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We provide the solution to a fusion of two fundamental problems in
mathematical finance. The first problem is that of maximizing the expected
utility of terminal wealth of an investor who holds a short position in a
contingent claim, and the second is that of maximizing terminal wealth
where the utility function allows the investor to have negative wealth. Under
assumptions of reasonable asymptotic elasticity on the investor’s utility
function, we present an optimal investment theorem and simultaneously treat
the corresponding dual problem.

1. Introduction and statement of results. This paper addresses the problem
of maximizing the expected utility of terminal wealth of an investor who holds a
short position in a contingent claim. Portfolio optimization for an investor whose
preferences are expressed in terms of a utility function is a classical theme in
mathematical finance. An account of advances concerning this theme can be found
in [13].

For recent articles in the area of utility maximization, see [10, 14, 1, 3, 5],
to cite just a few. The article [10] solves the optimal portfolio problem for the
case of utility functions supporting positive wealths in the general framework of
a semimartingale market model. This article was subsequently extended in [1], to
cover the case of an investor who additionally receives a random endowment eT
at the end of trading. The situation of receiving a random endowment is of course
no different to that of honoring a short position in a contingent claim B = −eT
at time T . The articles [14, 5] extend [10] in a different direction, allowing the
investor the possibility of being in debt at the end of trading in order to maximize
their expected utility.

In the article [3], the settings of [1] and [14] are partially brought together: They
treat the case of an investor who essentially wishes to hedge a contingent claim
by maximising expected exponential utility. Their analysis is valid for contingent
claims which are bounded below, and which satisfy a mild condition above, which
is weakly related to superhedgability of the claim. In this article, we solve the
same problem for more general utility functions supporting positive and negative
wealths, where the short position is in a bounded claim. We assume that the utility
function has reasonable asymptotic elasticity, as introduced in [10] and [14].
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Let U : R → R be a strictly concave, continuously differentiable function
satisfying

U ′(−∞)= ∞, U ′(∞)= 0.(1)

The conditions for reasonable asymptotic elasticity are

AE−∞(U) := lim inf
x→−∞

xU ′(x)
U(x)

> 1

and

AE+∞(U) := lim sup
x→∞

xU ′(x)
U(x)

< 1.

Some equivalent conditions to reasonable asymptotic elasticity can be found
in [14].

We model the discounted price process of d risky assets as a d-dimensional,
locally bounded semimartingale S = ((Sit )1≤i≤d)0≤t≤T . The financial market also
comprises a riskless asset whose discounted price Bt ≡ 1. The semimartingale is
based on a filtered probability space (�,F , (Ft )0≤t≤T ,P), where the filtration
(Ft )0≤t≤T is assumed to satisfy the usual conditions of right continuity and
completeness, and the time horizon T is finite.

The family of equivalent (resp. absolutely continuous) local martingale mea-
sures will be denoted by Me(S) (resp. Ma(S)). We assume throughout this paper
that Me(S) 
= 0. This condition is intimately related to the absence of arbitrage
opportunities. See [10] and [4] for detailed discussions on this subject.

A contingent claim B at time T is an FT -measurable random variable. This
article treats the case where an investor is short such a claim. Due to some technical
considerations, we shall assume throughout that ‖B‖∞ < ∞ [see, however,
Remark 1.2(ii)]. It should be possible to relax this assumption a certain amount
in future work.

Our aim is to study the optimization problem

u(x) := sup
X∈XU(x)

E[U(x +X−B)](2)

and to formulate a duality result. In order to rule out trivial cases, we shall
throughout the article make the assumption that

u(x) < U(∞) for some x ∈ R.(3)

In formula (2) above, we make the crucial choice

XU(x) :=
{
X ∈L0(�,FT ,P;R ∪ {∞}) :

(4)

U(x +X −B) ∈ {U(F ) :F ∈ F b
U (x)

}L1(P)}
,
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where

F b
U (x) := {

F ∈L0(�,FT ,P) :F ≤ x + (H · S)T −B

(5)
for some admissible portfolio H, and U(F ) ∈ L1(P)

}
.

The admissible portfolios in (5) are those predictable S-integrable processes H
for which the stochastic integral (H · S)t = ∫ t

0 HudSu is P-a.s. uniformly bounded
from below.

The set XU(x) is chosen large enough to contain an optimal solution, and small
enough so that

sup
X∈F b

U (x)

E[U(x +X −B)] = sup
X∈XU (x)

E[U(x +X −B)].

As in [14], our solution of the primal problem (2) relies upon first solving the
dual minimization problem

v(y)= inf
Q∈Ma(S)

EP

[
V

(
y

dQ

dP

)
− y

dQ

dP
B

]
,(6)

where we now have an additional term due to the contingent claim. Here, the
conjugate function V (y) of the utility function U(x) is defined by

V (y)= sup
x∈R

[U(x)− xy], y > 0,(7)

which, under the conditions (1), is a continuously differentiable, convex function
satisfying

V (0)=U(∞), V (∞)= ∞, V ′(0)= −∞, V ′(∞)= ∞.

It is simple to verify that

V (y)=U
(
I (y)

)− yI (y),

where I (y) := −V ′(y)= (U ′)−1(y).
We are now able to state the main result:

THEOREM 1.1. Assume that U satisfies condition (1) and has reasonable
asymptotic elasticity, and that (3) is also satisfied. Let B be a bounded contingent
claim. Then:

(i) The value functions u and v are finitely valued, strictly concave (resp.
convex), continuously differentiable functions defined on R (resp. R+); they are
conjugate and satisfy

u′(∞)= 0, u′(−∞)= ∞, v′(0)= −∞, v′(∞)= ∞.

The value function u has reasonable asymptotic elasticity.
(ii) For y > 0, the optimal solution Qy ∈ Ma(S) to the dual problem (6) exists,

is unique, and the map y �→ Qy is continuous in the variation norm.
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(iii) For x ∈ R the optimal solution X̂(x) to the primal problem (2) exists, is
unique, and satisfies

x + X̂(x)−B = −V ′
(
y

dQy

dP

)
,

where y = u′(x).
(iv) We have the formulae

v′(y) = EQy

[
V ′
(
y

dQy

dP

)
−B

]
,

u′(x) = EP

[
U ′(x + X̂(x)−B

)]
,

xu′(x) = EP

[(
x + X̂(x)

)
U ′(x + X̂(x)−B

)]
,

where the usual rule ∞ · 0 = 0 is applied, if the integrands are irregular.
(v) If Qy ∈ Me(S) where y = u′(x), then X̂(x) is the terminal value of a process

of the form X̂t (x) = (Ĥ · S)t , where Ĥ is predictable and S-integrable, such that
X̂t is a uniformly integrable martingale under Qy .

REMARKS 1.2. (i) The case of a complete market, where there is a unique
local martingale measure Q, is of course covered by the above theorem. However,
much of the analysis required to prove the theorem in this situation is redundant;
the dual problem is trivially optimized by Q, and it remains only to prove that

X = −x − V ′
(
y

dQ

dP

)
+B

is the unique optimal solution to the primal problem.
(ii) Although this article only treats the case of bounded claims (e.g., European

puts), we can quite easily extend our result to cover European calls: Let S be
a 1-dimensional, non-negative semimartingale, and assume that the set Me(S)

of equivalent martingale measures is non-empty. We extend our definition of
admissible portfolios slightly, and say that a portfolio H is B-admissible if

(H · S)t − EQ[B|Ft ]
is P-a.s. uniformly bounded below for each Q ∈ Me(S). We define XU,B(x)

the same way as XU(x), except using B-admissible processes in place of
admissible processes. If B is bounded, B-admissibility reduces to normal
admissibility. However, if B is unbounded, we have the more appropriate
economic interpretation that under every martingale (pricing) measure, the
investor’s discounted total worth is uniformly bounded below.

Let B = (ST − K)+ be the payoff of a European call option for some strike
price K > 0. The claim B ′ := B − ST is bounded, and therefore the optimization
problem

u(x)= sup
X′∈XU,B′ (x)

E[U(x +X′ −B ′)]
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has a unique solution X̂′. Defining X̂ = X̂′ − ST , we see that X̂ is the optimal
solution of the problem

u(x)= sup
X∈XU,B(x)

E[U(x +X −B)].

To see this we simply need to show that X ∈ XU,B(x) if and only if X′ :=
X− ST ∈ XU,B ′(x). In fact, it suffices to show that H is B-admissible if and only
if H ′ :=H −1 is admissible. This follows easily from the martingale property of S
under all Q ∈ Me(S).

(iii) Optimal hedging in incomplete markets plays a role in determining a fair
price for a contingent claim. The technique of marginal rate of substitution (see,
e.g., [2]) chooses a price such that substituting a marginal amount of a claim for
the same fraction of the price has a neutral effect on the investor’s achievable
expected utility. A similar approach is adopted in [8] for utility functions which
allow negative wealth. They require that the price p satisfies

sup
X∈XU,0(x+p)

E[U(x +X + p)] = sup
X∈XU,B(x)

E[U(x +X +B)].

El Karoui and Rouge pay special attention to the case of bounded claims and
exponential utility.

2. Approximating the utility function by limiting credit. Given the utility
function U of Theorem 1.1, we shall take the approach used in [14] of
approximating U from below by an increasing sequence of utility functions with
credit limits which become gradually less restrictive to the investor. We fix the
approximating utility functions Un to be identically equal to U on the interval
[−n,∞) and require them to be strictly concave, continuously differentiable, and
to satisfy Un(x) = −∞ for x < −(n + 1), and Un(x) > −∞ for x > −(n + 1).
We also assume that

lim
x↘−(n+1)

U ′
n(x)= ∞(8)

holds for each of the approximating functions.
It is not difficult to show that there exists a constant C such that the estimates

of [14, Corollary 4.2] are simultaneously valid for V and all Vn (i.e., for a
constant C independent of n).

Using a minor modification of the analysis of [1] [shifting the singularity of Un

at x = −(n + 1) to 0, applying their result and then shifting back again], we see
that the optimization problem

un(x)= supX∈X0
E[Un(x +X −B)],(9)

X0 := {
X :X ≤ (H · S)T for some admissible portfolio H

}
,(10)

has a unique optimal solution X̂n(x) ∈ X0 for x > ρ − (n+ 1), where

ρ := sup
Q∈Me(S)

EQ[B] ≤ ‖B+‖∞ <∞.(11)
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(In the case of S bounded below, ρ is the price of superhedging B; see, e.g., [7, 9]
and [6], Remark 2.2.) Their analysis shows that the dual problem

vn(y)= inf
Q∈D

{
E

[
Vn

(
y

dQr

dP

)]
+ y(n+ 1)

(
1 − E

[
dQr

dP

])
− y〈Q,B〉

}
,(12)

D : = {
Q ∈L∞(�,FT ,P)

∗ :‖Q‖ = 1
(13)

and 〈Q,X〉 ≤ 0 for all X ∈ X0 ∩L∞}
to (9) has a unique optimal solution Qn,y ∈ D . Here Vn is the conjugate function
of Un. It is proved in [1] that vn is conjugate to un, that for any n ∈ N and any x, y
satisfying y = u′

n(x) [or alternatively x = −v′
n(y)] we have the relation

x + X̂n(x)−B = −V ′
n

(
y

dQr
n,y

dP

)
,(14)

and that

v′
n(y)= E

[dQr
n,y

dP
V ′
n

(
y

dQr
n,y

dP

)]
+ (n+ 1)

(
1 − E

[dQr
n,y

dP

])
− 〈Q,B〉.(15)

Throughout this article we assume without loss of generality that U(0) > 0 so
that V (y) > 0 and Vn(y) > 0 for all y > 0 and n ∈ N.

REMARKS 2.1. (i) The set D is convex and compact in the weak∗ topology
on L∞(�,FT ,P)

∗. This can be seen by applying Alaoğlu’s Theorem (see, e.g.,
[11], Theorem IV.1.4).

(ii) Note that

〈Q,X〉 ≤ 0(16)

for all Q ∈ D and all X ∈ X0 which are uniformly bounded from below (actually,
(16) holds for all Q ∈ D,X ∈ X0). See [1], Section 3.

(iii) Using the canonical embedding of L1(P) in (L∞(P))∗, note that D ∩L1 =
Ma(S). To see this, we use the fact that S is locally bounded to obtain a sequence
of stopping times (τn)∞n=1 such that τn → ∞ a.s., and such that Sτn is bounded
for each n. For each n, Sτn,−Sτn ∈ X0 ∩ L∞, and therefore E[dQ

dP
Sτn] = 0 for

all Q ∈ D ∩ L∞ by the definition of D . This is enough to show that SτnZ is a
martingale, where Zt := E[dQ

dP
|Ft ], and therefore S is a local martingale under Q.

(iv) For each Q ∈ (L∞(P))∗, there is a unique decomposition Q = Qr + Qs of
Q into its regular and singular parts, where the regular part is countably additive
and absolutely continuous with respect to P on the sigma algebra F modulo the
nullsets, and the singular part is purely finitely additive.
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It is easy to show that for fixed y, vn(y) is monotone increasing and bounded
above by v(y). We define now the function

v∞(y) := sup
n∈N

vn(y),(17)

which turns out later to be the function v. The following simple lemma will be
useful:

LEMMA 2.2. The function v∞ is finitely valued and dominated by v.

PROOF. Condition (3) requires u(x) to be finite for some (actually all) x ∈ R,
and therefore the conjugate function u∗ of u must be finite for some ȳ. Thus

vn(ȳ)= sup
x∈R

[un(x)− xȳ] ≤ sup
x∈R

[u(x)− xȳ] = u∗(ȳ).

Using equation (12) and [14], Corollary 4.2(i), we see that for y > 0 there exists
a constant C =C(y/ȳ) such that for n large enough,

vn(y) ≤ E

[
Vn

(
y

dQr
n,ȳ

dP

)]
+ y(n+ 1)

(
1 − E

[dQr
n,ȳ

dP

])
− y〈Qn,ȳ ,B〉

≤ CE

[
Vn

(
ȳ

dQr
n,ȳ

dP

)]

+ y

ȳ

(
ȳ(n+ 1)

(
1 − E

[dQr
n,ȳ

dP

])
− ȳ〈Qn,ȳ ,B〉 + ȳ‖B+‖∞

)

≤ max{C,y/ȳ}(vn(ȳ)+ ȳ‖B+‖∞
)

≤ max{C,y/ȳ}(u∗(ȳ)+ ȳ‖B+‖∞
)
<∞.

To show that v∞ is dominated by v, just note that the set D , over which the
infimum for vn in (12) is taken, contains the set Ma(S), over which the infimum
for v in (6) is taken. �

Since the sequence (vn)∞n=1 increases monotonely to the limiting function v∞,
the following lemma will also be useful:

LEMMA 2.3. Suppose that vn is a sequence of convex (or concave) functions
which increases (or decreases) monotonely pointwise to a convex (resp. concave)
function v∞, and let (yn)∞n=1 be a sequence of real numbers tending to y in the
domain of v∞. Then vn(yn) → v∞(y) as n → ∞ and, provided the derivatives
exist, v′

n(yn)→ v′∞(y) as n→ ∞.
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PROOF. The statement that vn(yn)→ v∞(y) is well known as Dini’s theorem
(see, e.g., [11], Theorem IX.1.3). The convergence of v′

n(yn) to v′(y) follows
easily from [12], Theorem 25.7, where it is shown that the derivatives v′

n converge
uniformly to v′∞ on closed bounded intervals. �

3. Proofs. The proof of Theorem 1.1 will be broken up into Lemma 3.1,
Corollary 3.2 and Lemma 3.3.

LEMMA 3.1. Let (yn)∞n=1 be a sequence of positive real numbers tending to y.
Then there exists a Qy ∈ Ma(S) such that:

(i)

Qn,yn

L∞(P)∗−→ Qy;
(ii)

Vn

(
yn

dQr
n,yn

dP

)
L1(P)−→ V

(
y

dQy

dP

)
;

(iii)

yn
dQr

n,yn

dP
V ′
n

(
yn

dQr
n,yn

dP

)
L1(P)−→ y

dQy

dP
V ′
(
y

dQy

dP

)
;

(iv)

y
dQy

dP
V ′
n

(
yn

dQn,yn

dP

)
L1(P)−→ y

dQy

dP
V ′
(
y

dQy

dP

)
;

(v)

U
(
x + X̂n

T (x)−B
) L1(P)−→ U

(
x + X̂(x)−B

)
,(18)

where X̂(x) := −(x + V ′(y dQy

dP
)−B).

In the following corollary, (yn)∞n=1 is still a sequence of strictly positive numbers
tending to y > 0.

COROLLARY 3.2. (i) The map y �→ dQy

dP
is continuous in the L1(P) norm,

vn(yn)→ v(y)= E

[
V

(
y

dQy

dP

)
− y

dQy

dP
B

]
,(19)

and thus Qy is the unique minimizer of the dual problem (6). The function v is
strictly convex.

(ii) The map y �→ V (y
dQy

dP
) is continuous in the L1(P) norm.
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(iii) The map y �→ dQy

dP
V ′(y dQy

dP
) is continuous in the L1(P) norm. The function

v is continuously differentiable and

v′
n(yn)→ v′(y)= E

[
dQy

dP

(
V ′
(
y

dQy

dP

)
−B

)]
.(20)

(iv) Let x = −v′(y). Then

X̂n
T (x)

L1(Qy)−→ X̂(x) := −
(
x + V ′

(
y

dQy

dP

)
−B

)
;

(v)

un(x)→ u(x)= E
[
U
(
x + X̂(x)−B

)]
and X̂(x) ∈ XU(x), thus X̂(x) is the unique maximizer of the primal problem.

The function u is conjugate to v, has reasonable asymptotic elasticity and
satisfies the conditions

u′(−∞)= ∞, u′(∞)= 0,

u′(x)= E
[
U ′(x + X̂(x)−B

)]
,(21)

xu′(x)= E
[(
x + X̂(x)

)
U ′(x + X̂(x)−B

)]
.(22)

PROOF OF LEMMA 3.1(i). We shall first show that the sequence (
dQr

n,yn

dP
)∞n=1

converges in the norm ofL1(P ). To do this, we show that the sequence is uniformly
integrable and Cauchy in the topology of convergence in probability.

Suppose for a contradiction that the sequence (
dQr

n,yn

dP
)∞n=1 fails to be uniformly

integrable, or equivalently that the sequence (yn
dQr

n,yn

dP
)∞n=1 fails to be uniformly

integrable, that is, there is an α > 0 such that for each C > 0,

lim sup
n→∞

E

[
yn

dQr
n,yn

dP
χ{

yn
dQr

n,yn
dP

≥C
}
]
> α.

It follows from the inequality

Vm(z)≥Um(−m)+mz

and the assumption Um(−m) >−∞ that

lim
z→∞

Vm(z)

z
≥m.

Fix m ∈ N, find Cm such that Vm(z)≥ (m− 1)z for z ≥ Cm, and find n >m such
that

E

[
yn

dQr
n,yn

dP
χ{

yn
dQr

n,yn
dP ≥Cm

}
]
> α.
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Using (12),

vn(yn)≥ E

[
Vn

(
yn

dQr
n,yn

dP

)]
− yn‖B+‖∞

≥ E

[
Vm

(
yn

dQr
n,yn

dP

)
χ{

yn
dQr

n,yn
dP

≥Cm

}]− yn‖B+‖∞

≥ E

[
(m− 1)yn

dQr
n,yn

dP
χ{

yn
dQr

n,yn
dP

≥Cm

}]− yn‖B+‖∞

≥ (m− 1)α − yn‖B+‖∞,

which contradicts the boundedness of (vn(yn))∞n=1, showing the uniform integra-

bility of (
dQr

n,yn

dP
)∞n=1.

To show that (
dQr

n,yn

dP
)∞n=1 is Cauchy with respect to the topology of convergence

in probability, suppose to the contrary that there is an α > 0 such that there are
arbitrarily large n and m satisfying

P

[∣∣∣∣dQr
n,yn

dP
− dQr

m,ym

dP

∣∣∣∣> α

]
> α.(23)

We now use the boundedness of (vn(yn))∞n=1 to find N ∈ N and a compact set K
contained in {y ≥ 0 :VN(y)= V (y) <∞} such that, for n≥N ,

P

[
dQn,yn

dP
/∈K

]
< α/3.(24)

For suppose not, and suppose that V (0)= ∞. Choose N ∈ N such that

min
{
V
(
U ′(N)

)
,V

(
U ′(−N)

)}
>

3

α

(
sup
n∈N

vn(yn)+ sup
n∈N

yn‖B+‖∞
)
.

Let KN denote the compact interval [U ′(N),U ′(−N)]. Then there exists n ≥ N

such that

P

[
yn

dQr
n,yn

dP
/∈KN

]
≥ α

3
.

Now

vn(yn) ≥ E

[
Vn

(
yn

dQr
n,yn

dP

)]
− yn‖B+‖∞

≥ E

[
Vn

(
yn

dQr
n,yn

dP

)
χ{

yn
dQr

n,yn
dP

/∈KN

}]− yn‖B+‖∞

≥ α

3
min

{
V
(
U ′(N)

)
,V

(
U ′(−N)

)}− yn‖B+‖∞

> sup
n∈N

vn(yn),
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which is a contradiction. In the case where V (0) < ∞, one can similarly find a
compact set KN = [0,U ′(−N)] for which (24) holds.

Note that equations (23) and (24) imply that there are arbitrarily large n and m
satisfying

P

[∣∣∣∣dQr
n,yn

dP
− dQr

m,ym

dP

∣∣∣∣> α and
dQn,yn

dP
,

dQm,ym

dP
∈K

]
> α/3.(25)

By the strict convexity of V and the compactness of K we may find an η > 0
such that, for y1, y2 ∈K with |y1 − y2|> α, we have

V

(
y1 + y2

2

)
≤ V (y1)+ V (y2)

2
− η.

Note that since V is convex, this above inequality with η = 0 is true for all other
y1, y2.

Choose ε > 0 so that

ε sup
k

vk(yk) <
αη

12
and ε‖B+‖∞ sup

k

yk <
αη

12
.

Using [14], Corollary 4.2, there exists a constant δ such that for all λ such that
(1 − δ) < λ < (1 + δ) and for all n ∈ N we have

(1 − ε)Vn(y) < Vn(λy) < (1 + ε)Vn(y).(26)

Now choose N so that for all n≥m≥N ,

1 − δ ≤ ym

yn
≤ min{1 + δ,1 + ε},

(yn − ym)‖B+‖∞ <
αη

12
,

vn(yn)− vm(ym) <
αη

12
.

Finally, choose n≥m≥N so that (25) holds. It now follows that

vm(ym)≤ E

[
Vm

(
ym

2

(dQr
n,yn

dP
+ dQr

m,ym

dP

))]

+ ym(m+ 1)
(

1 − 1

2
E

[dQr
n,yn

dP
+ dQr

m,ym

dP

])

− ym

2
〈Qn,yn + Qm,ym,B〉

≤ 1

2
E

[
Vm

(
ym

dQr
n,yn

dP

)]
+ 1

2
E

[
Vm

(
ym

dQr
m,ym

dP

)]

− ηP

[∣∣∣∣dQr
n,yn

dP
− dQr

m,ym

dP

∣∣∣∣> α and
dQr

n,yn

dP
,

dQr
m,ym

dP
∈K

]
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+ 1

2
ym(m+ 1)

(
1 − E

[dQr
n,yn

dP

])
− 1

2
ym〈Qn,yn,B〉

+ 1

2
ym(m+ 1)

(
1 − E

[dQr
m,ym

dP

])
− 1

2
ym〈Qm,ym,B〉

≤ 1

2
E

[
Vn

(
ym

dQr
n,yn

dP

)]
+ 1

2
ym(n+ 1)

(
1 − E

[dQr
n,yn

dP

])

− 1

2
ym〈Qn,yn,B〉 + 1

2
E

[
Vm

(
ym

dQr
m,ym

dP

)]

+ 1

2
ym(m+ 1)

(
1 − E

[dQr
m,ym

dP

])
− 1

2
ym〈Qm,ym,B〉 − αη

3

≤ 1

2
(1 + ε)

{
E

[
Vn

(
yn

dQr
n,yn

dP

)]
+ yn(n+ 1)

(
1 − E

[dQr
n,yn

dP

])

− yn〈Qn,yn,B〉
}

+ 1

2

(
(1 + ε)yn − ym

)‖B+‖∞

+ 1

2
E

[
Vm

(
ym

dQr
m,ym

dP

)]
+ 1

2
ym(m+ 1)

(
1 − E

[dQr
m,ym

dP

])

− 1

2
ym〈Qm,ym,B〉∞ − αη

3

≤ 1

2
(1 + ε)vn(yn)+ 1

2
vm(ym)+ 1

2
(yn − ym)‖B+‖∞

+ 1

2
ε sup

k

yk‖B+‖∞ − αη

3

≤ vm(ym)+ 1

24
αη+ 1

24
αη+ 1

24
αη+ 1

24
αη− αη

3
.

This contradiction shows that (
dQr

n,yn

dP
)∞n=1 is Cauchy in the topology of conver-

gence in probability and therefore converges in the norm of L1(P) to a random
variable which we denote by dQy

dP
. The measure Qy is by definition absolutely

continuous with respect to P. The fact that Qy has mass 1 now follows since

E

[
dQy

dP

]
= lim

n→∞ E

[dQr
n,yn

dP

]
= 1.(27)

For suppose that the second equality does not hold, that is,

lim inf
n→∞ E

[dQr
n,yn

dP

]
< 1.



UTILITY BASED OPTIMAL HEDGING 703

Then using Lemma 2.3 and equation (12) ,

v∞(y)= lim sup
n→∞

vn(yn)

= lim sup
n→∞

{
E

[
Vn

(
yn

dQr
n,yn

dP

)]
+ yn(n+ 1)

(
1 − E

[dQr
n,yn

dP

])

− yn〈Qn,yn,B〉
}

≥ lim sup
n→∞

{
0 + yn(n+ 1)

(
1 − E

[dQr
n,yn

dP

])
− yn‖B+‖∞

}
= ∞,

which is a contradiction. Note that an equivalent statement to (27) is that the
singular parts of Qn,yn tend to 0 in the norm of (L∞)∗ as n→ ∞.

We finally prove that Qy ∈ Ma(S), using Remark 2.1(iii), that D ∩L1 = Ma(S)

and D is weak∗ compact. Since Qn,yn

(L∞)∗−→ Qy , we have Qn,yn

weak∗
−→ Qy . Using

the weak∗ closedness of D , we see that Qy ∈ D , and therefore Qy ∈ Ma(S). �

PROOF OF COROLLARY 3.2(i). Take a sequence yk tending to y > 0. Using
Lemma 3.1(i), we can find an increasing sequence (nk)∞k=1 such that

lim
k→∞

∥∥∥∥dQyk

dP
− dQr

nk,yk

dP

∥∥∥∥
L1(P)

= 0.

Using Lemma 3.1(i) a second time, we see that

lim
k→∞

∥∥∥∥dQr
nk,yk

dP
− dQy

dP

∥∥∥∥
L1(P)

= 0.

Continuity of the map y �→ Qy in the L1(P) norm follows from an application of
the triangle inequality.

Using the fact that
dQr

n,yn

dP
converges in probability to dQy

dP
, we see that the

random variables Vn(yn
dQr

n,yn

dP
) converge in probability to V (y

dQy

dP
). Using a

version of Fatou’s Lemma for limits in probability, followed by an application
of equation (12) , Lemma 2.3 and Lemma 2.2, we get

v(y)≤ E

[
V

(
y

dQy

dP

)
− y

dQy

dP
B

]

≤ lim inf
n→∞

{
E

[
Vn

(
yn

dQr
n,yn

dP

)]
− yn〈Qn,yn,B〉

}
(28)

≤ lim inf
n→∞ vn(yn)= v∞(y)≤ v(y).
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We have in fact equality above, and thus Qy is the minimizer of (6). The strict
convexity of v and uniqueness of Qy follow from convexity of Ma(S), strict
convexity of V and formula (19). �

PROOF OF LEMMA 3.1(ii). It follows easily from equation (28) that

V (
dQy

dP
) ∈ L1(P). Also, since (Vn(yn

dQr
n,yn

dP
))∞n=1 converges in probability to

V (y
dQy

dP
) and

lim inf
n→∞ E

[
Vn

(
yn

dQr
n,yn

dP

)]
= E

[
V

(
y

dQy

dP

)]
,

we must have convergence in the norm of L1(P). �

Note for future use that we have simultaneously proved that

lim
n→∞(n+ 1)

(
1 − E

[dQr
n,yn

dP

])
= 0.(29)

PROOF OF COROLLARY 3.2(ii). Similar to the proof of Corollary 3.2(i).

Follows from the convergence of (Vn(yn
dQr

n,yn

dP
))∞n=1 in the L1(P) norm. �

PROOF OF LEMMA 3.1(iii). By [14], Corollary 4.2(ii) there is a constant C
such that

y|V ′
n(y)| ≤ CVn(y) for y ≥ 0,

uniformly in n ∈ N, where, in the case y = 0 we adopt the rule 0 · ∞ = 0.

Hence the sequence of random variables (yn
dQr

n,yn

dP
V ′
n(yn

dQr
n,yn

dP
))∞n=1 is dominated

in absolute value by the L1-convergent sequence (CVn(yn
dQr

n,yn

dP
))∞n=1 and is

therefore uniformly integrable. By the continuity of the map y �→ yV ′(y), which
holds true, for y > 0, and, in the case V (0)= U(∞) <∞, for y ≥ 0 too, we also

have that (yn
dQr

n,yn

dP
V ′
n(yn

dQr
n,yn

dP
))∞n=1 converges in probability to y

dQy

dP
V ′(y dQy

dP
),

and therefore converges in the norm of L1(P). �

PROOF OF COROLLARY 3.2(iii). The assertion of continuity with respect
to the L1(P) norm now follows by the same easy argument as at the end of

Corollary 3.2(i) from the convergence of (yn
dQr

n,yn

dP
V ′
n(yn

dQr
n,yn

dP
))∞n=1 in the L1(P)

norm. To prove formula (20), first observe that the term on the right hand side
is a continuous function of y > 0. Existence of the derivative v′(y) is guaranteed
for all but countably many y’s by the convexity of v. It will suffice, therefore, to
show (20) wherever the derivative v′(y) exists. Let (yn)∞n=1 be a sequence tending
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to y > 0 such that v′(y) exists. Using Lemma 2.3, equation (15) , Lemma 3.1(iii),
equation (29) and Lemma 3.1(i) we see that

v′(y)= lim
n→∞v′

n(yn)

= lim
n→∞

{
E

[dQr
n,yn

dP
V ′
n

(
yn

dQr
n,yn

dP

)]
+ (n+ 1)

(
1 − E

[dQr
n,yn

dP

])

− 〈Qn,yn,B〉
}

= E

[
dQy

dP
V ′
(
y

dQy

dP

)
− dQy

dP
B

]
. �

PROOF OF LEMMA 3.1(iv). The convergence in probability of the sequence

(y
dQy

dP
V ′
n(yn

dQr
n,yn

dP
))∞n=1 towards y

dQy

dP
V ′(y dQy

dP
) is obvious. We now prove uni-

form integrability of the positive parts:

y
dQy

dP
V ′
n

(
yn

dQr
n,yn

dP

)+
(30)

= y
dQy

dP
V ′
n

(
yn

dQr
n,yn

dP

)
χ{

V ′
n

(
yn

dQr
n,yn
dP

)
≥0
} for n ∈ N(31)

≤ max
{
y

dQy

dP
V ′
(
y

dQy

dP

)
χ{

V ′
n

(
yn

dQr
n,yn
dP

)
≥0
},

yn
dQr

n,yn

dP
V ′
n

(
yn

dQn,yn

dP

)
χ{

V ′
n

(
yn

dQr
n,yn
dP

)
≥0
}}(32)

which is easily verified by distinguishing pointwise the cases y
dQy

dP
≥ yn

dQr
n,yn

dP

and y
dQy

dP
< yn

dQr
n,yn

dP
. As the family of functions on the right hand side of (32) is

uniformly integrable we have proved the uniform integrability of the positive parts
of the sequence.

Let xn := −v′
n(yn). Using Lemma 2.3 we have limn→∞ xn = −v′(y). Observe

from equations (16) and (14) that

E

[
xn + dQy

dP
V ′
n

(
yn

dQr
n,yn

dP

)
− dQy

dP
B

]
= −E

[
dQy

dP
X̂n(xn)

]
≥ 0

because Qy ∈ D and X̂n(xn) ∈ X0. Hence using the formula for v′(y) from
Corollary 3.2(iii),

lim inf
n→∞ E

[
y

dQy

dP
V ′
n

(
yn

dQr
n,yn

dP

)]

≥ −xy + E

[
y

dQy

dP
B

]
≥ v′(y)y + E

[
y

dQy

dP
B

]
= E

[
y

dQy

dP
V ′
(
y

dQy

dP

)]
.
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The result now follows because we have shown convergence in probability,
uniform integrability of the positive parts and the above inequality satisfied by
the expectations. �

PROOF OF COROLLARY 3.2(iv). Fix x ∈ R and let yn = u′
n(x) as in

equation (14) . Now un ↗ u∞ ≤ u where u∞ is conjugate to v∞ = v. Since v

is strictly convex, u∞ is continuously differentiable, and using Lemma 2.3, we see
that yn = u′

n(x)→ u′∞(x)= y as n→ ∞. Using equation (14),

‖X̂(x)− X̂n
T (x)‖L1(Q) =

∥∥∥∥dQy

dP
V ′
(
y

dQy

dP

)
− dQy

dP
V ′
n

(
yn

dQr
n,yn

dP

)∥∥∥∥
L1(P)

→ 0

as n→ ∞. �

PROOF OF LEMMA 3.1(v). We first show that

lim
n→∞

∥∥U (x + X̂n(x)−B
)−Un

(
x + X̂n(x)−B

)∥∥
L1(P) = 0.

Indeed, since Un+1(x) coincides with U(x) for x ≥ −(n+1) and x+X̂n(x)−B ≥
−(n+ 1) we have

E
[
U
(
x + X̂n(x)−B

)]− E
[
Un

(
x + X̂n(x)−B

)]
= E

[
Un+1

(
x + X̂n(x)−B

)]− E
[
Un

(
x + X̂n(x)−B

)]
≤ un+1(x)− un(x).

The right hand side of this last inequality tends to zero because the increasing
sequence (un(x))∞n=1 is convergent.

Let yn = u′
n(x). From equation (14) and Lemma 3.1 (ii) and (iii) we see that,∥∥Un

(
x + X̂n(x)−B

)−Um

(
x + X̂m(x)−B

)∥∥
L1(P)

=
∥∥∥∥Un

(
−V ′

n

(
yn

dQr
n,yn

dP

))
−Um

(
− V ′

m

(
ym

dQr
m,ym

dP

))∥∥∥∥
L1(P)

≤
∥∥∥∥Un

(
−V ′

n

(
yn

dQr
n,yn

dP

))
+ yn

dQr
n,yn

dP
V ′
n

(
yn

dQr
n,yn

dP

)

−
(
Um

(
−V ′

m

(
ym

dQr
m,ym

dP

))
+ ym

dQr
m,ym

dP
V ′
m

(
ym

dQr
m,ym

dP

))∥∥∥∥
L1(P)

+
∥∥∥∥yndQr

n,yn

dP
V ′
n

(
yn

dQr
n,yn

dP

)
− ym

dQr
m,ym

dP
V ′
m

(
ym

dQr
m,ym

dP

)∥∥∥∥
L1(P)

=
∥∥∥∥Vn

(
yn

dQr
n,yn

dP

)
− Vm

(
ym

dQr
m,ym

dP

)∥∥∥∥
L1(P)
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+
∥∥∥∥yn dQr

n,yn

dP
V ′
n

(
yn

dQr
n,yn

dP

)
− ym

dQr
m,ym

dP
V ′
m

(
ym

dQr
m,ym

dP

)∥∥∥∥
L1(P)

→ 0

as m,n→ ∞. Hence∥∥U (x + X̂n(x)−B
)−U

(
x + X̂m(x)−B

)∥∥
L1(P)

≤ ∥∥Un

(
x + X̂n(x)−B

)−Um

(
x + X̂m(x)−B

)∥∥
L1(P)

+ ∥∥U (x + X̂m(x)−B
)−Um

(
x + X̂m(x)−B

)∥∥
L1(P)

+ ∥∥U (x + X̂n(x)−B
)−Un

(
x + X̂n(x)−B

)∥∥
L1(P)

→ 0

as m,n→ ∞. This implies that (U(x+ X̂n(x)−B))∞n=1 is L1(P) convergent, and
since it converges in probability to U(x + X̂(x) − B), we have proved (18). The
random variable X̂(x) is in XU(x) by the very definition of this set. �

PROOF OF COROLLARY 3.2(v). Using Lemma 3.1(v) we see that u∞(x) =
E[U(x + X̂(x)−B)]. A classical calculation shows that

E[U(x +X −B)] ≤ E

[
V

(
y

dQ

dP

)
− y

dQ

dP
B

]

for all X ∈ XU (x) and all y ∈ R and all Q ∈ Ma(S). See, for example, [1],
Section 4. Since we have equality above for X = X̂(x), y = u′(x) and Q = Qy , we
have that E[U(x + X̂(x)−B)] = u(x). Thus u= u∞ and u is conjugate to v.

To see the identity (21), note that

u′(x)= E

[
y

dQy

dP

]
= E

[
U ′
(
−V ′

(
y

dQy

dP

))]
= E

[
U ′(x + X̂(x)−B

)]
.(33)

The identity (22) is a reformulation of equation (20).
Using [14], Corollary 4.2, we have that, for each λ > 0, there is a constantC > 0

such that

v(λy)= E

[
V

(
λy

dQλy

dP

)]
≤ E

[
V

(
λy

dQy

dP

)]
≤ CE

[
V

(
y

dQy

dP

)]
=Cv(y).

If follows from [14], Proposition 4.1 and [10], Corollary 6.1, that u has reasonable
asymptotic elasticity.

Suppose for a contradiction that u′(−∞) = α < ∞. Then for all ε > 0 there
exists an x0 such that for all x ≤ x0 we have α − ε ≤ u′(x)≤ α. It follows that for
x ≤ x0,

AE−∞(u)≤ lim inf
x→−∞

xu′(x)
u(x)

≤ lim inf
x→−∞

αx

u(x0)+ (α − ε)(x − x0)
= α

α − ε
.
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Since this is true for all ε > 0 we have AE−∞(u) = 1, which is the desired
contradiction.

Suppose for a contradiction that u′(∞)= α > 0. Then for all ε > 0 there exists
an x0 such that for all x ≥ x0 we have α ≤ u′(x)≤ α+ ε. It follows that for x ≥ x0

AE+∞(u)≥ lim sup
x→∞

xu′(x)
u(x)

≥ lim sup
x→∞

αx

u(x0)+ (α + ε)(x − x0)
= α

(α + ε)
.

Since this is true for all ε > 0 we have AE∞(u) = 1, which is the desired
contradiction. �

LEMMA 3.3. Assume that Qy ∼ P and let y = u′(x). There exists a Qy -mar-
tingale

X̂t (x)= (Ĥ · S)t =
∫ t

0
Ĥu dSu, 0 ≤ t ≤ T,

where Ĥt = Ĥt (x) is a predictable, S-integrable process and such that X̂T (x) =
X̂(x).

PROOF. From Lemma 3.1(iii) and the fact that v is finitely valued we see that,

dQy

dP
V ′
(
y

dQy

dP

)
− dQy

dP
B ∈L1(P),

and therefore the process

X̂t (x) := −EQy

[
x + V ′

(
y

dQy

dP

)
−B

∣∣∣∣Ft

]

is a well-defined Qy-martingale. Note also from equation (20) that X̂0(x)= 0.

From [1], Theorem 3.1, we see that each X̂n(x) is a stochastic integral on S

starting at X̂n
0 (x)= 0 for some integrand Ĥ n(x). In other words,

X̂n
t = (

Ĥ n(x) · S)t(34)

for 0 ≤ t ≤ T . Note also, by Corollary 3.2(iv), that X̂n
T (x) → X̂T (x) in the norm

of L1(Qy).
The rest of this proof is more or less identical to the proof of Step 10 of [14].

Following the proof therein, one can show that the limit of (34) as n → ∞ is
X̂t = (Ĥ (x) · S)t , where Ĥt (x) is a predictable, S-integrable process. �
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