
The Annals of Applied Probability
2002, Vol. 12, No. 2, 565–580

CLUSTERS AND RECURRENCE IN THE TWO-DIMENSIONAL
ZERO-TEMPERATURE STOCHASTIC ISING MODEL

BY FEDERICO CAMIA,1 EMILIO DE SANTIS2 AND CHARLES M. NEWMAN3

New York University, Università di Roma and Courant Institute of
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We analyze clustering and (local) recurrence of a standard Markov
process model of spatial domain coarsening. The continuous time process,
whose state space consists of assignments of +1 or −1 to each site in Z2, is
the zero-temperature limit of the stochastic homogeneous Ising ferromagnet
(with Glauber dynamics): the initial state is chosen uniformly at random and
then each site, at rate 1, polls its four neighbors and makes sure it agrees with
the majority, or tosses a fair coin in case of a tie. Among the main results
(almost sure, with respect to both the process and initial state) are: clusters
(maximal domains of constant sign) are finite for times t <∞, but the cluster
of a fixed site diverges (in diameter) as t → ∞; each of the two constant
states is (positive) recurrent. We also present other results and conjectures
concerning positive and null recurrence and the role of absorbing states.

1. Synopsis. Consider the following Markov process, whose state σ t at
(continuous) time t is an assignment to each site in Z2 of +1 or −1. The initial
state is chosen uniformly at random and then with rate 1 each site changes its
value (resp., determines its value by a fair coin toss) if it disagrees with three or
four (resp., exactly two) of its four nearest neighbors. This process has been much
studied in the physics literature as a model of “domain coarsening” (see, e.g., [2]):
clusters of constant sign (either +1 or −1) shrink or grow or split or coalesce
as their boundaries evolve. A more detailed definition along with some physical
motivation will be given in Section 2 below.

One focus of this paper is the study of the asymptotic growth of clusters. Let
R∗(t) [resp., R∗(t)] denote the Euclidean distance from the origin to the closest
(resp., farthest) site in its cluster that is next to the cluster boundary (i.e., that has a
neighbor of opposite sign). It was previously proved [17] that almost surely, each
site flips (i.e., changes its value) infinitely often and thus lim inft→∞R∗(t) = 0.
Among our main results are the following, with references in brackets to later in
the paper:
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• For any t , almost surely, R∗(t) <∞; that is, there is no percolation at time t
[Proposition 3.2].

• R∗(t)→ ∞ almost surely [Proposition 3.1].
• lim supt→∞R∗(t)= ∞ almost surely [Corollary 5.1].

The last of the three results just mentioned is a corollary of our other main
focus: the analysis of (local) recurrence of states σ or (measurable) subsets M
of states. We say that σ is recurrent (for a given ω in the underlying probability
space) if σ tk → σ along some subsequence tk → ∞. We say that M is recurrent
if some σ ∈ M is recurrent. (Related notions of recurrence for interacting particle
systems are studied in a recent paper by Cox and Klenke [4].) A nonrecurrent σ
or M will naturally be called transient. Although it has not yet been proved that
the probability distribution µt of σ t has a unique limit as t → ∞, nevertheless,
we will classify a recurrent σ (or M) as positive recurrent if some subsequence
limit µ of µt (these always exist by compactness) has µ({σ }) > 0 (or µ(M) > 0);
otherwise it is classified as null recurrent.

The formulation of our recurrence results involves the absorbing states of the
process, that is, those states in which every site agrees with at least three of its
neighbors. Note that these need not be recurrent, since our definition of recurrence
is with respect to a uniformly random initial state. It is easy to see that besides
the two constant states (identically +1 or identically −1), the absorbing states are
those whose clusters are all either half spaces or infinite strips, and their cluster
boundaries are all doubly infinite flat lines (either all vertical or all horizontal)
separated from each other by distance at least two. We prove the following, where
µ denotes any subsequence limit of µt :

• µ({nonabsorbing states})= 0 [Theorem 2] or equivalently, the rate of flips at the
origin tends to zero, in probability. Thus, almost surely, the set of nonabsorbing
states is not positive recurrent.

• Almost surely, each of the two constant states is positive recurrent [Theo-
rems 3, 4].

A natural conjecture (see Remark 5.1) is that µ({nonconstant states}) = 0 [or
equivalently, that the density of cluster boundaries tends to zero, or equivalently
that R∗(t)→ ∞ in probability] and thus that, almost surely, the set of nonconstant
states is not positive recurrent.

We also prove:

• Almost surely, the set of nonconstant absorbing states is recurrent [Theorem 4].
• Almost surely, the set of nonabsorbing states is null recurrent [Remark 5.2].

The nonabsorbing states of the last-mentioned result may be restricted to those
with a cluster boundary that is flat except for a single step of unit size next to the
origin (providing the origin with a tie among its four neighbors). There are two
plausible scenarios concerning the exact class of null recurrent states. To explain
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these, we first note that cluster boundaries in recurrent states must be doubly
infinite and monotonic, that is, with every finite segment either flat or else having a
southwest–northeast (resp., northwest–southeast) orientation [Lemma 4.2]. If there
were more than a single such “domain wall” in a recurrent state, there would
be further restrictions concerning their relative locations (see, e.g., the proof of
Lemma 4.3). But we conjecture that this does not occur; indeed, we expect that
one of the following two possibilities occurs.

Scenario 1. Almost surely, the null recurrent states are exactly all states with
single infinite monotonic domain walls while the set of all other nonconstant states
is transient.

Scenario 2. Almost surely, the null recurrent states are exactly all states with
single infinite domain walls that are either completely flat or else have a single
step, with unit size, while the set of all other nonconstant states is transient.

2. Introduction. The behavior of different kinds of magnetic systems follow-
ing a deep quench is a central topic in the study of their nonequilibrium dynamics.
Physically, a deep quench is when a system that has reached equilibrium at some
high temperature T1 has its temperature rapidly reduced to a much lower T2. In this
paper, as in much of the theoretical physics literature, we take T1 = ∞ and T2 = 0.
Rigorous and nonrigorous results have been obtained on different questions that
arise naturally in this context, such as the formation of domains, their subsequent
evolution, spatial and temporal scaling properties and related problems (for a re-
view, see [2]). In particular, in the context of zero-temperature, stochastic Ising
models with nearest-neighbor interactions, the question of whether the spin con-
figuration eventually settles down to a final state has been addressed rigorously
and answered for a number of different models [12, 17]. A closely related issue is
that of persistence, concerning the fraction of sites that have not flipped at all by
time t , and its asymptotic behavior as t→ ∞ [5, 6, 18, 21].

In this paper, we consider the zero-temperature, stochastic (homogeneous) Ising
model σ t on Zd with nearest-neighbor ferromagnetic interactions. In dimension 1,
the model is the same as the d = 1 voter model, which is well understood (see,
e.g., Chapter 2 of [7] or Chapter V of [16] and references therein). We study in
detail the case d = 2, for which it is known that there is not a unique limiting
state [17], and consider questions about the limits along subsequences of time and
the nature of clusters of sites of the same sign. The aim of the paper is to give a
picture of the system for very long times, showing what kinds of events and states
are seen as t→ ∞ and what are instead “forbidden.” These are basically questions
of recurrence and transience.

In the remainder of this section, we define the model precisely and discuss some
results and open problems about this and related models. The stochastic process
σ t = σ t (ω) corresponds to the zero-temperature limit of Glauber dynamics for an
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Ising model with (formal) Hamiltonian

H = − ∑
{x,y}

‖x−y‖=1

Jx,yσxσy.(1)

Here the state space is S = {−1,+1}Zd , the space of (infinite-volume) spin con-
figurations σ , and ‖ · ‖ denotes Euclidean length. The initial spin configuration σ 0

is chosen from a symmetric Bernoulli product measure (denoted µ0), correspond-
ing physically to a deep quench from infinite temperature. (We note that the case
of an asymmetric initial µ0 has also been studied, both on Zd [10] and on other
lattices [15].) All our results remain valid if the symmetric Bernoulli product mea-
sure µ0 is replaced by any measure satisfying (a) invariance under horizontal and
vertical translations and reflections, (b) ergodicity with respect to horizontal and
vertical translations (separately), (c) the FKG property (see [11]), (d) symmetry
under global spin flips. (Typical examples of such measures are high temperature
Gibbs distributions.) This extension will be clear from the proofs.

The continuous time dynamics is defined by means of independent (rate 1)
Poisson processes at each site x corresponding to those times (which we think
of as “clock rings”) when a spin flip (σ t+0

x = −σ t−0
x ) is considered. If the change

in energy,

�Hx(σ )= 2
∑

y : ‖x−y‖=1

Jx,yσxσy,(2)

is negative (or zero or positive), then the flip is done with probability 1 (or 1/2
or 0). We think of associating a fair coin toss to each clock ring, which we use
as a tie-breaker only when �Hx(σ ) = 0. Let us denote by Pdyn the probability
measure for the dynamics realizations of clock rings and tie-breaking coin tosses
and then denote by P = µ0 × Pdyn the joint probability measure on the space �
of the initial configurations σ 0 and realizations of the dynamics. An element of �
will be denoted by ω.

The model that we will study in this paper is the homogeneous ferromagnet,
where Jx,y ≡ 1 for all {x, y}. In this model, when the clock at site x rings,
σx flips with probability 1/2 if it disagrees with exactly d neighbors and with
probability 1 if it disagrees with more than d neighbors; it does not flip if it
disagrees with less than d neighbors. In the first case, the spin flip leaves the energy
unchanged,�Hx(σ )= 0, while in the second case the spin flip lowers the energy,
�Hx(σ ) < 0. A very useful result of Nanda, Newman and Stein (see Theorem 3
and the following remark in [17]) states that the number of energy lowering spin
flips at any site is almost surely finite.

Disordered models, in which a realization J of the Jx,y ’s is chosen from the
(independent) product measure of some probability measure ν, are also studied
in the literature (see, e.g., [17, 20]) and have different properties, but we will not
deal with those models here. For the homogeneous ferromagnet in dimensions
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d = 1 [1, 3] and d = 2 [17], σ∞(ω) = limt→∞ σ t (ω) does not exist; indeed, for
almost every ω and for every x, σ tx(ω) flips infinitely many times. For d > 2, little
is known rigorously, but numerical studies [21] suggest that the same is true up to
d = 4, while σ∞(ω) might perhaps exist for d > 4.

When the limit does not exist, it is natural to ask what happens to the measure
describing the state of the system as t → ∞. A natural way to approach this
question is by looking at the clusters of sites with the same sign and at the domain
walls between such clusters. The two descriptions are basically equivalent and we
will use both, depending on the type of problem.

It is a direct consequence of a result of Harris [13, 16] that the distribution µt

of σ t satisfies the FKG property for any time t . In dimension d = 2, we will use
this and a result of Gandolfi, Keane and Russo [11] to show that at any time t ,
neither +1 nor −1 spins percolate; that is, the clusters are almost surely finite. We
will also show, however, that the diameter of the cluster at the origin almost surely
diverges as t → ∞, for any d . In dimension 2, it is a natural conjecture that for
large enough times the system will be, with P -probability close to 1, locally in a
+1 or in a −1 phase or, equivalently, that the density of domain walls tends to zero.
In fact, it is expected that the density is of order t−1/2 as t → ∞ (see, e.g., [2]).
Although we are not able to prove this, Theorem 3 in Section 5 below points in
that direction.

If the above conjecture is true, then, by symmetry, it automatically follows that
the distribution µt of σ t has the unique limit, as t → ∞, of 1

2δ+1 + 1
2δ−1, where

δη is the probability measure assigning probability 1 to the constant (≡ η) spin
configuration. But µt is the overall distribution of σ t , taking into account that
the initial state is random and distributed by the Bernoulli product measure µ0.
If instead, we condition on σ 0 and consider the conditional distribution µt [σ 0]
(for almost every σ 0), it is unclear whether that should still converge as t→ ∞ to
1
2δ+1 + 1

2δ−1, or rather there should be multiple subsequence limits (presumably
all of the form αδ+1 + (1 − α)δ−1) along different σ 0-dependent subsequences
of time. The latter situation would be an example of “chaotic time dependence”
(CTD) [8] (see also [19]). CTD is known not to occur for the d = 1 version of our
model (equivalent to the voter model), but has been proved to occur in a disordered
d = 1 voter model [8, 9].

3. Percolation results. In this section we present two propositions about
clusters of constant sign. For every x ∈ Zd , let us denote by Cx(t) = Cx(σ t) the
cluster at site x at time t . Cx(t) is defined as the maximal subset of Zd satisfying
the following properties:

• x ∈ Cx(t).
• Cx(t) is connected [in the sense that if y and z are both in Cx(t), there exists a

sequence ζi , i = 0,1,2, . . . , n, of sites of Cx(t) with ‖ζi+1 − ζi‖ = 1 and with
ζ0 = y and ζn = z].

• If y, z ∈ Cx(t), then σ ty = σ tz .
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|Cx(t)| will denote the number of sites in Cx(t). The origin is denoted by o and
so Co(t) is the cluster at the origin.

Our first result, valid for all d , concerns the growth of Co(t) with time. It
remains valid in a very general setting (see Theorem 3 and the following remark
in [17]) and in particular applies to our Markov process when the initial state is
chosen according to any translation-invariant measure.

PROPOSITION 3.1. For any d , the size of the cluster at the origin diverges
almost surely as t→ ∞: limt→∞ |Co(t)| = ∞.

PROOF. We will prove the proposition by contradiction. Suppose that the
conclusion is not true; then with positive probability, lim inft→∞ |Co(t)|<∞ and
so there exist M <∞ and a sequence of times {tk}k∈N with tk → ∞ such that
|Co(tk)| < M for k = 1,2, . . . . Without loss of generality, we may assume that
tk+1 > tk + 1. There are only finitely many shapes (lattice animals) that the cluster
at the origin can have at times tk when |Co(tk)|<M . For each such lattice animal,
there is some ordered finite sequence of clock rings and outcomes of tie-breaking
coin tosses inside a fixed finite ball that would cause the cluster to shrink to a single
site at the origin which would then have an energy-lowering spin flip. It follows
that for some δ > 0 and any σ ∈ S such that |Co(σ )|<M ,

P
(
origin flips at time t ∈ (tk, tk + 1) with �Ho < 0 | σ tk = σ ) ≥ δ.(3)

By the Markov property of the process and our supposition that the conclusion
of the proposition is false, this would imply that the spin at the origin σo flips
infinitely many times with �Ho < 0 with positive probability, which contradicts a
result of Nanda, Newman and Stein [17] mentioned in Section 2 of this paper. �

We set d = 2 now and for the rest of the paper. Our second result is a direct
consequence of a result of Harris [13, 16] and one of Gandolfi, Keane and
Russo [11].

PROPOSITION 3.2. At any (deterministic) time, there is no percolation of
clusters of spins of the same sign: P (|Co(t)| = ∞)= 0 for all t ≥ 0.

PROOF. First note that the measure µt describing the state σ t of the system at
time t is invariant and ergodic under Z2-translations. This is so because the same
is true for both µ0 and Pdyn and hence also for P . Applying a result of Harris
[13, 16], we also have that µt satisfies the FKG property; that is, increasing func-
tions of the spin variables are positively correlated (this follows from the FKG
property of µ0 and the attractivity of the Markov process). Then it follows from a
result of Gandolfi, Keane and Russo [11] that if percolation of, say, +1 sites were
to occur, all the −1 clusters would have to be finite. Because of the symmetry of
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the model under a global spin flip, however, percolation of +1 sites with posi-
tive probability implies the same for −1 sites. Then, using the ergodicity of the
measure, we would see simultaneous percolation of both signs, thus obtaining a
contradiction. �

4. Preliminary recurrence results. We now introduce the contour represen-
tation in the dual lattice Z2∗ ≡ Z2 + (1/2,1/2), following the notation of [12].
A (dual) site in Z2∗

may be identified with the plaquette p in Z2 of which it is the
center. The edge {x, y}∗ of Z2∗

, dual to (i.e., perpendicular bisector of) the edge
{x, y} of Z2, is said to be unsatisfied (with respect to a given spin configuration
σ ∈ S) if σx �= σy (and satisfied otherwise). Denote by " the set of unsatisfied
(dual) edges. Given a finite rectangle # of Z2, #∗ ⊂ Z2∗

consists of the dual sites
corresponding to the plaquettes contained in #. "(#∗) is the set of unsatisfied
(dual) edges bisecting the edges connecting sites in #. Note that the outermost
edges of "(#∗) have one endpoint just outside of #∗. A (site self-avoiding) path
in Z2∗

using only unsatisfied edges will be called a domain wall; it is simply a path
along the cluster boundaries of σ . If "(#∗) is not empty, it can contain one or more
domain walls. Since domain walls are the boundaries between clusters of sites with
different sign, they can always be extended to form a closed loop or a doubly in-
finite path. Every "(Z2∗

) configuration corresponds to two spin configurations
related by a global spin flip. The Markov process σ t determines a process "t , that
is easily seen to also be Markovian. The transition associated with a spin flip at
x ∈ Z2 is a local “deformation” of the contour "t at the (dual) plaquette that con-
tains x; this deformation interchanges the satisfied and unsatisfied edges of that
plaquette. The only transitions with nonzero rates are those where the number of
unsatisfied edges starts at k = 4 or 3 or 2 and ends at 0 or 1 or 2, respectively;
transitions with k = 4 or 3 (resp. 2) correspond to energy-lowering (resp., zero-
energy) flips and have rate 1 (resp. 1/2). We will continue to use the terms “flip,”
“energy-lowering,” etc. for the transitions of "t .

We continue with some definitions and lemmas.

DEFINITION 4.1. Let Zt be a continuous-time Markov process with state
space Z and time homogeneous transition probabilities. For A a (measurable)
subset of Z we say that A recurs if {τ :Zτ ∈A} is unbounded, and we say that A
is eventually absent (e-absent) if it recurs with zero probability. For our stochastic
Ising model, the restriction σ |# of some σ ∈ S to #⊂ Z2 will be called e-absent
if {σ ′ ∈ S :σ ′|# = σ |#} is e-absent.

Note that if a contour event A, specified by "(#∗), is e-absent, then any σ |#
consistent with A is also e-absent. Note further that our definition in Section 1
for recurrence of σ ∈ S is that for every finite #, the restriction σ |# recurs. Thus
almost sure transience is implied by, but not equivalent to e-absence of σ |# for
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all large # since, a priori, it could be that σ |# recurs with nonzero probability,
tending to zero as #→ Z2.

By QL we denote the square of size 2L+ 1 centered at the origin, that is, the
set of all x = (x1, x2) ∈ Z2 such that xi ∈ {−L, . . . ,L}. (QL(x) will be used later
to denote the square of size 2L+ 1 centered at x; that is,QL(x)=QL + x.)

LEMMA 4.1. If A is e-absent, then P (Zt ∈A)→ 0 as t→ ∞. In particular,
if we denote by SL the set of σ ∈ S such that σ |QL is e-absent, then

lim
t→∞P (σ

t ∈ SL)= 0.(4)

PROOF. Suppose the lemma were false. Then there would exist δ > 0 and a
sequence of times tk ↑ ∞ such that for all k, P (Ztk ∈ A) > δ. But then it would
follow that

P (A recurs) > δ,(5)

contradicting the e-absence of A, as a consequence of the standard fact that

P (Bk) > ε for all k ∈ N implies P (Bk occurs infinitely often) > ε. �(6)

The following lemma is essentially the same as Lemma 8 of [12] (where a more
detailed proof may be found). We say that a domain wall in Z2∗

is monotonic if,
for one of the two directed path versions of the domain wall, either every move is
to the north or east or else every move is to the south or east.

LEMMA 4.2. The event {"t(Q∗
L) contains a nonmonotonic domain wall} is

e-absent.

PROOF. A nonmonotonic domain wall in "(Q∗
L) can always be modified

through local deformations (corresponding to appropriate spin flips of sites inQL)
to give a contour configuration "′(Q∗

L) with three (or four) domain wall edges
surrounding some plaquette of Q∗

L. The corresponding spin configurations then
have a site that disagrees with three (or four) neighbors, which can undergo an
energy-lowering spin flip. As in the proof of Proposition 3.1, the existence of such
local deformations (or sequence of spin flips) means that there is a bounded away
from zero probability (corresponding to an appropriate sequence of clock rings
and tie-breaking coin tosses) of an energy-lowering spin flip during the next unit
time interval. If the claim were not true, then the event that "(Q∗

L) contains a
nonmonotonic domain wall would recur, and there would be a nonzero probability
of infinitely many energy lowering spin flips in QL, which would contradict an
already mentioned theorem of Nanda, Newman and Stein [17]. �

The next lemma provides a geometric upper bound which is one of the key
technical results of this paper. In particular, it will be used in the proof of
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Theorem 1 below. Before we can state the lemma, we need a definition. For a
given σ ∈ S, letML(σ) denote the total number of corners in "(Q∗

L), that is, pairs
of perpendicular edges that meet at a site in Q∗

L. ScL, the complement of SL, is the
set of σ ’s such that σ |QL is not e-absent.

LEMMA 4.3. For σ ∈ ScL, the numberML(σ) of corners is bounded by

max
σ∈ScL

ML(σ )≤ 4(2L+ 1).(7)

PROOF. By Lemma 4.2, any "(Q∗
L) that is not e-absent may be partitioned

into edge-disjoint monotonic domain walls, γ1, . . . , γm, whose endpoints are just
outside of Q∗

L. Let us denote by M(γi) the number of corners in γi . Clearly, if
m = 1, then ML =M(γ1) ≤ 2(2L + 1). When m > 1, we need to consider the
geometric constraints on the γi’s required for σ ∈ ScL. First, there are the special
m = 2 cases where "(Q∗

L) is a “cross,” that is, the union of one flat horizontal
and one flat vertical domain wall; here ML = 4 ≤ 4(2L + 1). We claim that in
all remaining cases, the γi ’s are site-disjoint and in fact, their spanning rectangles
R(γi), defined so that two of the vertices of R(γi) are the endpoints of γi , must
also be site-disjoint.

Note that, depending on whether γi connects two opposite or two adjacent sides
of the boundary of Q∗

L, the rectangle R(γi) can be classified as either vertical or
horizontal or as one of four corner types. The reason the R(γi)’s must be site-
disjoint (except in a cross configuration) is that otherwise there would exist a
sequence of spin flips (corresponding to a sequence of clock rings and tie-breaking
coin tosses) in QL that would deform "(Q∗

L) into a contour configuration with a
nonmonotonic domain wall (see Figure 1 and Lemmas 9 and 10(i) of [12]). As in
the proof of Lemma 4.2, this shows that intersecting R(γi)’s must be e-absent.

FIG. 1. An example in which configuration 1 is deformed to configuration 2 by spin flips with
�H = 0. Configuration 2 has nonmonotonic domain walls.
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When the γi’s are site-disjoint, ML = ∑
i M(γi), and if R(γi) has sides of

length li1 and li2, then M(γi) ≤ 2 min(li1, l
i
2). Now it is easily seen that the sum

of the shorter sides of these nonoverlappingR(γi)’s is bounded by twice the linear
dimension of QL [i.e., 2(2L+ 1)], yielding ML ≤ 4(2L+ 1) as claimed; indeed
the worst case is whenm= 4 and each γi is of corner type, with the R(γi)’s almost
overlapping. �

One of the main results of this paper, Theorem 2 below, concerns the probability
that, for large t , σ t is locally in an absorbing state. As noted in Section 1, the
absorbing states are constant either on infinite horizontal lines or infinite vertical
lines. The next result of this section is a more technical theorem about the density
of domain wall corners, from which Theorem 2 follows easily. For t ≥ 0 and
x∗ ∈ Z2∗

, we define Fx∗(t) to be the event that there is a corner in "t(Z2∗
) with

vertex x∗.

THEOREM 1. For any x∗ ∈ Z2∗
, limt→∞ P (Fx∗(t))= 0.

PROOF. If Fx∗(t) occurs, then there is at least one corner (and at most four)
at x∗. Thus M̃L(σ t ), the number of x∗’s inQ∗

L such that Fx∗(t) occurs, is bounded
by the numberML(σ t ) of corners, and so by translation invariance and elementary
arguments,

P (Fx∗(t))= E(1Fx∗ (t))=
1

(2L)2
E

(
M̃L(σ

t )
)

= 1

(2L)2
[
P (σ t ∈ SL)E(

M̃L(σ
t) | σ t ∈ SL)

+ P (σ t ∈ ScL)E
(
M̃L(σ

t ) | σ t ∈ ScL
)]

(8)

≤ 1

(2L)2
[
P (σ t ∈ SL) · (2L)2 +E(

ML(σ
t) | σ t ∈ ScL

)]

≤ P (σ t ∈ SL)+ 1

(2L)2
max
σ∈ScL

ML(σ ).

The proof is completed by using Lemmas 4.1 and 4.3 to observe that the two
terms in the final expression can be made small by appropriate choice of large L
and t . �

5. Main recurrence results. Let us now define two sets of states that play an
important role in recurrence:

C = {σ ∈ S :σ ≡ 1 or σ ≡ −1},(9)

the set of constant spin configurations, and

A = {absorbing states},(10)



RECURRENCE IN THE STOCHASTIC ISING MODEL 575

consisting of the two constant spin configurations in C together with all spin
configurations corresponding to contour configurations that are unions of doubly
infinite flat domain walls (either all horizontal or all vertical) separated by at least
two lattice spacings. These are the only absorbing states in d = 2, since only for
these does every spin agree with a strict majority of its neighbors.

We also introduce the set of all spin configurations σ̃ that agree with a given
subset of S inside the squareQL: for U ⊂ S, define

UL = {
σ̃ ∈ S :∃σ ∈ U with σ |QL = σ̃ |QL

}
.(11)

The next theorem states that σ t , in any finite region, for large enough t ,
agrees with some absorbing state with probability arbitrarily close to 1. It is
straightforward to see that this is equivalent to saying that the rate of flips at the
origin goes to zero in probability as t→ ∞.

THEOREM 2. For all L ∈ N, limt→∞ P (σ t ∈ AL)= 1.

PROOF. We will prove the theorem by contradiction. If the claim is not true,
there exist L > 0, δ > 0 and a sequence tk with tk → ∞ such that for all k,
P (σ tk /∈ AL) > δ. Now, the event {σ t /∈ AL} corresponds to either having at least
one nonflat domain wall inside QL, or else two flat domain walls at distance 1
apart. The first case corresponds to having at least one site x∗ ∈ Q∗

L for which
the event Fx∗(t), that there is a corner at x∗, occurs. The second case corresponds
to a configuration that can become nonmonotonic with one flip and is therefore
e-absent. Thus

P (σ t /∈ AL)≤
∑
x∗∈Q∗

L

P
(
Fx∗(t)

) + P (σ t ∈ SL),(12)

and the right-hand side goes to zero as t→ ∞ by Theorem 1 and Lemma 4.1. This
completes the proof. �

The next theorem, combined with the first part of Theorem 4, shows that each
of the two constant states is positive recurrent in the sense of Section 1.

THEOREM 3. Let C+
L (t) [resp., C−

L (t)] denote the event that σ t is constant
and equal to +1 (resp., to −1) on the squareQL. Then for any L<∞,

lim inf
t→∞ P

(
C+
L (t)

) = lim inf
t→∞ P

(
C−
L (t)

) ≥ 1/4.(13)

PROOF. We introduce the following events that, like C+
L (t), are increasing in

the FKG sense:

V+
L (t)=

{
ω :σ t |QL(ω) has a vertical line of 2L+ 1 sites that are + 1

}
,(14)

H+
L (t)=

{
ω :σ t |QL(ω) has a horizontal line of 2L+ 1 sites that are + 1

}
.(15)
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Note that C+
L (t)⊂ V+

L (t),H
+
L (t). We also define the corresponding events with +

replaced by −. With these definitions, we have

V +
L (t)∩H+

L (t)⊂C+
L (t) ∪ {σ t /∈ AL}(16)

and therefore

P
(
V+
L (t) ∩H+

L (t)
) ≤ P (

C+
L (t)

) + P (σ t /∈ AL).(17)

Using the fact that V +
L (t) and H+

L (t) are increasing events and the FKG property
of the distribution of σ t (see the proof of Proposition 3.2), we get

P
(
C+
L (t)

) ≥ P (
V +
L (t)

)
P

(
H+
L (t)

) − P (σ t /∈ AL).(18)

Because of the “striped” nature of the absorbing states,

P (σ t ∈ AL)= P ({σ t ∈ AL} ∩H+
L (t)

) + P ({σ t ∈ AL} ∩ V−
L (t)

)
.(19)

By the symmetries of the model, the two terms in the right-hand side of (19) are
equal and therefore

P (σ t ∈ AL)= 2P
({σ t ∈ AL} ∩H+

L (t)
)
.(20)

Thus

P
(
H+
L (t)

) = P ({σ t ∈ AL} ∩H+
L (t)

) + P ({σ t ∈ AL}c ∩H+
L (t)

)
(21)

= 1
2P (σ

t ∈ AL)+ P ({σ t ∈ AL}c ∩H+
L (t)

)
.(22)

Applying Theorem 2 and symmetry, we obtain

lim
t→∞P

(
V+
L (t)

) = lim
t→∞P

(
H+
L (t)

) = 1/2.(23)

Taking the lim inf of both sides of (18) and using Theorem 2 once more, we have

lim inf
t→∞ P

(
C+
L (t)

) ≥ lim
t→∞P

(
V+
L (t)

)
P

(
H+
L (t)

) = 1/4. �(24)

REMARK 5.1. A natural conjecture is that the system is in a constant (+1 or
−1) state with probability approaching 1 as t→ ∞; that is, for all L,

lim
t→∞P (σ

t ∈ CL)= 1.(25)

This is equivalent to the conjecture for our d = 2 process that clustering occurs:

P (σ tx �= σ ty)→ 0 as t→ ∞ for any x, y ∈ Z2.(26)

In d = 1, our process is the same as the one-dimensional voter model, for which
clustering is known to occur [14] (see also, e.g., [7, 16]).

The next result is a corollary of Theorem 3. Recall that R∗(t) denotes the
Euclidean distance from the origin to the closest site in its cluster that is next
to the cluster boundary. More precisely, given a subset# of Z2 and x ∈ Z2, define
the distance d(#,x) = infy∈# ‖x − y‖. The inner boundary of # is ∂# = {x ∈
# :∃y /∈# with ‖x − y‖ = 1}. Then R∗(t)= d(∂Co(t), o).
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COROLLARY 5.1. lim supt→∞R∗(t)= ∞ almost surely.

PROOF. Define the event

AL =
{

lim sup
t→∞

R∗(t)≥ L
}
.(27)

By Theorem 3 and (6) (applied for fixed L to the events {σ t ∈ CL} for a sequence
of times), we have P (AL)≥ 1/2 for every L. Then, letting L→ ∞, we have

P

(
lim sup
t→∞

R∗(t)= ∞
)

≥ 1/2.(28)

It is easy to see that the event A∞ in (28) occurs if and only if its translation, that
is, the event that lim supt→∞ d(∂Cx(t), x) = ∞ occurs. Thus A∞ is translation-
invariant and by the translation-ergodicity of P , (28) implies that P (A∞)= 1, as
desired. �

As mentioned before, in dimension 2, the state σ t does not have a unique limit
as t→ ∞ [17]; thus we are interested in the limits along subsequences of t . Let us
introduce the (ω-dependent) set of all limiting states,

W = W(ω)= {
σ̃ ∈ S :∃ tk ↑ ∞ so that σ tkx → σ̃x ∀x ∈ Z2}

.(29)

The following theorem concerns such subsequence limits. The first statement of
the theorem means that there exists an ω-dependent sequence t ′k ↑ ∞ so that

σ
t ′k
o = (−1)k and Co(tk)⊃Qk .

THEOREM 4. W ⊃ C almost surely. Moreover, W contains a nonconstant
absorbing state with a flat domain wall passing next to the origin, almost surely.

PROOF. The proof that the constant +1 (resp., −1) state is in W is essentially
the same as the proof of Corollary 5.1, but with the eventAL replaced by the event
that C+

L (t) [resp., C−
L (t)] occurs for an unbounded set of t’s.

To prove the second part of the theorem, we consider the square QL (with
L even, for a reason to be seen later) and use the fact [17] that σ to flips infinitely
many times almost surely. We restrict attention to times t greater than TL, the al-
most surely finite time after which "t(Q∗

L) is not e-absent and hence satisfies var-
ious geometric constraints, including those discussed in the proof of Lemma 4.3.

There will almost surely be a sequence tk → ∞, of times (either just before
or just after the flips of the origin) when there is a (monotonic) domain wall γ ,
whose endpoints are just outsideQ∗

L, passing next to the origin and containing the
origin in its spanning rectangle R(γ ). There are two possibilities: (i) γ connects
two opposite sides of the boundary of Q∗

L, or (ii) two adjacent sides.
Let BiL (resp., BiiL ) denote the event that (i) [resp., (ii)] occurs for an unbounded

set of t’s. Then P (BiL) + P (BiiL ) ≥ 1 and so lim infL→∞P (B#
L) > 0 either
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for # = i (we call this case i) or # = ii (case ii) or both. The γ of (i) may be
either horizontal or vertical, so we express BiL as the (not necessarily disjoint)
union of events Bi,hL and Bi,vL according to whether a horizontal or a vertical γ
recurs. By symmetry, these two events have equal probability, so that in case i,
there is a subsequence Lj → ∞ such that P (Bi,hLj ) > δ > 0 for all j .

Consider a time t > TLj when such a horizontal γ is present. By the
monotonicity and other geometric restrictions on the domain walls that follow
because "t(Q∗

L) is not e-absent, it follows that there is a sequence of spin flips
(with a bounded away from zero probability of occurring in the next unit time
interval) that will deform such a "t(Q∗

L) into one where there is a horizontal flat
domain wall γ ′ just under the origin and further such that σ t ∈ AL (i.e., inside
QL, σ t agrees with an absorbing state). Thus the event ÃhLj , that σ t ∈ AL with a
horizontal flat domain wall just under the origin for an unbounded set of t’s, has
P (ÃhLj )≥ P (Bi,hLj ) > δ > 0 for all j .

Proceeding as in the proof of Corollary 5.1 (but using ergodicity only with
respect to translations in the first coordinate), we conclude that P (ÃhL occurs for
all L) = 1, which, together with standard compactness arguments, completes the
proof for case i.

Case ii is similar, but with an extra ingredient. Here we express BiiL as the union
of Bii,neL , where γ connects the north and east sides of the boundary ofQ∗

L, and the
three other directional possibilities. For a northeast γ , we use spin flips to deform
"t(Q∗

L) to a "′ containing a contour that is horizontal and flat from the origin to the
eastern side ofQ∗

L, and such that inside the smaller squareQL/2(L/2,0), centered
at (L/2,0), "′ agrees with an absorbing state. By translating (L/2,0) to the origin
and using translation invariance, we have in case ii for some subsequence L′

j that

P (Ãh
L′
j /2
)≥ P (Bii,ne

L′
j
) > δ′ > 0 for all j . The remainder of the proof is as in case i.

�

REMARK 5.2. We note that W is almost surely strictly larger than A.
Otherwise, it could not be the case that almost surely every site flips infinitely
many times. Indeed, by arguments similar to those used for Theorem 4, there
almost surely must be recurrent states that have a domain wall passing by the origin
that is flat except for a single step right by (or any fixed distance away from) the
origin. There are of course also many states that are almost surely transient, such
as ones with nonmonotonic domain walls or more generally ones that, restricted
to some QL, do not satisfy the geometric conditions, such as those in the proof of
Lemma 4.3, that prevent nonmonotonic domain walls from forming.

REMARK 5.3. The proof of Theorem 4 makes it clear that W must almost
surely contain nonconstant absorbing states both with horizontal and with vertical
flat domain walls. Similarly, the single step domain walls mentioned in the
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previous remark will be both horizontal and vertical (and with the steps at
all possible distances from the origin). It is a natural conjecture, discussed in
Section 1, that almost surely all recurrent states, besides the two constant states,
have only a single (monotonic) doubly infinite domain wall. Two possibilities as
to the exact class of recurrent states are discussed at the end of Section 1. We
have not been able to show that almost surely some state with a single doubly
infinite domain wall is in fact recurrent. However, by using arguments like those
in the proof of Theorem 4, one can show that there are almost surely recurrent
(absorbing) states with a flat domain wall next to the origin and no other domain
walls in a half-space.
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