
The Annals of Applied Probability
1998, Vol. 8, No. 1, 206–233

ERROR ESTIMATES FOR THE BINOMIAL APPROXIMATION
OF AMERICAN PUT OPTIONS

By Damien Lamberton

Université de Marne-la-Vallée

We establish some error estimates for the binomial approximation of
American put prices in the Black–Scholes model. Namely, we prove that
if P is the American put price and Pn its n-step binomial approximation,
there exist positive constants c andC such that−c/n2/3 ≤ Pn−P ≤ C/n3/4.
With an additional assumption on the interest rate and the volatility, a
better upper bound is derived.

1. Introduction. The purpose of this paper is to derive some error esti-
mates for the binomial approximation of American put prices. Recall that an
American put on a stock is the right to sell one share at a specified price K
(called the exercise price) at any instant until a given future date T (called the
expiration date or date of maturity). In the Black–Scholes model, the value at
time t (0 ≤ t ≤ T) of such an option can be written as a function F�t;St� of
time and the current stock price, with

F�t; x� = sup
τ∈T0;T−t

E exp�−rτ�
(
K− x exp

((
r− σ

2

2

)
τ + σBτ

))+
;

where B = �Bt�0≤t≤T is a standard Brownian motion, r is the interest rate
(assumed to be a positive constant), σ is the so-called volatility (also assumed
to be a positive constant) and T0;T−t denotes the set of all stopping times of
the natural filtration of B, with values in the interval �0;T− t�. We refer the
reader to [14, 15, 25, 21] for basic results on American options.

The above formula relates the price function F to an optimal stopping
problem along the paths of Brownian motion. Indeed, we have F�t; x� =
P�t; log�x��, with

P�t; x� = sup
τ∈T0;T−t

Ee−rτψ�x+ µτ + σBτ�;(1)

where ψ�x� = �K− ex�+ and µ = r− σ2/2.
A natural numerical method to compute the function P defined by (1) is to

approximate the underlying Brownian motion B by a random walk and apply
dynamic programming. Various approximations of B have been considered in
the financial literature (see [10, 26, 13, 9, 30, 23]).

In this paper, we will concentrate on the following approximation (which,
in this financial context, appears for the first time in [13]). Let �εk�k≥1 be a
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sequence of i.i.d. random variables, satisfying P�εk = 1� = P�εk = −1� = 1/2
and let

B
�n�
t =

√
T
∑�nt/T�
k=1 εk√
n

:

For t = kT/n, k = 0;1; : : : ; n, denote

P�n��t; x� = sup
τ∈T �n�

0;T−t

Ee−rτψ�x+ µτ + σB�n�τ �;

where T
�n�

0;T−t is the set of stopping times (with respect to the natural filtration
of B�n�), with values in �0;T−t�∩�0;T/n;2T/n; : : : ; �n−1�T/n;T�. From the
classical results of Kushner [19], it follows that limn→∞P

�n��0; x� = P�0; x�
(see [1, 22] for related results). To our knowledge, the rate of convergence is
not known. Our main result is the following.

Theorem 1. For any real number x, there exist positive constants c and C
such that

∀ n ∈ N; − c

n2/3
≤ P�n��0; x� −P�0; x� ≤ C

n3/4
:

Moreover, if µ ≤ 0 (i.e., r ≤ σ2/2),

∀ x ∈ R; ∃ C̃ > 0; ∀ n ∈ N; P�n��0; x� −P�0; x� ≤ C̃
(√

log n
n

)4/5

:

These estimates are probably not optimal. Indeed, numerical experiments
seem to suggest that the error is O�1/n� (cf. [8]), as in the approximation of
European options (cf. [23]). We will comment on the limits of our methods
in Remark 3. The constants in Theorem 1 may depend on x, but a careful
examination of the proof will show that they can be chosen independently of
x, as long as x remains in a fixed bounded set.

Remark 1. In the past few years, many numerical methods have been de-
veloped to price American options (see [8] for a recent comparison of various
methods). The only one for which error bounds are known is the Gaussian ap-
proximation, which uses standard normal variables as εk’s instead of Bernoulli
trials. The error bound in that case is O�1/n� (as shown in [9]) but the method
can be implemented for small values of n only. Our methods could probably be
applied to other binomial approximations, but, since we are not able to derive
sharp results, we prefer to focus on the simplest binomial approximation, for
which the mathematical analysis is easier. We also note that an adaptation
of the methods of Baiocchi and Pozzi [2] might lead to error estimates for the
finite difference method of Brennan and Schwartz [7].

Remark 2. In the context of discretization of stochastic differential equa-
tions, a lot of work has been devoted to the derivation of error estimates for
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quantities such as �Ef�XT� − Ef�Xn
T��, where X is a diffusion process, Xn

some approximation, and T a deterministic time (see [18, 28]). The method
for deriving these estimates consists of relating the error to the solution of a
parabolic partial differential equation (cf. [24, 28, 29, 3]). Our method is simi-
lar in the sense that we will use the parabolic variational inequality satisfied
by the function price P.

Remark 3. The main difficulty that we face in trying to adapt the tech-
niques used in the discretization of SDE’s is the lack of regularity of the payoff
function ψ and of the price function P. Indeed, the solution of a variational
inequality is typically less regular than the solution of the corresponding
parabolic PDE. The strongest regularity results for variational inequalities
that we could find in the literature are quadratic estimates for the second or-
der derivatives, due to Friedman and Kinderlehrer (see Theorem 3 below). The
original estimates of Friedman and Kinderlehrer (see [11] and [17]) require
the boundedness of the second derivative of the payoff function, an assump-
tion which is not satisfied in our case, and, when deriving quadratic estimates
applicable to the American put, we end up with constants blowing up near T.
This is the main reason why we are not able to derive sharper estimates. A
better understanding of the behavior of the partial derivatives of the American
put price would be needed to improve our results. Another way of evaluating
our approach is to apply it to C2 payoff functions. We are able to prove that
if f is a bounded function, with bounded first and second derivatives, then,
with the same notations as above,

sup
τ∈T �n�

0;T

Ee−rτf�B�n�τ � − sup
τ∈T0;T

Ee−rτf�Bτ� = O
(√

log n
n

)
:

This result (which will be published in a separate paper) is probably not yet
optimal, but seems to be close to the right order of convergence.

The paper is organized as follows. In Section 2, we state some preliminary
results concerning partial derivatives of the function P�t; x� and the exercise
boundary. In Section 3 we introduce the approximating process X�n� = x +
σB�n�, state the discrete version of Itô’s formula and relate the finite-difference
operator appearing in this formula to the infinitesimal generator of the limit
process. The results of this section include estimates to be used in the proof
of Theorem 1. The proof, which is given in Section 4, consists of looking at the
continuous price function along the paths of the approximating process and
breaking the set �0;T� ×R into three separate regions S̄, C̄ and B̄, which are
approximations of the stopping region, the continuation region and the free
boundary. The Appendix is devoted to the proof of an analytic result stated in
Section 2.

Throughout the paper the letter C will be used to denote a positive constant
depending on the parameters of the problem (but not on n). The value of C
may vary from line to line.



ERROR ESTIMATES 209

2. Preliminary results.

2.1. Partial derivatives of P. Consider the function P�t; x� defined, for
�t; x� ∈ �0;T�×R, by (1). It is easy to check that P is continuous on �0;T�×R
and that x 7→ P�t; x� is a Lipschitz function, with Lipschitz constant indepen-
dent of t, so that ∂P/∂x is bounded on �0;T�×R. Further regularity properties
of P can be proved using variational inequalities.

It is well known that P satisfies the following variational inequality:

max
(
∂P

∂t
+ σ

2

2
∂2P

∂x2
+ µ∂P

∂x
− rP;ψ−P

)
= 0;

with P�T; ·� = ψ. Theorem 2 can be derived from [12] (Theorem 3.6 and its
proof; see also [21], Section 3).

Theorem 2. The partial derivatives ∂P/∂t and ∂2P/∂x2 are locally
bounded on �0;T� ×R and there exists a positive constant C such that

∀�t; x� ∈ �0;T� ×R;
∣∣∣∣
∂P

∂t
�t; x�

∣∣∣∣+
∣∣∣∣
∂2P

∂x2
�t; x�

∣∣∣∣ ≤
C√
T− t

:

In the sequel we will need estimates for �∂2P/∂t2� and �∂2P/∂t∂x� given in
the following theorem.

Theorem 3. There exists a positive constantC such that, for 0≤ t1<T′<T,

∫ T′

t1

dt�T′ − t�
∫ +∞
−∞

dx

�1+ x2�3/2
(
∂2P

∂t2
�t; x�

)2

+ �T′ − t1�
∫ +∞
−∞

dx

�1+ x2�3/2
(
∂2P

∂t∂x
�t1; x�

)2

≤ C√
T−T′

:

This theorem is essentially a variant of results of Friedman and Kinder-
lehrer (see [11] and [17], Chapter VIII). Its proof is given in the Appendix.

2.2. The free boundary. For each t ∈ �0;T�, there exists a real number s�t�
such that

∀ x ≤ s�t�; P�t; x� = ψ�x� and ∀ x > s�t�; P�t; x� > ψ�x�:

In the finance literature, es�t� is called the critical price at time t; in the context
of variational inequalities, the curve �s�t��0≤t<T is called the free boundary.
Note that, because of the variational inequality satisfied by P, we have

∀ t ∈ �0;T�; ∀ x > s�t�;
∂P

∂t
�t; x� + σ

2

2
∂2P

∂x2
�t; x� + µ∂P

∂x
�t; x� − rP�t; x� = 0:

(2)
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The set

C =
{
�t; x� ∈ �0;T� ×R � x > s�t�

}

is called the continuation region. Its complement is the stopping region. Since
P�t; x� is a nonincreasing function of t, t 7→ s�t� is nondecreasing. It can be
proved (see [11]) that the function s is C∞ on the interval �0;T�. The behavior
of s�t� for t close to T has been studied in [16] and [4, 5] (see also [20]); in
particular, we have limt→T s�t� = log�K�. We will need the following estimate
for the modulus of continuity of s.

Proposition 1. There exists a constant C such that

∀ t1; t2 ∈ �0;T�; �s�t2� − s�t1��2 ≤ C sup
x∈R

∣∣P�t2; x� −P�t1; x�
∣∣:

Proof. The proof is inspired by [11] (especially page 164). We may (and
shall) assume that 0 ≤ t1 < t2 < T. Introduce the differential operator

A = σ
2

2
∂2

∂x2
+ µ ∂

∂x
− r:

If s�t1� < x < s�t2�, we have �∂P/∂t��t1; x� +AP�t1; x� = 0 and AP�t2; x� =
Aψ�x� = −rK. Hence

∀ x ∈ �s�t1�; s�t2��; rK = ∂P
∂t
�t1; x� +AP�t1; x� −AP�t2; x�

≤ AP�t1; x� −AP�t2; x�;
since t 7→ P�t; x� is nonincreasing. Now let φ be a nonnegative C∞ function
compactly supported in the open interval �s�t1�; s�t2��. Integrating the last
inequality yields

rK
∫ s�t2�
s�t1�

φ�x�dx ≤
∫ s�t2�
s�t1�
�AP�t1; x� −AP�t2; x��φ�x�dx

=
∫ s�t2�
s�t1�
�P�t1; x� −P�t2; x��A∗φ�x�dx;

with A∗φ = �σ2/2�φ′′ − µφ′ − rφ. Choosing

φ�x� = ρ
(

x− s�t1�
s�t2� − s�t1�

)
;

with ρ smooth, nonnegative, compactly supported in �0;1�, we obtain

rK�s�t2� − s�t1��
∫ 1

0
ρ�y�dy

≤ sup
x∈R

∣∣P�t2; x� −P�t1; x�
∣∣
(

C1

s�t2� − s�t1�
+C2 +C3�s�t2� − s�t1��

)
;

where C1, C2, C3 are positive constants. From this inequality [and the fact
that s�t� is bounded] the proposition follows easily. 2
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We complete this section with a technical result on the difference between
the price function and the payoff near the free boundary.

Proposition 2. There exists a positive constant C such that

∀ t ∈ �0;T�; ∀ y ≥ s�t�; P�t; y� − ψ�y� ≤ C√
T− t

�y− s�t��2:

Proof. Let ψ̂x R→ R be a bounded C2 function, with bounded derivatives,
satisfying ψ̂�y� = ψ�y� for y ≤ log�K� and ψ̂�y� ≤ 0 = ψ�y� for y > logK.
It is clear that such a function exists. Now, fix t ∈ �0;T�. We know that the
function y 7→ P�t; y� − ψ̂�y� is of class C1 and that P�t; s�t�� − ψ̂�s�t�� =
�∂P/∂x��t; s�t��− ψ̂′�s�t�� = 0. This is the well-known smooth fit property (see,
for instance, [12], Corollary 3.7). Therefore, using Taylor’s formula, we have

∀ y ≥ s�t�; P�t; y� − ψ̂�y� ≤ �y− s�t��
2

2
sup
x>s�t�

(
∂2P

∂x2
�t; x� − ψ̂′′�x�

)
:

The proposition is now a consequence of the inequality P�t; y� − ψ�y� ≤
P�t; y� − ψ̂�y� and the estimate for ∂2P/∂x2 given in Theorem 2. 2

3. The discrete approximation. Recall that �εk�k≥1 is a sequence of
i.i.d. random variables, satisfying P�εk = 1� = P�εk = −1� = 1/2. Let n be
a fixed positive integer. We will denote by X�n� = �X�n�t �0≤t≤T the stochastic
process defined by

X
�n�
t = x+

σ
√
T√
n

�nt/T�∑
k=1

εk = x+ σB
�n�
t :

For notational convenience, we set

h = T
n
:

Let u�t; x� be a continuous function on �0;T� × R. For 0 ≤ t ≤ T − h and
x ∈ R, let

Du�t; x� = 1
2

[
u
(
t+ h;x+ σ

√
h
)
+ u

(
t+ h;x− σ

√
h
)]
− u�t; x�:

The operator �n/T� × D = �1/h�D can be viewed as a finite difference ap-
proximation of the differential operator �∂/∂t�+�σ2/2��∂2/∂x2�. Indeed, if u is
smooth, �1/h� × Du�t; y� = �∂u/∂t��t; y� + �σ2/2��∂2u/∂x2��t; y� +O�h�. The
following elementary proposition can be viewed as the discrete time version
of Itô’s formula.

Proposition 3. There exists a martingale �Mt�0≤t≤T (with respect to the

natural filtration of X�n�), such that M0 = 0 and, for all t ∈ �0; h;2h; : : : ;
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�n− 1�h;nh = T�,

u�t;X�n�t � = u�0; x� +Mt +
nt/T∑
j=1

Du��j− 1�h;X�n��j−1�h�:

Proof. Let Yt = u�t;X
�n�
t � and t = kT/n. We have

Yt = Y0 +
k∑
j=1

�Yjh −Y�j−1�h�;

and, if �F n
t �0≤t≤T denotes the natural filtration of X�n�,

Yjh −Y�j−1�h = Yjh −E
(
Yjh �F n

�j−1�h
)
+E

(
Yjh �F n

�j−1�h
)
−Y�j−1�h

=Mjh −M�j−1�h +Du��j− 1�h;X�n��j−1�h�;
where M is the martingale defined by

Mt =
�nt/T�∑
j=1

(
Yjh −E

(
Yjh �F n

�j−1�h
))
: 2

In Section 4 we will apply Proposition 3 to the function u�t; y� = e−rtP�t; y+
µt�. Proposition 4 will be used to control Du.

Proposition 4. Let 0 ≤ t ≤ T − h and x ∈ R. Assume v is a C2 function
on �t; t+ h� × �x− σ

√
h;x+ σ

√
h�. Then we have

Dv�t; x� = 1
σ

∫ √h
0

dξ
∫ σξ
−σξ

dz

(
z
∂2v

∂t∂x
�t+ ξ2; x+ z� + δ�t+ ξ2; x+ z�

)
;

where

δ�τ; ζ� = ∂v
∂t
�τ; ζ� + σ

2

2
∂2v

∂x2
�τ; ζ�:

Proof. We may assume that t = x = 0 without loss of generality. We have

Dv�0;0� = 1
2

(
v�h;σ

√
h� + v�h;−σ

√
h�
)
− v�0;0�

= φ�
√
h� −φ�0� =

∫ √h
0

φ′�ξ�dξ;

where φ�ξ� = �1/2��v�ξ2; σξ� + v�ξ2;−σξ��. We compute φ′:

φ′�ξ� = ξ
(
∂v

∂t
�ξ2; σξ� + ∂v

∂t
�ξ2;−σξ�

)
+ σ

2

(
∂v

∂x
�ξ2; σξ� − ∂v

∂x
�ξ2;−σξ�

)

= ξ
(
∂v

∂t
�ξ2; σξ� + ∂v

∂t
�ξ2;−σξ�

)
+ σ

2

2

∫ ξ
−ξ

∂2v

∂x2
�ξ2; ση�dη

= ξ
(
∂v

∂t
�ξ2; σξ� + ∂v

∂t
�ξ2;−σξ�

)
+
∫ ξ
−ξ

(
−∂v
∂t
�ξ2; ση� + δ�ξ2; ση�

)
dη:
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Now, writing ξ =
∫ ξ

0 dη and
∫ ξ
−ξ

∂v

∂t
�ξ2; ση�dη =

∫ ξ
0

(
∂v

∂t
�ξ2; ση� + ∂v

∂t
�ξ2;−ση�

)
dη;

we obtain

φ′�ξ� =
∫ ξ

0

(
∂v

∂t
�ξ2; σξ� + ∂v

∂t
�ξ2;−σξ� −

(
∂v

∂t
�ξ2; ση� + ∂v

∂t
�ξ2;−ση�

))
dη

+
∫ ξ
−ξ
δ�ξ2; ση�dη

=
∫ ξ

0
dη

∫ σξ
ση

dz

(
∂2v

∂t∂x
�ξ2; z� − ∂2v

∂t∂x
�ξ2;−z�

)
+
∫ ξ
−ξ
δ�ξ2; ση�dη

=
∫ σξ

0

z

σ

(
∂2v

∂t∂x
�ξ2; z� − ∂2v

∂t∂x
�ξ2;−z�

)
dz+ 1

σ

∫ σξ
−σξ

δ�ξ2; z�dz

= 1
σ

∫ σξ
−σξ

z
∂2v

∂t∂x
�ξ2; z�dz+ 1

σ

∫ σξ
−σξ

δ�ξ2; z�dz: 2

We will also use the following result, in particular for estimates near ma-
turity.

Proposition 5. Assume u�t; x� is continuous on �0;T� × R and admits
locally bounded derivatives �∂u/∂t�, �∂u/∂x�, �∂2u/∂x2� on �0;T� × R, such
that we have the following:

(i) ∂u/∂x and �∂u/∂t� + �σ2/2��∂2u/∂x2� are bounded on �0;T� ×R;
(ii) sup0≤t<T

∫ +∞
−∞ ��∂2u/∂x2��t; x��dx <∞:

Then there exists a positive constant C such that, for any integer j satisfying
1 ≤ j ≤ n,

E
∣∣Du

(
�j− 1�h;X�n��j−1�h

)∣∣ ≤ C√
jn
:

For the proof of this proposition, we need the following elementary lemma.

Lemma 1. Let φx R→ R be a function with locally bounded second deriva-
tive φ′′. For any real number y and for any δ > 0, we have

∣∣∣∣
1
2

(
φ�y+ δ� +φ�y− δ�

)
−φ�y�

∣∣∣∣ ≤
δ

2

∫ y+δ
y−δ
�φ′′�z��dz:

Proof. We have

1
2

(
φ�y+ δ� +φ�y− δ�

)
−φ�y� = 1

2

∫ δ
0
�φ′�y+ a� −φ′�y− a��da

= 1
2

∫ δ
0
da

∫ y+a
y−a

φ′′�z�dz:

The result follows easily. 2
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Proof of Proposition 5. Let

D1u�t; y� = 1
2

(
u
(
t+ h;y+ σ

√
h
)
+ u

(
t+ h;y− σ

√
h
))
− u�t+ h;y�

and

D2u�t; y� = u�t+ h;y� − u�t; y�:

Obviously, Du�t; y� = D1u�t; y� + D2u�t; y�: Note that D1 corresponds to
�σ2/2�∂2/∂x2 and D2 to ∂/∂t. It follows from Lemma 1 that

E
∣∣D1u�t;X

�n�
t �

∣∣ ≤ σ
√
h

2
E
(∫ X�n�t +σ

√
h

X
�n�
t −σ

√
h

∣∣∣∣
∂2u

∂x2
�t+ h; z�

∣∣∣∣dz
)

= σ
√
h

2

∫ +∞
−∞

∣∣∣∣
∂2u

∂x2
�t+ h; z�

∣∣∣∣P
(
�X�n�t − z� < σ

√
h
)
dz:

(3)

Assume j > 1. Then

P
(
�X�n��j−1�h − z� < σ

√
h
)
= P

(∣∣∣∣σ
√
h
j−1∑
k=1

εk − �z− x�
∣∣∣∣ < σ

√
h

)

= P
(∣∣∣∣

1√
j− 1

j−1∑
k=1

εk −
z− x

σ
√
h�j− 1�

∣∣∣∣ <
1√
j− 1

)
:

Now recall the classical Berry–Esseen estimate (cf. [27], Chapter III)

∃ C > 0; ∀ j > 1; ∀ y ∈ R;
∣∣∣∣P
(

1√
j− 1

j−1∑
k=1

εk ≤ y
)
−P�g ≤ y�

∣∣∣∣ ≤
C√
j
;

where g is a standard normal random variable. It then follows that

P
(∣∣X�n��j−1�h − z

∣∣ < σ
√
h
)
≤ C√

j
+P

(∣∣∣∣g −
z− x

σ
√
h�j− 1�

∣∣∣∣ <
1√
j− 1

)

≤ C√
j
+ 2√

2π
√
j− 1

:

Going back to (3) and using the second assumption of the proposition, we
obtain

E
∣∣D1u��j− 1�h;X�n��j−1�h�

∣∣ ≤ C√
nj
;

for some constant C and for j > 1. The estimate is clearly also valid for j = 1.
It remains to estimate D2u. Using Itô’s formula and the boundedness of

∂u/∂t+ �σ2/2��∂2u/∂x2�, we have
∣∣u�t; y� −E

(
u�t+ h;y+ σBh�

)∣∣ ≤ Ch;
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where �Bt�t≥0 is standard Brownian motion. It follows that, if we set

D̄2u�t; y� = u�t+ h;y� −E �u�t+ h;y+ σBh�� ;

then
∣∣D2u�t; y� − D̄2u�t; y�

∣∣ ≤ Ch:

Therefore, it suffices to estimate E�D̄2u��j− 1�h;X�n��j−1�h��. Now

D̄2u�t; y� = E
(
u�t+ h;y� − 1

2

(
u�t+ h;y+ σ

√
h�g�� + u�t+ h;y− σ

√
h�g��

))
;

where g denotes a standard normal random variable, which we can assume
to be independent of the process X�n�. Hence, using Lemma 1,

�D̄2u�t; y�� ≤
1
2

∫ ∣∣∣∣
∂2u

∂x2
�t+ h; z�

∣∣∣∣E
(
σ
√
h�g�1��z−y�<σ√h�g��

)
dz:

Therefore, using the independence of g and X�n�,

E
∣∣D̄2u��j− 1�h;X�n��j−1�h�

∣∣ ≤ 1
2

∫ ∣∣∣∣
∂2u

∂x2
�jh; z�

∣∣∣∣E
(
σ
√
h�g�1��z−X�n��j−1�h�<σ

√
h�g��

)
dz:

Conditioning with respect to g and using the Berry–Esseen estimate again,
we obtain

E
∣∣D̄2u��j− 1�h;x+X�n��j−1�h�

∣∣ ≤ C√
nj
: 2

4. Proof of the main result.

4.1. Orientation. We will apply the results of Section 3 to the function u
defined by

u�t; y� = e−rtP�t; y+ µt�:

With this definition we have, using (2) and the equality P�t; x� =K− ex, for
x ≤ s�t�,

(
∂u

∂t
+ σ

2

2
∂2u

∂x2

)
�t; y� = e−rt

(
∂P

∂t
+ σ

2

2
∂2P

∂x2
+ µ∂P

∂x
− rP

)
�t; y+ µt�

= −rKe−rt1�y+µt≤s�t��:
(4)

In particular, the first assumption in Proposition 5 is satisfied. We claim that
the second assumption is also satisfied. Indeed, it follows from the convexity
of x 7→ P�t; log x� that

∂2P

∂x2
− ∂P
∂x
≥ 0:
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Hence, using the fact that x 7→ P�t; x� is nonincreasing,
∫ +∞
−∞

∣∣∣∣
∂2P

∂x2
�t; x�

∣∣∣∣dx ≤
∫ +∞
−∞

(
∂2P

∂x2
�t; x� − ∂P

∂x
�t; x�

)
dx+

∫ +∞
−∞

∣∣∣∣
∂P

∂x
�t; x�

∣∣∣∣dx

=
∫ +∞
−∞

∂2P

∂x2
�t; x�dx− 2

∫ +∞
−∞

∂P

∂x
�t; x�dx;

and these integrals are controlled by the sup norms of ∂P/∂x and P.
We can now explain our method. Observe that, for any stopping time τ ∈

T
�n�

0;T , we have

Ee−rτψ�x+ µτ + σB�n�τ � ≤ Ee−rτP�τ; x+ µτ + σB�n�τ �
= E�u�τ;X�n�τ ��;

(5)

where, according to the notations of Section 3, X�n� = x + σB�n�. It follows
from Proposition 3 that

E�u�τ;X�n�τ �� = u�0; x� +E
( nτ/T∑

j=1

Du��j− 1�h;X�n��j−1�h�
)
:(6)

Note that u�0; x� = P�0; x�, so that, putting (5) and (6) together,

P�n��0; x� −P�0; x� ≤ sup
τ∈T �n�

0;T

E
( nτ/T∑

j=1

Du��j− 1�h;X�n��j−1�h�
)
:(7)

The upper bounds in Theorem 1 will follow from estimating the right-hand
side of (7).

To prove the lower bound, we will select a stopping time τ in T
�n�

0;T for which
E�u�τ;X�n�τ �� is close to Ee−rτψ�x+ µτ + σB�n�τ �.

We now introduce two subsets of �0;T� ×R:

C̄ =
{
�t; y� ∈ �0;T− h� ×R � µt+ y > s�t+ h� + �µ�h+ σ

√
h
}

and

S̄ =
{
�t; y� ∈ �0;T− h� ×R � µt+ y < s�t� − �µ�h− σ

√
h
}
:

Here, the letter C refers to “continuation region” and the letter S to “stopping
region.”

4.2. An estimate for the continuation region. We have the following esti-
mate, when �t;X�n�t � is restricted to the continuation region.

Proposition 6. There exists a positive constant C such that, for all inte-
gers n,

E
( n−1∑
j=0

∣∣Du�jh;X�n�jh �
∣∣1��jh;X�n�jh �∈C̄�

)
≤ C

(√
log n
n

)4/5

:
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Proof. If �t; y� ∈ C̄, then, whenever t < τ < t + h and y − σ
√
h < z <

y+ σ
√
h, we have

µτ + z > y+ µt− �µ�h− σ
√
h

> s�t+ h� ≥ s�τ�:

It follows that, on the open set �t; t+ h� × �y− σ
√
h;y+ σ

√
h�,

∂u

∂t
+ σ

2

2
∂2u

∂x2
= 0:

This implies, in particular, that u is smooth on �t; t+h�×�y−σ
√
h;y+σ

√
h�.

Applying Proposition 4, we have, for �t; y� ∈ C̄,

Du�t; y� = 1
σ

∫ √h
0

dξ
∫ σξ
−σξ

dz

(
z
∂2u

∂t∂x
�t+ ξ2; y+ z�

)

= σ
2

∫ √h
0

dξ
∫ σξ
−σξ

dz

(
ξ2 − z2

σ2

)
∂3u

∂t∂x2
�t+ ξ2; y+ z�

= − 1
σ

∫ √h
0

dξ
∫ σξ
−σξ

dz

(
ξ2 − z2

σ2

)
∂2u

∂t2
�t+ ξ2; y+ z�;

where we have integrated by parts and used the fact that

∂3u

∂t∂x2
= − 2

σ2

∂2u

∂t2

on the open set �t; t+h� × �y−σ
√
h;y+σ

√
h�. Hence, using the inequalities

ξ2 − �z2/σ2� ≤ ξ2 ≤ ξ
√
h,

∣∣Du�t; y�
∣∣ ≤ 1

σ

∫ √h
0

dξ
∫ σξ
−σξ

dzξ2

∣∣∣∣
∂2u

∂t2
�t+ ξ2; y+ z�

∣∣∣∣

≤
√
h

σ

∫ √h
0

ξ dξ
∫ σ√h
−σ
√
h
dz

∣∣∣∣
∂2u

∂t2
�t+ ξ2; y+ z�

∣∣∣∣

=
√
h

2σ

∫ t+h
t

ds
∫ y+σ√h
y−σ
√
h
dz
∣∣∂

2u

∂t2
�s; z�

∣∣∣∣:

Therefore, for 0 ≤ j ≤ n− 1,

E
(∣∣Du�jh;X�n�jh �

∣∣1��jh;X�n�jh �∈C̄�
)

≤
√
h

2σ

∫ �j+1�h

jh
dτ
∫ +∞
−∞

dz

∣∣∣∣
∂2u

∂t2
�τ; z�

∣∣∣∣P
(
�X�n�jh − z� < σ

√
h
)
:
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Now, if j ≥ 1,

P
(
�X�n�jh − z� < σ

√
h
)
= P

(∣∣∣∣σ
√
h

j∑
k=1

εk − �z− x�
∣∣∣∣ < σ

√
h

)

= P
(∣∣∣∣

1√
j

j∑
k=1

εk −
z− x
σ
√
hj

∣∣∣∣ <
1√
j

)
:

Now recall the nonuniform Berry–Esseen estimate (see [27], Chapter III, Ex-
ercise 2)

∣∣∣∣P
(

1√
j

j∑
k=1

εk < ξ

)
−P�g < ξ�

∣∣∣∣ ≤
C√

j�1+ �ξ�3�
:(8)

We have

P
(
�X�n�jh − z� < σ

√
h
)
= P

(∣∣∣∣
1√
j

j∑
k=1

εk −
z− x
σ
√
hj

∣∣∣∣ <
1√
j

)

≤ P
(∣∣∣∣g −

z− x
σ
√
hj

∣∣∣∣ <
1√
j

)
+ a+ + a−;

(9)

with

a+ =
∣∣∣∣P
(

1√
j

j∑
k=1

εk <
z− x
σ
√
hj
+ 1√

j

)
−P

(
g <

z− x
σ
√
hj
+ 1√

j

)∣∣∣∣

and

a− =
∣∣∣∣P
(

1√
j

j∑
k=1

εk <
z− x
σ
√
hj
− 1√

j

)
−P

(
g <

z− x
σ
√
hj
− 1√

j

)∣∣∣∣:

Using (8), we derive

a± ≤ C√
j�1+ �ξj ± 1√

j
�3�
≤ 2C√

j�2+ �ξj ± 1√
j
�3�
;

with ξj = �z− x�/σ
√
hj. Using the elementary inequality �a + b�3 ≤ 4��a�3 +

�b�3�, we obtain
∣∣∣∣ξj ±

1√
j

∣∣∣∣
3

≥ 1
4
�ξj�3 −

1
j3/2

= 1
4

∣∣∣∣
z− x
σ
√
hj

∣∣∣∣
3

− 1
j3/2

≥ �z− x�
3

4�σ
√
T�3
− 1;
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where, for the last inequality, we have used
√
hj ≤

√
T. It follows that

a± ≤ C√
j�1+ �x− z�3�

:(10)

On the other hand,

P
(∣∣∣∣g −

z− x
σ
√
hj

∣∣∣∣ <
1√
j

)
=
∫ ξj+�1/

√
j�

ξj−�1/
√
j�

exp�−y2/2� dy√
2π
:

Note that, if ξj − �1/
√
j� < y < ξj + �1/

√
j�, we have exp�−y2/2� ≤

exp�−ξ2
j/2� exp��ξj�/

√
j� ≤ exp�−ξ2

j/2� exp��ξj��. Therefore,

P
(∣∣∣∣g −

z− x
σ
√
hj

∣∣∣∣ <
1√
j

)
≤ 2√

j

M

1+ �ξj�3
;

where M is a constant such that

∀ ξ ∈ R;
1√
2π

exp
(
−ξ

2

2
+ �ξ�

)
≤ M

1+ �ξ�3 :

This yields

P
(∣∣∣∣g −

z− x
σ
√
hj

∣∣∣∣ <
1√
j

)
≤ C√

j�1+ �x− z�3�
;

and, with (9) and (10),

P
(
�X�n�jh − z� < σ

√
h
)
≤ C√

j�1+ �x− z�3�
;

for j ≥ 1. Consequently,

E
(∣∣Du�jh;X�n�jh �

∣∣1��jh;X�n�jh �∈C̄�
)

≤ C√
n

∫ �j+1�h

jh
dτ
∫ +∞
−∞

dz

∣∣∣∣
∂2u

∂t2
�τ; z�

∣∣∣∣
1√

j�1+ �x− z�3�

≤ C
√
h√
n

∫ �j+1�h

jh

dτ√
jh

∫ +∞
−∞

dz

∣∣∣∣
∂2u

∂t2
�τ; z�

∣∣∣∣
1

�1+ �x− z�3�

≤ C
n

∫ �j+1�h

jh

dτ√
τ

∫ +∞
−∞

dz

1+ �z�3
∣∣∣∣
∂2u

∂t2
�τ; z�

∣∣∣∣;

(11)

with a constant C which may depend on x.
We now write E�∑n−1

j=1 �Du�jh;X
�n�
jh ��1��jh;X�n�jh �∈C̄�� as the sum I�θ� + J�θ�,

where θ ∈ �1/2;1�,

I�θ� = E
( �nθ�−2∑

j=1

∣∣Du�jh;X�n�jh �
∣∣1��jh;X�n�jh �∈C̄�

)
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and

J�θ� = E
( n−1∑
j=�nθ�−1

∣∣Du�jh;X�n�jh �
∣∣1��jh;X�n�jh �∈C̄�

)
:

Using (11) and the Cauchy–Schwarz inequality, we get

I�θ� ≤ C
n

�nθ�−2∑
j=1

∫ �j+1�h

jh

dτ√
τ

∫ +∞
−∞

dz

1+ �z�3
∣∣∣∣
∂2u

∂t2
�τ; z�

∣∣∣∣

≤ C
n

√
A
√
B;

with

A =
�nθ�−2∑
j=1

∫ �j+1�h

jh

dτ

τ�θT− τ�
∫ +∞
−∞

dz

1+ �z�3

and

B =
�nθ�−2∑
j=1

∫ �j+1�h

jh
dτ �θT− τ�

∫ +∞
−∞

dz

1+ �z�3
∣∣∣∣
∂2u

∂t2
�τ; z�

∣∣∣∣
2

:

Clearly,

A ≤ C
∫ θT−h
h

dτ

τ�θT− τ� =
2C
θT

log
(
θT− h
h

)

≤ C log�1/h�;

since we have assumed θ ∈ �1/2;1�. Therefore, we have A ≤ C/ log n. We now
estimate B. We have

B ≤
∫ θT

0
dτ�θT− τ�

∫ ∞
−∞

dz

1+ �z�3
∣∣∣∣
∂2u

∂t2
�τ; z�

∣∣∣∣
2

:

Now, from the definition of u in terms of P, we can compute ∂2u/∂t2. For
�t; z� ∈ �0;T� ×R, we have

∂2u

∂t2
�t; z�= e−rt

(
∂2P

∂t2
+µ2 ∂

2P

∂x2
+ r2P+2µ

∂2P

∂t∂x
−2r

∂P

∂t
−2rµ

∂P

∂x

)
�t; z+µt�:

From this expression we can derive, using Theorems 2 and 3, that

B ≤ C√
T− θT

:

Hence,

I�θ� ≤ C
√

log n
n

1
�1− θ�1/4 :
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We now derive an upper bound for J�θ� by using Proposition 5:

J�θ� ≤
n−1∑

j=�nθ�−1

C√
nj

≤ C
(

1− θ+ 1
n

)
:

Putting things together, we have

I�θ� +J�θ� ≤ C
[√

log n
n

1
�1− θ�1/4 + �1− θ�

]
:

Taking 1− θ = �
√

log n/n�4/5, we obtain

E
( n−1∑
j=1

∣∣Du�jh;X�n�jh �
∣∣1���j−1�h;X�n��j−1�h�∈C̄�

)
≤ C

(√
log n
n

)4/5

;

which yields the desired result [since the term corresponding to j = 0
is O�1/n�, as follows easily from the boundedness of �∂u/∂t��t; x� and
�∂2u/∂x2��t; x� for small t]. 2

4.3. Proof of the upper bound. We first state the following estimate in the
stopping region.

Lemma 2. For n large enough, we have

∀ �t; y� ∈ S̄; Du�t; y� ≤ 0:

Proof. The condition �t; y� ∈ S̄ implies µ�t+h�+y±σ
√
h ≤ s�t� ≤ s�t+h�

and µt+ y ≤ s�t�, hence

Du�t; y� = 1
2

(
e−r�t+h�ψ�y+ µ�t+ h� + σ

√
h�

+ e−r�t+h�ψ�y+ µ�t+ h� − σ
√
h�
)
− e−rtψ�y+ µt�:

Now, if z ≤ s�t�, ψ�z� =K− ez. Therefore,

Du�t; y� = e−rt
[
e−rh

2

(
2K− ey+µ�t+h�+σ

√
h − ey+µ�t+h�−σ

√
h
)
−K+ ey+µt

]

= e−rt
[
K�e−rh − 1� + ey+µt

(
1− e−σ2h/2 cosh�σ

√
h�
)]
;

where we haved used µ = r−�σ2/2�. From this expression the lemma follows
easily. 2

We are now in a position to derive the upper bound in Theorem 1. We
introduce the set

B̄ =
{
�t; y� ∈ �0;T−h�×R � s�t�−�µ�h−σ

√
h ≤ µt+y ≤ s�t+h�+�µ�h+σ

√
h
}
:
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The letter B obviously refers to “boundary.” Note that

B̄ = �0;T− h� ×R\�C̄ ∪ S̄�:
Now, using (7), we want to estimate

sup
τ∈T �n�

0;T

E
( nτ/T∑

j=1

Du��j− 1�h;X�n��j−1�h�
)
:

For 0 ≤ j ≤ n− 1, we can write

Du�jh;X�n�jh � = Du�jh;X�n�jh �1��jh;X�n�jh �∈C̄� +Du�jh;X�n�jh �1��jh;X�n�jh �∈S̄�

+Du�jh;X�n�jh �1��jh;X�n�jh �∈B̄�:

Using Proposition 6 and Lemma 2, we have, for n large enough and for any
τ ∈ T

�n�
0;T ,

E
( �τ/h�−1∑

j=0

Du�jh;X�n�jh �
)
≤ C

(√
log n
n

)4/5

+E
( �τ/h�−1∑

j=0

Du�jh;X�n�jh �1��jh;X�n�jh �∈B̄�
)

It follows from the boundedness of �∂u/∂t��t; ·� and �∂2u/∂x2��t; ·� for small t
that

Du�0;X�n�0 � ≤
C

n
:

On the other hand, we know from Proposition 5 that

E
∣∣Du

(
�n− 1�h;X�n��n−1�h

)∣∣ ≤ C
n
:

We will now estimate Du�jh;X�n�jh �1��jh;X�n�jh �∈B̄� for 1 ≤ j ≤ n − 2. Applying

Proposition 4 to suitable C2 approximations of u, we have, since �∂u/∂t� +
�σ2/2��∂2u/∂x2� ≤ 0,

Du�t; y� ≤ 1
σ

∫ √h
0

dξ
∫ σξ
−σξ

dz

(
z
∂2u

∂t∂x
�t+ ξ2; y+ z�

)

≤
∫ √h

0
ξ dξ

∫ σ√h
−σ
√
h
dz

∣∣∣∣
∂2u

∂t∂x
�t+ ξ2; y+ z�

∣∣∣∣

= 1
2

∫ t+h
t

ds
∫ y+σ√h
y−σ
√
h
dz

∣∣∣∣
∂2u

∂t∂x
�s; z�

∣∣∣∣:

Note that when �t; y� ∈ B̄ and �z− y� ≤ σ
√
h, we have

s�t� − �µ�h− 2σ
√
h− µt ≤ z ≤ s�t+ h� + �µ�h+ 2σ

√
h− µt:
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Therefore, if we assume h ≤ 1 and set λ = �µ� + 2σ , we can write

Du�t; y�1��t;y�∈B̄� ≤
1
2

∫ t+h
t

ds
∫ s�t+h�+λ√h−µt
s�t�−λ

√
h−µt

dz 1��z−y�≤σ√h�

∣∣∣∣
∂2u

∂t∂x
�s; z�

∣∣∣∣:

Hence

E
( �τ/h�−1∑

j=1

Du�jh;X�n�jh �1��jh;X�n�jh �∈B̄�
)

≤ 1
2

( n−2∑
j=1

∫ �j+1�h

jh
dτ
∫ s�jh+h�+λ√h−µjh
s�jh�−λ

√
h−µjh

dzP
(
�X�n�jh − z� ≤σ

√
h
)∣∣∣∣
∂2u

∂t∂x
�τ; z�

∣∣∣∣
)
+Ch:

As the proof of Proposition 6 shows, we have

P
(
�X�n�jh − z� ≤ σ

√
h
)
≤ C√

j�1+ �z�3�
:

Hence, using τ ≤ 2jh, for jh ≤ τ ≤ �j + 1�h and j ≥ 1, and applying the
Cauchy–Schwarz inequality,

E
(�τ/h�−1∑

j=1

Du�jh;X�n�jh �1��jh;X�n�jh �∈B̄�
)

≤ C
( n−2∑
j=1

√
h
∫ �j+1�h

jh

dτ√
τ

∫ s�jh+h�+λ√h−µjh
s�jh�−λ

√
h−µjh

dz

1+ �z�3
∣∣∣∣
∂2u

∂t∂x
�τ; z�

∣∣∣∣
)
+Ch

≤ C
√
h

[ n−1∑
j=1

∫ �j+1�h

jh

dτ√
τ

(
s�jh+ h� − s�jh� + 2λ

√
h
)1/2

×
(∫ dz

1+ �z�3
∣∣∣∣
∂2u

∂t∂x
�τ; z�

∣∣∣∣
2)1/2]

+Ch:

It follows from Proposition 1 and Theorem 2 that, for j ≤ n− 2,

s�jh+ h� − s�jh� ≤ C
√
h

1
�T− jh− h�1/4

≤ C
√
h

1
��T− jh�/2�1/4 ;

where we have used j ≤ n− 2 in the last inequality.
On the other hand, we know from Theorem 2 and Theorem 3 (applied with

t1 = τ and T′ = �T+ τ�/2) that

(∫ dz

1+ �z�3
∣∣∣∣
∂2u

∂t∂x
�τ; z�

∣∣∣∣
2)1/2

≤ C

�T− τ�3/4 :
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Therefore,

E
( �τ/h�−1∑

j=1

Du�jh;X�n�jh �1��jh;X�n�jh �∈B̄�
)

≤ C
√
h
∫ T

0

dτ√
τ

h1/4

�T− τ�1/8
1

�T− τ�3/4 +Ch

≤ Ch3/4;

which completes the proof of the upper bound in the general case. 2

4.4. The case µ ≤ 0. In this section, we assume that µ ≤ 0. We will show
that, in that case,

E
( �τ/h�−1∑

j=0

Du�jh;X�n�jh �
)
≤ C

(√
log n
n

)4/5

:

We first observe, as in Section 4.2, that

Du�t; y� ≤ 1
σ

∫ √h
0

dξ
∫ σξ
−σξ

dz

(
z
∂2u

∂t∂x
�t+ ξ2; y+ z�

)
:

We would like to integrate by parts, as in the proof of Proposition 6. However,
we no longer have ∂3u/∂t∂x2 = −�2/σ2�∂2u/∂t2, since �t; y� may not be in C̄.
However, we know from (4) that

(
∂u

∂t
+ σ

2

2
∂2u

∂x2

)
�t; y� = −rKe−rt1�y≤s�t�−µt�

since µ ≤ 0, t 7→ s�t� − µt is a nondecreasing function. Therefore

t 7→ ert
(
∂u

∂t
+ σ

2

2
∂2u

∂x2

)
�t; y�

is nonincreasing. It follows that

∂

∂t

(
ert
(
∂u

∂t
+ σ

2

2
∂2u

∂x2

))
≤ 0

in the sense of distributions. Hence

rert
(
∂u

∂t
+ σ

2

2
∂2u

∂x2

)
+ ert

(
∂2u

∂t2
+ σ

2

2
∂3u

∂t∂x2

)
≤ 0:

Therefore,

∂3u

∂t∂x2
≤ 2
σ2

(
−∂

2u

∂t2
+ r2K

)
:
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Using suitable C2 approximations of u, for which integration by parts is al-
lowed, we obtain

Du�t; y� ≤ 1
σ

∫ √h
0

dξ
∫ σξ
−σξ

dz

(
ξ2 − z2

σ2

)(∣∣∣∣
∂2u

∂t2
�t+ ξ2; y+ z�

∣∣∣∣+ r
2K

)

≤
√
h

σ

∫ √h
0

ξ dξ
∫ σξ
−σξ

dz

∣∣∣∣
∂2u

∂t2
�t+ ξ2; y+ z�

∣∣∣∣+Ch
2

≤
√
h

2σ

∫ t+h
t

dτ
∫ y+σ√h
y−σ
√
h

∣∣∣∣
∂2u

∂t2
�τ; z�

∣∣∣∣dz+Ch
2:

We can now proceed exactly as in the proof of Proposition 6 to derive

sup
τ∈T �n�

0;T

E
τ/h−1∑
j=0

Du�jh;X�n�jh � ≤ C
(√

log n
n

)4/5

;

which proves that, for µ ≤ 0,

P�n��0; x� −P�0; x� ≤ C
(√

log n
n

)4/5

:

4.5. Proof of the lower bound. In order to derive the lower bound in The-
orem 1, we consider the following stopping time:

τ = inf
{
t ∈ �0;T− h� � t/h ∈ N and �t;X�n�t � /∈ C̄

}
∧T:

Using (6) and the definition of τ, we have

E
(
u�τ;X�n�τ �

)
= u�0; x� +E

( nτ/T∑
j=1

Du��j− 1�h;X�n��j−1�h�
)

= P�0; x�+E
( nτ/T∑

j=1

Du��j− 1�h;X�n��j−1�h�1���j−1�h;X�n��j−1�h� ∈ C̄�

)

≥ P�0; x� −C
(√

log n
n

)4/5

;

(12)

where the last inequality follows from Proposition 6.
If τ < T, �τ;X�n�τ �must be in S̄∪B̄. Therefore, we should be able to estimate

the difference u�τ;X�n�τ �− e−rτψ�µτ+X�n�τ � thanks to Proposition 2. However,
since the estimate in Proposition 2 blows up as t approaches T, we have to be
careful when τ is close to T. Therefore, we introduce the following modified
stopping time. For 0 < α < T (to be chosen later), let

τα = τ1�τ+h<α� +T1�τ+h≥α�:
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It is easy to check that τα is a stopping time. We will prove below that, for α
close to T (say α > T/2),

∣∣E
(
u�τ;X�n�τ �

)
−E

(
e−rταψ�µτα +X�n�τα �

)∣∣ ≤ C
(

1

n
√
T− α

+ �T− α�
)
:(13)

Applying this inequality with T− α = 1/n2/3, together with (12), leads to

E
(
exp�−rτα�ψ�µτα +X�n�τα �

)
−P�0; x� ≥ −c/n2/3;

which implies the lower bound in Theorem 1.
It remains to prove (13). We have

E
(
u�τ;X�n�τ �

)
−E

(
exp�−rτα�ψ�µτα +X�n�τα �

)
= E1 +E2;

where

E1 = E
(
u�τ;X�n�τ � − e−rτψ�µτ +X�n�τ �

)
1�τ+h<α�

and

E2 = E
(
u�τ;X�n�τ � − u�T;X

�n�
T �

)
1�τ+h≥α�:

We first study E1. We have

u�τ;X�n�τ � = e−rτ
(
P�τ;µτ +X�n�τ � −P�τ + h;µτ +X�n�τ �

)

+ e−rτP�τ + h;µτ +X�n�τ �:

Hence

∣∣u�τ;X�n�τ � − e−rτψ�µτ +X�n�τ �
∣∣ ≤ h sup

τ≤t≤τ+h

∣∣∣∣
∣∣∣∣
∂P

∂t
�t; ·�

∣∣∣∣
∣∣∣∣
L∞�R�

+ e−rτ
∣∣P�τ+h;µτ+X�n�τ �−ψ�µτ+X�n�τ �

∣∣:

From Proposition 2, we know that, for all t ∈ �0;T� and y ≥ s�t�,

P�t; y� − ψ�y� ≤ C√
T− t

�y− s�t��2:

Note that, on the event �τ < T�, µτ +X�n�τ ≤ s�τ + h� + �µ�h+ σ
√
h. Hence

∣∣P�τ + h;µτ +X�n�τ � − ψ�µτ +X�n�τ �
∣∣ ≤ C√

T− τ − h
��µ�h+ σ

√
h�2

≤ C

n
√
T− α

on �τ + h < α�:
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On the set �τ + h < α�, we also have, due to Theorem 2,

sup
τ≤t≤τ+h

∣∣∣∣
∣∣∣∣
∂P

∂t
�t; ·�

∣∣∣∣
∣∣∣∣
L∞�R�

≤ C√
T− α

:

Consequently,

�E1� ≤
C

n
√
T− α

:

We now examine E2. It follows from Proposition 3 and Proposition 5 that

∣∣E
(
u�τ;X�n�τ � − u�T;X

�n�
T �

)
1�τ+h≥α�

∣∣ ≤ E
( n−1∑
j=�τ/h�

∣∣Du�jh;X�n�jh �
∣∣1�τ+h≥α�

)

≤ C
n∑

j=�α/h�

1√
nj

≤ C√
α
�T− α�:

Hence �E2� ≤ C�T− α�, for α close to T, which completes the proof of (13). 2

APPENDIX

Proof of Theorem 3. Similar estimates have been proved by Friedman
and Kinderlehrer (see [17], Chapter VIII, Theorem 3.4) for variational inequal-
ities on a finite interval, when the obstacle ψ has a bounded second derivative.
Since the proof of Theorem 3 uses the same techniques, we will not give all
the details.

We first introduce relevant function spaces. For k > 1, let Hk = L2�R;
dx/�1 + x2�k/2� and Vk = �f ∈ Hk � f′ ∈ Hk�. The inner product on Hk will
be denoted by �·; ·�k and the associated norm by � · �k. The natural norm on Vk

will be denoted by �� · ��k. Thus, we have

�f�2k =
∫ +∞
−∞

f2�x� dx

�1+ x2�k/2 ;

and ��f��2k = �f�2k + �f′�2k.
Let A be the partial differential operator defined by

A = σ
2

2
∂2

∂x2
+ µ ∂

∂x
− r:

We associate with operator A a bilinear functional on Vk, defined by

ak�f;g� =
σ2

2

∫ ∞
−∞

f′�x�g′�x� dx

�1+ x2�k/2 −
kσ2

2

∫ ∞
−∞

f′�x�g�x� x

�1+x2��k/2�+1
dx

− µ
∫ ∞
−∞

f′�x�g�x� dx

�1+ x2�k/2 + r
∫ ∞
−∞

f�x�g�x� dx

�1+ x2�k/2 ;
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so that, if f′ ∈ Vk,

ak�f;g� = −�Af;g�k:
It will be convenient to write ak�f;g� as ak�f;g� = ãk�f;g� + āk�f;g�; with

ãk�f;g�=
σ2

2

[
�f′; g′�k+�f;g�k

]
and āk�f;g�=ak�f;g�− ãk�f;g�:(14)

With these notations, it is easy to check that �āk�f;g�� ≤ C��f��k�g�k and
�āk�f;g�� ≤ C��g��k�f�k for some constant C which does not depend on f or g.

We will prove that if φ is a bounded continuous function with bounded
derivatives φ′ and φ′′, satisfying Aφ ≥ b, where b is a nonpositive constant
and ��φ��L∞ + ��φ′��L∞ ≤ a for some positive constant a, then the (bounded)
solution of the variational inequality

�I�
max

(
∂u

∂t
+Au;φ− u

)
= 0;

u�T; ·� = φ;
satisfies the following: there exist positive constants C1 and C2 depending
only on a and b such that

∀ t1 ∈ �0;T�;
∫ T
t1

�T− t�
∣∣∣∣
∂2u

∂t2
�t; ·�

∣∣∣∣
2

k

dt+ �T− t1�
∣∣∣∣
∣∣∣∣
∂u

∂t
�t1; ·�

∣∣∣∣
∣∣∣∣
2

k

≤ C1��φ′′��L∞ +C2:

(15)

Applying this estimate with k = 3,T replaced byT′, φ = P�T′; ·� and b = −rK
yields Theorem 3 (recall that ��∂P/∂t� +AP��T′; x� = −rK1�x≤s�T′��, so that
AP�T′; ·� ≥ −rK).

In order to prove (15), we introduce a family of penalty functions βεx R→ R
such that, for each ε > 0, βε is a concave, nondecreasing, nonpositive C2

function with bounded derivatives, satisfying βε�u�=0, for u≥ ε and βε�0�= b.
Let uε be the solution of the parabolic semilinear equation

�Iε�
∂uε
∂t
+Auε − βε�uε −φ� = 0;

uε�T; ·� = φ;
Standard arguments show that problem �Iε� has a unique solution satisfying
uε ∈ L2��0;T�yVk� and ∂uε/∂t ∈ L2��0;T�yHk�, with

∫ T
0

∣∣∣∣
∂uε
∂t
�t; ·�

∣∣∣∣
2

k

dt ≤K1;(16)

where K1 depends only on ��φ��k (and not on ε). Moreover, as ε tends to 0, uε
converges weakly to the solution of �I�. For details on the previous facts, we
refer the reader to [6], Chapter 3, where similar results are proved. It is then
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sufficient to derive (15) for uε, making sure along the way that constants do
not depend on ε.

For that purpose, we proceed essentially as in [17], Chapter VIII, Section 3.
Let

vε =
∂uε
∂t
:

For notational convenience, we set β = βε. By differentiating �Iε� with respect
to t, we have that vε satisfies

∂vε
∂t
+Avε − β′ε�uε −φ�vε = 0;(17)

with terminal condition

vε�T; ·� = −Aφ+ β�0� = −Aφ+ b:

Observe that the condition Aφ ≥ b, together with β′ ≥ 0, implies that vε ≤ 0.
Also note that, for t ∈ �0;T�, ��vε�t; ·���L∞ ≤ ��vε�T; ·���L∞ ≤ ��Aφ��L∞ + �b�.

Now, we multiply (17) by vε and integrate with respect to dx/�1+ x2�k/2 to
get

−
(
∂vε
∂t
; vε

)

k

+ ak�vε; vε� +
(
β′�uε −φ�vε; vε

)
k
= 0:

Since β is nondecreasing, this implies
(
∂vε
∂t
; vε

)

k

− ak�vε; vε� ≥ 0:

We now integrate over the time interval �t;T� and use (14) to obtain [with the
notation vε�t� = vε�t; ·�]

1
2

(
�vε�T��2k − �vε�t��2k

)
≥
∫ T
t
ak�vε�t�; vε�t��dt

= σ
2

2

∫ T
t
��vε�t���2k dt+

∫ T
t
āk�vε�t�; vε�t��dt

≥ σ
2

2

∫ T
t
��vε�t���2k dt−C

∫ T
t
��vε�t���k�vε�t��k dt:

Hence, using (16),

∫ T
t
��vε�t���2k dt ≤ C

(
�Aφ�2k + b2 +K1

)
:

Note that

�Aφ�k ≤ �Aφ− b�k +C�b�;
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and, since Aφ ≥ b, we can write

�Aφ− b�2k =
∫ ∞
−∞
�Aφ�x� − b�2 dx

�1+ x2�k/2

≤
(
��Aφ��L∞ + �b�

) ∫ ∞
−∞

(
Aφ�x� − b

) dx

�1+ x2�k/2

≤ �C+ �b��
(
��Aφ��L∞ + �b�

)
;

since integrating by parts allows a control of
∫∞
−∞Aφ�x��dx/�1+ x2�k/2� by

��φ��L∞ and ��φ′��L∞ . Therefore, we have the following inequality:
∫ T
t
��vε�t���2kdt ≤K2

(
��Aφ��L∞ + 1

)
;(18)

where K2 depends only on b and a. Estimates involving �∂2uε/∂t
2� can be

obtained in the following way. Multiply (17) by �∂vε/∂t� and integrate with
respect to dx/�1+ x2�k/2. Then

−
(
∂vε
∂t
;
∂vε
∂t

)

k

+ ak
(
vε;

∂vε
∂t

)
+
(
β′�uε −φ�vε;

∂vε
∂t

)

k

= 0:

Note that
(
β′�uε −φ�vε;

∂vε
∂t

)

k

=
∫ ∞
−∞

β′�uε −φ�vε
∂vε
∂t

dx

�1+ x2�k/2

= 1
2
d

dt

(
β′�uε −φ�vε; vε

)
k
− 1

2

(
β′′�uε −φ�v2

ε; vε
)
k

≤ 1
2
d

dt

(
β′�uε −φ�vε; vε

)

k

;

since β is concave and vε ≤ 0. Hence
(
∂vε
∂t
;
∂vε
∂t

)

k

− ak�vε;
∂vε
∂t
� ≤ 1

2
d

dt

(
β′�uε −φ�vε; vε

)
k

(
∂vε
∂t
;
∂vε
∂t

)

k

− σ
2

4
d

dt
��vε��2k ≤

1
2
d

dt

(
β′�uε −φ�vε; vε

)
k
+C

∣∣∣∣
∂vε
∂t

∣∣∣∣
k

��vε��k:

Now, let 0 < t1 < t2 < T. Integrate from t1 to t2,

∫ t2
t1

∣∣∣∣
∂vε
∂t
�t; ·�

∣∣∣∣
2

k

dt+ σ
2

4
��vε�t1���2k

≤ σ
2

4
��vε�t2���2k +

1
2

(
β′�uε�t2� −φ�vε�t2�; vε�t2�

)
k

− 1
2

(
β′�uε�t1� −φ�vε�t1�; vε�t1�

)
k
+C

∫ t2
t1

∣∣∣∣
∂vε
∂t
�t; ·�

∣∣∣∣
k

��vε�t���k dt
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≤ σ
2

4
��vε�t2���2k +

1
2

(
β′�uε�t2� −φ�vε�t2�; vε�t2�

)
k

+C
∫ t2
t1

∣∣∣∣
∂vε
∂t
�t; ·�

∣∣∣∣
k

��vε�t���k dt:

We now integrate with respect to t2 from t1 to T to get

∫ T
t1

dt2

∫ t2
t1

dt

∣∣∣∣
∂vε
∂t
�t; ·�

∣∣∣∣
2

k

+ σ
2

4
�T− t1���vε�t1���2k

≤ σ
2

4

∫ T
t1

dt2��vε�t2���2k +C
∫ T
t1

dt2

∫ t2
t1

dt

∣∣∣∣
∂vε
∂t
�t; ·�

∣∣∣∣
k

��vε�t���k

+ 1
2

∫ T
t1

(
β′�uε�t2� −φ�vε�t2�; vε�t2�

)
k
dt2;

and, using Fubini’s theorem,

∫ T
t1

dt�T− t�
∣∣∣∣
∂vε
∂t
�t; ·�

∣∣∣∣
2

k

+ σ
2

4
�T− t1���vε�t1���2k

≤ σ
2

4

∫ T
t1

dt��vε�t���2k +C
∫ T
t1

dt�T− t�
∣∣∣∣
∂vε
∂t
�t; ·�

∣∣∣∣
k

��vε�t���k

+ 1
2

∫ T
t1

(
β′�uε�t� −φ�vε�t�; vε�t�

)
k
dt:

(19)

Now, observe that
(
β′�uε�t� −φ�vε�t�; vε�t�

)
k

≤ ��vε�t���L∞
∫ ∞
−∞

β′�uε�t� −φ��vε�t��
dx

�1+ x2�k/2

≤
(
��Aφ��L∞ + �b�

) ∫ ∞
−∞

β′�uε�t� −φ��−vε�t��
dx

�1+ x2�k/2

=
(
��Aφ��L∞ + �b�

)−d
dt

∫ ∞
−∞

β�uε�t� −φ�
dx

�1+ x2�k/2 :

Hence
∫ T
t1

�β′�uε�t� −φ�vε�t�; vε�t��k

≤ C
(
��Aφ��L∞ + �b�

)(∫ ∞
−∞

β�uε�t1� −φ�
�1+ x2�k/2 dx−

∫ ∞
−∞

β�0�
�1+ x2�k/2dx

)

≤ C�b�
(
��Aφ��L∞ + �b�

)
:

Going back to (19) and taking (18) into account, we obtain (15). 2
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