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MARKOVIAN TERM STRUCTURE MODELS IN DISCRETE TIME

BY DAMIR FILIPOVIĆ1 AND JERZY ZABCZYK2

ETH Zurich and Polish Academy of Science

In this article we discuss Markovian term structure models in discrete
time and with continuous state space. More precisely, we are concerned with
the structural properties of such models if one has the Markov property for a
part of the forward curve. We investigate the two cases where these parts are
either a true subset of the forward curve, including the short rate, or the entire
forward curve. For the former case we give a sufficient condition for the term
structure model to be affine. For the latter case we provide a version of the
Heath, Jarrow and Morton drift condition. Under a Gaussian assumption a
Heath–Jarrow–Morton–Musiela type equation is derived.

1. Forward curve models in discrete time. We consider a discrete trading
economy with trading times t ∈ N0. Denote by P (t, T ) the price of the zero-
coupon bond at time t that pays a sure unit at time of maturity T ≥ t . Thus in
particular P (T ,T )= 1. The time t continuously compounded forward rate r(t, k)
for the period [t + k, t + k + 1] is defined by

r(t, k) := log
P (t, t + k)

P (t, t + k + 1)
, k ∈N0.

Equivalently,

P (t, T )= exp

(
−

T−t−1∑
j=0

r(t, j)

)
, t = 0, . . . , T − 1.(1)

The short rate R(t) is the continuously compounded rate contracted at time t on
a one-period loan starting immediately. By definition, hence R(t) = r(t,0). This
defines the savings account,

B(0) := 1, B(t) := exp

(
t−1∑
s=0

R(s)

)
, t ∈N.

We denote by K ≤ +∞ the maximal time to maturity of those bonds which
are traded at each calender time t . If K is finite then the forward rates r(t, j),
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given by (1), are only defined for j = 0, . . . ,K − 1. In any case the sequence
r(t)= (r(t, j))0≤j<K is called the forward curve at time t .

Here and subsequently, we let (�,F , (Ft )t∈N0,P) denote a filtered probability
space. We suppose that the forward rate processes r(t, j), for all 0 ≤ j < K ,
and thus the bond prices P (t, T ), are (Ft )-adapted. The savings account B(t)
accordingly is (Ft )-predictable.

Suppose for the moment that P were the physical measure. The first fundamen-
tal theorem of asset pricing in discrete time states that, on a finite time horizion
t = 0,1, . . . , T <∞, the existence of an equivalent martingale measure Q ∼ P

on FT is equivalent to the absence of arbitrage. In general, Q is not unique and
there are various ways to distinguish a particular equivalent martingale measure.
A detailed exposition of the arbitrage-theory in discrete time can be found in [11],
Chapter V. We do not further discuss the issues of incompleteness here. In what fol-
lows we are interested in the dynamics of the forward curve process under a generic
martingale measure on F , which we shall denote by P. This is expressed by the
following assumption.

(NA) For arbitrary T ∈N0 the sequence

P (t, T )

B(t)
, t = (T −K)+, . . . , T ,

is a martingale.

In this article we will analyze the interplay of (NA) and various Markov
hypotheses imposed on the forward curve process r(t).

To clarify the terminology we recall some basic concepts. First, we establish
the convention that all equalities between random variables hold P-almost surely.
Let (E,E) be a measurable space. We write Bb(E) for the space of bounded
measurable functions [and, if E is equipped with a topology, Cb(E) for the space
of bounded continuous functions]. An (Ft )-adapted sequence (X(t)) of E-valued
random variables is called a Markov chain with respect to the filtration (Ft ) if, for
any ϕ ∈ Bb(E),

E
[
ϕ
(
X(t + 1)

) |Ft

]= E
[
ϕ
(
X(t + 1)

) | σ (
X(t)

)]
,

where σ(X(t)) denotes the σ -field of events generated by X(t). Then also

E
[
ϕ
(
X(t + 1)

) | σ (
X(0), . . . ,X(t)

)]= E
[
ϕ
(
X(t + 1)

) | σ (
X(t)

)]
,(2)

and if (2) holds, X(t) is simply a Markov chain. If, in addition, there exists a
sequence of transition kernels Pt(x,�), x ∈E, � ∈ E , such that

E
[
ϕ
(
X(t + 1)

) | σ (
X(0), . . . ,X(t)

)]= Ptϕ
(
X(t)

)
,

then the sequence (X(t)) is called a Markov chain with transition kernels Pt . Here
we used the notation

Ptϕ(x)=
∫
E
ϕ(y)Pt (x, dy).
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A Markov chain is time-homogeneous if for all t ∈ N0, Pt = P0, and then P0 is
denoted by P .

The remainder of the article is as follows. In Section 2 we consider the case
where a finite subset r�(t) := (r(t,0), . . . , r(t, γ )) of the forward curve is a time-
homogeneous Markov chain with transition kernel P . Here � = {0, . . . , γ } for
some 0 ≤ γ < K . Assumption (NA) yields a representation of the forward curve
as a function of r�(t) (Theorem 1). For γ ≥ 1 this imposes arbitrage restrictions
for P (Corollary 2). If P is generated by a continuous convolution semigroup
then the term structure is affine (Theorem 5). This is the discrete time analogue to
the results in [3] and [5]. Section 2.3 is devoted to the study of affine short rate
models. We characterize the shapes of the implied forward curves and examine the
limiting behavior of R(t) when t tends to infinity. A concrete example is given in
Section 2.3.1.

In Section 3 the entire forward curve r(t) is viewed as a Markov chain on
E ⊂ RK . From general Markov theory it follows that r(t) will always admit
a representation of the form r(t + 1)= F(t, r(t), ξt+1), where the noise terms ξt
are i.i.d. Under (NA) there has to be some kind of “drift condition.” Theorem 10
gives this condition in terms of the mapping F . In Section 3.2 the Gaussian case
is studied. The main result is Theorem 13 which shows that the forward curve can
be represented as the solution to the discrete time analogue of the Heath–Jarrow–
Morton–Musiela equation [10].

The Appendix contains some classical results for conditional Gaussian distrib-
utions in infinite dimension.

We write Rn+ = [0,+∞)n, Rn++ = (0,+∞)n and N0 = {0,1, . . .}. Whenever
working with a Hilbert space H , we denote by 〈·, ·〉 and ‖ · ‖ the scalar product
and the norm, respectively.

We emphasize that the various Markov hypotheses on r(t) are always imposed
under the measure P which is not the physical measure.

2. Partly Markovian forward curves. In this section we consider the case
where a finite subset of the forward curve is Markovian. We derive a representation
of the forward curve as a function of its Markovian part. A focus will be on
affine term structure (in particular short rate) models, where our results can be
made more explicit. For the latter we provide a concrete example. For simplicity
of presentation we suppose that K = +∞. Most of the following results can be
carried over without problem to finite K .

2.1. Generalities. Let γ ∈N0 and set � = {0, . . . , γ }. We assume that r�(t)=
(r(t,0), . . . , r(t, γ )) follows a time-homogeneous Markov chain on E ⊂ Rγ+1

with transition kernel P . We further assume that

Pφ =
∫
E
φ(y)P (·, dy) ∈ Bb(E),(3)
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where φ(y) := e−y0 , for y = (y0, . . . , yγ ) ∈E.
We mention that, without any problems, � could be replaced by an arbitrary

finite subset of N0 which contains 0. That is, the short rate R(t)= r(t,0) has to be
a component of the Markovian part in any case.

Define inductively the functions

φ0 := 1, φk+1 := P (φφk), k ∈N0.(4)

Notice that φk ∈Bb(E), for k ∈N0, by (3).

THEOREM 1. Assume that (NA) holds and that r�(t) is a time-homogeneous
Markov chain with respect to the filtration (Ft ). Then

r(t, k + 1)= ln
(

φk

φk+1

(
r�(t)

)) ∀ t, k ∈N0.(5)

PROOF. Let T ∈N. From (NA) we have

P (t, T )

B(t)
= E

[
1

B(T )

∣∣∣Ft

]
, t ≤ T .

Therefore

P (t, T )= exp

(
−

T−t−1∑
j=0

r(t, j)

)
= E

[
exp

(
−

T−1∑
s=t

R(s)

)∣∣∣Ft

]
, t ≤ T − 1.

Hence

P (t, T )= E

[
exp

(
−

T−1∑
s=t

R(s)

) ∣∣∣Ft

]

= E

[
exp

(
−

T−2∑
s=t

R(s)

)
E
(
e−R(T−1) |FT−2

) ∣∣∣Ft

]

and by the Markov property

P (t, T )= E

[
exp

(
−

T−2∑
s=t

R(s)

)
Pφ

(
r�(T − 2)

) ∣∣∣Ft

]
.

In the same way, taking into account that Pφ = φ1,

P (t, T )= E

[
exp

(
−

T−3∑
s=t

R(s)

)
E
(
e−R(T−2)φ1

(
r�(T − 2)

) |FT−3

) ∣∣∣Ft

]

= E

[
exp

(
−

T−3∑
s=t

R(s)

)
φ2

(
r�(T − 3)

) ∣∣∣Ft

]
.



714 D. FILIPOVIĆ AND J. ZABCZYK

By induction,

P (t, T )= e−R(t)φT−t−1
(
r�(t)

)
, t ≤ T − 1.

Consequently, for arbitrary t, k ∈N0,

exp

(
−

k∑
j=0

r(t, j)

)
= e−R(t)φk

(
r�(t)

)
.

Or equivalently, since R(t)= r(t,0),
k∑

j=1

r(t, j)=− lnφk
(
r�(t)

)
,

which yields the assertion. �

It is easily seen that, for γ ≥ 1, equation (5) imposes arbitrage constraints on
the transition kernel P .

COROLLARY 2. Suppose γ ≥ 1 and that the assumptions of Theorem 1 hold
for any initial point r�(0)= x ∈E. Then necessarily

lnφk(x)=−
k∑

j=1

xj ∀ x = (x0, . . . , xγ ) ∈E, ∀ k = 1, . . . , γ .(6)

In (6) there are γ conditions for the transition kernel P to be satisfied. They
can be made explicit as we shall see in Theorem 5 below. Conditions (6) are
implied by the fact that the dynamics of the bond prices P (t, T ), for 0 ≤ t ≤ T

and 1 ≤ T ≤ γ + 1 are directly specified by P via (1). This requires consistency
with condition (NA). In contrast, the bond prices P (t, T ) with time to maturity
T − t > γ + 1 are defined by—and hence consistent with—(NA). Notice that
for γ = 0 (i.e., Markovian short rates) there are no constraints since in this case,
condition (NA) is trivially satisfied:

P (t, t + 1)

B(t)
= e−R(t)

exp(
∑t−1

s=0R(s))
= exp

(
−

t∑
s=0

R(s)

)
= 1

B(t + 1)
.

In other words, in a Markovian short rate model every bond price is given as a
derivative by (NA). We also refer to the discussion in [1], Section 16.1.

2.2. Affine term structure. We now shall determine a class of transition
kernels P for which the functions φk can be calculated explicitly. In view of (4),
a candidate is given by any P which transforms exponential functions into
exponential functions. The Lévy–Khintchine formula (see Proposition 3 below)
tells us that such measures P (x, ·) are infinitely divisible and have the convolution
semigroup property with respect to x. We arrive this way at the so called affine
term structure models. Let m,n ∈N.
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DEFINITION 1. A family of probability measures (µx)x∈Rn+ on Rm+ is called
a continuous convolution semigroup if

µx+y = µx ∗µy ∀ x, y ∈Rn+
and x �→µx is weakly continuous. That is,∫

Rm+
f dµxk →

∫
Rm+

f dµx ∀f ∈Cb(Rm+)

whenever xk→ x.

In particular, each µx is infinitely divisible and µ0 = δ0. It is easy to see that
(µx)x∈Rn+ is a continuous convolution semigroup if and only if µx = µ1

x1
∗ · · · ∗

µnxn , for x = (x1, . . . , xn) ∈Rn+, where each (µit )t∈R+ is a continuous convolution
semigroup. In fact, µit =µtei , where ei is the ith standard basis vector in Rn.

The following result is a corollary of the classical Lévy–Khintchine formula
(see [4], Section XIII.7).

PROPOSITION 3. A family of probability measures (µx)x∈Rn+ on Rm+ is
a continuous convolution semigroup if and only if the Laplace transform of µx
is of the form

µ̃x(λ) :=
∫

Rm+
e−〈λ,y〉µx(dy)= e−〈ψ(λ),x〉, x ∈Rn+, λ ∈Rm+,

where ψ = (ψ1, . . . ,ψn) with

ψi(λ)= 〈βi, λ〉 +
∫

Rm++

(
1− e−〈λ,y〉

)
mi(dy),(7)

for βi ∈Rm+ and nonnegative measures mi(dy) on Rm++ such that∫
Rm++

(1∧ ‖y‖)mi(dy) <+∞, 1≤ i ≤ n.

Based on these facts we now construct a Markov chain model r�(t). To be
consistent with the notation in Section 2.1 we set m = n = γ + 1 ∈ N and let
E = Rm+. Accordingly, we write x = (x0, . . . , xγ ) ∈ Rm+, and {e0, . . . , eγ } for the
standard basis in Rm. Suppose (µx)x∈Rm+ is a continuous convolution semigroup.
Then P (x, dy)= µx(dy) is a Markov transition kernel on Rm+. Since P (0, dy)=
δ0(dy) the point 0 is absorbing. This can be relaxed as shown in the next lemma.

LEMMA 4. Let ν be a probability measure on Rm+ with Laplace transform
ν̃ = e−ϕ and (µx)x∈Rm+ as above with ψ given by (7). Define

P (x, dy) := ν ∗µx(dy), x ∈Rm+.(8)
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Then

φk(x)= exp(−Ak − 〈Bk, x〉), k ∈N0,(9)

where A0 := 0, B0 := 0 and

Ak+1 :=Ak + ϕ(Bk + e0), Bk+1 := ψ(Bk + e0), k ∈N0.(10)

PROOF. We proceed inductively. By definition (4), the statement is true for
k = 0. Now let k ∈N0 and calculate

φk+1(x)= P (φφk)(x)= e−Ak

∫
Rm+

e−〈Bk+e0,y〉P (x, dy)

= e−Ake−ϕ(Bk+e0)−〈ψ(Bk+e0),x〉,

which yields the assertion. �

In the present setup, (6) reads as follows.

THEOREM 5. Suppose (NA) holds for every initial point r�(0)= x ∈Rm+.
If γ ≥ 1 then necessarily

ϕ

(
k−1∑
j=0

ej

)
= 0, ψ

(
k−1∑
j=0

ej

)
=

k∑
j=1

ej ∀ k = 1, . . . , γ .(11)

Accordingly, we have

suppν ⊂ {
y ∈Rm+ | y0 = · · · = yγ−1 = 0

}
(12)

and, for all t ≥ 0,

suppµjt ⊂
{{

y ∈Rm+ | y0 = · · · = yγ−1 = 0
}
, j = 0,{

y ∈Rm+ | y0 = · · · = yj−2 = 0
}
, j = 2, . . . , γ .

(13)

The resulting forward curve is an affine function of r�(t),

r(t, k + 1)=Ak+1−Ak + 〈Bk+1−Bk, r
�(t)〉, k ∈N0,(14)

with Ak , Bk as in Lemma 4. Here in particular,

Ak = 0, Bk =
k∑

j=1

ej ∀ k = 1, . . . , γ .(15)

If γ = 0 then we only conclude (14).
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PROOF. Equation (14) follows directly by Theorem 1 and (9), for all γ ≥ 0.
Now suppose that γ ≥ 1. According to (6) we have

Ak + 〈Bk, x〉 =
k∑

j=1

xj ∀ x ∈Rm+, ∀ k = 1, . . . , γ .

This yields (15). Equation (11) is now a direct consequence of (10). From (11) we
conclude that ∫

Rm+
exp

(
−

γ−1∑
i=0

yi

)
ν(dy)= 1

and, by the property µ̃x = µ̃0
x0
· · · µ̃γxγ ,

∫
Rm+

exp

(
−

k−1∑
i=0

yi

)
µ
j
t (dy)=

{
1, j = 0 or k < j ≤ γ ,
e−t , 2≤ j ≤ k.

This yields (12) and (13). �

REMARK 6. We have noticed in the preceding proof that (9) implies (14).
Conversely, if (14) holds for every initial point r�(0)= x ∈Rm+ then this yields (9).
Equation (9) holds since, by (8), the Laplace transform of the transition kernel is
exponential-affine in x,

P̃ (x, λ)= e−ϕ(λ)−〈ψ(λ),x〉.(16)

Hence we have the implications

(8)⇒ (16)⇒ (9)⇔ (
(14) ∀ r�(0) ∈Rm+

)
.

We will show in the next section (Proposition 9) that, for m = 1 and under some
mild conditions, (16) and (9) are equivalent. But (16) does not imply (8), in
general. A counterexample has been found by F. Hubalek [8]. This is in contrast to
continuous time Markov models, where (16) and (8) are equivalent (see [5]).

Finally, we give a slightly alternative description of the process r�(t). Let X
be a random variable with distribution ν. Let Lj be the (increasing) Lévy process
specified in distribution by µ

j
t (that is, Ljt ∼ µ

j
t ), for j = 0, . . . , γ . We assume

that X and L0, . . . ,Lγ are mutually independent. Then we have, in distribution,

r�(t + 1)=X+L0
r(t,0)+ · · · +L

γ
r(t,γ ), t ∈N0.(17)

Of course, for each t we have to chose an independent copy of the family
X,L0, . . . ,Lγ . Representation (17) clarifies the interplay between the different
components in the dynamics of r�(t).
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In the case of γ ≥ 1, (17) gives a better understanding of (12) and (13). Indeed,
by (12) only the last component of X is different from 0. By (13), the above Lévy
processes are of the form L0

t = (0, . . . ,0,∗) and
L1
t

L2
t
...

L
γ
t

=

∗ ∗ · · · ∗
0 ∗ · · · ∗
...

. . .
. . .

...

0 · · · 0 ∗

 ,

where ∗ stands for a generic nonnegative number. To give an illustration of
this particular structure, suppose that the present Markovian part of the forward
curve is flat zero, r�(0)= (r(0,0), . . . , r(0, γ ))= (0, . . . ,0). By simple arbitrage
considerations it is clear that r(1, j) = 0 for all 0 ≤ j ≤ γ − 1. Indeed, since
P (0,1) = P (0, γ + 1) = 1, we can enter the following strategy at time t = 0 at
zero cost: buy one bond maturing at 1, sell one bond maturing at γ + 1. At time
t = 1 we get one dollar from the first bond. We immediately reinvest this dollar and
buy 1/P (1, γ + 1) bonds maturing at γ + 1. If r(1, j) > 0 for some 0≤ j ≤ γ − 1
then

1/P (1, γ + 1)= exp

(γ−1∑
j=0

r(1, j)

)
> 1,

see (1). Hence we realize a net gain at time t = γ + 1, which means arbitrage. By
the same reasoning one shows that

r(t, j)= 0 ∀ 0≤ j ≤ γ − t, t = 1, . . . , γ .

It is now easy to comprehend this phenomenon by simply looking at (17), given
the particular structure of X and L0, . . . ,Lγ .

2.3. Affine short rate models. In this section we investigate the case where
γ = 0 (that is, m= 1) in more detail. First, we discuss the possible shapes of the
implied forward curve (14). Let Ak and Bk be given as in Lemma 4. Write

ak :=
{

0, for k = 0,
Ak −Ak−1, for k ≥ 1,

bk :=
{

1, for k = 0,
Bk −Bk−1, for k ≥ 1.

Now (14) reads

r(t, k)= ak + bkR(t), k ∈N0.(18)

If ν is the Dirac measure at 0 then ϕ ≡ 0 and therefore ak = 0, for all k ∈ N0. In
the sequel we shall exclude this trivial case and suppose that ν((0,+∞)) > 0 and
similarly µx((0,+∞)) > 0, for x > 0. We use the notation as in Proposition 3 but
skip the indices since now m= 1. Write

0 := β +
∫

R++
y m(dy)≤+∞.
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By monotone convergence we have

lim
λ↓0

ψ ′(λ)= β + lim
λ↓0

∫
R++

ye−λym(dy)=0.

PROPOSITION 7. The sequence (ak) is strictly increasing with

lim
k→+∞ak

{=+∞, if β ≥ 1,
<+∞, if β < 1.

If β > 1 then (bk) is strictly increasing and limk→+∞ bk =+∞.
If β = 1 then (bk) is nondecreasing with finite limit.
If β < 1 then limk→+∞ bk = 0, and there exists k∗ ∈ N0 such that (bk)k≤k∗ is

nondecreasing and (bk)k≥k∗ is strictly decreasing. Necessary for k∗ ≥ 1 is 0≥ 1.
Then (bk) has a hump.

PROOF. Since ψ(λ) is strictly increasing in λ, the sequence (Bk) is strictly
increasing. If β < 1 then its limit is finite. If β ≥ 1, the limit is infinite. Since
ak = ϕ(Bk−1 + 1), for k ∈ N, the first part of the proposition is established. We
claim that

bk+1 ≥ β bk ∀ k ∈N0.

Indeed, b1 =ψ(1)≥ β and for k ≥ 1 we have

bk+1 =ψ(Bk + 1)−ψ(Bk−1 + 1)≥ β(Bk −Bk−1)= β bk.

Taking into account that ψ ′(λ) = β + ∫
R++ ye

−λym(dy)→ β for λ→+∞, the
rest of the proposition follows. �

We now examine the limiting behavior of the short rate process R(t). Denote
by P n the nth iterate transition kernel (P n(x, ·) is the distribution of R(n) given
that R(0)= x).

PROPOSITION 8. If 0> 1 then P n converges weakly to δ+∞ on R+ (the one-
point compactification of R+).

If 0 < 1 and
∫
R+ yν(dy) < ∞ then P n converges weakly to an invariant

measure µ∗ on R+. Hence the Markov chain R(t) is strongly mixing.

PROOF. By the Chapman–Kolmogorov equation, the Laplace transform of P n

is

P̃ n(x, λ)= e−ϕ(n,λ)−ψ(n,λ)x,

where

ϕ(n+ 1, λ) := ϕ(n,λ)+ ϕ
(
ψ(n,λ)

)
, ϕ(1, λ) := ϕ(λ),

ψ(n+ 1, λ) :=ψ
(
ψ(n,λ)

)
, ψ(1, λ) :=ψ(λ), n ∈N.

(19)
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Notice that ψ ′′(λ)=− ∫
R++ y

2e−λym(dy)≤ 0, hence ψ is concave. We thus have

0≤ψ ′(λ)≤0 ∀ λ ∈R+.

If 0 > 1 then limn→∞ψ(n,λ) = λ∗, for all λ > 0, for some λ∗ ∈ (0,+∞].
Hence limn→∞ ϕ(n,λ)=+∞, for all λ > 0. Therefore limn→∞ P̃ n(x, λ)= 0, for
all λ > 0, and the first part of the proposition is proved.

Suppose 0 < 1 and
∫
R+ yν(dy) = limλ↓0 ϕ

′(λ) <∞. Then ψ is contracting
on R+,

ψ(n+ 1, λ)=ψ
(
ψ(n,λ)

)≤0ψ(nλ)≤0nψ(λ), n ∈N0.

In particular, limn→∞ψ(n,λ)= 0 uniformly in λ on compacts. On the other hand,

∣∣ϕ(n+ k,λ)− ϕ(n,λ)
∣∣≤ k∑

j=1

∣∣ϕ(n+ j, λ)− ϕ(n+ j − 1, λ)
∣∣

≤
k∑

j=1

C0n+j−1ψ(λ)=C0n 1−0k

1−0
ψ(λ),

for some C < ∞, for n large enough. Hence ϕ(n, ·) converges uniformly on
compacts to a function ϕ∗ and

lim
n→∞ P̃ n(x, λ)= e−ϕ∗(λ).

This specifiesµ∗. Since P nf ∈ Cb(R+) for f ∈ Cb(R+) and supx∈R+ |P nf (x)| ≤
supx∈R+ |f (x)|, it follows by dominated convergence that∫

R+

(
P nf (x)−

∫
R+

f (y)µ∗(dy)
)2

µ∗(dx)→ 0 for n→∞.

Hence the Markov chain R(t) is strongly mixing. �

The next proposition was announced in Remark 6.

PROPOSITION 9. If ∑
k∈N

1

Bk
=+∞(20)

then (16) and (9) are equivalent.

PROOF. The implication (16)⇒ (9) is trivial. Now suppose (9) holds. An easy
calculation shows that∫

R+
e−(Bk+1)y P (x, dy)= e−(Ak+1−Ak)−Bk+1x, k ∈N0.
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Thus, for x, y ∈R+ fixed,

P̃ (x + y,λ)P̃ (0, λ)= P̃ (x, λ)P̃ (y, λ),(21)

for all λ = Bk + 1, k ∈ N0. But the product of two Laplace transforms is again
a Laplace transform. Since (20) is equivalent to

∑
k(Bk + 1)−1 = +∞, Müntz’

theorem applies (see [4], Section XIII.1). It states that a Laplace transform is
uniquely determined by the sequenceBk+1. Hence (21) holds for all λ ∈R+. Now
we fix λ ∈ R+ and define g(x) := P̃ (x, λ)/P̃ (0, λ). This function is measurable,
positive, bounded and satisfies the functional equation g(x)g(y) = g(x + y).
Hence there exists ψ(λ) ∈ R+ such that g(x) = exp(−ψ(λ)x). We can write
φ(λ)=− ln P̃ (0, λ), and (16) follows. �

2.3.1. Examples. We illustrate some possible choices of P (x, dy) (see also [4],
Chapter XIII.7).

Compound Poisson distributions. Let F be a probability distribution on R+
and α > 0. Then

µx := e−αx
∑
n∈N0

(αx)n

n! Fn∗

defines a continuous convolution semigroup on R+. Here ψ(λ) = α(1 − F̃ (λ)),
and (7) is true with m(dy)= αF(dy) and β = 0.

If F = δ1, then µx is the ordinary Poisson distribution with expectation αx and
ψ(λ)= α(1− e−λ).

As a concrete example consider ψ(λ) = 3/4λ + 1/5(1 − e−λ) and ϕ(λ) =
ln(1 + λ/5). That is, ν(dy) = 5e−5y dy. Then the assumptions of the second
part of Proposition 8 are satisfied and the Markov chain is strongly mixing. The
representation (17) reads

R(t + 1)=X+LR(t),

where X is exponentially distributed with expectation 1/5 and Lt = 3/4t + Nt ,
where N is a Poisson process with intensity 1/5. The components of the forward
curve (18) are shown in Figure 1.

Gamma distributions. For a, b > 0 let fa,b(y) := 1
�(b)

abyb−1e−ay denote the
density of the corresponding gamma distribution. Then

µx(dy) := fa,bx(y) dy, x > 0,

defines a continuous convolution semigroup on R+. Here ψ(λ)= b log(1+ λ
a
) and

(7) holds with m(dy) = abe−ay dy
y

and β = 0, which is seen by differentiation.
The choice of a, b is made according to Propositions 7 and 8 and with regard to
ψ ′(0)= b/a.
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FIG. 1. The sequences ak (increasing) and bk (decreasing), for k = 0, . . . ,30.

Stable distributions on R+. For 0 < α < 1 the function ψ(λ) = λα can be
expressed with m(dy) = α

�(1−α)
dy

yα+1 . This is seen again by differentiation.
Hence ψ defines a continuous convolution semigroup (µx)x∈R+ and each µx is
stable. However, since here 0= limλ↓0 αλ

α−1 =+∞, stable distributions are not
really convenient for our setup (see Propositions 7 and 8).

3. Markovian forward curves. We now consider the case where the entire
forward curve is a Markov chain. We also give an alternative, equivalent
description of the Markov chain as a dynamical system.

It is well known that Markov chains on rather general measurable spaces can be
regarded (have the same laws) as solutions of stochastic difference equations,

X(t + 1)= F
(
t,X(t), ξt+1

)
, t ∈N0,(22)

where ξ1, ξ2, . . . is a sequence of independent identically distributed random
variables taking values in E0 =Rd , or even in [0,1], independent ofX0. Moreover,
for each t ∈ N0, F(t, ·, ·) is a measurable mapping from E × E0 into E. For
a representation of this type it is sufficient that the state space E is a Borel subset
of a separable, complete metric space (see, e.g., [12]). If the Markov chain is
time-homogeneous, the function on the right-hand side of (22) does not explicitly
depend on t .

3.1. General Markovian term structure. In the present subsection K might be
finite or infinite. We assume that r(t) is a Markov chain on a Borel set E ⊂ RK

and is a solution of (22). If x = (x0, . . .) ∈E and z ∈Rd then we set

F(t, x, z)= (
F0

(
t, (x0, . . .), z

)
, . . . ,Fj

(
t, (x0, . . .), z

)
, . . .

)
.

The following theorem is the analogue of Theorem 1.

THEOREM 10. Assume that r(t) is a Markov chain, given by (22), with respect
to the filtration (Ft ) and that the σ -fields Ft are independent of ξt+1, ξt+2, . . . .
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Define

FJ (t, x) := E

[
exp

(
−

J∑
j=0

Fj(t, x, ξ)

)]
, x ∈E, t, J = 0,1, . . . ,

where ξ is a random variable with the same distribution as all ξt . If

FJ (t, x)= exp

(
−

J∑
j=0

xj+1

)
, x ∈E, t = 0,1, . . . ,(23)

for J = 0,1, . . . ,K − 2 if K is finite, and for J ∈ N0 if K is infinite. Then the
martingale hypothesis (NA) holds.

PROOF. Assume for instance that K <+∞. Note that for 2≤ T − t ≤K ,

E

[
P (t + 1, T )

B(t + 1)

∣∣∣Ft

]
= E

[
exp

(
−

t∑
s=0

R(s)

)
exp

(
−

T−t−2∑
j=0

r(t + 1, j)

) ∣∣∣Ft

]

= exp

(
−

t∑
s=0

R(s)

)
E

[
exp

(
−

T−t−2∑
j=0

Fj (t, r(t), ξt+1)

) ∣∣∣Ft

]

= 1

B(t)
e−r(t,0)FT−t−2

(
t, r(t)

)
.

The final identity is a consequence of the imposed properties on (Ft ). Since (23)
holds, the result follows. �

REMARK 11. If (NA) holds for any initial state r(0)= x ∈ E, the condition
of Theorem 10 is also necessary. It is important to remark that if K <+∞, then
the function FK−1 is not determined by the theorem and in fact it can be arbitrary.
It means, in practical terms, that the dynamics of the long rate, r(t,K − 1), has to
be additionally specified.

REMARK 12. The case of binomially distributed random variables ξt was
analyzed in particular in Jarrow’s book [9] (see also the references therein).

3.2. Markov Gaussian term structure. In this section we regard r(t) as
a process on E = RK . If K = +∞ we treat E = R+∞ as a metric space with
coordinate-wise convergence. An E-valued random variable X = (X0,X1, . . .) is
called Gaussian if any arbitrary finite subset of the random variables {X0,X1, . . .}
is Gaussian. The definition can be extended to any family of random variables Xt .

Let H be a separable Hilbert space. An H -valued random variable ξ is said to
be Gaussian with mean vectorm and covariance operatorQ if for arbitrary h ∈H ,
〈ξ,h〉 is a real-valued Gaussian random variable and

E[〈ξ,h〉] = 〈m,h〉, E[〈ξ,h〉〈ξ, g〉] = 〈Qh,g〉, h, g ∈H.
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Arbitrage-free Markov Gaussian forward curve processes can be nicely character-
ized. For simplicity of representation we write

∑−1
k=0 · · · := 0.

THEOREM 13. Let K =+∞ and assume that r(t) is a sequence of E-valued
Gaussian random variables, which is Markovian with respect to (Ft ).

(i) If (NA) holds then there exists a sequence of independent E-valued
Gaussian random variables ξ1, ξ2, . . . with coordinates ξt (j), j = 0,1, . . ., such
that

r(t + 1)=Ar(t)+ 1
2at + ξt+1, t = 0,1, . . . ,(24)

where A= (αij ) is the left-shift operator with

αij =
{

1, if j = i + 1,
0, otherwise,

(25)

and

at(j)= E

[
ξt+1(j)

(
2
j−1∑
k=0

ξt+1(k)+ ξt+1(j)

)]
.(26)

(ii) Conversely, if r(t) is defined by (24)–(26), where ξ1, ξ2, . . . are E-valued,
independent and Gaussian such that Ft is independent of ξt+1, ξt+2, . . ., then (NA)
is satisfied.

PROOF. Part (ii) follows from Theorem 10. For the proof of part (i) we need
some well-known results for Gaussian Markov chains, which are sketched in
the Appendix. On a finite time horizon we can regard r(t) as a Hilbert space
valued Gaussian sequence, choosing as the Hilbert space the set H = l2ρ of of
all sequences x = (x0, x1, . . .) such that

‖x‖2
ρ =

+∞∑
j=0

ρjx
2
j <+∞,

equipped with the norm ‖·‖ρ . Here (ρj ) is a sequence of positive numbers tending
to 0 sufficiently fast. Consequently, by Proposition 17,

r(t + 1)= ζt +mt+1 + ξt+1,

where ζt is σ(r(t))-measurable and ξt+1 is an H -valued Gaussian random variable
independent of σ(r(0), . . . , r(t)). Component-wise we thus have

r(t + 1, j)= ζt (j)+mt+1(j)+ ξt+1(j), j = 0,1, . . . .(27)

Hypothesis (NA) is equivalent to the identities

E

[
exp

(
−

J∑
j=0

r(t + 1, j)

) ∣∣∣Ft

]
= exp

(
−

J+1∑
j=1

r(t, j)

)
, J = 0,1, . . . .(28)
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Taking into account (27) and the Markov property of the process r one obtains that

E

[
exp

(
−

J∑
j=0

r(t + 1, j)

) ∣∣∣Ft

]

= E

[
exp

(
−

J∑
j=0

r(t + 1, j)

) ∣∣∣σ (
r(t)

)]

= E

[
exp

(
−

J∑
j=0

(
mt+1(j)+ ζt (j)+ ξt+1(j)

)) ∣∣∣σ (
r(t)

)]

= exp

(
−

J∑
j=0

(
mt+1(j)+ ζt (j)

))
E

[
exp

(
J∑

j=0

ξt+1(j)

)]

= exp

(
−

J∑
j=0

(
mt+1(j)+ ζt (j)

)+ 1
2E

[(
J∑

j=0

ξt+1(j)

)2])
.

Then we arrive at the following identities:

J∑
j=0

(
mt+1(j)+ ζt (j)

)− 1
2E

[(
J∑
j=0

ξt+1(j)

)2]
=

J+1∑
j=1

r(t, j), J = 0, . . . ,

from which

ζt (j)= r(t, j + 1)−mt+1(j)+ 1
2E

[( j∑
k=0

ξt+1(k)

)2

−
(j−1∑
k=0

ξt+1(k)

)2]
.(29)

Inserting (29) into (27) we obtain the required result. �

REMARK 14. Thus it follows from rather general conditions on the evolution
of the forward curve that r(t) necessarily satisfies a linear stochastic difference
equation with the left-shift matrix operator A and the drift vector linked to the
driving noise through the generalized HJM drift condition (26) (see [6], [7]).

REMARK 15. A similar result can be obtained for K < +∞ with the
exception that the component r(t,K − 1) is not determined by hypothesis (NA)
(cf. Remark 11). This is related to the fact that the stochastic difference equation
for r(t) is only well posed with a boundary condition.

APPENDIX

Here we provide the material needed for the proof of Theorem 13, part (i).
First, we have to define images of Gaussian random variables by unbounded

linear transformations. Let ξ be a Gaussian random variable with mean vector 0
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and covariance operator Q, taking values in a separable Hilbert space U . Assume
that B is a linear operator with domain D(B) ⊃ ImQ1/2 and values in some
separable Hilbert space H . Let {ek :k = 1,2, . . .} be the orthonormal sequence
of all eigenvectors of Q corresponding to nonzero eigenvalues of Q and let Pk be
the orthogonal projection onto the finite-dimensional space spanned by e1, . . . , ek,

Pku=
k∑

j=1

〈u, ej 〉ej .

One easily checks that if the operator BQ1/2 is Hilbert–Schmidt then the formula

Bξ = lim
k→∞BPkξ,

with limit in the L2(�,H) norm, defines an H -valued Gaussian random variable
with mean zero and covariance operator (BQ1/2)(BQ1/2)∗. In the sequel, if ξ
is a Hilbert space valued Gaussian random variable with mean 0 and B a linear
operator, Bξ is a Gaussian random variable defined in the above way.

The pseudo-inverse Q−1/2 of Q1/2 has domain D(Q−1/2) = ImQ1/2 and
Q−1/2u is defined as the element of Q−1/2({u}) with the minimal norm. We point
out that if B :U → H is a Hilbert–Schmidt operator then BQ−1/2ξ is a well-
defined H -valued Gaussian random variable with covariance operator BB∗ [this
is immediate from the above discussion since (BQ−1/2)Q1/2 = B is Hilbert–
Schmidt].

We recall a result on conditional Gaussian distributions, see [13]. A Gaussian
measure with mean m and covariance Q is denoted by Nm,Q.

PROPOSITION 16. Suppose (X,Y ) is a Gaussian random variable with values
in a separable Hilbert space U × V , with mean vector (mX,mY ) and covariance
operator (

QXX, QXY

QYX, QYY

)
.

Then ImQYX ⊂ ImQ
1/2
YY and the operator Q

−1/2
YY QYX is Hilbert–Schmidt.

Moreover for an arbitrary Borel map φ :U→R+,

E[φ(X)|Y ] =
∫
U
φ(x)N

X̂,Q̂
(dx),

where

X̂ = E[X|Y ] =mX + (
Q
−1/2
YY QYX

)∗
Q
−1/2
YY (Y −mY )

and

Q̂=QXX − (
Q
−1/2
YY QYX

)∗(
Q
−1/2
YY QYX

)
.
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PROOF. Denote by {ek} an orthonormal basis in U . Let v ∈ V . Then we have

‖QXYv‖2
U =

∑
k∈N

〈QXYv, ek〉2U =
∑
k∈N

(
E
[〈X,ek〉U 〈Y, v〉V ])2

≤∑
k∈N

E
[〈X,ek〉2U ]

E
[〈Y, v〉2V ]

= E
[‖X‖2

U

]〈QYYv, v〉V = E
[‖X‖2

U

]∥∥Q1/2
YY v

∥∥2
V .

By [2], Proposition B.1, we conclude that ImQYX ⊂ ImQ
1/2
YY .

Now let {fk} be an orthonormal basis of V , consisting of eigenvectors of QYY ,
such that

QYYfk = λkfk, k ∈N.

We may assume that λk > 0 (otherwise we chose V smaller by skipping the
corresponding fk). Then {〈Y,fk〉V /√λk} is an orthonormal basis of L2(�),

E

[ 〈Y,fk〉V√
λk

〈Y,fl〉V√
λl

]
= δkl.

Let u ∈U . We now have〈
Q
−1/2
YY QYXu,Q

−1/2
YY QYXu

〉
V =

∑
k∈N

〈
Q
−1/2
YY QYXu,fk

〉2
V

=∑
k∈N

〈
QYXu,

1√
λk
fk

〉2

V

=∑
k∈N

(
E

[
〈X,u〉U 〈Y,fk〉V√

λk

])2

= E
[〈X,u〉2U ]= 〈QXXu,u〉U.

However, QXX is trace class, hence Q−1/2
YY QYX is Hilbert–Schmidt.

The rest of the proposition follows as in the finite-dimensional case (see,
e.g., [12], Theorem 11.1.1). �

PROPOSITION 17. Assume that an H -valued Gaussian sequence (Xt ) is
a Markov chain on H . Then there exists a sequence of closed (in general
unbounded) linear operators A0,A1, . . . on H and a sequence of independent
H -valued Gaussian random variables ξ1, ξ2, . . . , independent of X0, such that

Xt+1 =At(Xt −mt)+mt+1 + ξt+1.

Sequences as described in Proposition 17 are called Ornstein–Uhlenbeck
processes. For related results see, for example, [12], where a finite dimensional
case is treated.
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PROOF. Suppose η is a U -valued Gaussian random variable with covariance
operator Q. Denote by L2

H(η) the closed subspace of L2(�,H), consisting of all
H -valued Gaussian random variables of the form a + B(η − E[η]) where a ∈ H
and BQ1/2 is a Hilbert–Schmidt operator. The norm on L2

H(η) is induced by
L2(�,H),

‖ζ‖2
L2
H (η)

= E
[‖ζ‖2

H

]= ‖a‖2
H + ‖BQ1/2‖2

HS,

for ζ = a+B(η−E[η]) ∈ L2
H(η).

Since the sequence (Xt ) is Markovian, E[Xt+1|X0, . . . ,Xt ] = E[Xt+1|Xt ].
Moreover, by Proposition 16, the random variable E[Xt+1|X0, . . . ,Xt ] is the
L2(�,H)-orthogonal projection of Xt+1 onto L2

H(X0, . . . ,Xt ). Consequently, the
Gaussian random variable ξt+1 = Xt+1 − E[Xt+1|X0, . . . ,Xt ] is orthogonal to
L2
H(X0, . . . ,Xt ), hence in particular independent ofX0, . . . ,Xt . By induction ξt+1

is independent of X0, ξ1, . . . , ξt . From Proposition 16 we have

E[Xt+1|Xt ] = E[Xt+1] + (
Q
−1/2
XtXt

QXtXt+1

)∗
Q
−1/2
XtXt

(Xt −E[Xt ]),
where QXtXt and QXtXt+1 denote the covariance operators of (Xt ,Xt ) and
(Xt ,Xt+1), respectively. We conclude that

Xt+1 = E[Xt+1|Xt ] + ξt+1 =At(Xt −mt)+mt+1 + ξt+1,

where At = (Q
−1/2
XtXt

QXtXt+1)
∗Q−1/2

XtXt
. �
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