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APPROXIMATE EWENS FORMULAE FOR SYMMETRIC
OVERDOMINANCE SELECTION1

BY MARK N. GROTE AND TERENCE P. SPEED

University of California, Davis and University of California, Berkeley

We derive a family of approximate sampling distributions for the
symmetric overdominance model of population genetics. The distributions
are selective versions of the Ewens Sampling Formula, which gives sample
likelihoods under a model of neutral evolution. We draw on basic results for
the general selection model of Ethier and Kurtz, and use mathematical tools
well-suited for calculating expectations of symmetric functions of Poisson–
Dirichlet atoms. We conclude by briefly examining a Human Leukocyte
Antigen data set, in light of a distribution conditional on the number of sample
atoms.

1. Introduction.

1.1. Ewens distributions and infinite alleles models. Ewens distributions arise
naturally in a number of sampling problems in the biological and physical sciences
[see, e.g., Johnson, Kotz and Balakrishnan (1997)]. In population genetics, Ewens
distributions have been used to describe samples at genetic loci which follow
the “infinitely-many neutral alleles” model [see Kimura and Crow (1964), Ewens
(1972, 1990)]. The basic features of this model are: (i) alleles (distinct versions of
a gene) are equivalent with respect to natural selection, and (ii) mutation, which
occurs in any gene copy with probability u each generation, transforms the copy
into a completely new allele.

In a common formulation, a random sample of n genes from a population of
size N is described by the “frequency spectrum” a = (a1, a2, . . . , an), where ai is
the number of alleles in the sample represented exactly i times,

∑n
i=1 iai = n,

and k = ∑n
i=1 ai is the total number of alleles in the sample. If An and Kn

are respectively the random variables for the frequency spectrum and number of
alleles, under the stationary neutral infinite alleles model

Pr(An = a, Kn = k) → n!
a1! · · ·an! 1a1 · · ·nan

(θ)

(n+ θ)
θk(1.1)

as N → ∞, where limN→∞,u→0 4Nu = θ [Ewens (1972, 1990)]. The right hand
side of (1.1) is known as the Ewens Sampling Formula (ESF). Although the value
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of Kn is determined entirely by (a1, a2, . . . , an), we choose to make Kn = k

explicit for clarity. The ESF can be viewed as a distribution on permutation cycles
of Nn = {1,2, . . . , n} [Ewens (1990)], but the ESF has an equivalent formulation
as a distribution on partitions of the integer n [Pitman (1995)]. In other biological
or physical settings, the equivalence classes in Nn determined above by allelic
identity may instead consist of individuals of the same species, or objects of the
same size or type.

Ewens (1972) also gives a version of (1.1) conditional on Kn:

Pr(An = a|Kn = k) → n!
|Sk

n|a1! · · ·an!1a1 · · ·nan(1.2)

as N → ∞, where Sk
n is a Stirling number of the first kind. The lack of dependence

on θ in the conditional ESF implies that the statistic Kn is sufficient for θ.
Watterson (1977, 1978) obtained approximate sampling formulae, analogous

to (1.1) and (1.2), for two genetic models of natural selection: the symmetric
overdominance and deleterious alleles models. Based on the approximations,
Watterson showed that the sample homozygosity statistic

fn = 1

n2

n∑
j=1

j2aj(1.3)

can be used to detect departures from the neutral model in the direction of either
of these selective alternatives; but for use as selective analogues to (1.1) and (1.2),
Watterson’s approximations are appropriate only when the values of the selective
parameters are very small.

1.2. The general selection model. We require a brief description of a class
of infinite alleles models with selection, and the statement of a few fundamental
results. A complete mathematical treatment is given by Ethier and Kurtz (1987,
1994) and Joyce (1994, 1995). The finite-population model is a Markov process
which has as its state-space the set of Borel probability measures on [0,1] [Ethier
and Kurtz (1994)]. The Markov process records the frequencies of exchangeably
labeled alleles as follows: in generation t , the individual genes in the population
are indexed by 1,2, . . . ,2N arbitrarily, and the ith gene occupies a position yi in
the interval [0,1], called its “label.” Genes with the same label are said to be of the
same allele, and the allele frequency is obtained by dividing the number of genes
with the given label by 2N . In order to form generation t + 1 for a neutral locus,
2N genes are sampled at random with replacement from the genes of generation t .
Each sampled gene may then experience a mutation. A gene with label y chosen
at random mutates to a gene with a label in B (a Borel subset of [0,1]) with
probability uλ(B), where λ is Lebesgue measure on [0,1]; hence the probability
that this gene has a label in B is

P2N(y,B) = (1 − u)1B(y)+ uλ(B).(1.4)
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The population at generation t + 1 is described by the labels of the sampled genes
after mutation.

The long-run behavior of the Markov process is most conveniently studied
by analyzing an appropriate diffusion approximation: the allele frequencies are
ordered from largest to smallest at each generation, and in the limit as N → ∞,
the frequencies evolve as a diffusion process on the infinite ordered simplex

∇ =
{
(x1, x2, . . .) :

∞∑
i=1

xi = 1, x1 ≥ x2 ≥ · · · ≥ 0

}
.

The stationary distribution µ for the neutral infinite alleles diffusion is the Poisson–
Dirichlet(θ ) distribution on ∇ [see Kingman (1977), Ethier and Kurtz (1986)].

The selection model introduces a modification of the simple sampling scheme:
to form generation t + 1, N pairs of genes are selected with replacement from the
genes of generation t . The probability that the ith and j th genes are selected is

wN(yi, yj )∑
1≤l,m≤2N wN(yl, ym)

,(1.5)

where

wN(x, y) = 1 + 1

2N
σ(x, y) ≥ 0(1.6)

is a symmetric function giving the relative fitness of an individual having genotype
(x, y), with σ(x, y) continuous λ × λ-a.e. and σ(x, x) continuous λ-a.e. The N

pairs chosen to form generation t + 1 are then split into 2N individual genes, and
each gene may experience a mutation as in (1.4). The population at generation
t + 1 is then described by the labels of the sampled genes after mutation.

A model of genetic selection with the infinite alleles mutation scheme (1.4)
and a fitness function satisfying (1.5) and (1.6) will be called a “general selection
model.” Fundamental results for the diffusion process on ∇ corresponding to the
general selection model have been obtained by Ethier and Kurtz (1987, 1994). The
“genic selection” model, which generalizes the deleterious alleles model examined
by Watterson (1978), has been fairly extensively analyzed in the context of this
general theory [see Ethier and Kurtz (1994), Joyce (1994, 1995), Joyce and Tavaré
(1995)]. The symmetric overdominance model is a general selection model with

σ(x, y) = σ1(x �=y)(x, y), σ ≥ 0.(1.7)

In the standard population-genetics formulation, limN→∞,s→0 2Ns = σ , where
1 + s is the fitness of heterozygotes, relative to homozygotes, all of which have
fitness 1.
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1.3. The Radon–Nikodym derivative dν/dµ and sample probabilities. In
the following, X = (X1,X2, . . .) will denote a random vector in ∇, and x =
(x1, x2, . . .) a particular version of X. Let µ be the Poisson–Dirichlet(θ ) distribu-
tion on ∇ , and let ν be the stationary distribution for the diffusion process on ∇ ob-
tained as N → ∞ in the general selection model. Ethier and Kurtz (1994) showed
that ν is absolutely continuous with respect to µ, and provided a general formula
for the Radon–Nikodym derivative dν/dµ. We use a slightly simplified expression
due to Joyce (1994):

dν

dµ
(x1, x2, . . .) = E[exp{∑∞

i,j σ (Ui,Uj )xixj }]
E[exp{∑∞

i,j σ (Ui,Uj )XiXj }] ,

where X = (X1,X2, . . .) is distributed according to µ, and U1,U2, . . . are
i.i.d. uniform random variables on (0,1) independent of (X1,X2, . . .). For the
symmetric overdominance model, the numerator of dν/dµ is

E

[
exp

{ ∞∑
i=1

∑
j<i

2σ1(Ui �=Uj )(Ui,Uj )xixj

}]
;

as the random variable

Zij = 2σ1(Ui �=Uj )(Ui,Uj )xixj

equals 2σxixj on a set of probability 1, the expectation above is simply

exp

{ ∞∑
i=1

∑
j<i

2σxixj

}
= exp{σ(1 − f )},

where f = ∑∞
i=1 x

2
i is the realized (non-random) population homozygosity.

Applying similar reasoning to the denominator of dν/dµ, one obtains

dν

dµ
(x1, x2, . . .) = exp{σ − σf }

E[exp{σ − σF }] = exp{−σf }
E[exp{−σF }](1.8)

for the symmetric overdominance model, where F = ∑∞
i=1 X

2
i is the (ran-

dom) population homozygosity and the expectation is with respect to Poisson–
Dirichlet(θ ).

When h is a bounded, measurable function on ∇ and g(X) = dν
dµ

(X1,X2, . . .),

we may write the “change of measure” equation

Eν[h(X)] = Eµ[g(X)h(X)],(1.9)

where Eν and Eµ are expectations with respect to ν and µ, respectively [see
Billingsley (1986), Theorem 16.10, also Griffiths (1983)]. In the population
genetics context, Joyce (1994) has shown that sample likelihoods and likelihood
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ratios may be written as special cases of (1.9): the probability of observing a
particular sample (An = a, Kn = k) under a general selection model is

Pν(An = a,Kn = k) = Eν[Pr(An = a,Kn = k|X)]
= Eµ[g(X)Pr(An = a,Kn = k|X)],(1.10)

and the sample likelihood ratio is

( = Eν[Pr(An = a,Kn = k|X)]
Eµ[Pr(An = a,Kn = k|X)]

= Eµ[g(X)Pr(An = a,Kn = k|X)]
Eµ[Pr(An = a,Kn = k|X)] ,

(1.11)

where the right hand side of (1.11) is by definition Eµ[g(X)|An = a,Kn = k].
From (1.11), a second formula for sample probabilities under the general selection
model may be deduced:

Pν(An = a,Kn = k) = Pµ(An = a,Kn = k)

× Eµ[g(X)|An = a,Kn = k],(1.12)

where Pµ(An = a,Kn = k) is given by the ESF on the right hand side of (1.1).

1.4. Main results and synopsis. We wish to obtain explicit sampling formulae
for the symmetric overdominance model, suitable for likelihood-based data
analysis. In Section 2, we describe a rather general weak-convergence approach
which can be used when the Radon–Nikodym derivative g is bounded and
continuous. This approach formalizes and extends methods of Watterson (1977,
1978) based on limits of finite-alleles models. The weak-convergence calculation
yields the approximate formula

Pθ,σ (An = a,Kn = k)

≈ γ−1 n!
a1! · · ·an!1a1 · · ·nan

(θ)

(n+ θ)
θk exp

{
−σ

(
n

n+ θ

)2

fn

}
,

(1.13)

where γ = γ (θ, σ ) is the denominator of the Radon–Nikodym derivative (1.8) and
fn is the sample homozygosity statistic (1.3).

In Section 3, we use the “size-biased” permutation (X̃1, X̃2, . . .) of the Poisson–
Dirichlet atoms [see Pitman (1995, 1996)] to obtain lower and upper bounds on the
sample probability:

Pθ,σ (An = a,Kn = k)

≥ γ−1 n!
a1! · · ·an!1a1 · · ·nan

(θ)

(n+ θ)
θk

× exp
{
−σn2 fn + 1/n+ θ/n2

(θ + n+ 1)(θ + n)

}
≡ p∗

(1.14)
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and

Pθ,σ (An = a,Kn = k)

<

(
1 + σ 2 eσ

2

n4

((n+ θ + 1)(n+ θ))2

(
4

n
+O(n−2)

))
p∗.

(1.15)

In Section 4, we use the size-biased permutation and Monte Carlo averaging
to obtain a numerical approximation for the expectation in (1.12), and give
a “rejection rule” algorithm which generates i.i.d. samples (a1, . . . , an) under the
symmetric overdominance model.

In Section 5, we consider conditional sampling formulae, analogous to
expression (1.2). In the conditional setting, the weak-convergence approximation
(1.13) yields

Pθ,σ (An = a|Kn = k)

≈ n!
|Sk

n|a1! · · ·an!1a1 · · ·nan
exp{−σ(n/(n+ θ))2fn}

E[exp{−σ(n/(n+ θ))2Fn}|Kn = k] ,
(1.16)

where Fn is the sample homozygosity viewed as a random variable, and the
expectation in the denominator is with respect to the conditional ESF (1.2). The
conditional formula (1.16) depends only weakly on θ when θ � n. In Section 5,
we also examine a Human Leukocyte Antigen (HLA) data set in the context of the
overdominance sampling theory.

2. Weak convergence methods.

2.1. Mathematical preliminaries. We begin by putting the expectation on the
right hand side of (1.10) in a form more suitable for calculation. Conditional
on x, the probability of the sample (An = a,Kn = k) is given by the multinomial
sampling formula

.a(x) = Ca
∑
m

x
m1
1 x

m2
2 · · · ,

where

Ca = n!
(1!)a1 · · · (n!)an ,

and the sum is over all distinct arrays m = (m1,m2, . . .) consistent with

aj = #{i : mi = j}, j = 1,2, . . . , n

and
∑n

1 aj = k [see Kingman (1977), Joyce (1994)]. Using

Pr(An = a,Kn = k|x) = .a(x),
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we write the right hand expectation of (1.10) as

Eµ

[
g(X)Pr(An = a,Kn = k|X)

]= ∫
x∈∇

g(x).a(x)dµ(x).(2.1)

Watterson (1977, 1978) evaluated expressions similar to that on the right of (2.1)
by taking limits of finite-dimensional integrals. We wish to establish a weak-
convergence context for Watterson’s approach.

Kingman (1975, 1977) showed that the symmetric K-dimensional ordered
Dirichlet distribution with parameter θ

K−1 has the Poisson–Dirichlet(θ ) distribu-
tion as its natural weak limit as K → ∞ (convergence in distribution). The sym-
metric ordered Dirichlet is a distribution on a set of K-dimensional elements

D =
{
(x1, x2, . . . , xK) :x1 ≥ x2 ≥ · · · ≥ xK ≥ 0,

K∑
i=1

xi = 1

}

with probability density

f (x1, x2, . . . , xK) = K! (Kε)

[(ε)]K xε−1
1 · · ·xε−1

K(2.2)

for θ
K−1 = ε. It will be convenient to imbed the support D of the ordered Dirichlet

distribution in ∇; that is,

D = {x ∈ ∇ :xK+1 = xK+2 = · · · = 0}.
Let µK be the probability measure on ∇ with density (2.2) on x ∈ D, and

density equal to zero on ∇ −D. Since µK → µ,∫
∇
h(x)dµ(x)= lim

K→∞

∫
∇
h(x)dµK(x)(2.3)

for any bounded, continuous function h :∇ → R [see Kingman (1977)]. We would
like to show that (2.3) holds for h(x)= g(x).a(x), with g = dν/dµ bounded and
continuous. On the hypothesis that .a(x) is lower semi-continuous on ∇ , Kingman
(1977) showed that (2.3) holds for h(x) = .a(x), using special properties of .a.
Indeed, one can show that (2.3) holds for h(x) = g(x).a(x) using an argument
modelled on Kingman’s. However, Paul Joyce has communicated a result that
considerably simplifies the development:

PROPOSITION (Joyce). .a(x) is continuous on ∇ .

PROOF. For a given x ∈ ∇, .a(x) is a probability distribution on the finite set
of samples

α =
{

a = (a1, a2, . . . , an) :
n∑
1

iai = n,ai ≥ 0

}
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so that

.a(x) = 1 − ∑
b∈α,b �=a

.b(x).

Lower semi-continuity of .b on ∇ implies upper semi-continuity of −.b, so the
right hand side above, and hence .a, must be upper semi-continuous on ∇ . .a is
then both upper and lower semi-continuous, therefore continuous on ∇ . �

COROLLARY. If g :∇ → R is bounded and continuous, then∫
∇
g(x).a(x)dµ(x)= lim

K→∞

∫
∇
g(x).a(x)dµK(x).(2.4)

2.2. Expectation via the K-dimensional ordered Dirichlet distribution. The
integral on the right hand side of (2.4) is equivalent to the finite-dimensional
integral ∫

D
gK(x).K,a(x)dµK(x),

where for x ∈ D,

gK(x) = γ−1 exp

{
−σ

K∑
i=1

x2
i

}
,

.K,a(x) = CK,a
∑
mK

x
m1
1 x

m2
2 · · ·xmK

K ,

CK,a = n!
(0!)a0(1!)a1 · · · (n!)an ,

and the sum in .K,a(x) is over all distinct arrays mK = (m1,m2, . . . ,mK)

consistent with

aj = #
{
i :mi = j

}
, j = 0,1, . . . , n

and
∑n

1 aj = k. We assume K ≥ k to avoid complications arising from the use of
.K,a(x) for Pr(An = a,Kn = k|x), and specify a0 = K − k.

The integral is then explicitly∫
D
gK(x).K,a(x)dµK(x)

=
∫
D
γ−1 exp

{
−σ

K∑
1

x2
i

}
CK,a

∑
mK

x
m1
1 · · ·xmK

K

×K! (Kε)

[(ε)]K xε−1
1 · · ·xε−1

K dx1 · · ·dxK−1,

(2.5)



OVERDOMINANCE EWENS FORMULAE 645

using the ordered Dirichlet density (2.2) with parameter ε = θ
K−1 . Substituting the

Taylor expansion

exp

{
−σ

K∑
1

x2
i

}
=

∞∑
l=0

(−σ
∑K

i=1 x
2
i )

l

l! ,

the right hand side of (2.5) takes the form∫
D

∞∑
l=0

hl(x)dx,

with

hl(x) = γ−1 (−σ
∑K

i=1 x
2
i )

l

l! .K,a(x)K! (Kε)

[(ε)]K xε−1
1 · · ·xε−1

K .

The usual conditions allowing for the exchange of integral and sum can be verified.
Making the further substitution

(
K∑
i=1

x2
i

)l

= ∑
l1...lK

l!
l1! · · · lK !x

2l1
1 · · ·x2lK

K ,

where the arrays (l1, . . . , lK) satisfy
∑K

1 li = l, li ≥ 0, integrating and collecting
terms, expression (2.5) is found to be∫

D
gK(x).K,a(x)dµK(x) = γ−1CK,a

(Kε)

[(ε)]K
∑
mK

∞∑
l=0

(−σ)l

l!

× ∑
l1,...,lK

l!
l1! · · · lK !

∏K
i=1 (mi + 2li + ε)

(n+ 2l +Kε)
.

(2.6)

We approximate the gamma functions of (2.6) as

(mi + 2li + ε) ≈ (mi + ε)2li (mi + ε)

and

(n+ 2l +Kε) ≈ (n+ ε)2l(n+ ε),

leaving questions about the accuracy of the resulting expression to later sections.
Expression (2.6) is then approximately∫

D
gK(x).K,a(x)dµK(x) ≈ γ−1CK,a

(Kε)

[(ε)]K
∑
mK

∞∑
l=0

(−σ)l

l!

× ∑
l1,...,lK

l!
l1! · · · lK !

∏K
i=1(mi + ε)2li (mi + ε)

(n+Kε)2l(n+Kε)
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= γ−1CK,a
(Kε)

[(ε)]K(n+Kε)

∑
mK

(
K∏
i=1

(mi + ε)

)

× exp

{ −σ

(n+Kε)2

K∑
i=1

(mi + ε)2

}
.

On the set mK ,

K∏
i=1

(mi + ε) =
n∏

j=0

(j + ε)aj ,

K∑
i=1

(mi + ε)2 =
n∑

j=0

aj (j + ε)2,

and we can re-write the expression of interest as

γ−1CK,a
(Kε)

[(ε)]K(n+Kε)

(
n∏

j=0

(j + ε)aj

)

× exp

{ −σ

(n+Kε)2

n∑
j=0

aj (j + ε)2

}
M,

where

M = K!
a0! · · ·an! = K!

(K − k)! a1! · · ·an!
is the cardinality of mK . Having removed the dependence on the variables
m1, . . . ,mK , the limit as K → ∞ can be readily evaluated.

As K → ∞, we have Kε → θ, ε = θ/(K − 1) → 0, and

[(ε)]K−k

[(ε)]K
K!

(K − k)! → θk

[Watterson (1976)]. Finally,

CK,a

n∏
j=1

(j + ε)aj → n!
1a1 · · ·nan

as K → ∞, the j = 0 term of the product having been used as [(ε)]K−k above.
Putting the terms together, we have:

APPROXIMATION 1 (Weak convergence).

Pθ,σ (An = a,Kn = k) = lim
K→∞

∫
D
gK(x).K,a(x)dµK(x)(2.7)
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≈ γ−1 n!
a1! · · ·an!1a1 · · ·nan

(θ)

(n+ θ)
θk

× exp
{
−σ

(
n

n+ θ

)2

fn

}
.

Some care is required in the interpretation of Approximation 1, for although the
right hand side of (2.7) is non-negative, it would not in general sum to unity
over the sample space α. It is convenient to view the right hand side of (2.7)
as an un-normalized family which approximates Pθ,σ . It is worth noting that the
approximation comes not from the limiting operation directly, but rather from the
need to approximate the finite-dimensional integral (2.6).

3. Size-biased permutation methods.

3.1. The residual allocation model. A useful formulation of the condi-
tional expectation in (1.12) arises by considering the “size-biased” permutation
(X̃1, X̃2, . . .) of the Poisson–Dirichlet atoms (X1,X2, . . .). Here, an explicit de-
scription of the X̃i leads to analytical approximations of (1.12) that do not rely
on limiting arguments. A method for numerical approximation of the conditional
expectation also follows.

To form the size-biased permutation (X̃1, X̃2, . . .), we construct the sample one
gene at a time, beginning with the first gene sampled, and define sample atoms
ñ1, . . . , ñk in order of the appearance of distinct allelic types. ñi > 0 is the number
of representatives of the ith distinct allele to appear in the sample, and the size-
biased atom X̃i is the element of (X1,X2, . . .) associated with ñi . When Kn = k,
the size-biased atoms (X̃k+1, X̃k+2, . . .) correspond to alleles not observed in the
sample. Pitman (1996) has given an explicit representation of the X̃i conditional
on the sample counts (ñ1, . . . , ñk):

X̃1
D= W1,

X̃i
D= (1 −W1) · · · (1 −Wi−1)Wi, i ≥ 2,

(3.1)

where W1,W2, . . . are independent and

Wi ∼




beta

(
ñi , θ +

k∑
j=i+1

ñj

)
, i = 1, . . . , k,

beta(1, θ), i > k.

(3.2)

In the following, we will refer to (3.1) and (3.2) as the residual allocation model
or RAM.

The Radon–Nikodym derivative g(X) = γ−1 exp{−σ
∑∞

i=1 X
2
i } is a symmetric

function of the Poisson–Dirichlet atoms, so we may write an expression equivalent
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to the conditional expectation of (1.12) in terms of the size-biased permutation
(X̃1, X̃2, . . .):

Eµ

[
γ−1 exp

{
−σ

∞∑
i=1

X2
i

}∣∣∣An = a,Kn = k

]

= Eµ̃

[
γ−1 exp

{
−σ

∞∑
i=1

X̃i
2
}]

,

(3.3)

where Eµ is expectation with respect to the Poisson–Dirichlet(θ) distribution,
and Eµ̃ is expectation with respect to the distribution of the X̃i given by (3.1)
and (3.2). In the right hand expectation, the conditioning is incorporated directly
into the distribution of the X̃i .

3.2. Lower and upper bounds. We will require some moment expressions. For
r ∈ Z

+, straightforward calculation using (3.1) and (3.2) yields

Eµ̃[X̃i
r ] =




(θ + n)

(θ + r + n)

(ñi + r)

(ñi)
, i ≤ k,

r! (θ + n)

(θ + r + n)

(
θ

θ + r

)i−k

, i > k.

(3.4)

We will also require moments of the form Eµ̃[X̃i
r
X̃j

q]; j < i. This calculation is
made easier by setting X̃r

i X̃
q
j = YZ, where

Y = (1 −W1)
q+r · · · (1 −Wj−1)

q+r ,

Z = W
q
j (1 −Wj)

r · · · (1 −Wi−1)
rWr

i

and Y and Z are independent. There are three cases to consider, depending on
where i and j lie with respect to k, the number of alleles in the sample. By
calculations similar to the above,

Eµ̃[X̃r
i X̃

q
j ] =




(θ + n)

(θ + q + r + n)

(ñj + q)

(ñj )

(ñi + r)

(ñi)
, j < i ≤ k,

r! (θ + n)

(θ + q + r + n)

(ñj + q)

(ñj )

(
θ

θ + r

)i−k

, j ≤ k < i,

q! r! (θ + n)

(θ + q + r + n)

×
(

θ

θ + q + r

)j−k(
θ

θ + r

)i−j

, k < j < i.

(3.5)
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Using (3.4) with r = 2, one finds

Eµ̃[F ] = Eµ̃

[ ∞∑
i=1

X̃i
2
]

=
∑k

i=1(ñ
2
i + ñi)+ 2

∑∞
i=k+1(θ/(θ + 2))i−k

(θ + n+ 1)(θ + n)

= n2 fn + 1/n+ θ/n2

(θ + n+ 1)(θ + n)
.

(3.6)

Viewed as a function of F , the Radon–Nikodym derivative

g(X̃) = γ−1 exp

{
−σ

∞∑
1

X̃2
i

}
= γ−1 exp{−σF }

is convex in F ∈ [0,1], so we may use (1.12) and (3.6), along with the Jensen
inequality to obtain:

APPROXIMATION 2 (Jensen lower bound).

Pθ,σ (An = a, Kn = k)

= γ−1 n!
a1! · · ·an!1a1 · · ·nan

(θ)

(n+ θ)
θk

×Eµ̃[exp{−σF }]
≥ γ−1 n!

a1! · · ·an!1a1 · · ·nan
(θ)

(n+ θ)
θk

× exp
{
−σn2 fn + 1/n+ θ/n2

(θ + n+ 1)(θ + n)

}
.

(3.7)

An upper bound related to (3.7) can be obtained using a Taylor expansion near
zero for the centered variable

H = F −Eµ̃[F ].
For each realization h of H, by Taylor’s Theorem there is a number c between h

and zero such that

e−σh = 1 − σh+ σ 2

2
e−σch2.

The value c = −1 makes e−σc maximal within the range of H , giving the global
upper bound

e−σh ≤ 1 − σh+ σ 2

2
eσh2, h ∈ [−1,1].

Elementary properties of the expectation then give

Eµ̃[e−σH ] ≤ 1 − σEµ̃[H] + σ 2

2
eσEµ̃[H2]

= 1 + σ 2

2
eσEµ̃[H2].
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As

e−σF = e−σHe−σEµ̃[F ],

we have an upper bound for Eµ̃[e−σF ] of the form

Eµ̃[e−σF ] ≤
(

1 + σ 2

2
eσEµ̃[H2]

)
v(3.8)

where v = exp{−σ Eµ̃[F ]} and Eµ̃[F ] is given by (3.6). As Eµ̃[H2] ≡ Varµ̃[F ],
the previous moment expressions can be used to make (3.8) explicit. After some
calculation, conveniently writing polynomial functions of (ñ1, . . . , ñk) in terms of
fn, one obtains

Eµ̃[F 2] = (θ + n)

(θ + 4 + n)

(
n4fn

2 + 2n3fn + 4
k∑

i=1

ñ3
i

+ n2(1 + 10fn + 2θfn)+ 2n(3 + θ)+ θ2 + 6θ

)
.

(3.9)

The substitution of (
(n+ θ + 1)(n+ θ)

)−2

for (θ + n)/(θ + 4 + n) in (3.9) leads to a common factor for Eµ̃[F 2] and
(Eµ̃[F ])2, and to a simpler expression, but also makes the inequality strict:

Eµ̃[H2] = Eµ̃[F 2] − (Eµ̃[F ])2

<
n4

((n+ θ + 1)(n+ θ))2

(
4

n4

k∑
i=1

ñ3
i + 10fn

n2 + 6

n3 + 6θ

n4

)

≤ n4

((n+ θ + 1)(n+ θ))2

(
4

n
+ 10fn

n2 + 6

n3 + 6θ

n4

)
.

(3.10)

We then have:

APPROXIMATION 3 (Upper bound).

Pθ,σ (An = a,Kn = k)

<

(
1 + σ 2 eσ

2

n4

((n+ θ + 1)(n+ θ))2

(
4

n
+ 10fn

n2
+ 6

n3
+ 6θ

n4

))
p∗,

(3.11)

where p∗ is given by the right hand side of (3.7). Because 0 ≤ fn ≤ 1, the upper
and lower bounds can be made arbitrarily close by taking n � θ and logn � σ ;
if instead σ is large compared to n, the eσ term of (3.11) may make the upper
bound rather crude. Straightforward comparison shows that the weak-convergence
approximation (2.7) always lies above the lower bound (3.7), although these
approximations can be made arbitrarily close by taking n � θ .
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Alternative approximations similar to 1–3 can be obtained by truncating the sum
on the right hand side of (3.3), using an expression of the form

∞∑
i=1

X̃2
i ≈

s∑
i=1

X̃2
i + τ,(3.12)

with s ≥ k and

τ = τ (s) = Eµ̃

[ ∞∑
i=s+1

X̃2
i

]
= θ(θ/(θ + 2))s−k

(θ + n+ 1)(θ + n)
.(3.13)

The contribution of the truncation constant can be made as small as desired by
increasing s and taking more size-biased atoms X̃i into the sum. Our main interest
in truncation is its convenience in a fully numerical approach.

4. Numerical methods.

4.1. Approximation of the basic functional. Using the truncation scheme in
(3.12) and (3.13) along with Monte Carlo integration, it is possible to obtain a

numerical approximation of Eµ̃[exp{−σ
∑∞

i=1 X̃i
2}] to a desired level of accuracy.

For a given sample (ñ1, . . . , ñk), pseudo-random beta variates conforming to (3.2)
are combined using the RAM to obtain realizations of the array (X̃1, . . . , X̃s). For
approximation of the expectation, the random variable of interest is Sm =∑m

i=1 Zi,

where

Zi = exp

{
−σ

(
s∑

j=1

X̃2
j + τ (s)

)}
,(4.1)

and the Z1, . . . ,Zm are obtained from independent realizations of (X̃1, . . . , X̃s).

The Monte Carlo estimate Sm/m converges in probability to Eµ̃[exp{−σ(
∑s

j=1 X̃
2
j

+τ (s))}], with a standard deviation proportional to 1/
√
m [see Ripley (1987)].

Two points are worth noting: first, although the constant γ which appears
in (3.3) could also be approximated, it is more convenient to leave γ un-
determined and use methods tailored to un-normalized distributions. Second,
Sm/m estimates the integral involving the truncated sum

∑s
j=1 X̃

2
j + τ (s) rather

than the full expectation (3.3); however, by choosing s appropriately one can,
in principle, obtain close agreement between the truncated and full expres-
sions.

We use a method for choosing s that makes the truncated term
∑∞

i=s+1 X̃
2
i close

to its expectation τ (s) with high probability. By the Chebychev inequality, for
a given ε > 0,

Pr

(∣∣∣∣∣
∞∑

i=s+1

X̃2
i − τ

∣∣∣∣∣≥ ε

)
≤ v

ε2 ,
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where v = v(s) = Var[∑∞
i=s+1 X̃

2
i ]. Clearly v(s) decreases to zero as s increases,

since

lim
s↑∞

∞∑
i=s+1

X̃2
i = 0.

For any particular ε then, one can choose s ≥ k so that v(s)/ε2 ≤ p (say). Then
for this s,

p ≥ Pr

(∣∣∣∣∣
∞∑

i=s+1

X̃2
i − τ

∣∣∣∣∣≥ ε

)

= 1 − Pr

(
−ε <

∞∑
i=1

X̃2
i −

(
s∑

i=1

X̃2
i + τ

)
< ε

)

= 1 − Pr

(
e−σε <

exp{−σ(
∑s

i=1 X̃
2
i + τ )}

exp{−σ
∑∞

i=1 X̃
2
i }

< eσε

)
.

(4.2)

For a given σ and probability p, ε > 0 is determined so that the interval
(e−σε, eσε) is as narrow as desired, and the integer s ≥ k is then determined so
that v(s)/ε2 ≤ p.

It remains only to calculate v(s). Using (3.4), for i > k,

Varµ̃[X̃2
i ] = 4!(θ + n)

(θ + 4 + n)

(
θ

θ + 4

)i−k

− 42(θ + n)

2(θ + 2 + n)

(
θ

θ + 2

)2(i−k)

.

For i > j > k, using (3.4) and (3.5), one obtains after some calculation

covµ̃[X̃2
i , X̃

2
j ] = 4 (θ + n)

(θ + 4 + n)

(
θ

θ + 4

)j−k(
θ

θ + 2

)i−j

− 42(θ + n)

2(θ + 2 + n)

(
θ

θ + 2

)i+j−2k

.

Using properties of the geometric series, one then obtains, for s ≥ k,

v(s) = (θ + 4)(θ + 6)(θ + n)

(θ + 4 + n)

(
θ

θ + 4

)s−k+1

− (θ + 2)2 2(θ + n)

2(θ + 2 + n)

(
θ

θ + 2

)2(s−k+1)

.

We can now state:
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ALGORITHM 1 (Monte Carlo approximation of the basic integral).

set n, θ, σ, ε, p

repeat {
generate (ñ1, . . . , ñKn)

determine s so that v(s)/ε2 ≤ p

repeat {
generate (X̃1, . . . , X̃s) using the RAM
store exp{−σ(

∑s
i=1 X̃

2
i + τ )}

}
calculate the average of exp{−σ(

∑s
i=1 X̃

2
i + τ )}

}
For a given value of θ, i.i.d. realizations of the samples (ñ1, . . . , ñKn) are generated
using the “Chinese Restaurant Construction” of Dubins and Pitman [see Aldous
(1985)]. The parameters of the beta distributions for Wi, i ≤ k, may be large
enough that common methods for generating beta variates perform poorly. For
simulation purposes, we used integer values of θ, and took as the beta variate an
appropriate order statistic from an i.i.d. uniform (0,1) sample [see Stuart and Ord
(1994), Ripley (1987)].

Each of the analytical approximations (2.7), (3.7) and (3.11) has a main
component which approximates the symmetric functional

Eµ

[
exp

{
−σ

∞∑
i=1

X2
i

}∣∣∣An = a,Kn = k

]
.(4.3)

The different approximations to (4.3) can be calculated for each sample (ñ1, . . . ,

ñKn) as part of the outermost loop of Algorithm 1, allowing for comparison. The
y-coordinate values in Figure 1 were obtained by subtracting the lower bound
for (4.3),

exp
{−σn2(fn + 1/n+ θ/n2)/(θ + n+ 1)(θ + n)

}
,

from the corresponding weak-convergence (upper row) and Monte Carlo (lower
row) approximations, over i.i.d. realizations (ñ1, . . . , ñKn). For values of σ used
here, the upper bound is of a different order of magnitude and is not shown.
Judging from the graphs in Figure 1, the weak-convergence and Monte Carlo ap-
proximations tend to differ most when θ is large, with weak-convergence appar-
ently over-estimating the basic functional (4.3) in samples with low homozygosi-
ties. In general, the Monte Carlo approximation tends to be intermediate to the
weak-convergence and lower bound approximations. Although the Monte Carlo
approximation is subject to stochastic variation, a second source of variability in
these graphs originates from samples having different numbers of alleles, but the
same homozygosity value. We favor use of the Monte Carlo approximation for
numerically-based work, provided computing resources are not severely limiting.
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4.2. The distribution of Fn. A rejection rule algorithm [see Ripley (1987)]
can be used to simulate values of Fn under the various approximate formulae. As
before, we generate candidate samples (ñ1, . . . , ñKn) via the Chinese Restaurant
Construction, and calculate an approximation to (4.3) for each sample. Rejection
or acceptance of a candidate sample depends on the ratio of the sample probability
under the target and proposal distributions, respectively Pθ,σ and the ESF [see
Ripley (1987) for a general description]. For the symmetric overdominance model,
the ratio is

ρ = Pθ,σ (An = a,Kn = k)

Pθ,0(An = a,Kn = k)
= γ−1Eµ

[
exp

{
−σ

∞∑
1

X2
i

}∣∣∣An = a,Kn = k

]
.

In practice, γ is unknown, and we use an approximation Êµ for the conditional
expectation; the key ratio is then

ρ̂ = Êµ

[
exp

{
−σ

∞∑
1

X2
i

}∣∣∣An = a,Kn = k

]
,

which has a (perhaps crude) upper bound ρ̂ ≤ 1. A rejection rule algorithm for
generating i.i.d. samples (a1, . . . , an) using the Monte Carlo approximation for
(4.3) is:

ALGORITHM 2 (Rejection rule sampling).

set n, θ, σ, ε, p

repeat {
repeat {

generate (ñ1, . . . , ñKn)

generate U ∼ u(0,1)
determine s so that v(s)/ε2 ≤ p

repeat {
generate (X̃1, . . . , X̃s) using the RAM

store e−σ(
∑s

i=1 X̃
2
i +τ)

}
calculate Ê = the average of e−σ(

∑s
i=1 X̃

2
i +τ)

until U ≤ Ê

}
store (a1, . . . , an)

}

The interior loop of the algorithm is required to calculate the Monte Carlo ap-
proximation. Alternatively, Ê could be calculated using one of the approximations
for (4.3) contained in formulae (2.7), (3.7) or (3.11).
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FIG. 2. Quantile–quantile plots of the distribution of Fn , for samples generated by the fully nu-
merical rejection method of Algorithm 2 (x-coordinate) and by rejection with the weak-convergence
approximation (2.7) (y-coordinate). Following Algorithm 2, independent samples of size n = 200
were generated using the Chinese Restaurant Construction. For the Monte Carlo quantiles, the ac-
ceptance ratio

ρ̂ = max
{
Sm/m, exp

(
−σn2(fn + 1/n + θ/n2)/(θ + n+ 1)(θ + n)

)}
,

with m = 100, ε = 10−3 and p = 10−2 , was calculated for each candidate sample until 500 samples
had been accepted. The weak-convergence quantiles are from independent runs of the rejection rule
algorithm, using ρ̂ = exp{−σ(n/(n+ θ))2fn} in the rejection step.

Figure 2 shows quantile–quantile plots of the sample homozygosity statistic
Fn, based on rejection rule sampling from approximate Pθ,σ . In each graph, we
plot Fn quantiles based on the weak-convergence approximation (2.7) against
fully numerical quantiles obtained from Algorithm 2. Recalling from Figure 1
that Ê = Sm/m in Algorithm 2 can be less than its theoretical lower bound, we
have set Ê equal to the lower bound when this occurs. As shown in the figure,
the weak-convergence and fully numerical quantiles tend to differ in the upper tail
of the Fn distribution, and the discrepancies appear to be magnified by increasing
both σ and θ . The accuracy of the weak-convergence approximation cannot be
assured unless the upper and lower bounds which enclose it are close together; yet
for σ = 25, a very large sample would be required to do this. Although our coarse
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sampling of rare values in the upper tail most likely contributes to the apparent
discrepancies, we view the Monte Carlo quantiles as probably the more accurate
representation of the distribution of Fn.

5. Conditional sampling formulae and an HLA data set.

5.1. Conditional formulae. Proceeding as in (1.10), the conditional probabil-
ity of a sample a = (a1, . . . , an), given

∑n
i=1 ai = k, is

Pν(An = a|Kn = k) = Pν(An = a,Kn = k)

Pν(Kn = k)

= Eν[Pr(An = a,Kn = k|X)]
Eν[Pr(Kn = k|X)]

= Eµ[g(X)Pr(An = a,Kn = k|X)]
Eµ[g(X)Pr(Kn = k|X)] .

(5.1)

We can make use of approximate expressions for the numerator by writing the
above as

Pν(An = a|Kn = k) = Eµ[g(X)Pr(An = a,Kn = k|X)]∑
a∈αk

Eµ[g(X)Pr(An = a,Kn = k|X)] ,(5.2)

where

αk =
{
(a1, a2, . . . , an) :

n∑
1

iai = n,

n∑
1

ai = k

}
.

Using Approximation 1 in the numerator and denominator above, we find:

APPROXIMATION 4 (Conditional on Kn).

Pθ,σ (An = a|Kn = k)

≈ Pθ,0(An = a,Kn = k)γ−1 exp{−σ(n/(n+ θ))2fn}∑
a∈αk

Pθ,0(An = a,Kn = k)γ−1 exp{−σ(n/(n+ θ))2fn}

= Pθ,0(An = a,Kn = k) exp{−σ(n/(n+ θ))2fn}
Pθ,0(Kn = k)E[exp{−σ(n/(n+ θ))2Fn}|Kn = k]

= P0(An = a|Kn = k)
exp{−σ(n/(n+ θ))2fn}

E[exp{−σ(n/(n+ θ))2Fn}|Kn = k] ,

(5.3)

where

P0(An = a|Kn = k) = n!
|Sk

n|a1! · · ·an!1a1 · · ·nan(5.4)
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is the conditional ESF given by the right hand side of (1.2), and the expectation
in the denominator is with respect to (5.4). The first-order expansion of (5.3)
in powers of σ is Watterson’s (1977) approximation for Pθ,σ (An = a|Kn = k),

provided one uses

n2/(n+ θ)(n+ θ + 1) ≈ (
n/(n+ θ)

)2(5.5)

in Watterson’s expression. A very similar expression can be obtained by condition-
ing in Approximation 2; indeed, the conditional formulae obtained from Approxi-
mations 1 and 2 differ only in the factor (5.5).

Two main advantages of working in the conditional setting are evident,
especially if inferences about σ are of primary interest. First, by using the
same approximation for Pθ,σ (An = a,Kn = k) in the numerator and denominator
of (5.3), we have ensured that the denominator of the final expression is an
exact normalizing constant. Second, by conditioning on Kn, we obtain sampling
formulae which depend only weakly on θ. When θ � n, a crude estimate
of θ would be adequate in (5.3), and the likelihood could be treated as a one-
parameter family. In the neutral model, Kn is a sufficient statistic for θ, and Kn is
asymptotically normally distributed, with mean and variance both equal to θ logn
[Watterson (1974)]. For the general selection model with dν/dµ bounded, Joyce
(1995) has shown that Kn is again asymptotically N(θ logn, θ logn); indeed, the
asymptotic distribution of Kn distinguishes, in part, the general selection model
from Pitman’s two-parameter model [see Pitman (1996)]. In light of (5.3), Kn

appears to be asymptotically sufficient for θ in the symmetric overdominance
model.

Although the undetermined constant γ−1 cancelled in the conditional for-
mula (5.3), it has been replaced with E[exp{−σ(n/(n + θ))2Fn}|Kn = k].
Rejection-rule sampling again appears to be warranted for generating samples
from the conditional distribution. Stewart’s algorithm [see Fuerst, Chakraborty and
Nei (1977)] can be used to generate samples (a1, a2, . . . , an);

∑n
1 ai = k, which

have the conditional ESF (5.4) as their probability law, and these can be used as
candidate samples for rejection rule sampling from (5.3). To implement a condi-
tional version of Algorithm 2, we use a method communicated by Jim Pitman for
obtaining size-biased samples from those generated by Stewart’s algorithm: sup-
pose the allele labels of the sample are (y1, y2, . . . , yn) in some particular order,
and let π be a uniform random permutation of {1,2, . . . , n}. By exchangeability,
the sequence (yπ(1), yπ(2), . . . , yπ(n)), obtained by permuting the allele labels at
random, is equal in distribution to the sequence of labels of a size-biased sample
[see Aldous (1985)]. The size-biased sample atom ñi is then the number of rep-
resentatives of the ith distinct label appearing in (yπ(1), yπ(2), . . . , yπ(n)). Condi-
tioning on Kn = k in Algorithm 2 offers enough computational savings that upper
limits on σ for feasible rejection rule sampling can be extended.
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5.2. Estimation of σ for a Human Leukocyte Antigen sample. The Human
Leukocyte Antigen (HLA) loci, which code for proteins important in the immune
response, are thought to be under some form of “balancing” selection (selection
favoring a diversity of allelic types) [see Parham and Ohta (1996)]. The symmetric
overdominance model is perhaps the simplest model of balancing selection;
indeed, the assumption of equal heterozygote fitnesses is severe from a biological
standpoint, as is the stationarity assumption underlying all of our formulae.
However, efforts to analyze HLA data even under this simple model have been
hampered by the absence of sampling formulae that incorporate selection and
mutation explicitly.

Table 1 shows estimated HLA-B allele frequencies and counts from a sample
of 99 serologically typed Australian Aboriginals. There are n = 198 gene copies
in the sample and k = 21 alleles, taking the single “blank” copy as a distinct
allele. The homozygosity statistic for this sample is f = 0.104, which lies roughly
between the 0.05 and 0.1 quantiles of the neutral distribution of F , suggesting
a departure from the neutral model in the direction of overdominance. The effective
population size N for Australian Aboriginals is thought to be considerably lower
than 1000 [see Cavalli-Sforza, Menozzi and Piazza (1994)], suggesting that σ ≈
2Ns might be moderate enough to estimate using a rejection-rule approach. The
mutation rate u to new HLA alleles is still the subject of speculation, but is very
unlikely to be higher than 10−3, a rate typical of microsatellite loci [see Weber and
Wong (1993)], among the most mutable in the human genome. The constraints
on u, along with those on N , suggest that θ ≈ 4Nu in this population could hardly
be greater than 10, and is probably much lower. For these reasons, and owing to its
relative simplicity, we favor estimation of σ based on the conditional distribution.

We have used established Monte Carlo methods [see, e.g., Penttinen (1984),
Geyer and Thompson (1992)] based on realizations of samples (a1, . . . , an)

under the conditional model to find approximate maximum-likelihood estimates
of σ . Briefly, the log-likelihood ratio comparing sample probabilities at selection
intensities σ and φ is

l(σ ) = log
Pθ,σ (An = a|Kn = k)

Pθ,φ(An = a|Kn = k)

= log
Eµ[exp{−σF }|An = a,Kn = k]
Eµ[exp{−φF }|An = a,Kn = k]

− log
Eµ[exp{−σF }|Kn = k]
Eµ[exp{−φF }|Kn = k] .

(5.6)

Using the conditional formula (5.3), the first term of (5.6) is

(−σ + φ)

(
n

n+ θ

)2

fn,(5.7)

and the second term is estimated as the average of (5.7) over realizations from
the conditional distribution Pθ,φ(An = a|Kn = k). Under the fully numerical
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TABLE 1
Estimated HLA-B allele frequencies and counts from a sample of 99 serologically

typed Australian Aboriginals (n = 198 gene copies)∗

Allele Frequency (%) Count (n = 198)

B61 19.6 39
B56 17.2 34
B60 10.0 20
B13 7.5 15
B62 7.1 14
B27 6.6 13
B44 6.6 13
B35 3.5 7
B57 3.5 7
B75 3.4 6
B14 3.0 6
B51 2.5 5
B38 2.0 4
B7 1.5 3
B39 1.5 3
B8 1.0 2
B55 1.0 2
B58 1.0 2
B37 0.5 1
B41 0.5 1
B-Blank 0.4 1

∗From the 11th International Histocompatibility Workshop [Tsuji, Aizawa and
Sasazuki (1992)]. An individual serological panel giving a positive reading for only one
HLA allele could result either from a homozygous genotype, or from a failure in a re-
action with a (possibly novel) “blank” HLA protein. Therefore, a standard maximum
likelihood method, which resolves these uncertainties by use of the Hardy–Weinberg
Law, was used to obtain allele frequency estimates. We converted the estimated fre-
quencies to counts by rounding the product n× (frequency) to the nearest integer. The
only ambiguity that arose was for allele B75, which was given the count “6” to ensure
that the total number of gene copies remained at n = 198.

approach, the first term of (5.6) is obtained from a single execution of Algorithm 1,
using a size-biased version of the sample data in place of the generated sample. To
obtain the second term of (5.6) numerically,

Ê = Z(φ)= the average of exp

{
−φ

(
s∑

i=1

X̃2
i + τ

)}

is used in the rejection step of Algorithm 2, and the ratio Z(σ)/Z(φ) is averaged
over accepted samples, conditional on Kn = k. An estimate of the likelihood
curve using either the fully numerical or formula-based approach is obtained by
varying σ in a neighborhood of φ.
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FIG. 3. Estimated likelihood curves for σ , for the Australian Aboriginal data of Table 1. For
each curve, 500 i.i.d. samples of size n = 198 were generated by rejection rule sampling under
an approximate conditional (k = 21) distribution, with selection parameter φ. Rejection ratios
and numerical parameters for the weak-convergence (left panel) and Monte Carlo (right panel)
approximations are as in Figure 2, with φ substituted for σ in the Figure 2 description. Dashed
curves give log-likelihood ratios log(Pθ,σ /Pθ,φ) for θ = 1, φ = 55 (with maxima at σ = 49 in the
left panel and σ = 59 in the right). Solid curves give log-likelihood ratios for θ = 6, φ = 60 (with
maxima at σ = 57 in the left panel and σ = 61 in the right).

Figure 3 shows estimated likelihood curves for the Aboriginal data using the
conditional formula (5.3) (left panel) and the fully numerical approach (right
panel). For each method, we considered two candidate values of θ : the moderate
value θ = 1, and θ = 6, the closest integer value to the solution of

E[Kn] = θ

θ
+ θ

θ + 1
+ θ

θ + 2
+ · · · + θ

θ + n− 1
= k,

the expected value of Kn under the neutral model [see Ewens (1979)], with
n = 198 and k = 21. For a given value of θ , E[Kn] as shown above is less than the
expected value of Kn under symmetric overdominance selection [Ewens (1979)],
so θ = 6 is perhaps the largest plausible value supported by the HLA-B data set.

As shown by Figure 3, the two approximate methods and two different values
of θ lead to relatively modest differences in σ̂ . Although stochastic variation in
Z(σ)/Z(φ) is evident in the piecewise-smooth property of the Monte Carlo curves,
we favor the Monte Carlo method in this case; for σ̂ appears to be in a region
of the parameter space where, given the sample size, the error in the approximate
formula (5.3) could be unacceptably large. Clearly, more intensive numerical work
is needed before stronger conclusions can be drawn. The value σ ≈ 55, with
N ≈ 500 taken as a crude estimate for the Aboriginal effective population size,
suggests selective differentials of a few percent for heterozygotes, in agreement
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with values obtained for HLA-B by other methods [see Satta et al. (1994)]. As
estimates of selection parameters like σ are known to be inconsistent [see Joyce
(1994)], further work of a more purely statistical nature is needed in order to
understand the uncertainties associated with these estimates.
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