�ε�K−�c1ε; bj − c1ε� − bj� < γb/N1; 1 ≤ j ≤ 2N0N1;

�ε3c�ε�K+�−bj − c1ε; c1ε� − bj� < γb/N1; 1 ≤ j ≤ 2N0N1;

�ε3c�ε�K−�−bj + c1ε;−c1ε� − bj� < γb/N1; 1 ≤ j ≤ 2N0N1;

hold simultaneously with probability greater than 1 − p provided ε < ε0.
Inequalities (26) imply that for all j = −N0N1; : : : ;N0N1, we have the fol-
lowing:

(i) M��j− γ�ξ� lies to the left of W�bj�;
(ii) M��j+ γ�ξ� lies to the right of W�bj�.
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Let ζ = bc−1�ε�ε−3 = ξN1. If (25), (i) and (ii) hold then an upcrossing of
��j−γ�ζ; �j+1+γ�ζ� by Re Y ∗ must correspond to an upcrossing of �jb; �j+
1�b� by Re Y . Vice versa, an upper bound for the number of upcrossings of
�jb; �j + 1�b� by Re Y is provided by the number of upcrossings of ��j +
γ�ζ; �j+ 1− γ�ζ� by Re Y ∗. Recall that κ denotes the time change for f�Y ∗�,
that is, Y �κ�t�� = f�Y ∗�t��. Let S = κ−1�TR�. We have

∞∑
j=−∞

U∗��j− γ�ζ; �j+ 1+ γ�ζ;S� ≤ R

and
∞∑

j=−∞
U∗��j+ γ�ζ; �j+ 1− γ�ζ;S� ≥ R:

Lemma 15(i) implies that with probability greater than 1− 4p,

�27� �1− η�Rζ2 ≤ S ≤ �1+ η�Rζ2:

We apply similar analysis in order to compare the crossings of intervals
��j − γ�ξ; �j + 1 + γ�ξ�. An upcrossing of ��j − γ�ξ; �j + 1 + γ�ξ� by Re Y ∗

must correspond to an upcrossing of �bj; bj+1� by Re Y , assuming (26). The
number of upcrossings of �bj; bj+1� by Re Y does not exceed the number of
upcrossings of ��j+ γ�ξ; �j+ 1− γ�ξ� by Re Y ∗. This, (27) and Lemma 15(ii)
yield
�1− δ�RN2

1

≤N1

∞∑
n=−∞

min
nN1≤j<�n+1�N1

U∗��j− γ�ζ/N1; �j+ 1+ γ�ζ/N1; �1− η�Rζ2�

≤N1

∞∑
n=−∞

min
nN1≤j<�n+1�N1

U�bj; bj+1;TR�

≤
∞∑

j=−∞
U�bj; bj+1;TR�

≤
∞∑

j=−∞
U∗��j+ γ�ζ/N1; �j+ 1− γ�ζ/N1; �1+ η�Rζ2� ≤ �1+ δ�RN2

1:

Since (27) holds with probability greater than 1 − 4p, the probability of the
event in the last formula is not less than 1 − 5p provided b and ε are small
and N1 is large. 2

Recall TR from the last lemma.

Lemma 17. Let R = R�t� = �t/b2�. There exist 0 < c1 < c2 < ∞ and
c3�ε� ∈ �c1; c2�, ε > 0, with the following property. For every t > 0 and δ > 0
we can find b0 > 0 and ε0 > 0 such that

P ��c3�ε�ε2TR − t� > δ� < p
provided b < b0 and ε < ε0.
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Proof. We will only consider the case t = 1. Take any p; δ1 ∈ �0;1�.
Choose b > 0 and N1, which satisfy Lemma 16. We will impose more con-

ditions on these numbers later in the proof. First of all, we will assume that
b2/p < δ1. Take any δ > 0 with δ < δ/p < δ1. Recall a large integer N0 from
the proof of Lemma 16 so that we have

�28� TR < T�W�−N0b� ∪W�N0b��

for x ∈W�0� with P x-probability greater than 1− 2p.
Recall that for N1 we write bj = jb/N1 and bmj = mb + bj. According to

Lemma 13 we can find large N1, small ε0 = ε0�N1� > 0, constants 0 < c− <
c+ <∞ and c4�ε� ∈ �c−; c+� such that

∣∣∣∣1− c4�ε�ε2N1b
−2

N1−1∑
j=0

sup
x∈W�bmj �

Ex
(
τ�W�bmj−1; b

m
j+1��

∣∣

T�W�bmj+1�� < T�W�bmj−1��
)∣∣∣∣ < δ;

∣∣∣∣1− c4�ε�ε2N1b
−2

N1−1∑
j=0

sup
x∈W�bmj �

Ex
(
τ�W�bmj−1; b

m
j+1��

∣∣

T�W�bmj+1�� > T�W�bmj−1��
)∣∣∣∣ < δ;

∣∣∣∣1− c4�ε�ε2N1b
−2

N1−1∑
j=0

inf
x∈W�bmj �

Ex
(
τ�W�bmj−1; b

m
j+1��

∣∣

T�W�bmj+1�� < T�W�bmj−1��
)∣∣∣∣ < δ;

∣∣∣∣1− c4�ε�ε2N1b
−2

N1−1∑
j=0

inf
x∈W�bmj �

Ex
(
τ�W�bmj−1; b

m
j+1��

∣∣

T�W�bmj+1�� > T�W�bmj−1��
)∣∣∣∣ < δ;

(29)

simultaneously for all m ∈ �−N0;N0� with probability greater than 1 − p
when ε < ε0.

Recall the following notation introduced before Lemma 16. We write R =
�1/b2�. The number of crossings from the level x to x+a by the process Re Y
before time t is denoted U�x; x+ a; t� and we let Nj = U�bj; bj+1;TR�. Let

Qn = min
nN1≤j<�n+1�N1

Nj
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and let N +
j = Nj − Qn�j� where n�j� is an integer such that n�j�N1 ≤ j <

�n�j� + 1�N1. Then Lemma 16 shows that for small ε,

�30� �1− δ��N1/b�2 ≤N1

∞∑
n=−∞

Qn ≤
∞∑

j=−∞
Nj ≤ �1+ δ��N1/b�2

and so

�31�
∞∑

j=−∞
N +
j ≤ δ�N1/b�2

with probability greater than 1− p.
Let Ñj = U�bj; bj−1;TR� and define Ñ +

j and Q̃n relative to Ñj just as N +
j

and Qn have been defined for Nj. It is clear that the inequalities (30) and (31)
hold also for Ñj, Ñ +

j and Q̃n with probability greater than 1− p.
Suppose �j0; j1; j2; : : :� is a sequence of integers such that j0 = 0 and

�jk − jk−1� = 1 for all k. We will denote the event �dk = jk;∀k� by J . By
conditioning on J and X1 we have

�32�

E �TR � J ;X1�

≥ E

( ∞∑
j=−∞

Nj inf
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣

T�W�bj+1�� < T�W�bj−1��
)
� J ;X1

)

+ E

( ∞∑
j=−∞

Ñj inf
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣

T�W�bj+1�� > T�W�bj−1��
)
� J ;X1

)
;

and similarly

�33�

E �TR � J ;X1�

≤ E

( ∞∑
j=−∞

Nj sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣

T�W�bj+1�� < T�W�bj−1��
) ∣∣J ;X1

)

+ E

( ∞∑
j=−∞

Ñj sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣

T�W�bj+1�� > T�W�bj−1��
)
� J ;X1

)
:
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Assume that (29) and (30) hold. Then

∞∑
j=−∞

Nj inf
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣T�W�bj+1�� < T�W�bj−1��
)

≥
∞∑

n=−∞
Qn

∑

nN1≤j<�n+1�N1

inf
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣

T�W�bj+1�� < T�W�bj−1��
)

≥
∞∑

n=−∞
Qn�1− δ�c−1

4 �ε�ε−2b2N−1
1 ≥ �1− δ�2c−1

4 �ε�ε−2:

A similar estimate can be obtained for Ñj’s. Note that in order to derive the
last estimate we had to make assumptions (28), (29) and (30). They all hold
simultaneously with probability greater than 1− 4p. Hence, in view of (32),

�34� E �TR � J ;X1� ≥ 2�1− δ�2c−1
4 �ε�ε−2 ≥ 2�1− δ1�2c−1

4 �ε�ε−2

with probability greater than 1− 4p.
Next we derive the opposite inequality. We have

∞∑
j=−∞

Nj sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣T�W�bj+1�� < T�W�bj−1��
)

≤
∞∑

n=−∞
Qn

∑

nN1≤j<�n+1�N1

sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣

T�W�bj+1�� < T�W�bj−1��
)

+
∞∑

j=−∞
N +
j sup

j

sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣T�W�bj+1�� < T�W�bj−1��
)

≤
∞∑

n=−∞
Qn�1+ δ�c−1

4 �ε�ε−2b2N−1
1

+
∞∑

j=−∞
N +
j sup

j

sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣T�W�bj+1�� < T�W�bj−1��
)

≤ �1+ δ�2c−1
4 �ε�ε−2

+
∞∑

j=−∞
N +
j sup

j

sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣T�W�bj+1�� < T�W�bj−1��
)
:
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The expectation of the last sum may be estimated using Lemma 11 and (31)
as follows:

E

( ∞∑
j=−∞

N +
j sup

j

sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣

T�W�bj+1�� < T�W�bj−1��
) ∣∣ J ;N

)

≤
∞∑

j=−∞
N +
j c5�b/N1�2ε−2 ≤ δ�N1/b�2c11�b/N1�2ε−2 = c5δε

−2:

Hence
∞∑

j=−∞
N +
j sup

j

sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣T�W�bj+1�� < T�W�bj−1��
)

≤ c5p
−1δε−2

with probability greater than 1− p. We obtain

∞∑
j=−∞

Nj sup
x∈W�bj�

Ex
(
τ�W�bj−1; bj+1��

∣∣T�W�bj+1�� < T�W�bj−1��
)

≤ �1+ c6p
−1δ�c−1

4 �ε�ε−2:

Recall that δ/p < δ1. We again double the estimate to account for the term
with Ñj’s in (33) and we obtain

�35� E �TR � J ;X1� ≤ 2�1+ c6p
−1δ�c−1

4 �ε�ε−2 ≤ 2�1+ c6δ1�c−1
4 �ε�ε−2

with probability greater than 1− 5p.
Recall that R = �1/b2� and b2/p < δ1. We obtain from Lemma 14,

EEx��TR −Ex�TR � J ��2 � J � ≤ c7Rb
4ε−4 ≤ c8b

2ε−4:

It follows that

�36� E x��TR −Ex�TR � J ��2 � J � ≤ �1/p�c8b
2ε−4 ≤ c8δ1ε

−4

with probability greater than 1 − p. Recall that δ1 and p may be chosen
arbitrarily close to 0. The Chebyshev inequality and (34)–(36) show that
�1/2�c4�ε�ε2TR converges in probability to 1 as ε→ 0. 2

Recall that κ�t� is the time-change which turns f�Y ∗� into a reflected
Brownian motion in D, that is, Y �κ�t�� = f�Y ∗t �.

Corollary 1. There exist 0 < c1 < c2 < ∞ and c3�ε�; c4�ε� ∈ �c1; c2� such
that for every fixed t > 0 the random variable c3�ε�ε2κ�c−2

4 �ε�ε−6t� converges
in probability to t as ε→ 0.



746 K. BURDZY AND D. KHOSHNEVISAN

Proof. We will discuss only the case t = 1. Fix arbitrarily small δ;p > 0.
Estimate (27) in the proof of Lemma 16 shows that for some c4�ε� and

arbitrarily small η > 0 we have

κ��1− δ�c−2
4 �ε�ε−6� ≤ TR ≤ κ��1+ δ�c−2

4 �ε�ε−6�
with probability greater than 1 − p provided ε is small. A similar argument
shows that

�37� κ�c−2
4 �ε�ε−6� ≤ �1− δ�−1TR

and

�38� �1+ δ�−1TR ≤ κ�c−2
4 �ε�ε−6�

with probability greater than 1−p provided ε is small. By Lemma 17, for some
c3�ε�, the quantities c3�ε�ε2�1 − δ�−1TR and c3�ε�ε2�1 + δ�−1TR converge to
�1− δ�−1 and �1+ δ�−1, respectively. This, (37) and (38) prove the corollary. 2

Proof of Theorem 1. Fix arbitrarily small δ;p > 0. Recall that Y ∗ de-
notes a reflected Brownian motion in D∗. Then Re Y ∗ is a standard one-
dimensional Brownian motion. Let c1 ∈ �1;∞� be so large that for the one-
dimensional Brownian motion Re Y ∗t starting from 0 and any t > 0, we have
P�sup0≤s≤t �Re Y ∗s � ≥ c1

√
t� < p/2. Choose a large integer N0 such that

1/N0 < δ. Lemma 2 defines a constant c2 such that the diameter of a cell
is bounded by c2ε.

Remark 1 following Lemma 7 and Corollary 1 imply that there exist con-
stants c3�ε� and c4�ε�, all uniformly bounded away from 0 and∞ for all ε and
such that all of the following statements hold simultaneously with probability
greater than 1− p, assuming ε < ε0:

(i) for all j = −2N0; : : : ;2N0,

�c3�ε�ε2κ�c−2
4 �ε�ε−6j/N0� − j/N0� < δy

(ii) sup0≤s≤2c−2
4 �ε�ε−6 �Re Y ∗s � < c1

√
2c−1

4 �ε�ε−3;
(iii) for all b ∈ �0;2c1� we have

�ε3c4�ε�K−�0; b− c2ε� − b� < δ and �ε3c4�ε�K+�0; b+ c2ε� − b� < δy
(iv) for all b ∈ �−2c1;0�,
�ε3c4�ε�K+�b− c2ε;0� − b� < δ and �ε3c4�ε�K−�b+ c2ε;0� − b� < δ:

Let s = κ�t�. Then f�Y ∗t � = Y �κ�t�� = Ys. Now consider the following
transformation of the trajectories �t;Re Y ∗t � and �s;Re Ys�,

�t;Re Y ∗t � 7→ �c2
4�ε�ε6t; c4�ε�ε3 Re Y ∗t �

df= �ψ�t�;9�Re Y ∗t ��;

�s;Re Ys� 7→ �c3�ε�ε2s;Re Ys�
df= �ϕ�s�;Re Ys�:

Assume that all statements (i)–(iv) hold true. We see from (i) that

�ψ�t� − ϕ�s�� = �ψ�t� − ϕ�κ�t��� = �c2
4�ε�ε6t− c3�ε�ε2κ�t�� < δ
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for all t of the form c−2
4 �ε�ε−6j/N0, j = −2N0; : : : ;2N0. Since 1/N0 < δ and

ϕ�κ�t�� is nondecreasing, we have

�ψ�t� − ϕ�s�� ≤ 2δ

for all t ∈ �−2c−2
4 �ε�ε−6;2c−2

4 �ε�ε−6�. It follows that

�39� �ψ�t� − ϕ�s�� ≤ 2δ

if ψ�t� ∈ �−1;1� or ϕ�s� ∈ �−1;1�.
Property (iii) implies that K+�0; b+c2ε� < �b+δ�c−1

4 �ε�ε−3 and so K+�0; b−
δ+ c2ε� < bc−1

4 �ε�ε−3 for b < 3c2/2. For similar reasons, K−�0; b+ δ− c2ε� >
bc−1

4 �ε�ε−3. Since the diameter of a cell is bounded by c2ε we must have
M�bc−1

4 ε−3� ∈ W�b − δ; b + δ�. Property (iv) yields the same conclusion for
negative b bounded below by −3c2/2. Consider a t ∈ �0;2c−2

4 ε−6�. Then, ac-
cording to (ii) there exists b ∈ �−c2

√
2; c2

√
2� such that Re Y ∗t = bc−1

4 �ε�ε−3.
Since f�Y ∗t � ∈M�bc−1

4 �ε�ε−3� we have �Ref�Y ∗t � − b� ≤ δ. This implies that

�40� �Re Yκ�t� −9�Re Y ∗t �� = �Ref�Y ∗t � − b� ≤ δ:
We have shown in (39) and (40) that for small ε there exists, with probability

greater than 1− p, a transformation of paths

�ψ�t�;9�Re Y ∗t �� 7→ �ϕ�s�;Re Ys�

= �ϕ�κ�t��;Re Y �κ�t��� df= �θ�ψ�t��;2�9�Re Y ∗t ���
with the property that θ is increasing, �θ�u� − u� < 2δ and �2�r� − r� < δ
for u ∈ �0;1�, r ∈ R. A similar argument would give a transformation which
would work on any finite interval. Note that �ψ�t�;9�Re Y ∗t �� is the trajectory
of a Brownian motion independent of X1. Hence, if α�ε� = c4�ε�ε3 then the
process t→ αRe Y ∗t/α2 is a standard one-dimensional Brownian motion. If we
fix a one-dimesional Brownian motion X2 and then for a fixed ε define Re Y ∗t
to be α−1X2

α2t, taking the vertical component Im Y ∗ to be an independent
reflected Brownian motion in �−1;1� (independent of ε) then the preceding
work shows that t → Re Yc−1

3 �ε�ε−2t converges in probability to X2, uniformly
on compact intervals. 2
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