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WEAK CONVERGENCE RATES FOR STOCHASTIC
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TARGETS AND SIMULATED ANNEALING

By Mariane Pelletier

University of Marne-la-Vallée

We study convergence rates of Rd-valued algorithms, especially in the
case of multiple targets and simulated annealing. We precise, for exam-
ple, the convergence rate of simulated annealing algorithms, whose weak
convergence to a distribution concentrated on the potential’s minima had
been established by Gelfand and Mitter or by Hwang and Sheu.

1. Introduction. Many well-known stochastic algorithms enable us to
locate the zeros of a function hx Rd → Rd or the local (eventually global)
minima of a function Vx Rd→ R. Such algorithms may be written as

Zn+1 = Zn + γn
[
h�Zn� + ηn+1

]
+ σnξn+1;(1.1)

and we take h = −∇V in the search for the minima of V.
The scale factors or gains of the algorithm �γn�n≥0 and �σn�n≥0 are two

strictly positive deterministic sequences, decreasing to zero, and are freely
chosen. In many cases, h�Zn� is observable only up to a disturbance ηn+1,
for instance, up to a Markovian disturbance [2] (if the function h is known,
then ηn+1 = 0 ∀n). The random noise �ξn� might be a simulated sequence
of independent identically distributed random vectors; such a noise prevents
the algorithm from falling into useless “traps” such as saddle points or local
maxima of V when h = −∇V.

Our contribution is related to the rate of weak convergence of (1.1). We first
consider weakly disturbed algorithms in the presence of multiple targets, and
then simulated annealing algorithms.

1.1. Weak convergence rates in the presence of multiple targets. When the
gains �γn� and �σn� are chosen such that v�n� = γn/σ2

n is an increasing se-
quence with v�n�/lnn→+∞, (1.1) is said to be a weakly disturbed algorithm.

Weakly disturbed algorithms and their relationship with the ordinary dif-
ferential equation (ODE),

dz

dt
�t� = h�z�t��;(1.2)

have been widely studied, and we know many criteria that give almost sure
convergence of �Zn� to an attractive target z∗, that is a zero of h, which is
asymptotically stable for (1.2). For such results, see [2], [6], [7] and [24].
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Once the convergence of (1.1) has been established, it is interesting to study
the rate of convergence of �Zn�. Several results on the rate of weak conver-
gence have been proved, for instance, by Bouton [3], Kersting [21], Kushner-
Huang [25] and Nevel’son and Ha’sminskiǐ [31], when it is known that the
sequence �Zn� converges with probability 1 to an attractive target of h. A
more complete bibliography on that subject can be found in Walk’s chapter of
[28]. Kaniovski [19] and Kaniovski and Pflug [20] have considered the case of
a finite number of attractive targets, under the assumption that the algorithm
almost surely converges to one of them.

More recently, the study of high-dimensional algorithms has increased in-
terest in almost sure asymptotic behaviors of algorithms, which are associated
with more complicated ODE (see [1], [6] and [10]), and we know that some
algorithms may have various limit sets (not necessarily reduced to a single
point), which are linked to the ODE (1.2); this case is called the case of multi-
ple targets. It has been seen by simulations that the probability the algorithm
converges to an attractive target z∗ is strictly positive, but the precise study of
the link between the initial value given to the algorithm and the probability
that �Zn� converges to z∗ remains an open problem.

Our first aim is to extend the previous results on the rate of weak con-
vergence of (1.1) to the case of multiple targets. More precisely, z∗ being an
attractive target, our goal is to establish the weak convergence rate of �Zn�
towards z∗ given the event 0�z∗� = �ωyZn�ω� → z∗�, and whatever the be-
havior of �Zn� outside of 0�z∗� may be. We shall assume that the probability
of 0�z∗� is strictly positive, but not necessarily equal to 1. Moreover our as-
sumptions on (1.1) will be local assumptions [that is, assumptions required
only once �Zn� is sufficiently close to z∗]. Thus, our assumptions are less re-
strictive than those found in [3], [18], [19], [20], [24], [30] and our results can
be applied, of course, to the case of multiple targets, but also to algorithms
obtained by truncation or projection.

Roughly speaking, assuming smooth regularity properties of h in a neigh-
borhood of z∗ (and whatever hmight be elsewhere), we prove that, given 0�z∗�,

√
v�n��Zn − z∗� ⇒ N �0; 6�;

with v�n� = γnσ−2
n , ⇒ denoting the weak convergence, N the Gaussian dis-

tribution and 6 a covariance matrix.

1.2. Weak convergence rates of simulated annealing algorithms on Rd.
Stochastic algorithms used in the search for the minima of a function
Vx Rd→ R are gradient algorithms of the form

Zn+1 = Zn − γn�∇V�Zn� + ηn+1� + σnξn+1;(1.3)

�ξn� being a sequence of independent simulated random vectors with distri-
bution N �0; I�.

The gains �γn� and �σn� being chosen in the same way as in 1.1, (1.3) is an
example of a weakly disturbed algorithm and our previous result applies: z∗
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being a local minimum of V, given the event 0�z∗� = �Zn→ z∗�,
√
v�n��Zn − z∗� ⇒ N �0; 6�:

This implies that, given 0�z∗�,
4v�n��V�Zn� −V�z∗��

⇒ YT�D2V�z∗� + ζI�−1/2D2V�z∗��D2V�z∗� + ζI�−1/2Y;

where v�n� = γn/σ
2
n, Y is a d-dimensional random vector with distribution

N �0; I�, and ζ depends on the choice of the gain γn. [In most cases, the
asymptotic distribution is the chi-square distribution with d degrees of free-
dom, denoted by χ2�d�].

However, it is often necessary to find the global minima of V, thus avoid-
ing its local minima. The basic idea is to increase the simulated disturbance
�σnξn+1�. As a matter of fact, we know that if the gains �γn� and �σn� are
chosen such that v�n� = γnσ−2

n is an increasing sequence, �v�n�/lnn� being
suitably bounded, then �Zn� converges weakly to a distribution concentrated
on the global minima of V. This is the framework studied by Gelfand and
Mitter [11], [12]; in this case, (1.3) is no longer a weakly disturbed algorithm,
but a simulated annealing algorithm.

Although convergence rates of simulated annealing type algorithms on fi-
nite spaces have been studied intensively, few results have been established
on the rate of simulated annealing on Rd. This is our second aim and we prove
in particular that if ArgminV is a finite set and if V is a three times contin-
uously differentiable function such that D2V�z∗� is invertible for any global
minimum z∗ of ArgminV, then

4v�n��V�Zn� − inf V� ⇒ χ2�d�;
with v�n� = γn/σ

2
n and inf V = inf z∈Rd V�z�. Thus the rate of weak con-

vergence of simulated annealing algorithms cannot be better than 1/v�n� =
C / lnn (where C is a strictly positive constant), whereas the optimal rate of
weak convergence of weakly disturbed algorithm is known to be 1/v�n� = C /n.

A companion paper from Marquez [29] investigates convergence rates for
annealing diffusion processes.

2. Main results.

2.1. Weak convergence rates under local assumptions. We will look at
the d-dimensional stochastic algorithm (1.1) defined on a probability space
��;A ;P � with a filtration F = �Fn�n≥0.

Such a formula includes several types of weakly disturbed algorithms.
Refering to regression problems, let us call the “noise” a sequence of incre-
ments of a d-dimensional square integrable martingale, adapted to F , for
instance a sequence of independent identically distributed random vectors.
The Robbins–Monro algorithm is obtained with η = 0, �ξn� a noise and
γn = σn. The Kiefer–Wolkowitz algorithm [22] introduces h = −∇V, �ξn�
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being a noise and �ηn� a small residual disturbance. Finally, we may write
ηn+1 as ηn+1 = en+1 + rn+1, where �en� is a noise, and the residual term �rn�
allows Markovian disturbances in the framework of [2]. In order to study
unitarily all these situations, we set εn+1 = ξn+1 + �γn/σn�en+1 and rewrite
(1.1) as

Zn+1 = Zn + γn�h�Zn� + rn+1� + σnεn+1;(2.1)

where �εn� is a noise and �rn� a residual term.

(A1.1) Assumptions about the function hx Rd→ Rd.

(i) h�z∗� = 0.
(ii) On a neighborhood of z∗, h�z� = ρ�z−z∗�H:�z−z∗�+O��z−z∗�2� with

ρx Rd → �1; ρ� (ρ > 1) Lipschitz on �zy �z� = 1� and such that ρ�tz� = ρ�z� for
all t > 0.

(iii) H is a stable d×dmatrix; that is, the largest real part of its eigenvalues
is �−L� with L > 0.

(A1.2) Assumptions about the disturbances �rn� and �εn�. For two con-
stants M> 0 and b > 2, almost surely,

E�εn+1�Fn�1��Zn−z∗�≤M� = 0;

sup
n≥0

E
(
�εn+1�b�Fn

)
1��Zn−z∗�≤M� <∞;

E
(
v�n��rn+1�21��Zn−z∗�≤M�

)
→ 0:

Almost surely on 0�z∗� = �Zn → z∗�, E�εn+1ε
T
n+1�Fn� → 0, where 0 is a

positive definite deterministic matrix.

(A1.3) Assumptions about the gains �γn� and �σn�. Let γ and σ be two
positive functions defined on �0;+∞�, which decrease to zero. Let γn = γ�n�,
σn = σ�n�.

Let v = γ/σ2; we assume that v is a function increasing to infinity, dif-
ferentiable and such that its differentiate v′ varies regularly with exponent
β−1 ≥ −1 (that is, for any x > 0, v′�tx�/v′�t� → xβ−1 as t→+∞; cf. [9], [33]).

Moreover we assume either (A1.3.1) or (A1.3.2):
(A1.3.1) γ varies regularly with exponent �−α�, 0 ≤ α < 1;
(A1.3.2) For t ≥ 1, γ�t� = γ0/t with 2Lγ0 > β.

Comments on the assumptions. (a) Assumptions (A1.1) and (A1.2) are lo-
cal. Given the convergence to z∗, they easily apply to the case of multiple
targets as well as to projected or truncated algorithms (see, e.g., [4]).
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(b) The introduction of the function ρ in (A1.1) allows directional deriva-
tives, as in [20].

(c) Assumptions (A1.2) on the noise �εn� and the residual term �rn� are
satisfied in the most usual cases, for example, for Robbins–Monro and Kiefer–
Wolfowitz algorithms, as well as for algorithms with Markovian disturbances.

(d) Assumption (A1.3) seems quite general, and Theorem 1 can be applied
to the usual gains γn = σn = γ0n

−α, 0 < α ≤ 1, as well as to slower gains
considered in [7], for instance to γn = σn = �cn/ lnn�, with cn→0 and v�n� =
�lnn�/cn satisfying assumptions (A1.3).

(e) Since v′ varies regularly with exponent β − 1 ≥ −1, nv′�n�/v�n� → β.
We deduce that

[
v�n�

v�n− 1�

]1/2

= 1+ β

2n
+ o

(
1
n

)

and, in view of the definition of γn, under (A1.3.1), �v�n�/v�n− 1��1/2 = 1 +
o�γn�; under (A1.3.2),

[
v�n�

v�n− 1�

]1/2

= 1+ β

2γ0
γn + o�γn�:

Set ζ = 0 under (A1.3.1) and ζ = β/2γ0 under (A1.3.2). In both cases,
[

v�n�
v�n− 1�

]1/2

= 1+ ζγn + o�γn�:(2.2)

Theorem 1 (Convergence rate under local assumptions). We assume (A1.1)
to (A1.3). Given 0�z∗�,

√
v�n��Zn − z∗� ⇒ µ;

where µ is the stationary distribution of the diffusion

dXt = �ρ�Xt�H+ ζI�Xt dt+ 01/2 dBt(2.3)

Moreover, this convergence is stable, that is, for any F∞-measurable random
variable ξ, �ξ;

√
v�n��Zn − z∗�� converges weakly, given 0�z∗�, to the product

measure of the distribution of ξ and of µ.

Remarks. (a) Generally ρ = 1, and then µ = N �0; 6� where N is the
Gaussian distribution and 6 is the solution of Lyapunov’s equation

�H+ ζI�6+ 6�HT + ζI� = −0:
(b) The stability of this weak convergence is new in this framework; it takes

its root from Feigin [8] or Touati [34].

2.2. Convergence rate of simulated annealing algorithms. Simulated an-
nealing algorithms are used to find the global minima of a functionVx Rd→ R.
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We split the problem into two different parts, the gradient ∇V being known
or observable only together with a disturbance.

2.2.1. When the function ∇V is known. Here we consider the gradient
algorithm

Zn+1 = Zn − γn∇V�Zn� + σnξn+1(2.4)

under the following assumptions.

(A2.1) Assumptions about the functionV. Vx Rd→ R is twice continuously
differentiable and we have the following:

(i) V�z� → +∞ when �z� → +∞;
(ii) �∇V�2 − 1V is bounded from below;

(iii) 0 < lim inf �∇V�z��2/V�z� ≤ lim sup �∇V�z��2/V�z� < +∞ when
�z� → +∞;

(iv) ∇V is globally Lipschitz;
(v) �∇V = 0� has a finite number of connected components;

(vi) E�V�Z0�� < +∞.

(A2.2) Assumptions about the simulated noise. �ξn� is a simulated se-
quence of independent random vectors with normal distribution N �0; I�, and
independent of Z0.

(A2.3) Assumptions about the gains �γn� and �σn�. We add one of the fol-
lowing assumptions where 3 is a strictly positive constant, depending on V
[see comment (b)].

(A2.3.1) (i) γ is decreasing and varies regularly with exponent �−α� where
1
2 < α < 1.

(ii) v is increasing to infinity, continuously differentiable, concave, and
varies slowly.

(iii) For t large enough, v�t� ≤ �c · �1− α�� ln t with c < 1/3.

(A2.3.2) For t > 1: (i) γ�t� = γ0�t�ln t�m�−1/2 with m ≥ 2.

(ii) σ�t� = σ0�t1/4�ln t��1/2�+�m/4��−1.
(iii) γ0/σ

2
0 < 1/3.

(A2.3.3) For t > exp�1�: (i) γ�t� = γ0/t.
(ii) σ�t� = σ0�t ln �ln t��−1/2.

(iii) γ0/σ
2
0 < 1/3.

Comments on the assumptions. (a) Assumption (A2.1) implies that the
Gibbs probability measure Gτ, whose density with respect to Lebesgue mea-
sure is gV;τ = cτ exp�−V/τ�, exists for any τ > 0 (cf. [18]).

(b) The constant 3, depending on V, is accurately described in [16] and [18].
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Theorem 2.

(i) Rate of convergence in probability: under assumptions (A2.1)–(A2.3), for
all r > 0,

sup
n
E
(
v�n��V�Zn� − inf V�1��V�Zn�−inf V�>r�

)
<∞:

(ii) Rate of convergence in expectation: if we add the assumption that there
exists a constant ρV > 0 such that, on a neighborhood of ArgminV, ρV�V�z�−
inf V� ≤ �∇V�z��2, then

sup
n
E�v�n��V�Zn� − inf V�� <∞:

Remarks. (a) The convergence of simulated annealing algorithms only re-
quire assumptions (i), (ii), (v), (vi) of (A2.1), �∇V�z�� → ∞ as �z� → ∞,
(A2.2) and (A2.3). Thus our assumptions on the function V seem quite restric-
tive (and are in particular stronger than those of [11], [12] or [29]). However it
proves that annealing algorithms converge very slowly since their convergence
rates cannot be better than 1/v�n� = C / lnn. Such rates of weak convergence
are disappointing for practical purpose; further studies should focus on accel-
erating this optimization process.

(b) If ArgminV is known to be included in a compact set, we can weaken
the assumptions on V. To this end, we replace V by a function that equals V
on the compact set and satisfies the strong assumption (A2.1) for large �z�.
Such a procedure is easier than a projection on a suitable compact.

(c) The condition ρV�V − inf V� ≤ �∇V�2 is fulfilled if D2V is positive
definite on ArgminV (hence ArgminV being a finite set). It is also fulfilled ifV
is regular enough on a neighborhood of the connected components of ArgminV.

Theorem 3 (Weak convergence rate and small deviations). Under assump-
tions (A2.1)–(A2.3), and if a 7→ g�a� =

∫
exp�−aV�x��dx varies regularly with

exponent �−η�, η ≥ 0, we have the following.

(i) Weak convergence:

4v�n��V�Zn� − inf V� ⇒ γ
(
η; 1

2

)
;

γ�η; 1
2� denoting the Gamma distribution whose density with respect to the

Lebesgue measure is proportional to e−x/2xη−11�x>0�.
(ii) Small deviations: for any real function f increasing to infinity,

lim
n→∞

1
f�v�n�� ln v�n� ln

[
P

(
V�Zn� − inf V ≥ rf�v�n�� ln v�n�

v�n�

)]
= −2r:

Remarks. (a) The condition that a 7→ g�a� =
∫

exp �−aV�x��dx varies
regularly with exponent �−η� is a technical assumption, which is fulfilled
in the three cases considered by Hwang [15]. These cases, which ensure the
weak convergence as τ → 0 of the Gibbs distribution Gτ to a probability G0
concentrated on ArgminV, are the following.
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Case 1. ArgminV has a strictly positive Lebesgue measure. In this case
G0 is the uniform distribution on ArgminV, η = 0 and γ�η;1/2� is the Dirac
measure in zero.

Case 2. V is a three times continuously differentiable function and D2V�z∗�
is invertible for any z∗ ∈ ArgminV. Then ArgminV is a finite set and G0 is
proportional to the measure

∑
z∗∈ArgminV

[
detD2V�z∗�

]−1/2
δz∗;

δz∗ denoting the Dirac measure in z∗. Here η = d/2 and γ�η;1/2� is the
chi-square distribution with d degrees of freedom.

Case 3. V is a three times continuously differentiable function, ArgminV
has a finite number of connected components, each component being a smooth
manifold. Moreover, for all points of these manifolds with the highest dimen-
sion, the “second order partial differential of V with respect to smooth normal
coordinates” is invertible (see [15] for a precise statement based on regular
local coordinates of V). In this case, G0 concentrates on the highest dimen-
sional components, and η = �d − ν�/2, ν being the highest dimension of the
regular components.

(b) Assumption (A2.3.2) gives the optimal convergence rate 1/v�t� =
1/�c ln t� for any c < 1/3, whereas (A2.3.1) leads to 1/v�t� > 2/�c�ln t�� and
(A2.3.3), which corresponds to the framework studied by Gelfand and Mitter
[11], gives a very slow rate �1/v�t� = 1/�c ln�ln t���.

(c) For the simulated annealing diffusion, Marquez [29] establishes large
deviation principles. For the discrete time algorithm, residual terms prevent
us from obtaining such results. See [23] for large deviations results on the
escape time from a neighborhood of ArgminV.

(d) Part (i) of Theorem 3 can be used to compute confidence regions with a
given error, whereas part (ii) can be used to compute larger confidence regions
with an error converging to zero with a rate close to �v�n��−2r.

For our complementary result on the weak convergence rate, we add the
following assumption, which corresponds to the second case considered by
Hwang [15], thus to η = d/2 in Theorem 3.

(A2.4) Additional assumptions on the function V.

(i) For any z∗ of ArgminV, D2V�z∗� is positive definite (hence ArgminV
is a finite set).

(ii) V is a three times continuously differentiable function.

Theorem 4. Under assumptions (A2.1) to (A2.4),
(
Zn;

√
v�n�∇V�Zn�

)
⇒

∑
z∈ArgminV

G0�z�δz ⊗N
(
0; 1

2D
2V�z�

)
;

N denoting the Gaussian distribution and ⊗ the product of measures.
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2.2.2. When the function ∇V is observable only together with a disturbance.
In this case, we consider the gradient algorithm

Zn+1 = Zn − γn�∇V�Zn� + rn+1 + εn+1� + σnξn+1

defined on ��;A ;P � equipped with a filtration F = �Fn�n≥0 with the follow-
ing assumptions.

(A3.1) Assumptions about the function V. We take up assumption (A2.1).

(A3.2) Assumptions about the gains �γn� and �σn�. We assume either
(A3.3.1) or (A3.3.2).

(A3.3.1) We take up (A2.3.1) with 2
3 < α < 1;

(A3.3.2) We take up (A2.3.3).

(A3.3) Assumptions about the disturbances �εn� and �rn�. Disturbances
�εn� and �rn� are adapted to F ; E�εn+1�Fn� = 0; supnE��εn+1�2�Fn� < +∞;
supn n

δE��rn+1�2�Fn� <∞, with δ > 1− α.

(A3.4) Assumptions about the simulated noise �ξn�. The random variables
rn+1 and ξn+1 are independent given Fn; ξn+1 is independent of Fn, with dis-
tribution N �0; I�.

(A3.5) We take up (A2.4).

Theorem 5. Under assumptions (A3.1)–(A3.4), Theorems 2 and 3 can be
applied to �Zn�. Under the additional assumption (A3.5), Theorem 4 can be
applied to �Zn�.

Remark. If we search for the local minima of V, we use the weakly dis-
turbed algorithm Zn+1 = Zn−γn�∇V�Zn�+rn+1+εn+1� and, in view of Theo-
rem 1, the optimal weak convergence rate is obtained when the gain γn = γ0/n
is chosen. But if we search for the global minima of V, we use the simulated
annealing algorithm Zn+1 = Zn − γn�∇V�Zn� + rn+1 + εn+1� + σnξn+1, for
which the optimal gain is no longer γn = γ0/n. As a matter of fact, a slower
gain γn = γ0/n

α, 2/3 < α < 1, and the corresponding gain σn give a better
convergence rate for the simulated annealing algorithm.

3. Proofs. We first give two preliminary results in Section 3.1, which are
proved in 3.2 and 3.3. Theorems 1, 2, 3, 4 and 5 are proved in Sections 3.4,
3.5, 3.6, 3.7 and 3.8, respectively.

3.1. Preliminary results. To investigate the weak convergence of
�
√
v�n��Zn − z∗�� in the framework of Theorem 1 or of

√
v�n�∇V�Zn� in

the framework of Theorem 3, we first need to establish the tightness of both
sequences. In order to unitarily study these two situations, we give a result
of tightness in 3.1.1 (Proposition 6) based on an auxiliary Lyapunov function,
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that is, a function Vx Rd→ R, twice continuously differentiable and such that
V�z� → +∞ when �z� → +∞. According to the considered problem, we shall
apply this result, either letting V be defined by V�z� = �z�2 or letting V be
the function whose global minima are searched.

Let Yn+1 =
√
v�n��Zn+1−z∗� in the framework of Theorem 1. We have then

Yn+1 =
√
v�n��Zn − z∗� + γn

[√
v�n�h�Zn� +

√
v�n�rn+1

]
+√γnεn+1:

Since h�Yn� =
√
v�n− 1�h�Zn� + rn+1 on the neighborhood of z∗, �rn� being a

“small” generic disturbance, we deduce that

Yn+1 =
√

v�n�
v�n− 1�Yn + γn

[√
v�n�

v�n− 1�h�Yn� +
√
v�n�rn+1

]
+√γnεn+1:

But
√
v�n�/v�n− 1� = 1+ζγn+o�γn�, thus Yn is given by a recursive relation,

which looks like

Yn+1 = Yn + γn�ζYn + h�Yn� + rn+1� +
√
γnεn+1:(3.1)

We say that (3.1) is a strongly disturbed algorithm. The weak convergence
of such an algorithm is studied in Section 3.1.2 (Theorem 7) by taking up
the method of the differential stochastic equation, employed by Bouton [3]
and Kushner and Huang [25], [26]. But applying this method directly to the
strongly disturbed algorithm will also be helpful in studying the weak conver-
gence of Yn+1 =

√
v�n�∇V�Zn+1� in the framework of Theorem 3.

We introduce some provisional assumptions for those preliminaries (Prop-
sition 6 and Theorem 7), more restrictive than our basic assumptions given
in Section 2. Then to prove the results stated in Section 2, we shall use some
trucation arguments in order to be able to apply the preliminary results.

3.1.1. Tightness. We take up the algorithm (2.1). The following assump-
tions ensure the tightness of �Zn�.

(AT.1) Assumptions about the disturbances �rn� and �εn�.
(i) Z0 is F0-measurable and the sequences �rn� and �εn� are adapted to F ;

(ii) E�εn+1�Fn� = 0; ∀ ny supn≥0E��εn+1�2� <∞;
(iii) supn≥0E��rn+1�2� <∞:

(AT.2) Assumptions about an auxiliary Lyapunov function. There exists a
function Vx Rd 7→ R+, differentiable and such that V�z� → +∞ when �z� →
+∞, with the following conditions:

(i) ∇V is globally Lipschitz;
(ii) There exist two constants a > 0 and C > 0 such that ∀ z ∈ Rd

�∇V�z�; h�z�� ≤ −aV�z� +C and �∇V�z��2 + �h�z��2 ≤ C�1+V�z��;
(iii) E�V�Z0�� <∞.
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(AT.3) Assumptions about the gains �γn� and �σn�. We assume either
(AT.3.1) or (AT.3.2).

(AT.3.1) (i) �γn� is a regular gain with exponent �−α�, 0 ≤ α < 1.
(ii) σ2

n = γn/v�n� where v increases to infinity and varies regularly with
exponent β ≥ 0.

(AT.3.2) (i) For t ≥ 1, γ�t� = γ0/t with γ0 > 0.
(ii) σ2

n = γn/v�n� where v increases to infinity and varies regularly with
exponent β, 0 ≤ β < aγ0, a being defined in (AT.2).

Proposition 6 (Tightness). (i) Under assumptions (AT.1) and (AT.2),

sup
n≥0

E�V�Zn�� <∞:

(ii) Under assumptions (AT.1)–(AT.3), and if supn≥0E�v�n��rn+1�2� < ∞,
then there exists R, 0 ≤ R <∞, such that

sup
n
v�n�E

(
V�Zn�1�V�Zn�≥R�

)
<∞:

3.1.2. Weak convergence of strongly disturbed algorithms. We consider the
strongly disturbed algorithm

Zn+1 = Zn + γn�h�Zn� + rn+1� +
√
γnεn+1(3.2)

We make the following assumptions.

(AS.1) Assumptions about the function h. Function hx Rd→ Rd is Lip-
schitz.

(AS.2) Assumptions about an auxiliary Lyapunov function V. There exists
a function Vx Rd→ R+, differentiable and such that we have the following:

(i) ∇V is Lipschitz;
(ii) There exist two constants a > 0 and A such that ∀ z ∈ Rd

�∇V�z�; h�z�� ≤ −aV�z� +A and �∇V�z��2 + �h�z��2 + �z�2 ≤ A�1+V�z��;
(iii) E�V�Z0�� < +∞.

(AS.3) Assumptions about the disturbances �εn� and �rn�. For a set of
trajectories �0 ∈ F∞ of strictly positive probability, we have the following
almost surely on �0:

(i) E�εn+1�Fn� = 0;
(ii) There exists a constant b > 2 such that supn≥0E��εn+1�b�Fn� <∞;

(iii) E�εn+1ε
T
n+1�Fn� = cn = C�Zn�+1n with C Lipschitz from Rd to the set

of positive symmetric matrices; there exist two constants λ1 and λ2 such that
0 < λ1 < λminC�·� < λmaxC�·� < λ2, λminC�·� [respectively, λmaxC�·�] denoting
the smallest (resp., the largest) eigenvalue of C�·� and E��1n�1�0

� → 0;

(iv) The sequence �rn� is the sum of two sequences �r�1�n � and �r�2�n �, adapted
to F , and such that supn≥0E��r

�1�
n �2� <∞, E��r�1�n � · 1�0

� → 0 and �r�2�n � → 0
a.s. on �0.



WEAK CONVERGENCE RATES OF STOCHASTIC ALGORITHMS 21

(AS.4) Assumptions about the gains �γn�.
∑
γn = +∞.

Set sn =
∑n
k=0 γk. We define the continuous process �Yt�t≥0, interpolation

of the sequence �Zn�, by

Yt = Zn + �t− sn−1��h�Zn� + rn+1� + �t− sn−1�1/2εn+1

for t ∈ �sn−1; sn�
(3.3)

and the family of processes �Y�u��u≥0 by Y�u�t = Yu+t.

Theorem 7. Under assumptions (AS.1)–(AS.4), the sequence �Zn� con-
verges weakly, given �0, to µ, where µ is the stationary distribution of the
stochastic differential equation (SDE)

dXt = h�Xt�dt+C1/2�Xt�dBt:(3.4)

Given �0, the family of processes �Y�u�� converges weakly to the solution of (3.4)
with initial distribution µ.

Remark. Assumptions (AS.2) imply that the SDE (3.4) is geometrically
recurrent, and if �Xx

t � is the solution of (3.4) such that X0 = x, then there
exists a constant C > 0 such that

�P�Xx
t ∈ ·� − µ� ≤ Cρt�1+V�x�� with 0 ≤ ρ < 1(3.5)

(see [6] or [30]); the condition 0 < λ1 < λminC�·� can be replaced by this
property.

3.2. Proof of Proposition 6 stated in 3.1.1.
3.2.1. Proof of the first part of Proposition 6. Let B > 0 be a generic con-

stant. Since ∇V is globally Lipschitz, we have, by Taylor’s formula,

V�Zn+1� ≤ V�Zn� + �∇V�Zn�;Zn+1 −Zn� +B
∥∥Zn+1 −Zn

∥∥2y
V�Zn+1� ≤ V�Zn� + γn�∇V�Zn�; h�Zn� + rn+1� + σn�∇V�Zn�; εn+1�

+B
(
γ2
n

[∥∥h�Zn�
∥∥2 +

∥∥rn+1

∥∥2]+ σ2
n

∥∥εn+1

∥∥2)
;

with �∇V�Zn�; h�Zn�� ≤ −aV�Zn� +A and �h�Zn��2 ≤ A�1+V�Zn��.
Since E��∇V�Zn�; εn+1�� = E�E��∇V�Zn�; εn+1��Fn�� = 0, it follows that

E�V�Zn+1�� ≤ �1− aγn�E�V�Zn�� +Aγn + γnE���∇V�Zn�; rn+1���
+Bγ2

n�A�1+E�V�Zn��� +E��rn+1�2�� + σ2
nE��εn+1�2�:

However, for any α > 0,

∣∣�∇V�Zn�; rn+1�
∣∣ ≤ α

2

∥∥∇V�Zn�
∥∥2 + 1

2α

∥∥rn+1

∥∥2

≤ Aα
2
�1+V�Zn�� +

1
2α

∥∥rn+1

∥∥2
;
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thus

E�V�Zn+1�� ≤
[
1−

(
a− Aα

2
−O�γn�

)
γn

]
E�V�Zn��

+O�γn�
[
1+ �1+ γn�E��rn+1�2� +

1
v�n�E��εn+1�2�

]
:

Since supn�E��rn+1�2�� < +∞, supn�E��εn+1�2�� < +∞ and �γn� → 0, we
deduce that for all a1, 0 < a1 < a, there exists n0 such that ∀ n ≥ n0,

E�V�Zn+1�� ≤ �1− a1γn�E�V�Zn�� +O�γn�:
Hence, by a standard lemma (see, e.g., [6]), supnE�V�Zn�� <∞.

3.2.2. Proof of the second part of Proposition 6. First we prove that for all
δ and a2 such that 0 < δ < a2 < a, there exists R, 0 ≤ R < +∞ such that,
setting sn =

∑n
k=0 γk,

E
(
V�Zn+1�1�V�Zn+1�≥R�

)
= O

(
sup�exp�−�a2 − δ�sn�yρ�n��

)

with ρ�n� = exp�−�a2 − δ�sn�
∑n
j=0 exp��a2 − δ�sj�γj/v�j�. Since exp�−�a2 −

δ�sn� = O��v�n��−1�, we prove then that ρ�n� = O��v�n��−1�.
Set 0 < δ < a2 < a, and r > 0 such that

V�z� ≥ r implies �∇V�z�; h�z�� ≤ −a2V�z�:(3.6)

For any R such that r < R < ∞, let φx R → �0;1� be a twice continuously
differentiable and increasing function such that φ�x� = 0 ∀ x ∈� −∞; r� and
φ�x� = 1 ∀ x ∈ �R;+∞�.

Let us define 9x Rd→ R+ by 9�z� = φ�V�z��V�z�; then

∇9�z� = φ�V�z��∇V�z� + �φ′�V�z��∇V�z��V�z�:
Since ∇V is Lipschitz and ∇�φ ◦V��z� = �φ′�V�z��∇V�z�� equals zero as soon
as V�z� 6∈ �r;R�, ∇9 is Lipschitz.

By assumptions (AT.2), �∇V�z��2 ≤ A�1 + V�z��, thus there exists a con-
stant C1 such that V�z� ≥ r implies �∇V�z��2 ≤ C1V�z�. Since φ′�V�z�� =
φ�V�z�� = 0 if V�z� < r and φ′�V�z�� = 0 if V�z� > R, we deduce that there
exists a constant C2 such that �∇9�z��2 ≤ C29�z�. We also have, ∀ z ∈ Rd,

�∇9�z�; h�z�� = φ�V�z���∇V�z�; h�z�� + �φ′�V�z��V�z���∇V�z�; h�z��;
thus, using (3.6),

�∇9�z�; h�z�� ≤ −a2V�z�φ�V�z�� − a2�V�z��2φ′�V�z��
≤ −a2V�z�φ�V�z��:

We finally deduce that

�∇9�z�; h�z�� ≤ −a29�z�:(3.7)

By Taylor’s formula, ∇9 being globally Lipschitz,

9�Zn+1� ≤ 9�Zn� + �∇9�Zn�;Zn+1 −Zn� +B1

∥∥Zn+1 −Zn

∥∥2
:
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Using (3.7),

E�9�Zn+1�� ≤ �1− a2γn�E�9�Zn�� + γnE��∇9�Zn�; rn+1��

+O
(
E
[
γ2
n

∥∥h�Zn�
∥∥2 + γ2

n

∥∥rn+1

∥∥2 + σ2
n

∥∥εn+1

∥∥2])
:

However,

∣∣�∇9�Zn�; rn+1�
∣∣ ≤ δ

C2

∥∥∇9�Zn�
∥∥2 + C2

4δ

∥∥rn+1

∥∥2 ≤ δ9�Zn� +
C2

4δ

∥∥rn+1

∥∥2
;

thus

E�9�Zn+1�� ≤ �1− �a2 − δ�γn�E�9�Zn�� +
[
C2

4δ
γn +O�γ2

n�
]
E��rn+1�2�

+O�γ2
nE��h�Zn��2�� +O�σ2

n�:

Since E��h�Zn��2� = O��1 + E�V�Zn���� = O�1� and E��rn+1�2� =
O��v�n��−1�,

E�9�Zn+1�� ≤ �1− �a2 − δ�γn�E�9�Zn�� +O
(
γn
v�n�

)
:

Therefore, using a standard lemma of stabilization (see [6], for instance), and
since 9�Zn+1� ≥ V�Zn+1�1�V�Zn+1�≥R�, we finally obtain

E
(
V�Zn+1�1�V�Zn+1�≥R�

)
= O

(
sup�exp�−�a2 − δ�sn�; ρ�n��

)
:

We assume first (AT.3.1). Let s�t� =
∫ t

0 γ�s�ds. We have

ρ�n� ∼ exp�−�a2 − δ�s�n��
∫ n

0

exp ��a2 − δ�s�t��γ�t�
v�t� dt;

ρ�n� ∼ exp�−�a2 − δ�s�n��
∫ s�n�

0

exp ��a2 − δ�t�
v�s−1�t�� dt:

Let x such that 0 < x < 1; since t 7→ v�s−1�t�� is increasing,

∫ T
0

exp��a2 − δ�t�
v�s−1�t�� dt ≤ 1

v�s−1�0��
∫ Tx

0
exp��a2 − δ�t�dt

+ 1
v�s−1�Tx��

∫ T
Tx

exp��a2 − δ�t�dty
∫ T

0

exp��a2 − δ�t�
v�s−1�t�� dt ≤ exp��a2 − δ�Tx�

�a2 − δ�v�s−1�0��

+ exp��a2 − δ�T�
�a2 − δ�v�s−1�Tx�� :
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It follows that
[

exp��a2 − δ�T�
v�s−1�T��

]−1 ∫ T
0

exp��a2 − δ�t�
v�s−1�t�� dt ≤ exp��a2 − δ�T�x− 1��v�s−1�T��

�a2 − δ�v�s−1�0��

+ v�s−1�T��
�a2 − δ�v�s−1�Tx�� :

Since t 7→ v�s−1�t�� varies regularly with exponent β/�1− α�,

lim sup
T→∞

[
exp �a2 − δ�T�
v�s−1�T��

]−1 ∫ T
0

exp��a2 − δ�t�
v�s−1�t�� dt ≤ x

−β/�1−α�

a2 − δ
:

Thus ρ�n� = O��v�n��−1�.

We assume now (AT.3.2). Since β < aγ0, there exist a2 and δ such that
0 < δ < a2 < a and β < �a2 − δ�γ0 < aγ0, and we have

ρ�n� = O
[
n−�a2−δ�γ0

∫ n
0

t�a2−δ�γ0−1

v�t� dt

]
:

Since v varies regularly with exponent β ≥ 0,

lim
T→∞

[
T�a2−δ�γ0

v�T�

]−1 ∫ T
0

t�a2−δ�γ0−1

v�t� dt = 1
�a2 − δ�γ0 − β

:

Thus ρ�n� = O��v�n��−1�.

3.3. Proof of Theorem 7 stated in 3.1.2.
3.3.1. Some truncations. We denote �0;N the set of trajectories of �0 such

that

sup
n≥0

E
(∥∥εn+1

∥∥b�Fn

)
≤N and sup

n≥0

(∥∥r�2�n
∥∥2) ≤N:

Since�0 is almost surely equal to
⋃
N�0;N, it is sufficient to prove the theorem

given �0;N for any N such that P��0;N� > 0.
According to a method used by Lai and Wei (see, for instance, [27]), the first

step of the proof of Theorem 7 consists in modifying the algorithm, without
changing it on �0;N, in order to obtain everywhere

E�εn+1�Fn� = 0; sup
n≥0

E��εn+1�b�Fn� ≤N and sup
n≥0

(∥∥r�2�n
∥∥2) ≤N:

This is achieved by replacing r�2�n by r̃�2�n = r�2�n · 1�r�2�n ≤N� and taking ε̃n+1 =
εn+11Bn , with

Bn =
{
E
(
εn+1�Fn

)
= 0 and E

(∥∥εn+1

∥∥b�Fn

)
≤N

}
:

In the proofs given in Sections 3.3.2, 3.3.3 and 3.3.4, we shall assume that
these truncations have been made.

3.3.2. Tightness of �Y�u��. Y�u� may be written as

Y�u� = Yu +H�u� +R�u� + σ �u�
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with H0 = R0 = σ0 = 0, H�u�t =Hu+t−Hu, R�u�t = Ru+t−Ru, σ �u�t = σu+t−σu,
and, for t ∈ �sn−1; sn�,

Ht =Hsn−1
+
(
t− sn−1

)
h�Zn�;

Rt = Rsn−1
+
(
t− sn−1

)
rn+1;

σt = σsn−1
+
(
t− sn−1

)1/2
εn+1:

Let C1 be a generic constant.
Step 1. The truncations made in Section 3.3.1 enable us to apply Proposition

6, and we get supn≥0E��Zn�2� ≤ supn≥0E�V�Zn�� <∞.
We deduce that supt≥0E��Yt�2� ≤ supt≥0E�V�Yt�� < ∞. Therefore, given

�0;N, �Yt� is tight, and V is integrable with respect to any distribution ν,
which is a closure point of �Yt� for the weak convergence (and the moment of
order 2 is finite).

Step 2. On �0;N, r�2�n → 0 a.s and the modifications made in Section 3.3.1

ensure that �r�2�n � is bounded; thus, E��r�2�n �1�0;N
� → 0.

Finally, E��rn�1�0;N
� → 0, and E�supt≤T �R

�u�
t �1�0;N

� → 0; �R�u�� converges
to zero.

Step 3. The condition supn≥0E��h�Zn��2� <∞ implies that

E��H�u�r −H�u�t �2� ≤ C1�r− t�2:(3.8)

Since H�u�0 = 0, the family of processes �H�u�� is tight. The inequality (3.8),
and thus the tightness, remain true given �0;N.

Step 4 The condition supn≥0E��εn�b� <∞ ensures, by Burkholder’s in-
equality, that

E��σ �u�r − σ �u�t �b� ≤ C1�r− t�b/2(3.9)

with b/2 > 1. Since σ �u�0 = 0, the family of processes �σ �u�� is tight. The in-
equality (3.9), and thus the tightness, remain true given �0;N.

By Steps 1 to 4, the family of processes �Y�u�� is tight given �0;N. We
shall prove that �Y�u�� has a unique closure point for the weak convergence
in Section 3.3.4, but we first need some previous results established in 3.3.3.

3.3.3. Previous results. We first prove that, for 0 < T <∞,

lim
u→∞

E

(
sup
t≤T

∥∥∥∥H
�u�
t −

∫ t
0
h�Y�u�s �ds

∥∥∥∥
∣∣∣∣�0;N

)
= 0:(3.10)

In view of (3.10),

E
(∥∥H�u�r −H�u�t

∥∥2∣∣�0;N
)
≤ C1�r− t�2:

Set m such that γm−1 ≤ u ≤ γm, m → +∞. The function h being Lipschitz,
for u large enough,

E

(
sup
t≤T

∥∥∥∥H
�u�
t −

∫ u+t
u

h�Ys�ds
∥∥∥∥
∣∣∣∣�0;N

)
≤ C1T sup

k≥m

√
γk;

which implies (3.10).
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We now prove

lim
u→∞

E
[(
σ
�u�
r − σ �u�t

)
φ
((
Y
�u�
tj
; σ
�u�
tj

)
1≤j≤k

)
1�0;N

]
= 0(3.11)

and

lim
u→∞

E

([
�σ �u�r − σ �u�t ��σ

�u�
r − σ �u�t �T −

∫ r+u
t+u

C�Ys�ds
]

×φ
(
�Y�u�tj ; σ

�u�
tj
�1≤j≤k

)
1�0;N

)
= 0:

(3.12)

We consider 0 < t1 < t2 < · · · < tk < t < r and φ a continuous and bounded
real-valued function defined on �R2d�k.

Let u be large enough to have sp−1 < u < sp with γp−1 + γp ≤ �t− tk�. Let
ξp−1 be a bounded Fp−1-measurable random variable. We have

E
(
�σ �u�r − σ �u�t �φ

(
�Y�u�tj ; σ

�u�
tj
�1≤j≤k

)
ξp−1

)
= 0:

We take sm−1 ≤ t+ u ≤ sm and sn−1 ≤ r+ u ≤ sn.
Let dj be defined by dm =

√
γm−

√
�t+ u� − sm−1, dk =

√
γk for m < k < n,

and dn =
√
�r+ u� − sn−1 or dn =

√
r− sn−1 −

√
t− sn−1 if n =m. Then

E

([(
σ
�u�
r − σ �u�t

)(
σ
�u�
r − σ �u�t

)T −
n∑

i=m
d2
i ci

]
φ
((
Y
�u�
tj
; σ
�u�
tj

)
1≤j≤k

)
ξp−1

)
= 0:

Now set ξp = P��0;N�Fp�; the bounded martingale �ξp� converges towards
1�0;N

, almost surely and in expectation. Thus, ∀ p,

lim sup
u→∞

∣∣E
((
σ
�u�
r − σ �u�t

)
φ
((
Y
�u�
tj
; σ
�u�
tj

)
1≤j≤k

)
1�0;N

)∣∣

≤ C1

√
r− t

{
E
(∣∣1�0;N

− ξp−1

∣∣b/�b−1�)}�b−1�/b

from which we deduce (3.11).
We prove in the same way that

lim
u→∞

E

([(
σ
�u�
r − σ �u�t

)(
σ
�u�
r − σ �u�t

)T −
m∑
i=n
d2
i ci

]
φ
((
Y
�u�
tj
; σ
�u�
tj

)
1≤j≤k

)
1�0;N

)
= 0:

And, C being Lipschitz, we deduce (3.12).
3.3.4. Convergence of �Y�u��. Let G be the set of continuous functions from

R+ to R2d, equipped with the metric of uniform convergence on compact sets.
The G-valued family �Y�u�; σ �u�� is tight, given �0;N. Let G be the Borel σ-
algebra of G. Let �u�n�� be an increasing sequence such that, given �0;N,

(
Y�u�n��; σ �u�n��

)
⇒ Q; Q probability on �G;G �:

We denote by ω = ��Xt�ω�; St�ω��t≥0� a point ω of G and by Gt the σ-field
spanned by �Xr; Sr�r≤t.
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Let 0 ≤ t1 < t2 < · · · < tk < t < r. Given�0;N, ��Y�u�n��tj
; σ
�u�n��
tj
�1≤j≤k; σ

�u�n��
t ;

σ
�u�n��
r � converges weakly to the distribution of ��Xtj

; Stj�1≤j≤k; St; Sr� on
�G;G ;Q�. The relations (3.9), (3.11) and (3.12) imply

EQ

(
�Sr −St�φ

((
Xtj

; Stj
)

1≤j≤k
))
= 0y

EQ

([
�Sr −St��Sr −St�T −

∫ r
t
C�Xs�ds

]
φ
((
Xtj

; Stj
)

1≤j≤k
))
= 0:

On �G;G ;Q�, �St�t≥0 is a square-integrable continuous martingale; it is
adapted to �Gt�t≥0, and its increasing process is �

∫ t
0 C�Xs�ds�t≥0.

We deduce that dSt = C1/2�Xt�dBt, where �Bt�t≥0 is a Brownian motion.
From (3.10),

�H�u�n��t �t≥0 ⇒
(∫ t

0
h�Xs�ds

)

t≥0
:

Thus,

Xt =X0 +
∫ t

0
h�Xs�ds+

∫ t
0
C1/2�Xs�dBs

where �Bt�t≥0 is a Brownian motion adapted to �Gt�t≥0.
Let a probability on Rd, ν, be a closure point for the weak convergence of

the distributions, given �0;N, of �Yt�t≥0. According to Step 1 of Section 3.3.2,
there exists a sequence u�n�, increasing to infinity such that Yu�n� ⇒ ν (given
�0;N) and ν�V� < +∞.

Let µ be the unique stationary distribution of (3.4). In order to conclude the
proof of Theorem 7, it is enough to prove that any closure point for the weak
convergence conditional on �0;N of �Y�u�n��� is a solution of the SDE (3.4) with
initial distribution µ.

Let φx Rd → R be continuous and bounded. For any t > 0, �Yu�n�−t�n≥0
is tight, given �0;N, and there exists a subsequence �w�n�� of �u�n�� such
that Yw�n�−t ⇒ ν1 (given �0;N), where ν1�V� < ∞. Given �0;N, �Y�w�n�−t��
converges weakly to �Xt�t≥0, the solution of (3.4) with initial distribution ν1.
Then, it results from (3.5) that

∣∣∣∣
E�φ�Yw�n��1�0;N

�
P��0;N�

− µ�φ�
∣∣∣∣ ≤

∣∣Eν1

(
φ�Xt�

)
− µ�φ�

∣∣

+
∣∣∣∣
Eν1
�φ�Y�w�n�−t�t �1�0;N

�
P��0;N�

−E�φ�Xt��
∣∣∣∣

with �Eν1
�φ�Xt�� − µ�φ�� = O�ρt� where 0 ≤ ρ < 1 since ν1�V� < ∞. Thus

�ν�φ� − µ�φ�� = O�ρt� for all t > 0 and ν�φ� = µ�φ�. Hence ν = µ.

3.4. Proof of Theorem 1. First we show in Section 3.4.1 that the weak
convergence rate of �Zn� can be obtained by proving the same rate for a locally
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similar sequence �Z̃n�. Then we prove the tightness of
√
v�n��Z̃n − z∗� in

3.4.2, which will finally enable us to apply, in 3.4.3, Theorem 7 to the strongly
disturbed algorithm defined by Ỹn =

√
v�n��Z̃n − z∗�.

3.4.1. Definition of �Z̃n�. We can choose M as small as we want in (A1.2).
Once M is fixed, set 0N = 0�z∗� ∩ �supn≥N �Zn − z∗� ≤M�.

To prove the weak convergence of
√
v�n��Zn−z∗� given 0�z∗�, it is sufficient

to prove it given 0N for all N.
For a given N, let �Z̃n�n≥N be defined by Z̃N = ZN1��ZN−z∗�≤M�; and

Z̃n+1 = Z̃n + γnF�Z̃n� + �σnεn+1 + γnrn+1�1��Zn−z∗�≤M� if n ≥N;
where F�z� = h�z�1��z−z∗�≤M� −K�z − z∗�1��z−z∗�>M�, with a constant K > 0
to be specified later on.

The sequences �Zn�n≥N and �Z̃n�n≥N agree on 0N. Thus, we only have to
prove the weak convergence of

√
v�n��Z̃n − z∗� given 0N.

3.4.2. Tightness of ��v�n��1/2�Z̃n − z∗��. Let us show that, if M has been
chosen small enough, then, for a suitable K,

sup
n≥N

E�v�n��Z̃n − z∗�2� <∞;

Z̃n+1 − z∗ =
[
I+ γnρ

(
Z̃n − z∗

)
H
](
Z̃n − z∗

)

+ γn
[
h�Z̃n� − ρ�Z̃n − z∗�H�Z̃n − z∗�

]
1��Z̃n−z∗�≤M�

+ γn
[
−ρ
(
Z̃n − z∗

)
H−KI

]
�Z̃n − z∗�1��Z̃n−z∗�>M�

+
[
σnεn+1 + γnrn+1

]
1��Zn−z∗�≤M�:

Set t > 0, and let Qt be an invertible matrix such that QtHQ
−1
t = Ht is a

matrix whose diagonal terms are the eigenvalues of H, the terms below being
0 or t, and the other ones equal to zero. For Sn = Qt�Z̃n − z∗�, we have

Sn+1 =
[
I+ γnρ

(
Z̃n − z∗

)
Ht

]
Sn + γn

[
−ρ
(
Z̃n − z∗

)
Ht −KI

]
Sn1��Z̃n−z∗�>M�

+ γnQt

[
h�Z̃n� − ρ

(
Z̃n − z∗

)
H
(
Z̃n − z∗

)]
1��Z̃n−z∗�≤M�

+
[
σnQtεn+1 + γnQtrn+1

]
1��Zn−z∗�≤M�:

For A and δ such that 0 < A < 2L and 0 < δ < 2L − A, there exists t,
0 < t ≤ 1, such that for n large enough, n ≥ n0, ∀ x ∈ Rd,

∥∥I+ γnρ�x�Ht

∥∥2 ≤
[
1− �A+ δ�γn

]
:

According to (A1.1), there exists M satisfying (A1.2) such that
∥∥z− z∗

∥∥ ≤M implies
∥∥h�z� − ρ�z− z∗�H

(
z− z∗

)∥∥ ≤ C1

∥∥z− z∗
∥∥2

and such that
∥∥z− z∗

∥∥ ≤M implies
∥∥h�z� − ρ�z− z∗�H�z− z∗�

∥∥ ≤ c�z− z∗�;
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with c�Qt��Qt�−1 < δ/4 and C1 > 0. Finally, we choose K > 0 such that

yT
[
−ρ�x�Ht −KI

]
y ≤ 0 ∀ y ∈ Rd; ∀ x ∈ Rd:

Then for any n ≥ n0, n0 large enough,

E��Sn+1�2� ≤
(

1−
[
A+ δ

2
− δ′ −O�γn�

]
γn

)
E��Sn�2�

+O
(
σ2
nE
(
�εn+1�21��Zn−z∗�≤M�

))

+O
(
γnE

(
�rn+1�21��Zn−z∗�≤M�

))
;

with an arbitrary δ′ > 0. For n large enough, we have

E��Sn+1�2� ≤ �1−Aγn�E��Sn�2� +O
(
γn
v�n�

)
;

from which we deduce that supnE�v�n��Sn+1�2� <∞.
Finally supnE�v�n��Z̃n+1 − z∗�2� <∞.
3.4.3. Application of Theorem 7. Let Ỹn+1 =

√
v�n��Z̃n+1 − z∗�; we have

sup
n
E
[
�Ỹn�2

]
<∞:(3.13)

The expression Ỹn+1 may be written in the following way:

Ỹn+1 = Ỹn + γn
[
αI+ ρ

(
Z̃n − z∗

)
H
]
Ỹn + γnr̃n+1 +

√
γnε̃n+1;(3.14)

with ε̃n+1 = εn+11��Zn−z∗�≤M� and with

r̃n+1 = ũnỸn +
√
v�n�

[
r
�1�
n+1 + r

�2�
n+1 + r

�3�
n+1

]
;

�ũn� deterministic sequence converging to 0;

r
�1�
n+1 =

[
h�Z̃n� − ρ

(
Z̃n − z∗

)
H
(
Z̃n − z∗

)]
1��Z̃n−z∗�≤M�;

r
�2�
n+1 =

[
−ρ
(
Z̃n − z∗

)
H−KI

](
Z̃n − z∗

)
1��Z̃n−z∗�>M�;

r
�3�
n+1 = rn+11��Z̃n−z∗�≤M�:

We verify now that the strongly disturbed algorithm (3.14) fulfills the as-
sumptions of Theorem 7.

Assumptions (AS.1) are fulfilled. According to the properties of the function
ρ, ρ�Z̃n − z∗� = ρ�Ỹn�, and the function fx z 7→ �αI+ ρ�z�H�z is Lipschitz.

Auxiliary Lyapunov function. The Lyapunov function Vx Rd→ R defined by
V�z� = �z�2 fulfills the assumption (AS.2) with a = α−L.

Properties of �r̃n�. According to (3.13) and since �ũn� → 0,

sup
n
E
[(
ũn
∥∥Ỹn

∥∥)2] <∞; E
[
ũn�Ỹn�10N

]
→ 0:
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According to the choice of M in Section 3.4.2, we have �r�1�n+1� ≤ C1�Z̃n −
z∗�21��Z̃n−z∗�≤M�, and, applying (3.13), we deduce that

sup
n
E
[(√

v�n�
∥∥r�1�n+1

∥∥
)2]
≤ supnE

[
v�n�

∥∥Z̃n − z∗
∥∥2]

<∞;

E
[(√

v�n�
∥∥r�1�n+1

∥∥
)
10N

]
≤ C1E

[√
v�n�

∥∥Z̃n − z∗
∥∥2
]
≤ C1√

v�n�
→ 0:

We have �r�2�n+1� ≤ C2�Z̃n − z∗�1��Z̃n−z∗�>M�, thus

sup
n
E
[(√

v�n�
∥∥r�2�n+1

∥∥
)2]

<∞:

Since �Zn� and �Z̃n� agree on 0N, we have 1��Z̃n−z∗�>M� ·10N =1��Zn−z∗�>M�∩0N =
0, and

E
[√
v�n�

∥∥r�2�n+1

∥∥10N

]
= 0:

Since �r�3�n+1� fulfills the conditions required by the assumptions (A1.2), we
finally deduce that

sup
n
E
[∥∥r̃n+1

∥∥2]
<∞ and E

[∥∥r̃n+1

∥∥10N
]
→ 0:

Properties of �ε̃n�. �ε̃n� fulfills the assumptions (AS.3) with C�z� = 0 for all
z ∈ Rd.

According to Theorem 7, given 0N, �Ỹn� ⇒ µ, where µ is the stationary
distribution of (2.3), and the first part of Theorem 1 is proved.

Let φ be a real continuous and bounded function, and ξ a F∞-mesurable
random variable. Replacing 0�z∗� by 0�z∗� ∩ �φ�ξ� < t� as soon as this event
is nonnegligible, we obtain the second assertion. 2

3.5. Proof of Theorem 2. We simplify the proof by taking V instead of
�V− inf V�, that is, by assuming inf V = 0.

Following Gelfand and Mitter’s idea [11], we define in Section 3.5.1 a con-
tinuous time interpolation �Ut�t≥0 of �Zn�. This interpolated process looks like
an annealing diffusion

dYt = −a�t�∇V�Yt�dt+ dBt;
the function a, slowly increasing to infinity, being precised below. In Section
3.5.2 we precise how long the process �Ut+u� follows �Yt+u� given Uu = Yu =
x. Then, in 3.5.3, we obtain Theorem 2, transfering properties of the annealing
diffusion process to the algorithm.

We set tn =
∑n
k=0 σ

2
k , and K�t� =

∫ t
0 σ

2�s�ds. Under (A2.3.1) and (A2.3.2),
σ2 varies regularly with exponent �−α�, α < 1. Thus K varies regularly with
exponent 1 − α > 0 and K�t� → ∞ as t → ∞. This property holds under
(A2.3.3) too.
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3.5.1. Definition of the interpolation �Ut� and tightness of �V�Ut��.
Step 1 [Definition of �Ut�]. We may build up the sequence �σnξn+1� from a

Brownian motion B = �Bt�t≥0 independent of Z0 by setting σnξn+1 = Btn −
Btn−1

. Then, we define the process �Ut�t≥0, interpolation of the sequence �Zn�,
by

Ut = Zn −
(
t− tn−1

)
v�n�∇V�Zn� +Bt −Btn−1

if t ∈ �tn−1; tn�:

Let ax R+→ R+ be a continuously differentiable, concave and slowly increasing
function such that a�tn−1� = v�n� for all integer n. The termUt may be written
as

Ut = Zn −
(
t− tn−1

)
a�tn−1�∇V�Zn� +Bt −Btn−1

if t ∈ �tn−1; tn�:
Step 2 [Tightness of �V�Ut��]. Let C1 be a generic constant. Proposition

6 may be applied by choosing V as the auxiliary Lyapunov function and by
setting h = −∇Vx supnE�V�Zn�� < ∞ and there exists R, 0 ≤ R < ∞, such
that

sup
n
E
(
v�n�V�Zn�1�V�Zn�≥R�

)
<∞:(3.15)

Let t ∈ �tn−1; tn�, and 9 be defined in the same way as in the proof of Propo-
sition 6. Since 9 is globally Lipschitz,

9�Ut� ≤ 9�Zn� + �∇9�Zn�;Ut −Zn� +C1�Ut −Zn�2:
Since there exists a constant A1 > 0 such that �∇9�z�;−∇V�z�� ≤ −A19�z�,
we have

9�Ut� ≤ 9�Zn�
[
1−A1�t− tn−1�v�n�

]
+ �∇9�Zn�;Bt −Btn−1

�

+C1
[
�t− tn−1�2�v�n��2�1+V�Zn�� +

∥∥Bt −Btn−1

∥∥2]y
E�9�Ut�� ≤ C1

[
E�9�Zn�� + �t− tn−1�2�v�n��2�1+E�V�Zn��� + �t− tn−1�

]
:

Since supnE�V�Zn�� <∞ and supnE�v�n�9�Zn�� <∞, we deduce that

E�9�Ut�� = O
(

1
v�n�

)
:

Finally

E�V�Ut�1�V�Ut�≥R�� = O
(

1
a�t�

)
:(3.16)

3.5.2. Previous result on the annealing diffusion process. The stochastic
differential equation dYt = a�t�∇V�Yt�dt + dBt has been studied in [5],
[13], [16], [32] and, recently, in [29] under our assumptions on V and under
the additional assumption: for a constant c∗ < 1/3 and for t large enough,
a�t� ≤ c∗ ln t:

We first check that there exists c∗ < 1/3 such that a�t� ≤ c∗ ln t, before
enunciating a result proved in [29].
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Under (A2.3.1) or (A2.3.2): since σ2 varies regularly with exponent �−α�,
1
2 ≤ α < 1, we have K�t� ∼ �tσ2�t��/�1− α�. Thus K varies regularly with
exponent 1− α; that is, K�t� = t1−αL�t�, with L varying slowly.

Since v�t� ≤ c�1−α� ln �t�, we have v�t� ≤ c · lnK�t�−c · lnL�t�. But c < 1/3
and limt→∞�lnL�t�/ lnK�t�� = 0, thus there exists c < 1/3 such that, for t
large enough, v�t� ≤ c lnK�t�.

Under (A2.3.3):

σ2�t� = σ2
0

t ln �ln t� ;
σ2

0 ln t
ln �ln t� ≤K�t� ≤ σ

2
0 ln t; and v�t� = c ln �ln t�:

Thus v�t� ≤ c lnK�t��1+ o�1��, and there exists c < 1/3 such that, for t large
enough, v�t� ≤ c lnK�t�.

In both cases, a�K−1�tn−1�� ≤ c lnn, for n large enough. However tn−1 ∼
K�n�; thus there exists c̃ < 1/3 such that a�n� ≤ c̃ lnn for n large enough.
Set t ∈ �n;n+ 1�, n large enough. We have

a�t� = a�n� + a′�t∗��t− n� with t∗ ∈ �n; t�:
a′�t� = o�a�t�/t�, thus a′�t∗� ≤ �c̃ ln �n+ 1�/n�, which enables us to conclude.

A result of Márquez [29]. Let φ be a continuous function with compact
support, and let K1 be a suitable compact set that contains the support of φ.
Precising upper bounds in the works of Chiang, Hwang and Sheu [5], [16] or
of Royer [32], Márquez [29] has proved that there exist a positive continuous
and increasing function τ with τ�t� = O�t2/3� and a constant ρ1 > 0 such that,
uniformly for x ∈K1,

P
(

sup
t≤s≤t+τ�t�

�Ys� ≥ C�Yt = x
)
≤ exp�−ρ1a�t��y(3.17)

∣∣E�φ�Yt+τ�t���Yt = x� −G1/2a�t+τ�t���φ�
∣∣ ≤ exp�−ρ1a�t��:(3.18)

3.5.3. Following the annealing diffusion process.
Step 1 (Following the annealing diffusion process under the provisional

assumption “∇V is bounded”). Here we assume that ∇V is bounded.
For all u > 0, let B�u� = �B�u�t �t≥0 with B�u�t = Bu+t −Bu.
Let Y�u� and U�u� be defined by

U
�u�
0 = Y

�u�
0 = x;

dY
�u�
t = −�a�u+ t��∇V�Y

�u�
t �dt+ dB

�u�
t ;

dU
�u�
t = �−a�u+ t�∇V�U

�u�
t � + ht+u�dt+ dB

�u�
t ;

where ht = −a�tm−1�∇V�Utm−1
� + a�t�∇V�Ut� for t ∈ �tm−1; tm�.

Set ht =Ht��U
�u�
s �; s ≤ t�.

Let C be the set of the Rd-valued continuous functions defined on R+ and
assume that C is equipped with its Borel σ-field. We denote a function of
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C as ω = �Xt�ω��t≥0 and �Gt� = �σ�Xs; s ≤ t��. By Girsanov’s theorem,
�Y�u� − x� and �U�u� − x� have canonical versions with distributions PY and
PU conditionnally on Gt. We are going to prove that for all 0 ∈ Gt,

∣∣PU�0� −PY�0�
∣∣ = O

(
1

a�u�

)
:

By Girsanov’s theorem, for each t, PY and PU have a density, denoted by
LYt and LUt respectively, with respect to the Wiener measure W. Moreover, for
all 0 ∈ Gt,

∣∣PU�0� −PY�0�
∣∣ ≤ EW

[
LYt

∣∣∣∣1−
LUt

LYt

∣∣∣∣
]
≤
[
EY

([
1− L

U
t

LYt

]2)]1/2

;

where, for the probability PY,

ln
LUt

LYt
=
∫ t

0
�Hs

[
�Xr + x�r≤s

]
; dXs�

− 1
2

∫ t
0

{∥∥Hs

[
�Xr + x�r≤s

]∥∥2

+ 2
〈
Hs

[
�Xr + x�r≤s

]
;−a�s+ τ�∇V�Xs + x�

〉}
ds:

Moreover, under PY, ln�LUt /LYt � has the same distribution as Ht − 1
2Jt has,

with

Ht =
∫ u+t
u
�Hs

[
�Yr�r≤s

]
; dBs�y Jt =

∫ u+t
u

∥∥Hs

[
�Yr�r≤s

]∥∥2
ds:

Since the expectations of exp�Ht − 1
2Jt� and exp�4Ht − 8Jt� are equal to 1,

we have
∣∣PU�0�−PY�0�

∣∣ ≤ EY

[(
1− exp

(
Ht− 1

2Jt
))2]=EY�exp�2Ht−Jt��−1;

∣∣PU�0�−PY�0�
∣∣ ≤ EY

[
exp

(
2Ht−4Jt

)
exp�3Jt�

]
−1≤ �EY�exp�6Jt���1/2−1:

Thus
∣∣PU�0� −PY�0�

∣∣ ≤ sup
t≥0

∣∣�EY�exp�6Jt���1/2 − 1
∣∣:

Let us study EY�exp�6Jt��. For u ∈ �tn−1; tn�, we have

Jt = O��tn − tn−1�� +
∫ u+t
tn

�ks�2 ds(3.19)

with ks = ∇V�Ys��a�s� − a�tm−1�� − v�m��∇V�Ytm−1
� − ∇V�Ys��, for

s ∈ �tm−1; tm�, m > n.
Since ∇V is assumed to be Lipschitz and bounded, there exists a constant

C1 such that

�ks�2 ≤ C1��v�m��4�tm − tm−1�2 + �v�m��2�Bs −Btm−1
�2�:
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The study ofEY�exp�6Jt�� requires the study ofE�exp�C1�v�m��2
∫ tm
tm−1
�Bs−

Btm−1
�2 ds��. We have

E

[
exp

(
C1�v�m��2

∫ tm
tm−1

�Bs −Btm−1
�2 ds

)]

= E
[
exp

(
C1�v�m��2�tm − tm−1�2

∫ 1

0
�Bs�2 ds

)]
:

By Jensen’s inequality,

E

[
exp

(
C1�v�m��2�tm − tm−1�2

∫ 1

0
�Bs�2 ds

)]

≤
∫ 1

0
E
[
exp

(
C1�v�m��2�tm − tm−1�2�Bs�2

)]
ds:

Hence, 8 denoting the Laplace transform of the chi-square distribution with
d degrees of freedom,

E

[
exp

(
C1�v�m��2

∫ tm
tm−1

∥∥Bs −Btm−1

∥∥2
ds

)]
≤ 8�C1�v�m��2�tm − tm−1�2�:

It follows that, for m large enough,

E

[
exp

(
C1�v�m��2

∫ tm
tm−1

�Bs −Btm−1
�2 ds

)]
≤
[
1− 2C1�v�m��2

(
tm − tm−1

)2]−d/2
:

We deduce that

EY

[
exp

(
6
∫ tm
tm−1

�ks�2 ds
)]
≤
(
1− 2C1�v�m��2�tm − tm−1�2

)−d/2

× exp
[
C1�v�m��4�tm − tm−1�3

]
:

For any u large enough such that tn−1 ≤ u < tn, we have, in view of (3.19),

sup
t≥0

EY

(
exp 6

∫ t+u
tn

�ks�2 ds
)
≤M�n�

with

M�n� =
∞∏
j=n

(
1− 2C1�v�j��2�tj − tj−1�2

)−d/2 exp
(
C1

∞∑
j=n
�v�j��4�tj − tj−1�3

)
:

When n tends to infinity,

Mn ∼ exp
(
C1

∞∑
j=n
�v�j��2�tj − tj−1�2

)
= exp

(
C1

∞∑
j=n

γ2
j

)
:

It follows that, for u ∈ �tn−1; tn�,

sup
t≥0
�EY�exp�6Jt��� = O

[
exp

( +∞∑
j=n

γ2
j

)]
:
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Thus, for all u such that tn−1 ≤ u ≤ tn,

∣∣PU�0� −PY�0�
∣∣ = O

( +∞∑
j=n

γ2
j

)
:

Under (A2.3.1) and (A2.3.3), γ varies regularly with exponent �−α�, α > 1/2.
Thus t 7→

∫ t
0 γ

2�s�ds varies regularly with exponent 1−2α < 0. Since v varies
slowly, we have

∫ +∞
t γ2�s�ds = O��v�t��−1�. This property is still true under

(A2.3.2). Finally, �PU�0� −PY�0�� = O��v�n��−1�, and

∣∣PU�0� −PY�0�
∣∣ = O

(
1

a�u�

)
;(3.20)

and this upper bound is independent of x.
Step 2 (Following the annealing diffusion process). Coming back to assump-

tions (A2.1) to (A2.3), let φ be a continuously differentiable function with com-
pact support; applying (3.16), there exists a compact set K1, which contains
the support of φ, and such that

P�Ut 6∈K1� = O
(

1
a�t�

)
:(3.21)

We may take in (3.17) C such that K1 ⊂ �xy �x� ≤ C�.
Set C2 = C+2 supx∈K1

�x�, and let Ṽ be a twice continuously differentiable
function, which equals V on the Euclidian sphere with radius C2, and such
that ∇Ṽ is bounded. Let Ỹ�t� and Ũ�t� be defined by

Ỹ
�t�
0 = Ũ

�t�
0 = x; x ∈K1;

dỸ
�t�
u = −�a�t+ u��∇Ṽ�Ỹ�t�u �dt+ dB�t�u ;

dŨ
�t�
u = �−a�t+ u�∇Ṽ�Ũ�t�u � + ht+u�dt+ dB

�t�
u :

Applying (3.17) and (3.18) to Y�t�, we have, uniformly for x ∈K1,

P
(

sup
0≤s≤τ�t�

�Y�t�s � ≥ C�Yt = x
)
≤ exp�−ρ1a�t��;

∣∣E
(
φ
(
Y
�t�
τ�t�
)
�Yt = x

)
−G1/2a�t+τ�t���φ�

∣∣ ≤ exp�−ρ1a�t��;

from which we deduce that, uniformly for x ∈K1,

P
(

sup
0≤s≤τ�t�

∥∥Ỹ�t�s
∥∥ ≥ C2�Ỹt = x

)
≤ exp�−ρ1a�t��;

∣∣E
(
φ
(
Ỹ
�t�
τ�t�
)
�Ỹt = x

)
−G1/2a�t+τ�t���φ�

∣∣ ≤ exp�−ρ1a�t��:
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Then, applying (3.20), we have, uniformly for x ∈K1,

P
(

sup
0≤s≤τ�t�

∥∥Ũ�t�s
∥∥ ≥ C2�Ũt = x

)
= O

(
1
a�t�

)
;

∣∣E
(
φ
(
Ũt+τ�t�

)
�Ũ�τ�0 = x

)
−G1/2a�t+τ�t���φ�

∣∣ = O
(

1
a�t�

)
:

Thus, almost surely,

P
(

sup
0≤s≤τ�t�

∥∥U�t�s − Ũ�t�s
∥∥ > 0�Ut = Ũt ∈K1

)
= O

(
1
a�t�

)
;

�E�φ�Ut+τ�t���Ut ∈K1� −G1/2a�t+τ�t���φ�� = O
(

1
a�t�

)
:

Applying (3.21), we deduce that

�E�φ�Ut+τ�t��� −G1/2a�t+τ�t���φ�� = O
(

1
a�t�

)
:(3.22)

Since τ�t� = O�t2/3�, we finally deduce that

∣∣E�φ�Ut�� −G1/2a�t��φ�
∣∣ = O

(
1
a�t�

)
;(3.23)

and this result is uniform for the functions φ whose support is included in a
same compact and such that supz∈Rd �φ�z�� ≤ 1.

3.5.4. Proof of the first assertion of Theorem 2. For any r > 0, let us take
R > r such that (3.16) is fulfilled, and an arbitrary r1 ∈�0; r�. We consider a
positive function λ defined on R+, and for any t > 0 a continuous function φt
such that

1�rλ�t�≤V<R� ≤ φt ≤ 1�r1λ�t�≤V<2R�:

Applying (3.23) with φ = φt yields

P��V�Ut� ≥ rλ�t��� ≤ G1/2a�t��V ≥ r1λ�t�� +O
(

1
a�t�

)
;

P��V�Ut� ≥ r1λ�t��� ≥ G1/2a�t��V ≥ rλ�t�� +O
(

1
a�t�

)
:

Thus, r1 being arbitrary (0 < r1 < r),

P��V�Ut� ≥ rλ�t��� = G1/2a�t��V ≥ rλ�t�� +O
(

1
a�t�

)
:(3.24)

If we take λ�t� = 1 ∀ t ∈ R+ [(3.24) will also be helpful for proving Theorem
3], we have

P��V�Ut� ≥ r�� = G1/2a�t��V ≥ r� +O
(

1
a�t�

)
:
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Now assumption (A2.1) implies that, for all r > 0, limT→0T ln�GT�V ≥ r�� =
−r. Thus

P��V�Ut� ≥ r�� = O
(

1
a�t�

)
and P��V�Zn� ≥ r�� = O

(
1

v�n�

)
:

On the other hand, we have

E
(
V�Zn�1�V�Zn�≥r�

)
≤ R ·P��V�Zn� ≥ r�� +E

(
V�Zn�1�V�Zn�≥R�

)
:

Finally, by (3.15), the first part of Theorem 2 is proved.
3.5.5. Proof of the second assertion of Theorem 2. Under the additional

assumption, there exists r > 0 such thatV�z� < r implies �∇V�z��2 ≥ ρVV�z�,
and we can write (2.4) as

Zn+1 = Zn + γnh�Zn� + γnrn+1 + σnξn+1;

with

h�z� = −∇V�z�1�V�z�<r�;

rn+1 = −∇V�Zn�1�V�Zn�≥r�:

Following the proof of the second part of Proposition 6 (Section 3.2.2), we show
that for any A, 0 < A < ρ, there exists n0, such that for all n ≥ n0,

E�V�Zn+1�� ≤ �1−Aγn�E�V�Zn�� +O
(
γn
v�n�

)
;

and finally

sup
n
E�v�n�V�Zn�� <∞;

which completes the proof of Theorem 2. 2

3.6. Proof of Theorem 3.
3.6.1. Weak convergence. Let Ha be a random variable with distribution

G1/2a. Since g varies regularly with exponent �−η�, the Laplace transform
of 4aV�Ha�, t 7→ g�2a�2t + 1��/g�2a�, converges as a → ∞ to the Laplace
transform of γ�η;1/2�, t 7→ �2t + 1�−η. Thus, 4aV�Ha� ⇒ γ�η;1/2� as
a→+∞ and, for any r > 0,

G1/2a�4aV ≥ r� = P�4aV�Ha� ≥ r� → γ
(
η; 1

2

)
��r;+∞�� when a→∞:

Applying (3.24) with λ�t� = 1/4a�t�, we have

P�4a�t�V�Ut� ≥ r� = G1/2a�t��4a�t�V ≥ r� +O
(

1
a�t�

)
;

P�4a�t�V�Ut� ≥ r� → γ
(
η; 1

2

)
��r;+∞��:
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Thus,

4a�t�V�Ut� ⇒ γ
(
η; 1

2

)
and 4v�n�V�Zn� ⇒ γ

(
η; 1

2

)
:

3.6.2. Small deviations. Applying (3.24) with λ�t� = f�a�t���lna�t��/a�t�,
we have

P

[
V�Ut� ≥

rf�a�t�� lna�t�
a�t�

]
= G1/2a�t�

[
V ≥ rf�a�t�� lna�t�

a�t�

]
+O

(
1
a�t�

)
:

Thus,

ln
(
P

[
V�Ut� ≥

rf�a�t�� lna�t�
a�t�

])

= − lng�2a�t�� + ln
∫
V≥rλ�t�

exp�−2a�t�V�x��dx+O
(

1
a�t�

)
;

ln
(
P

[
V�Ut� ≥

rf�a�t�� lna�t�
a�t�

])
∼ η lna�t� − 2rf�a�t�� lna�t� +O

(
1
a�t�

)
;

from which we deduce that

1
f�a�t�� lna�t� ln

(
P

[
V�Ut� ≥

rf�a�t�� lna�t�
a�t�

])
→−2r;

1
f�v�n�� ln v�n� ln

(
P

[
V�Zn� ≥

rf�v�n�� ln v�n�
v�n�

])
→−2r:

3.7. Proof of Theorem 4. We take up the notations introduced in Sec-
tion 3.5.3. To establish Theorem 4, we have to prove the convergence of

E
[
φ
(
Ut;

√
a�t�∇V�Ut�

)]
as t→+∞;

which amounts to proving the convergence of

E
[
φ
(
Ut+α�t�;

√
a�t+ α�t��∇V�Ut+α�t��

)]
as t→+∞;

or to proving this convergence given Ut ∈ K1. Thus, we can assume that the
second- and third-order derivatives of V are bounded, in the same way as in
the proof of Theorem 2.

Let Wn+1 =
√
v�n�∇V�Zn+1�. We have

Wn+1 =Wn − γnD2V�Zn�Wn + γnrn+1 +
√
γnD

2V�Zn�ξn+1

with E��rn+1�2� → 0.
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We apply the method of the stochastic differential equation introduced in
Section 3.1.2 to the couple �Zn;Wn�. We come back here to the interpolation
used in 3.1.2 and we define �Xt;Yt� if t ∈ �sn−1; sn� by

Xt = Zn − �t− sn−1�∇V�Zn� +
√
t− sn−1√
v�n�

ξn+1(3.25)

and

Yt =Wn − �t− sn−1�D2V�Zn�Wn + �t− sn−1�rn+1

+
√
t− sn−1D

2V�Zn�ξn+1

(3.26)

with sn =
∑n
k=0 γk.

We define the family of processes �X�u�;Y�u��u≥0 by

�X�u�t ;Y
�u�
t � = �Xu+t;Yu+t�:(3.27)

Theorem 2 implies that supnE��Wn�2� <∞. Consequently, �Xt;Yt� is tight
and supnE��Yt�2� < ∞. Then �X�u�;Y�u��u≥0 is tight, and any closure point
for the weak convergence is a solution of the stochastic differential equation

dPt = −∇V�Pt�dt;(3.28)

dRt = −D2V�Pt�Rt dt+D2V�Pt�dBt;(3.29)

with �P0;R0� independent of �Bt�.
However, �Xt� ⇒ G0, thus �X�u�� converges weakly to �Pt� defined by Pt =

P0, P0 with distribution G0. Given P0 = z∗ ∈ ArgminV, the solution of (3.29)
is a geometrically recurrent linear diffusion with stationary distribution νz∗ =
N �0; 1

2D
2V�z∗��.

For all continuous and bounded function φ defined on R2d, for all t > 0,

�E�φ�Pt;Rt��P0 = z∗; R0 = r� −
∫
φ�z∗; y�dνz∗�y�� = O��ρ�z∗��t�1+ �r�2��

with ρ�z∗� < 1.
Let µ, probability on R2d, be a closure point for the weak convergence of

�Xt;Yt�. The first marginal distribution of µ is G0, and the second has a
bounded moment of order 2. Let us consider a sequence �u�n��, increasing to
infinity, such that �Xu�n�;Yu�n�� ⇒ µ.

Let φ be a continuous and bounded function, and set t > 0. By the tightness
of �X�u�;Y�u��, there exists a subsequence of �u�n��, denoted by �w�n��, such
that �X�w�n�−t�;Y�w�n�−t�� converges weakly to the diffusion solution of (3.28)
and (3.29). Moreover,
∣∣∣∣E�φ�Pt;Rt�� −

∑
z∗∈ArgminV

G0�z∗�
∫
φ�z∗; y�dνz∗�y�

∣∣∣∣ = O
(

sup
z∗∈ArgminV

�ρ�z∗��t
)
:

Thus µ =∑z∗∈ArgminVG0�z∗�δz∗⊗νz∗ , which completes the proof of Theorem 4.



40 M. PELLETIER

3.8. Proof of Theorem 5.
3.8.1. Preliminary. In order to prove Theorem 5, we first establish conver-

gence rates for the simulated annealing algorithm

Ẑn+1 = Ẑn − γn�∇V�Ẑn� +Rn+1� + σnξn+1;

with strong assumptions on the disturbance �Rn�. Then, we show in Section
3.7.2 how Theorem 5 may be proved by using this preliminary result.

On a probability space ��;A ;P� equipped with a filtration F = �Fn�n≥0,
let �Ẑn� be defined by

Ẑn+1 = Ẑn − γn�∇V�Ẑn� +Rn+1� + σnξn+1:(3.30)

We make the following assumptions.

(AA.1) �Rn� and �ξn� are adapted to F and Rn+1 and ξn+1 are independent
conditionally on Fn.

(AA.2) ξn+1 is independent of Fn and has the distribution N �0; I�.

(AA.3) E��Rn+1�2�Fn� ≤ n−δL, where L is an almost surely finite random
variable and δ > 1− α.

Lemma 8. Under assumptions (A2.1) to (A2.3), and (AA.1) to (AA.3), Theo-

rems 2 and 3 can be applied to �Ẑn�. Under the additional assumption (A2.4),
Theorem 4 can be applied to �Ẑn�.

Proof.
Step 1. For any A > 0, set Rn = Rn1��Rn�≤

√
An−δ�, and

Zn+1 = Zn − γn�∇V�Zn� +Rn+1� + σnξn+1:

Then �Zn� and �Ẑn� agree on �L ≤ A�. L being almost surely finite, P�L >
A� → 0 as A→+∞; therefore, it is enough to prove the lemma assuming L
deterministic.

Step 2. We define �Zn�n≥N by ZN = ẐN and

Zn+1 = Zn − γn∇V�Zn� + σnξn+1 for n ≥N:

For i < j, let us denote by 5i; j and 5̂i; j the distributions of Zj and Ẑj given
Fi, respectively.

The density of 5n;n+1 with respect to Lebesgue measure is

zn+1 7→ exp
[
−�zn+1 −Zn + γn∇V�Zn��2

2σ2
n

]
;

and the density of 5̂n;n+1 is

zn+1 7→ E

(
exp

[
−�zn+1 − Ẑn + γn∇V�Ẑn� + γnRn+1�

2

2σ2
n

]∣∣∣∣Fn

)
:
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Let K be the Kullback information. Since ξn+1 and Rn+1 are independent
given Fn, we have, given Zn = Ẑn,

K
[
5n;n+1; 5̂n;n+1] = E

[
1

2σ2
n

(
2�γnRn+1; σnξn+1� + γ2

n�Rn+1�2
)∣∣∣Fn

]
;

K
[
5n;n+1; 5̂n;n+1] = γ2

n

2σ2
n

E��Rn+1�2�Fn� ≤
γnn

−δv�n�
2

L:

Given ZN = ẐN,

K
[
5N;N+n; 5̂N;N+n

]
≤ L

(N+n∑
j=N

γjj
−δv�j�
2

)
:

Therefore, � · �var being the total variation of a measure, given ZN = ẐN,

∥∥5N;N+n − 5̂N;N+n
∥∥

var = O
((N+n∑

j=N

γjj
−δv�j�
2

)1/2)
:

Since t 7→ t−δγ�t�v�t� varies regularly with exponent −�α+ δ�, δ > 1− α,
( +∞∑
j=N

j−δγjv�j�
)1/2

= O
(

1
v�N�

)
:

Let φ be a continuous function with compact support. In view of the inequality
(3.22) of the proof of Theorem 2, uniformly forZn = Ẑn = z in a compact setK,

∣∣E
(
φ
(
Utn+τ�tn�

))
−G1/2a�tn+τ�tn���φ�

∣∣ = O
(

1
v�n�

)
:

Let β be an increasing function such that tn + τ�tn� ∈ �tn+β�n�−1; tn+β�n��. We
have then ∣∣E

(
φ
(
Zn+β�n�

))
−G1/2a�tn+τ�tn���φ�

∣∣

≤ O
(

1
v�n�

)
+
∣∣E
(
φ
(
Zn+β�n�

))
−E

(
φ
(
Utn+τ�tn�

))∣∣y

∣∣E
(
φ
(
Zn+β�n�

))
−G1/2a�tn+τ�tn���φ�

∣∣ = O
(

1
v�n�

)
:

We deduce that, given ẐN = ZN = z, uniformly for z ∈K,

∣∣E
(
φ
(
ẐN+β�N�

))
−G1/2a�tN+τ�tN���φ�

∣∣ = O
(

1
v�N�

)
:

Step 3. On the other hand,E��Rn+1�2�≤Ln−δ, thus supnE�v�n��Rn+1�2�<
∞. Proposition 6 may be applied. Therefore supnE�V�Ẑn�� < ∞, and there
exists R > 0 such that E�V�Ẑn�1�V�Ẑn�≥R�� = O�

1
v�n��.

Then, we may conclude by following the end of the proofs of Theorems 2, 3
and 4. 2
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3.8.2. Proof of Theorem 5. We use the averaging method of the disturbance
�εn� introduced by Walk [28] or by Hwang and Sheu [17].

For N ≥ 1, let us define �εn�n≥N by εN = 0 and, for n ≥N,

εn+1 = ζn
n∑

j=N

γj

ζj
εj+1;

where ζn =
∏n
j=N�1−γj�. Let �Zn�n≥N be defined by ZN = ZN and, for n ≥N,

Zn+1 = Zn − γn
[
∇V�Zn� + εn + rn+1

]
+ σnξn+1:

With ∇V being globally Lipschitz, ∇V�Zn� = ∇V�Zn�+O��Zn−Zn��, and

Zn+1 = Zn − γn�∇V�Zn� +Rn+1� + σnξn+1;

with Rn+1 = εn + rn+1 +O��Zn −Zn��.
Thus, it is sufficient to prove that Lemma 5 can be applied to �Zn� and that

Zn −Zn = o��v�n��−1� almost surely in order to establish Theorem 4.
However, Zn+1−Zn+1 = Zn−Zn+γnεn−γnεn+1, thus Zn+1−Zn+1 = −εn+1.
It is finally enough to prove that there exists δ > 1− α such that

ε2
n = O�n−δ� a.s.

From Chow’s theorem (see, e.g., [14]), for all β > 0,

�εn�2 = O
[
ζ2
n

[ n∑
j=N

γ2
j

ζ2
j

](
ln
[ n∑
j=N

γ2
j

ζ2
j

])1+β]
a.s.

Under (A3.3.1): Let G�t� =
∫ t
N γ�s�ds. We have ζn ∼ exp�−G�n�� and

n∑
j=N

γ2
j

ζ2
j

∼
∫ n
N
γ2�s�e2G�s� ds ∼

∫ G�n�
G�N�

γ�G−1�s��e2s ds ∼ γne2G�n�:

Thus,

ζ2
n

[ n∑
j=N

γ2
j

ζ2
j

](
ln
[ n∑
j=N

γ2
j

ζ2
j

])1+β
∼ γn

[
ln
(
γne

2G�n�)]1+β ∼ γn�G�n��1+β;

and t 7→ γ�t��G�t��1+β varies regularly with exponent δ = −α+�1−α��1+β�,
for an arbitrary β > 0.

Since α > 2
3 , there exists β > 0 such that δ > 1 − α and �εn�2 = O�n−δ�

almost surely.
Under (A3.3.2): since γn = γ0/n, we have

∑n
k=N γk = O�lnn�, ζn = O�n−1�

and
∑n
k=N�γ2

k/ζ
2
k� = O�n�.

Consequently, ∀ β > 0,

�εn�2 = O
[

1
n
�lnn�1+β

]
a.s.

Thus �εn�2 = O�n−δ� a.s. for all δ such that 0 < δ < 1. 2
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markovienne. Ann. Inst. H. Poincaré 24 131–155.
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Université de Marne-la-Vallée
2 rue de la Butte Verte
93166 Noisy-le-Grand Cedex
France
E-mail: pelletier@math.uvsq.fr


