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MOMENT ASYMPTOTICS FOR THE CONTINUOUS
PARABOLIC ANDERSON MODEL

By Jürgen Gärtner and Wolfgang König

Technische Universität Berlin

We consider the parabolic Anderson problem ∂tu = κ�u + ξ�x�u on
R+ × R

d with initial condition u�0	 x� = 1. Here ξ�·� is a random shift-
invariant potential having high δ-like peaks on small islands. We express
the second-order asymptotics of the pth moment (p ∈ �1	∞�) of u�t	0� as
t→ ∞ in terms of a variational formula involving an asymptotic descrip-
tion of the rescaled shapes of these peaks via their cumulant generating
function. This includes Gaussian potentials and high Poisson clouds.

0. Introduction and main result.

0.1. The continuous parabolic Anderson problem. We consider the para-
bolic Anderson problem

∂tu�t	 x� = κ�u�t	 x� + ξ�x�u�t	 x�	 �t	 x� ∈ �0	∞�× R
d	

u�0	 x� = 1	 x ∈ R
d	

(0.1)

where κ > 0 is a diffusion constant and ξ = �ξ�x��x ∈ R
d
 denotes a random

potential satisfying some asymptotic properties to be stated below. We write
� · � for expectation w.r.t. ξ. The objective of the present paper is the asymptotic
analysis of �u�t	0�p� as t→ ∞ for any p ∈ �1	∞�. This may also be considered
as a contribution to a deeper understanding of the intermittent (i.e., spatially
highly irregular) behavior of the random fields u�t	 ·� as t→ ∞.

0.2. The potential. We assume that the random potential ξ = �ξ�x��x ∈
R
d
 is shift-invariant and, for simplicity, Hölder continuous. We impose the

existence of all positive exponential moments:

H�t� = log
〈
etξ�0�

〉
<∞ for all t > 0�(0.2)

Under these assumptions, almost surely, problem (0.1) has a minimal nonneg-
ative solution u which will be considered throughout. This solution is shift-
invariant and admits a Feynman-Kac representation. Using this, it is not
difficult to see that assumption (0.2) guarantees the existence of all moments
�u�t	0�p�, p ∈ �1	∞�, for all t ≥ 0. The cumulant generating function H will
play an important role in the sequel.

Our intuitive assumption is that the potential ξ has high δ-like peaks which
are located far from each other. The basic idea is that then, asymptotically as
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t → ∞, the essential contribution to the solution u�t	 ·� comes from higher
and higher and more and more δ-like peaks of ξ.

A mathematical formulation of the presence of such high exceedances with
low spatial frequency may be given in terms of a large deviation principle for
the properly rescaled shapes of these peaks. We shall do this by making a
requirement on the asymptotic behavior of the corresponding cumulant gen-
erating function rather than directly stating a large deviation property.

In order to make this precise, we introduce a positive scale function α�t�
which tends to zero as t→ ∞. We are going to determine the decay rate of the
probability for the occurrence of a δ-like peak having height of order H�t�/t
on an island having a diameter of order α�t�.

To this end, denote by

ξt�x� = α2�t�
(
ξ�α�t�x� − H�t�

t

)
	 x ∈ R

d	(0.3)

t > 0, the scaled, normalized version of the potential.
We denote by �c�Rd� the set of probability measures on R

d having compact
support. For any compact setK ⊂ R

d, let � �K� be the set of those µ ∈ �c�Rd�
for which suppµ ⊂K. We write

�µ	f� =
∫
�d
f�x�µ�dx�(0.4)

for any µ ∈ �c�Rd� and all µ-integrable functions f:Rd → R.
We will assume that the rescaled cumulant generating functions Jt:

�c�Rd� → �0	∞�, t > 0, defined by

Jt�µ� = − 1
β�t� log

〈
eβ�t��µ	ξt�

〉
	(0.5)

converge in some sense as t → ∞, where the ‘large deviation scale’ β�t� is
given by

β�t� = t

α2�t� �(0.6)

Note that Jt�µ� ≥ 0. Indeed, by Jensen’s inequality and Fubini’s theorem,〈
eβ�t��µ	ξt�

〉
=
〈
et�µ	ξ�α�t�·��

〉
�etξ�0�� ≤

〈�µ	 etξ�α�t�·��〉
�etξ�0�� = 1�(0.7)

Hölder’s inequality shows that Jt is a concave function. From the shift-invari-
ance of the potential ξt it follows that Jt�µ� is invariant under spatial shifts
of µ.

We are now ready to formulate our main assumption.

Assumption (J). As t → ∞, Jt converges to a functional J:�c�Rd� →
�0	∞� uniformly on � �K� for each compact set K ⊂ R

d.
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Let us phrase this differently, using an appropriate notion of convergence in
�c�Rd�. We will say that limt→∞ µt = µ in �c�Rd� if there exists a compact
set K ⊂ R

d such that µt ∈ � �K� for all t ≥ 0 and µt → µ weakly. Then
Assumption (J) is equivalent to

lim
t→∞

µt = µ in �c�Rd� ⇒ lim
t→∞

Jt�µt� = J�µ��(0.8)

Since the functionals Jt are nonnegative, concave, and continuous on
�c�Rd�, the same is true for the limiting functional J.

For a certain part of our results we also need to assume the following.

Assumption (H). For all ε > 0,

H
(
t+ e−εβ�t�

)
−H�t� ≤ O

(
eεβ�t�

)
as t→ ∞�(0.9)

This is a rather weak regularity assumption which is satisfied in particular
if lim supt→∞ t−1 logH′�t� <∞.

0.3. Main result. We introduce the Donsker-Varadhan functional �d:
�c�Rd� → �0	∞� given by

�d�µ� =


∥∥∥∥∥�−�� 1

2

√
dµ

dx

∥∥∥∥∥
2

2

	 if µ� dx and
√
dµ
dx

∈ � ��−�� 1
2 �	

∞	 else,

(0.10)

where −� is considered as nonnegative definite self-adjoint operator in L2�Rd�
and � ��−��1/2� denotes the domain of its square root. Note that �d�µ� is
nothing but the Dirichlet form of the Laplacian at �dµ/dx�1/2.

The following quantity turns out to determine the second-order part of the
exponential growth of the moments:

χ = χ�κ	d� = inf�κ�d�µ� +J�µ�:µ ∈ �c�Rd�
 ≥ 0�(0.11)

Theorem 1. Fix p ∈ �1	∞� arbitrarily and suppose that Assumption (J)
is satisfied.

(i) As t→ ∞,

�u�t	0�p� ≥ exp �H�pt� − β�pt��χ+ o�1��
 �(0.12)

(ii) If p = 1 or, in addition, Assumption (H) is satisfied, then, as t→ ∞,

�u�t	0�p� ≤ exp �H�pt� − β�pt��χ+ o�1��
 �(0.13)
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0.4. Discussion.
0.4.1. Dependence on covariance. Let us briefly consider the important

particular case when J depends on the covariance only.
To this end, we introduce the mean vector and covariance matrix of µ ∈

�c�Rd� given by

m�µ�=
∫
�d
xµ�dx� and cov�µ�=

∫
�d
�x−m�µ���x−m�µ��T µ�dx�	(0.14)

respectively. Let�d (resp.�
+
d ) denote the set of symmetric nonnegative (resp.

positive) definite d× d–matrices.
If J is a function of the covariance matrix only, that is,

J�µ� = j�cov�µ��	 µ ∈ �c�Rd�	(0.15)

for some function j:�d → �0	∞�, then χ takes the form

χ = inf
{κ
4
tr ��−1� + j���:� ∈ �+

d

}
	(0.16)

where tr �A� stands for the trace of a quadratic matrix A. The proof will be
given in Section A.1 in the Appendix.

In two of our examples presented in Section 4 we will use (0.16) to identify
χ explicitly.

0.4.2. Positivity of χ. If χ = 0, then Theorem 1 states that the second-
order term of �u�t	0�p� is eo�β�pt��, which does not provide much information.
But this occurs only if the functional J is trivial:

χ = 0 ⇔ J ≡ 0�(0.17)

The proof of this fact will be given in Appendix 4.2. If the field ξ is bounded
from above almost surely then the assumption α�t� → 0 always forces J to
vanish identically. Our focus is on potentials which are unbounded from above.
Loosely speaking, J will be nondegenerate for a suited scale function α, if the
field ξ has ‘relevant’ high δ-like peaks which are located far from each other.
For a more detailed explanation we refer to the heuristics below.

0.4.3. Heuristic derivation of Theorem 1. We now reveal the mechanism
behind the asymptotics in Theorem 1. Here we will choose a more analytically
oriented view while our proof given in the subsequent sections will merely
rely on probabilistic arguments.

Assumption (J) suggests that the scaled fields ξt satisfy a large deviation
principle with scale β�t� and rate function I:� → �0	∞� given by the Legen-
dre transform of −J:

I�ϕ� = sup
µ

��µ	ϕ� +J�µ�� �(0.18)

Thereby � is a suitable space of functions R
d → R decaying to −∞ at infinity.

In other words, the number e−β�t�I�ϕ� is the relative spatial frequency of peaks
with shape close to ϕ for the scaled field ξt (asymptotically as t→ ∞). This is
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the place where the geometry of the ‘high δ-like peaks’ of the potential enters
the picture.

Next, we approximate u�t	 ·� by the solution ũ�t	 ·� of the corresponding
initial-boundary value problem with Dirichlet boundary condition in a box
whose length R�pt� depends on t and goes to infinity only slightly faster than
pt/α�pt� = eo�β�pt��. We obtain

�u�t	0�p� ∼ �ũ�t	0�p��(0.19)

A Fourier expansion of ũ�t	 ·� with respect to the (random) eigenfunctions of
the operator κ�+ξ shows that a good approximation for ũ�t	0� is provided in
terms of its principal (i.e., largest) eigenvalue λ̃�ξ� in the mentioned box with
Dirichlet boundary condition:

ũ�t	0� ≈ etλ̃�ξ��(0.20)

This implies

�ũ�t	0�p� ≈
〈
eptλ̃�ξ�

〉
�(0.21)

Because of (0.3) and the scaling properties of the Laplacian, the principal
eigenvalue scales like tλ̃�ξ� = β�t�λ̃�ξt� +H�t�. Hence,

�eptλ̃�ξ�� = eH�pt�
〈
eβ�pt�λ̃�ξpt�

〉
�(0.22)

Since those local peaks of ξpt that give the main contribution to the expectation
on the r.h.s. of (0.22) will be shown to be located far from each other, λ̃�ξpt� is
close to the maximum of the local principal eigenvalues corresponding to the
single peaks. Since their number will turn out to be eo�β�pt��, and because of
the shift-invariance, we find that〈

eβ�pt�λ̃�ξpt�
〉
≈ �eβ�pt�λf �ξpt���(0.23)

Here λf �ϕ� denotes the principal eigenvalue of κ�+ϕ in some large, but fixed
box with Dirichlet boundary condition.

Now an application of the Laplace-Varadhan method with respect to the
above large deviation principle yields for the local shapes of ξpt〈

eβ�pt�λf �ξpt�
〉
≈ e−β�pt�χ(0.24)

with

χ = inf
ϕ
�I�ϕ� − λf �ϕ���(0.25)

Putting together the steps (0.19) and (0.21–0.24), we arrive at the assertion
of Theorem 1:

�u�t	0�p� ≈ eH�pt�−β�pt�χ�(0.26)
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It remains to check that (0.25) coincides with (0.11). Using the variational
representation

λf �ϕ� = sup
µ

��µ	ϕ� − κ�d�µ��(0.27)

of the principal eigenvalue, we indeed obtain

χ = inf
µ

{
κ�d�µ� + inf

ϕ
�I�ϕ� − �µ	ϕ��

}
= inf

µ
�κ�d�µ� +J�µ�
 �(0.28)

The above considerations make it plausible that asymptotically the shapes
of the peaks of ξpt that are relevant for the pth moment are given by the
solutions ϕ of the variational problem (0.25). Moreover, the shapes of the δ-
like high peaks of u�t	 ·� that contribute most to �u�t	0�p� are correspondingly
rescaled time-dependent multiples of the positive eigenfunctions correspond-
ing to the maximizing potential shapes ϕ. In particular, the relevant shapes
of the (δ-like) peaks of ξ�·� and u�t	 ·� are asymptotically deterministic. Their
frequency and geometry essentially determine the second-order asymptotics
of the moments.

Thus, the proof of Theorem 1 basically consists of the four main steps (0.19),
(0.22), (0.23) and (0.24):

(i) making the space finite (but still time-dependent);
(ii) using a Fourier expansion and scaling properties;
(iii) removing the time-dependence of the box (“compactification”);
(iv) applying large deviation arguments.

Our rigorous proof given below will follow these steps, but some of them
will be carried out in a more probabilistic setting. For example, large deviation
arguments will be applied in a ‘dual’ setting, i.e., for the occupation times
measures of Brownian motion in the Feynman-Kac formula rather than for
local peaks of the field ξ.

0.4.4. General remarks. For a general discussion of intermittency and re-
lated references we refer to Carmona and Molchanov (1994) and the lectures
by Molchanov (1994) and also to the monograph by Sznitman (1998) in which
‘negative’ Poisson clouds are treated thoroughly.

For Gaussian and Poisson fields, rough logarithmic asymptotics for the mo-
ments and the almost sure behavior of u�t	0� have been derived by Carmona
and Molchanov (1995). In a forthcoming paper, Gärtner, König and Molchanov
(2000) investigate the second-order term of the almost sure asymptotics.

For the spatially discrete Anderson model with i.i.d. potential �ξ�x��x ∈ Z
d
,

the second-order asymptotics of the moments �u�t	0�p� with p ∈ N has been
investigated by Gärtner and Molchanov (1998). The more subtle asymptotics
of the correlation �u�t	0�u�t	 x��/�u�t	0�2� for ξ�x� having a double exponen-
tial tail has been treated by Gärtner and den Hollander (1999). For several
reasons, the approach used in these papers is not directly applicable to our
context. For example, no scaling of the size of peaks appears; due to spatial
discreteness, δ-like peaks are concentrated on single lattice sites. Secondly,
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the method of compactification used there fails to work for correlated fields.
Also, our difficulties to handle higher moments do not appear in the discrete
case.

We mention that our emphasis is not mainly on computing concrete asymp-
totic formulas for Gaussian and Poisson potentials [which can be done by
simpler and more direct calculations like in Pastur and Figotin (1992)], but
on revealing the mechanism how high peaks of the potential contribute to the
asymptotic behavior of the moments.

0.4.5. Outline of the paper. In Section 1 we put down some notation and
collect preliminary facts about the initial-boundary value problem in finite
boxes and about the Feynman-Kac formula. Sections 2 and 3 are devoted to the
proof of parts (i) and (ii) of Theorem 1, respectively. The important examples
of a Gaussian and a compound Poisson field are presented in Section 4. The
Appendix contains the proofs of (0.16) and (0.17).

1. Preparations for the proof of Theorem 1. The aim of this section
is to introduce notation and to collect some simple and well-known facts.

1.1. Initial-boundary value problem. We are going to introduce the solu-
tion of the parabolic partial differential equation in the first line of (0.1) in a
finite box with zero boundary condition, for general potential. Given r > 0, let
Qr = �−r	 r�d be the centered cube with side length 2r.

Let V:Rd → R be an arbitrary Hölder continuous potential. For r > 0, let
uVr be the solution of the initial-boundary value problem for the operator κ�+
V in the box Qr with zero boundary condition and initial datum identically
equal to one, that is,

∂tu
V
r �t	 x� = κ�uVr �t	 x� +V�x�uVr �t	 x�	 �t	 x� ∈ �0	∞�×Qr	
uVr �0	 x� = 1	 x ∈ Qr	
uVr �t	 x� = 0	 �t	 x� ∈ �0	∞�× ∂Qr�

(1.1)

We trivially extend uVr �·	 ·� to a function on �0	∞� × R
d. In order to stress

the dependence on the potential we shall write in the sequel uξ instead of u
for the solution of (0.1). Note that a.s. for 0 < r < R (picking V = ξ),

uξr�t	 x� ≤ uξR�t	 x� ≤ uξ�t	 x�	 �t	 x� ∈ �0	∞�×Qr�(1.2)

Taking into account (0.3), the reader easily verifies the following scaling rela-
tion which is valid for each R > 0 and t > 0:

u
ξ
Rα�t��s	 x� = esH�t�/tuξtR

(
s

α2�t� 	
x

α�t�
)
	 �s	 x� ∈ �0	∞�×QRα�t��(1.3)

Let λ1 > λ2 ≥ λ3 ≥ · · · be the eigenvalues of the operator κ�+V in L2�Qr�
with zero boundary condition. We also write λk = λVk �Qr� for the kth eigen-
value to emphasize its dependence on the potential V and the box Qr. For
each R > 0, the eigenvalues have the scaling property

tλ
ξ
k�QRα�t�� = β�t�λξtk �QR� +H�t�	 t > 0	 k ∈ N�(1.4)
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Let �ek�k∈� be an orthonormal basis of L2�Qr� consisting of corresponding
eigenfunctions ek = eVk �Qr�.

We also need the fundamental solution pVr �t	 ·	 y� of the initial-boundary
value problem, that is, the solution of (1.1) with the initial condition uVr �0	 ·� =
� replaced by pVr �0	 ·	 y� = δy�·� for each y ∈ Qr. We have the Fourier expan-
sion

pVr �t	 x	 y� =
∞∑
k=1

exp�tλk�ek�x� ek�y��(1.5)

According to Mercer’s theorem [see, e.g., Joergens (1982), Theorem III, 8.11],
this series converges uniformly in x	y ∈ Qr. In particular, we also have the
Fourier expansion

uVr �t	 ·� =
∞∑
k=1

exp�tλk��ek	��rek�·�	(1.6)

where we write �·	 ·�r for the inner product in L2�Qr�.

1.2. Feynman-Kac formula. We are going to express the solutions uξ of
(0.1) and uVr of the initial-boundary value problem (1.1) in terms of the
Feynman-Kac formula. Still we assume that V:Rd → R is some Hölder con-
tinuous potential.

Let �Wt
t≥0 be Brownian motion in R
d with generator κ�. Denote the un-

derlying probability and expectation by Px resp. Ex when W0 = x ∈ R
d. Then

we have the Feynman-Kac formula

uξ�t	 x� = Ex exp
{∫ t

0
ξ�Wu�du

}
	 �t	 x� ∈ �0	∞�× R

d�(1.7)

Next, introduce the normalized occupation time measure of Brownian motion
by

Lt�dx� =
1
t

∫ t
0

��Wu ∈ dx
du	 t ∈ �0	∞��(1.8)

Note that Lt is a random element of �c�Rd�. With this notation (1.7) takes
the form

uξ�t	 x� = Ex exp�t�Lt	 ξ��	 �t	 x� ∈ �0	∞�× R
d�(1.9)

In order to represent the solution uVr of (1.1) in terms of Brownian motion
we introduce the stopping time of the first exit from Qr:

τr = inf�t ≥ 0:Wt /∈ Qr
�(1.10)

Then, for all r > 0 and �t	 x� ∈ �0	∞�× R
d, we have

uVr �t	 x� = Ex exp
{∫ t

0
V�Wu�du

}
��τr > t


= Ex exp�t�Lt	V����suppLt ⊂ Qr
�
(1.11)



200 J. GÄRTNER AND W. KÖNIG

The analogous Feynman-Kac representation for the fundamental solution
pVr �t	 x	 y� is in terms of Brownian bridge instead of free Brownian motion:

pVr �t	 x	 y� = Ex exp�t�Lt	V����suppLt ⊂ Qr
 δy�Wt��(1.12)

2. Proof of Theorem 1(i): The lower bound. Suppose that Assumption
(J) is satisfied, and let p ∈ �1	∞� be arbitrary. In this section we prove (0.12)
by carrying out the four steps listed at the end of subsection 0.4.3. These steps
are handled at the following places: the simple steps (i) and (iii) in (2.1), step
(ii) in (2.4), and step (iv) below (2.4).

As before, we write uξ for the solution of the Anderson problem (0.1). Given
R > 0, let Ipt = QRα�pt� be the centered cube with side length 2Rα�pt�, and
let �Ipt� denote its Lebesgue measure. We use the shift-invariance of uξ�t	 ·�,
Jensen’s inequality and the bound (1.2) to estimate, for large t,

�uξ�t	0�p� =
〈

1
�Ipt�

∫
Ipt

uξ�t	 x�p dx
〉

≥
〈(

1
�Ipt�

∫
Ipt

uξ�t	 x�dx
)p〉

≥
〈
�uξRα�pt��t	 ·�	��p

〉
�

(2.1)

Here �·	 ·� is the inner product in L2�Rd� (recall that uξRα�pt��t	 ·� = 0 outside
of Ipt).

The following lemma reduces the proof to the case p = 1. In order not to
interrupt the flow of the argument, we defer its proof to the end of this section.

Lemma 1. For every R > 0 and any p ≥ 1, as t→ ∞,〈
�uξRα�pt��t	 ·�	��p

〉
≥ eo�β�pt��

〈
�uξRα�pt��pt	 ·�	��

〉
�(2.2)

Assertions (i) [resp. (ii)] of the next lemma are derived by applying large
deviation arguments for the occupation times measures of Brownian motion
resp. Brownian bridge. This lemma will be crucially needed in the proof of the
preceding Lemma 1 as well as for the proofs of the lower and upper bounds
in Theorem 1. Recall that χ is given by (0.11).

Lemma 2. For every R > 0, there is a number χR > 0 such that, as t→ ∞,
�i�

〈
�uξRα�t��t	 ·�	��

〉
= exp �H�t� − β�t��χR + o�1��
 	

�ii�
〈 ∞∑
k=1
etλ

ξ
k�It�
〉
≤ exp �H�t� − β�t��χR + o�1��
 �

(2.3)

Furthermore, limR→∞ χR = χ.

Now Theorem 1(i) is proved by an application of the Lemmas 1 and 2 (i)
to the r.h.s. of (2.1). Indeed, combine (2.1) with (2.2) and Lemma 2 (i) for pt
instead of t. Then let R→ ∞ to obtain (0.12).
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Proof of Lemma 2(i). Recall the notations (0.2) – (0.6). Use the scaling
relation (1.3) for s = t, the Feynman-Kac representation (1.11), Fubini’s theo-
rem, and the definition (0.5) of Jt to see that〈

�uξRα�t��t	 ·�	��
〉
e−H�t�eo�β�t��

=
〈
�uξtR�β�t�	 ·�	��

〉
=
∫
QR

dxEx

〈
exp�β�t��Lβ�t�	 ξt��

〉
��suppLβ�t� ⊂ QR


=
∫
QR

dxEx exp�−β�t�Jt�Lβ�t�����suppLβ�t� ⊂ QR
�

(2.4)

Now observe that �Lβ�t��t>0 satisfies a weak large deviation principle w.r.t.
the uniform initial distribution having rate function κ�d and scale β�t� (cf.,
e.g., Deuschel and Stroock (1989), Chapter 4). Therefore and because of As-
sumption (J), Varadhan’s lemma implies that the

r.h.s. of (2.4) = exp�−β�t��χR + o�1��� as t→ ∞	(2.5)

where

χR = inf�κ�d�µ� +J�µ�:µ ∈ �c�Rd�	 suppµ ⊂ QR
�(2.6)

Obviously, this quantity tends to χ as R→ ∞. ✷

Proof of Lemma 2(ii). Recall that It = QRα�t�. We use the scaling relation
(1.4), the Fourier expansion (1.5), and the Feynman-Kac representation (1.12)
[and, as in (2.4), Fubini’s theorem and (0.5)] to obtain〈 ∞∑

k=1
exp�tλξk�It��

〉
e−H�t�

=
〈 ∞∑
k=1

exp�β�t�λξtk �QR��
〉

=
〈∫
QR

p
ξt
R�β�t�	 x	 x�dx

〉
=
∫
QR

dxEx exp�−β�t�Jt�Lβ�t�����suppLβ�t� ⊂ QR
 δx�Wβ�t���

(2.7)

Now we estimate the r.h.s. of (2.7) from above as follows. We fix some small
number δ > 0 and estimate

��suppLβ�t� ⊂ QR
 ≤ ��τR > β�t� − δ
�(2.8)

Next, observe that Lβ�t� is a convex combination of Lβ�t�−δ and Lδ, time-shifted
by β�t� − δ. Hence, we may use the concavity and nonnegativity of Jt to get

− β�t�Jt�Lβ�t�� ≤ −�β�t� − δ�Jt�Lβ�t�−δ��(2.9)
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Then applying the Markov property at time β�t� − δ, we find that the r.h.s. of
(2.7) is less than or equal to∫

QR

dxEx exp�−�β�t� − δ�Jt�Lβ�t�−δ����τR > β�t� − δ
pδ�Wβ�t�−δ	 x��(2.10)

Here pδ is the transition kernel for our Brownian motion. Note that
pδ�Wβ�t�−δ	 x� ≤ �4πκδ�−d/2. Now we may conclude as below (2.4) to complete
the proof. ✷

Proof of Lemma 1. Abbreviate r = Rα�pt� for a while. We write for short
λk and ek instead of λξk�Qr� and eξk�Qr� for the kth eigenvalue and correspond-
ing eigenfunction of κ� + ξ in L2�Qr� with zero boundary condition. Use the
Fourier expansion (1.6), the simple estimate(

n∑
k=1
xk

)p
≥

n∑
k=1
x
p
k	 x1	 � � � 	 xn ≥ 0	(2.11)

and Jensen’s inequality to obtain

〈�uξr�t	 ·�	��pr
〉 = 〈( ∞∑

k=1
exp�tλk��ek	��2r

)p〉

≥
〈∑∞

k=1 exp�ptλk��ek	��2pr
〉

�∑∞
k=1 exp�ptλk��

〈 ∞∑
k=1

exp�ptλk�
〉

≥
(〈∑∞

k=1 exp�ptλk��ek	��2r
〉

�∑∞
k=1 exp�ptλk��

)p
(2.12)

×
〈 ∞∑
k=1

exp�ptλk��ek	��2r
〉
���−2r

= eo�β�pt��
(

��uξr�pt	 ·�	���
�∑∞

k=1 exp�ptλk��

)p
��uξr�pt	 ·�	���	

where in the third line we have used that �ek	��2r ≤ ���2r, and in the last line
we have again used the Fourier expansion (1.6).

Lemma 2 shows that the quotient on the r.h.s. of (2.12) is not smaller than
eo�β�pt��, which completes the proof. ✷

3. Proof of Theorem 1(ii): The upper bound. In Section 3.2, we prove
(0.13), basically following the program outlined in Section 0.4.3. The main
building stone for the proof of step (iii) (the “compactification”) may be of
independent interest and is isolated in subsection 3.1: We there estimate the
principal Dirichlet eigenvalue in a large box from above against the maximum
of the principal eigenvalues in small subboxes. Some technical lemma will be
proved in Section 3.3.
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3.1. Eigenvalue estimates. In the following, for any bounded domain D ⊂
R
d and any Hölder continuous potential V:Rd → R, we write λV�D� to denote

the principal eigenvalue of the operator κ�+V in L2�D� with zero boundary
condition. Recall that Qr = �−r	 r�d for r > 0.

The objective of this subsection is to derive, for any 0 < r � R, an upper
bound for λV�QR� in terms of the maximum of the eigenvalues λV�2rk+Qr�
in the small subboxes 2rk +Qr of QR with k = �k1	 � � � 	 kd� ∈ Z

d and lattice
norm �k� = max��k1�	 � � � 	 �kd�
 ≤ R/r. In order to do this properly, we need
to let the small boxes overlap each other slightly, and we need to lower the
potential V in the overlapping area, which will be a neighborhood of the grid
�2rZd + ∂Qr� ∩QR. We turn to the precise formulation.

Proposition 1. For every r ≥ 2, there is a smooth function 0r:R
d → �0	∞�

whose support is contained in the one-neighborhood of the grid 2rZd+∂Qr such
that for all R > r and all Hölder continuous potentials V:Rd → R,

λV−0r�QR� ≤ max
k∈�d	�k�<R/r+1

λV�2rk+Qr+1��(3.1)

Moreover, 0r can be chosen periodic in each coordinate with period 2r and
such that ∫

Qr

0r�x�dx ≤ K
r
�Qr�(3.2)

for some K ∈ �0	∞� which does not depend on r.

Proof. Fix r ≥ 2. The idea of the proof is to construct a partition of the
one, ∑

k∈�d
η2k�x� = 1	 x ∈ R

d	(3.3)

where ηk�x� = η�2rk+ x� and η:Rd → �0	1� is a smooth function with η ≡ 1
on Qr−1 and suppη ⊂ Qr+1. (The details are given at the end of the proof.)

Then we may take

0r�x� = κ
∑
k∈�d

�∇ηk�x��2	 x ∈ R
d�(3.4)

To obtain the eigenvalue estimate (3.1), we apply, for any bounded domain
D ⊂ R

d, the Rayleigh-Ritz formula

λV�D� = sup
�ψ�=1

GV�ψ�	(3.5)

where

GV�ψ� =
∫
�d

{−κ�∇ψ�x��2 +V�x�ψ2�x�} dx	(3.6)

and the supremum in (3.5) is taken over all smooth functions ψ with suppψ ⊂
D and L2-norm �ψ� = 1.
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Now fix some R > r. For simplicity, we assume that R/r ∈ N. Let ψ be an
arbitrary smooth function with suppψ ⊂ QR and �ψ� = 1 and define

ψk = ηkψ	 k ∈ Z
d�(3.7)

Note that ψk is smooth with suppψk ⊂ 2kr +Qr+1 and
∑
k∈�d �ψk�2 = 1.

Then one has the identity

GV−0r�ψ� = ∑
k∈�d

�ψk�2GV
(
ψk
�ψk�

)
�(3.8)

Indeed, using (3.3) and (3.4), one sees that

κ
∑
k∈�d

�∇ψk�2 = κ ∑
k∈�d

{
ψ2 �∇ηk�2 + 1

2 ∇η2k · ∇ψ2 + η2k �∇ψ�2
}

= ψ20r + κ�∇ψ�2�
(3.9)

Therefore, one obtains∑
k∈�d

�ψk�2GV
(
ψk
�ψk�

)
= ∑
k∈�d

GV�ψk�

=
∫ {

−κ ∑
k∈�d

�∇ψk�2 +V
∑
k∈�d

ψ2
k

}
dx

=
∫ {−κ�∇ψ�2 + �V−0r�ψ2} dx

= GV−0r�ψ�	

(3.10)

which yields (3.8).
Since ψk is smooth with suppψk ⊂ 2rk +Qr+1, the Rayleigh-Ritz formula

(3.5) yields thatGV�ψk/�ψk�� ≤ λV�2rk+Qr+1� (provided that �ψk�  = 0 which
may only happen for �k� ≤ R/r). Estimating each of these eigenvalues by their
maximum and taking into account that

∑
k∈�d �ψk�2 = 1, we find that the r.h.s.

of (3.8) does not exceed the r.h.s. of (3.1). Now also passing to the supremum
over ψ on the l.h.s. of (3.8), we arrive at the desired inequality (3.1).

It only remains to construct the function η with the properties required at
the beginning of the proof and such that (3.2) holds. One easily checks that
the ansatz

η�x� =
d∏
i=1
ζ�xi�	 x = �x1	 � � � 	 xd� ∈ R

d	(3.11)

reduces the construction of η to the case d = 1 (with η replaced by ζ).
It is not too hard to find a function ϕ:R → �0	1� such that

√
ϕ and

√
1− ϕ

are smooth, ϕ ≡ 0 on �−∞	−1� and ϕ ≡ 1 on �1	∞�, and ϕ�−x� = 1 − ϕ�x�
for all x ∈ R. Then we may take

ζ�x� =
√
ϕ�r+ x��1− ϕ�−r+ x��	 x ∈ R�(3.12)
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Indeed, ζ is smooth and ∑
k∈�
ζ2k�x� = 1	 x ∈ R	(3.13)

for ζk�x� = ζ�x+ 2rk�.
It is obvious from the construction of ζ and from (3.11) and (3.4) that 0r

is periodic in each coordinate with period 2r, and that 0r vanishes outside of
the one-neighborhood of the grid 2rZd + ∂Qr. Since ϕ does not depend on r,
the shape of 0r in this one-neighborhood is independent of r, hence

∫
Qr
0r dx

is proportional to the surface area of Qr as r→ ∞, that is, (3.2) holds. ✷

3.2. Strategy of the proof of Theorem 1(ii). For the remainder of this sec-
tion, we fix p ∈ �1	∞� and suppose that Assumption (J) holds.

The steps (i) – (iv) (see the end of Section 0.4.3) will be carried out at the
following places: (i) in Lemma 3 below, (ii) in (3.30) and (3.32), (iii) in (3.29)
[on base of Proposition 1], (iv) below (3.32) [on base of Lemma 2 (ii)].

Our first lemma states that asymptotically we may replace the solution uξ

of (0.1) by the solution of the corresponding initial-boundary value problem
in some (time-dependent) box. We fix some positive function R�t� such that
R�t� = eo�β�t�� and R�t�α�t�/t→ ∞ as t→ ∞.

Lemma 3. As t→ ∞,
〈
uξ�t	0�p〉 ≤ eo�β�pt�� 〈uξR�pt��t	0�p

〉
�(3.14)

Proof. Use the Feynman-Kac formulas (1.7) and (1.11) to see that (3.14)
will follow from

lim
t→∞

〈(
E0 exp

{∫ t
0 ξ�Wu�du

}
��τR�pt� ≤ t


)p〉
�uξ�t	0�p� = 0�(3.15)

Indeed, let �·�p denote the Lp–norm w.r.t. �·�. Then (1.2), the triangle inequal-
ity, and (3.15) yield

0 ≤ �uξ�t	0��p − �uξR�pt��t	0��p
≤ �uξ�t	0� − uξR�pt��t	0��p = o��uξ�t	0��p��

(3.16)

Hence, �uξR�pt��t	0��p ∼ �uξ�t	0��p, and this implies (3.14).
First, we estimate the numerator of the l.h.s. of (3.15). Applying Jensen’s

inequality twice (first to P0 and then to the normalized Lebesgue measure on
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�0	 t�) and using Fubini’s theorem, we find that〈(
E0 exp

{∫ t
0
ξ�Wu�du

}
��τR�pt� ≤ t


)p〉
≤
〈
1
t

∫ t
0
duE0 exp�ptξ�Wu����τR�pt� ≤ t


〉
= 1
t

∫ t
0
duE0 �exp�ptξ�Wu�����τR�pt� ≤ t


= eH�pt�
P0�τR�pt� ≤ t�

≤ exp
{
H�pt� − �1+ o�1��R�pt�2/�4κt�} 	

(3.17)

where the last estimate holds for large t and is implied by the reflection prin-
ciple.

Secondly, using Theorem 1 (i), we estimate the denominator on the l.h.s. of
(3.15) as follows: 〈

uξ�t	0�p〉 ≥ exp�H�pt� − β�pt��χ+ o�1����(3.18)

Substituting (3.17) and (3.18) in (3.15), we get

l.h.s. of (3.15) ≤ lim sup
t→∞

exp
{
−�1+ o�1��R�pt�2

4κt
+ β�pt��χ+ o�1��

}
�(3.19)

This is zero since R�t�2/t = β�t��R�t�α�t�/t�2 tends to infinity faster than
β�t�. ✷

The main ingredient in our proof of Theorem 1 (ii) is the following which
settles basically the case p = 1.

Proposition 2. As t→ ∞,〈
�uξR�t��t	 ·�	��

〉
≤ exp�H�t� − β�t��χ+ o�1��
�(3.20)

The following lemma gives an upper estimate of the pth moment of
u
ξ
R�pt��t	0� in terms of the first moment of an integral of uξR�pt��pt	 ·�. This

lemma basically reduces the case p ≥ 1 to the case p = 1.

Lemma 4. If Assumption (H) is satisfied, then we have, as t→ ∞,〈
u
ξ
R�pt��t	0�p

〉
≤ eo�β�pt��

[〈
�uξR�pt��pt	 ·�	��

〉
+ eH�pt�−β�pt�χ

]
�(3.21)

Since its proof is rather technical, we defer it to subsection 3.3.
Together with Lemma 3 and Lemma 4, Proposition 2 implies Theorem 1

(ii). Indeed, if Assumption (H) is satisfied, substitute (3.21) in (3.14) and ap-
ply (3.20) for pt instead of t to arrive at (0.13). In the case p = 1, use the
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shift-invariance of the field ξ, the statement of Lemma 3 for the respective
quantities shifted by x ∈ QR�t�, and integrate over x to obtain〈

uξ�t	0�〉 = �2R�t��−d 〈�uξ�t	 ·�	��R�t�
〉 ≤ eo�β�t�� 〈�uξ2R�t��t	 ·�	��R�t�

〉
	(3.22)

where we also have used that the solution in the box x+QR�t� does not exceed
the one in Q2R�t�. Now Proposition 2, applied for 2R�t� instead of R�t�, also
implies (0.13).

In the remainder of this subsection, we prove Proposition 2.

Proof of Proposition 2. For r> 0, we choose a smooth function 0r:R
d→

�0	∞� as in Proposition 1. In particular, K ∈ �0	∞� is chosen according to
(3.2).

For any θ ∈ R
d define a shifted version of 0r by

0θr�x� = 0r�x− θ�	 x ∈ R
d�(3.23)

Let V:Rd → R be some Hölder continuous potential.

Step 1. For any β > 0, y ∈ R
d, and 2 ≤ r < R,

uVR�β	y� ≤
exp�Kβ

r
�

�2r�d
∫
Qr

u
V−0θr
R �β	y�dθ�(3.24)

Proof. Since, by periodicity of 0r, the map x "→ ∫Qr 0θr�x�dθ is constant,
we may calculate, with the help of (3.2),∫

Qr

�Lβ	0θr�dθ =
∫
Qr

0θr�0�dθ =
∫
Qr

0r�x�dx ≤ K
r
�Qr��(3.25)

Recall (1.11), use (3.25) and apply Jensen’s inequality to estimate

uVR�β	y� = Ey exp�β�Lβ	V����τR > β


≤ exp
(
Kβ
r

)
Ey exp

{
−β�Qr�−1

∫
Qr

�Lβ	0θr�dθ
}

× exp�β�Lβ	V����τR > β


≤ exp�Kβ
r
�

�Qr�
∫
Qr

dθEy exp�β�Lβ	V−0θr����τR > β
�

(3.26)

Now use (1.11) once more to arrive at (3.24). ✷

For the next three steps, recall the notation from Section 1.1, resp., the
beginning of Section 3.1.

Step 2. For all β	R > 0,

�uVR�β	 ·�	�� ≤ �2R�d exp�βλV�QR���(3.27)
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Proof. Use the Fourier expansion (1.6) and Parseval’s equality for the box
QR to obtain

�uVR�β	 ·�	�� = (uVR�β	 ·�	�)R =
∞∑
k=1

exp�βλk��ek	��2R

≤ exp�βλ1�
∞∑
k=1

�ek	��2R
= exp�βλV�QR���� �2R = exp�βλV�QR���2R�d� ✷

(3.28)

Step 3. For any β > 0 and 2 ≤ r < R,

�uVR�β	 ·�	�� ≤
(
R

r

)d
exp�Kβ

r
�

×
∫
Qr

exp
{
β max
k∈�d	 �k�<R/r+2

λV�θ+ 2rk+Qr+1�
}
dθ�

(3.29)

Proof. Integrate (3.24) over y ∈ QR and apply (3.27) for V − 0θr instead
of V to obtain that the l.h.s. of (3.29) is less than or equal to

exp�Kβ
r
�

�2r�d
∫
Qr

∫
QR

u
V−0θr
R �β	y�dydθ

≤
(
R

r

)d
exp
(
K
β

r

) ∫
Qr

exp
{
βλV−0θr�QR�

}
dθ�

Now apply (3.1) to arrive at (3.29). ✷

Step 4. Conclusion.

Proof. Use the scaling relation (1.3) for s = t and recall (0.2)–(0.6) to see
that 〈

�uξR�t��t	 ·�	��
〉
e−H�t� = eo�β�t��

〈
�uξt
R̃�t��β�t�	 ·�	��

〉
	(3.30)

where R̃�t� = R�t�/α�t�.
An application of Step 3 for V = ξt, β = β�t� and R = R̃�t� yields, for any

r ≥ 2, 〈
�uξt
R̃�t��β�t�	 ·�	��

〉
≤ exp�o�β�t��� exp�Kβ�t�

r
�

×
〈∫
Qr

exp
{
β�t� max

k∈�d	�k�<R̃�t�/r+2
λξt�θ+ 2rk+Qr+1�

}
dθ

〉
≤ exp�o�β�t��� exp

(
K
β�t�
r

)
× ∑
k∈�d	�k�<R̃�t�/r+2

∫
Qr

〈
exp�β�t�λξt�θ+ 2rk+Qr+1��

〉
dθ�

(3.31)
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Use the shift-invariance of the potential and the additivity of the map V "→
λV�θ + 2rk +Qr+1� for constant functions to see that the expectation in the
last line of (3.31) is independent of k and θ. Thus, from (3.31), we have, for
any r ≥ 2, 〈

�uξt
R̃�t��β�t�	 ·�	��

〉
≤ exp�o�β�t��� exp

(
K
β�t�
r

) 〈
exp�β�t�λξt�Qr+1��

〉
≤ exp�o�β�t��� exp

(
K
β�t�
r

)〈 ∞∑
k=1

exp�β�t�λξtk �Qr+1��
〉

≤ exp�o�β�t��� exp
(
K
β�t�
r

)
exp�−H�t��

×
〈 ∞∑
k=1

exp�tλξk�Q�r+1�α�t���
〉
	

(3.32)

where we have used the scaling relation (1.4). Now use Lemma 2 (ii) to con-
clude that

lim sup
t→∞

1
β�t� log

〈
�uξt
R̃�t��β�t�	 ·�	��

〉
≤ K
r

− χr+1
r→∞−→ −χ�(3.33)

In view of (3.30), this completes the proof of Proposition 2. ✷

3.3. Proof of Lemma 4: Reduction to p = 1. We proceed in three steps.

Step 1. For all functions δ = δ�t� ∈ �0	 t�, γ = γ�t� > 0, η = η�t� > 0, we
have, as t→ ∞,〈

u
ξ
R�pt��t	0�p

〉
≤ eo�β�pt��

[
eγp

δpd/2

〈
�uξR�pt��t− δ	 ·�	��p

〉
+ e−pγη+H�pt+pηδ�

]
�

(3.34)

Proof. Use the Feynman-Kac formula (1.11), split the Brownian expecta-
tion into the parts where

∫ δ
0 ξ�Ws�ds ≤ γ and > γ, use the Markov property

at time δ, and Chebyshev’s and Jensen’s inequality to estimate

u
ξ
R�pt��t	0� = E0 exp

{∫ t
0
ξ�Ws�ds

}
��τR�pt� > t


≤ eγE0��τR�pt� > δ
EWδ
exp
{∫ t−δ

0
ξ�W̃s�ds

}
×��τ̃R�pt� > t− δ


+e−ηγE0 exp
{∫ t

0
�1+ η��0	δ��s��ξ�Ws�ds

}
≤ eγ

∫
�d
dzpδ�z�uξR�pt��t− δ	 z�

+e−ηγ
∫ t
0
ds

1+ η��0	δ��s�
t+ ηδ E0 exp ��t+ ηδ�ξ�Ws�
 �

(3.35)

Here pδ denotes the centered Gaussian density with variance 2δκ.
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Since maxz∈�d pδ�z� ≤ �2δκ�−d/2, the first summand on the r.h.s. of (3.35)
does not exceed eγ�2δκ�−d/2�uξR�pt��t−δ	 ·�	��. Now take the pth moment, use
the inequality �a + b�p ≤ 2p−1�ap + bp� for a	 b ≥ 0, use Jensen’s inequal-
ity twice and Fubini’s theorem, recall (0.2) and summarize to arrive at the
claim. ✷

Step 2. For all functions δ = δ�t� ∈ �0	 t�, we have, as t→ ∞,〈
�uξR�pt��t− δ	 ·�	��p

〉
≤ eo�β�pt��

〈
�uξR�pt��pt	 ·�	��

〉
�(3.36)

Proof. Wewrite λk and ek for the kth eigenvalue and corresponding eigen-
function of the operator κ� + ξ on QR�pt� with zero boundary condition. Use
the Fourier representation (1.6) to estimate

�uξR�pt��t− δ	 ·�	�� =
∞∑
k=1

exp��t− δ�λk��ek	��2R�pt�

≤ ∑
k:λk≥0

exp�tλk��ek	��2R�pt� +
∑
k:λk<0

�ek	��2R�pt�

≤
∞∑
k=1

exp�tλk��ek	��2R�pt� + ���2R�pt��

(3.37)

We estimate the first summand on the r.h.s. of (3.37) by using Jensen’s in-
equality w.r.t. the probabilities �ek	��2R�pt�/���2R�pt�, k ∈ N, to obtain( ∞∑

k=1
exp�tλk��ek	��2R�pt�

)p
≤ ���2�p−1�R�pt�

∞∑
k=1

exp�ptλk��ek	��2R�pt�

= exp�o�β�pt����uξR�pt��pt	 ·�	���
(3.38)

Substituting this in (3.37), we arrive at

�uξR�pt��t− δ	 ·�	��p ≤ eo�β�pt��
[(
u
ξ
R�pt��pt	 ·�	�

)
+ 1
]
�(3.39)

Note that the assertion (3.36) remains unchanged by adding an arbitrary con-
stant to the potential ξ. Choosing this constant sufficiently large, the reader
verifies (using the Feynman-Kac formula, e.g.) that ��uξR�pt��pt	 ·�	��� tends to
infinity as t→ ∞. Thus, taking expectations in (3.39), we arrive at (3.36). ✷

Step 3. Conclusion.

Proof. In Step 1, we leave ε > 0 fixed and make the following choices:

γ = εβ�pt�	 δ = e−2εβ�pt�	 η = 1
p
eεβ�pt��(3.40)

According to Assumption (H), we may choose some K > 0 such that

H�pt+ e−εβ�pt�� ≤H�pt� +Keεβ�pt�	 t > 0�(3.41)

Substituting this and (3.36) in (3.34) and letting ε→ 0, we obtain the claim. ✷
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4. Examples.

4.1. Gaussian potential. Let �ξ�x��x ∈ R
d
 be a Hölder continuous, shift-

invariant centered Gaussian field. Assume that the covariance function
B�x� = �ξ�0�ξ�x�� is twice continuously differentiable in some neighborhood
of 0. Abbreviate

σ2 = B�0� and =2 = −B′′�0��(4.1)

Thus, H�t� = t2σ2/2. Note that Assumption (H) is satisfied. We assume that
the maximum of the covariance function at zero is strict, i.e. we may assume
that = ∈ �+

d . We are going to calculate the function Jt. Fix µ ∈ �c�Rd�. Then

Jt�µ� = −α
2�t�
t

log
[
e−H�t�

〈
et�µ	ξ�α�t� ·��

〉]
= tα

2�t�
2
σ2 − tα

2�t�
2

〈(∫
ξ�α�t�x�µ�dx�

)2〉
= tα

2�t�
2

∫ ∫
�B�0� −B�α�t��x− y���µ�dx�µ�dy��

(4.2)

Now expand B�·� into a Taylor series around zero and substitute it in the last
line of (4.2) to obtain

Jt�µ� = −tα
4�t�
4

∫ 1

0
dθ 2�1− θ�

∫ ∫
�x− y�TB′′ �α�t�θ�x− y��

×�x− y�µ�dx�µ�dy��
(4.3)

Now we see that Assumption (J) is satisfied for α�t� = t−1/4 (yielding β�t� =
t3/2). Indeed, assume that �µt�t>0 is a family of probability measures on R

d

whose supports are contained in some fixed compact set K ⊂ R
d and which

converge weakly toward some µ ∈ �c�Rd�. Since B′′�·� is continuous at zero,
the integrand on the right side of (4.3) converges to �x − y�TB′′�0��x − y�
as t → ∞, uniformly in θ ∈ �0	1� and in x	y ∈ K. Thus, we obtain that
limt→∞Jt�µt� = J�µ�, where

J�µ� = 1
4

∫ ∫
�x− y�T=2�x− y�µ�dx�µ�dy� = 1

2 tr�=2cov�µ���(4.4)

In particular, J is a function of the covariance.
Therefore, Theorem 1 is applicable here where, according to (0.16), the

quantity χ is given by

χ = inf
�∈�+

d

f��� with f��� = κ
4
tr��−1� + 1

2
tr�=2���(4.5)

Let us compute χ explicitly. One easily checks that ∂εf�� + εA��ε=0 = 0
for all symmetric matrices A if and only if � = √κ/2=−1. Moreover, since
∂2εf��+εA��ε=0 = κtr��−3A2�/2 ≥ 0 for all �, f is convex on�+

d . Consequently,

χ = f
(√
κ

2
=−1
)
=
√
κ

2
tr=�(4.6)
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If, for d = 1, the correlation function B behaves like

B�x� = σ2 �1− �x�γ�λ+ o�1��� as x→ 0(4.7)

with some λ	 σ > 0 and some γ ∈ �0	2�, then Assumption (J) is satisfied with
α�t� = t− 1

2+γ and β�t� = t�4+γ�/�2+γ� and

J�µ� = σ
2λ

2

∫
�2

�x− y�γ µ�dx�µ�dy�	 µ ∈ �c�R��(4.8)

In this case, using scaling properties of �1, we find that

χ=κ γ
2+γ

(
σ2λ

2

)2/�2+γ�
inf
{
�1�µ�+

∫
�2

�x−y�γ µ�dx�µ�dy�:µ ∈ �c�R�
}
�(4.9)

4.2. Compound Poisson potential. Let 0�dx� denote the realizations of a
compound Poisson process on R

d with intensity parameter λ > 0 and mass dis-
tribution F�ds� on �0	∞�. That is, we have a Poisson distribution of particles
with intensity λ > 0 and independent masses which are distributed according
to F. In particular, for every bounded measurable set B ⊂ R

d, the distribution
of the mass 0�B� in B is given by

Prob�0�B� ∈ ds� = e−λ�B�
∞∑
k=0

�λ�B��k
k!

F∗k�ds�	(4.10)

where ∗k means k-fold convolution. For F = δ1 we obtain the Poisson process.
Furthermore, let ϕ:Rd → R be twice continuously differentiable with com-

pact support. We assume that ϕ has a unique global maximum at the origin
with ϕ�0� > 0. Abbreviate =2 = −ϕ′′�0� ∈ �+

d .
The field we are studying here is given by

ξ�x� =
∫
�d
ϕ�y+ x�0�dy��(4.11)

Thus, ξ is the weighted sum of copies of clouds ϕ around each point of the
compound Poisson process. Clearly, �ξ�x��x ∈ R

d
 is stationary.
We are going first to identify the function Jt. We shall make use of the

formula

log
〈
e
∫
ψ�y�0�dy�

〉
= λ
∫
�0	∞�

∫
�d
�esψ�y� − 1�dyF�ds�(4.12)

for continuous functions ψ:Rd → R having compact support. In particular,
H�t� = λ

∫ ∫ �etsϕ�y� − 1�dyF�ds�. We require that the support of F has a
finite upper boundary which will be denoted by m. Then H�t� is finite for all
t > 0, and also Assumption (H) is satisfied.
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We leave the scale function α�t� → 0 arbitrary for a while and fix µ ∈
�c�Rd�. Inserting (4.11), we obtain

log �exp�β�t��µ	 ξt���

= log
�exp�t�µ	 ξ�α�t�·����

�exp�tξ�0���
= log

〈
exp
(
t
∫ ∫

ϕ�y+ α�t�x�µ�dx�0�dy�
)〉

− log
〈
exp
(
t
∫
ϕ�y�0�dy�

)〉
�

(4.13)

Hence, in view of (4.12), Jt is given by

Jt�µ� = λ
α2�t�
t

∫
�0	∞�

∫
�d

×
(
exp�tsϕ�y�� − exp

(
ts
∫
ϕ�y+ α�t�x�µ�dx�

))
dyF�ds��

(4.14)

Now let �µt�t>0 be a family of probability measures on R
d whose supports

are contained in one fixed compact set and which converge weakly toward
some µ ∈ �c�Rd� as t→ ∞. We want to determine some appropriate choice of
α�t� such that Jt�µt� converges toward some function J�µ�. Since Jt is shift-
invariant, we may assume that the probabilities µt have zero expectation. We
also assume that α�t� = o�t−1/2�, which will be justified later.

Using the approximation ex − 1 ∼ x for x→ 0 and a Taylor expansion, we
deduce from (4.14) that

Jt�µt� ∼ λα2�t�
∫ ∫

etsϕ�y�s
∫
�ϕ�y� − ϕ�y+ α�t�x�� µt�dx�dyF�ds�

∼ λ
2
α4�t�

∫ ∫
etsϕ�y�s tr �−ϕ′′�y�cov�µt�� dyF�ds��

(4.15)

Now an application of the Laplace method yields

Jt�µt� ∼
λ

2
α4�t��2π�d/2t−d/2m1−d/2det�=−1�tr�=2cov�µ��

×
∫
�0	∞�

etsϕ�0�F�ds��
(4.16)

If we choose

α�t� = t d8
(
m1−d/2

∫
�0	∞�

etsϕ�0�F�ds�
)− 1

4

	(4.17)

then J�µt� → J�µ�, where

J�µ� = λ
2
�2π�d/2det�=−1� tr (=2cov�µ�) �(4.18)
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Therefore, Assumption (J) is satisfied. Note that α�t� decays exponentially fast
toward zero. Using (0.16) and proceeding as below (4.5), we obtain

χ = inf

{
κ

4
tr��−1� + λ �2π� d2

2det�=� tr�=
2��:� ∈ �+

d

}

=
(
κλ

�2π� d2
2det�=�

) 1
2

tr�=��
(4.19)

In the pure Poisson case (i.e., F = δ1), we have

H�t� = λ
∫ (
etϕ�y� − 1

)
dy and β�t� = e t2ϕ�0�t1− d

4 �(4.20)

The second-order term χβ�t� in Theorem 1 depends on the cloud ϕ via ϕ�0�
and ϕ′′�0� only. Note that, up to o�β�t��, the first-order term H�t� depends on
all values of ϕ in �y:ϕ�y� > ϕ�0�/2
.

APPENDIX

A.1. Proof of (0.16).

Step 1. For any µ ∈ �c�Rd� and � ∈ �+
d , we have κ�d�µ� ≥ √

κtr��� −
tr��2 covµ�.

Proof. Let C be a regular d×d-matrix such that � = 2
√
κCTC, and define

ψ�x� = e−�Cx�2 for x ∈ R
d. Then we have

κ�ψ+ pψ = λψ	(A.1)

where p�x� = −��x�2 and λ = −√
κtr���.

Recall the notation from the beginning of subsection 3.1. ChooseR > 0 with
suppµ ⊂ QR−1. We are going to use the formula

κ�d�µ� = sup��µ	V� − λV�QR� �V:QR → R Hölder cont.
�(A.2)

Let ψ0
R denote a positive eigenfunction of κ� in L2�QR� with Dirichlet

boundary condition. With some smooth function η:Rd → �0	1� satisfying η = 1
on QR−1 and suppη ⊂ QR, define on QR,

ψR = ηψ+ �1− η�ψ0
R�(A.3)

Then ψR is positive on QR and satisfies an equation of the form

κ�ψR + pRψR = λψR(A.4)

with Dirichlet boundary condition. Since ψR = ψ0
R close to ∂QR, the potential

pR is Hölder continuous in QR. Hence, λ = λpR�QR�. Since, moreover, pR = p
on QR−1, (A.2) yields

κ�d�µ� ≥ �µ	pR� − λpR�QR� = �µ	p� − λ = √
κtr��� − tr��2covµ�� ✷(A.5)
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Step 2. Proof of “ ≥ �”
Proof. Given µ ∈ �c�Rd� with regular covariance matrix, apply Step 1 to

� =
√
κ
2 �covµ�−1 to obtain

κ�d�µ� ≥
κ

4
tr��covµ�−1��(A.6)

Note that �d�µ� = ∞ if covµ is not regular since, in this case, µ is not
absolutely continuous w.r.t. the Lebesgue measure on R

d. Thus, if J�µ� =
j�covµ� for some function j, then, by inserting (A.6) into (0.11), we obtain

χ = inf
{
κ�d�µ� + j�covµ�:µ ∈ �c�Rd�	 covµ regular

}
≥ inf

{κ
4
tr��covµ�−1� + j�covµ�:µ ∈ �c�Rd�	 covµ ∈ �+

d

}
= inf

{κ
4
tr��−1� + j���:� ∈ �+

d

}
�

(A.7)

This ends the proof of “≥.” ✷

Step 3. Proof of “≤ �”
Proof. Fix � ∈ �+

d and a regular matrix C such that 2� = �CTC�−1 and
define ψ�x� = e−�Cx�2 . ForR > 0, choose a smooth function ηR:R

d → �0	1� as in
the end of the proof of Proposition 1. Recall that, in particular, suppηR ⊂ QR+1
and ηR = 1 on QR−1.

Now define ψR = η2Rψ and µR�dx� = ψR�x�dx/ZR ∈ �c�QR+1�, where
ZR = ∫ ψR�x�dx. Clearly, limR→∞ZR = ∫ ψ�x�dx and limR→∞ cov�µR� = �.
If J�µ� = j�cov�µ�� for some function j and all µ ∈ �c�Rd�, then j inherits
the continuity from J, and therefore we also have limR→∞ j�cov�µR�� = j���.

Furthermore, from the construction of ηR it is clear that �∇ηR� and �∇η2R�
are uniformly bounded by some constant that does not depend onR and vanish
outside of QR+1 \QR−1. Therefore, one also easily verifies that

�d�µR� =
∫ �∇√ψR�2 dx

ZR
→
∫ �∇√ψ�2 dx∫

ψdx
= 1

4
tr��−1�(A.8)

as R→ ∞.
Thus, we obtain from (0.11)

χ = inf�κ�d�µ� + j�covµ�:µ ∈ �c�Rd�

≤ lim
R→∞

�κ�d�µR� + j�covµR�


= κ
4
tr��−1� + j����

(A.9)

Passing to the infimum over all � ∈ �+
d , we arrive at “≤” in (0.16). ✷

A.2. Proof of (0.17).

Proof of ⇐. This is well-known.
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Proof of ⇒. Let χ = 0.

Step 1. J�ν� = 0 for all uniform distributions ν on cubes.

Proof. We fix R > 0 and equip the Sobolev space H1 = H1�QR� with
the norm � · �H1 given by �f�2H1 = �f�2L2 + �∇f�2L2 . For measures µ ∈ � �QR�
having Lebesgue density p with

√
p ∈H1 we define

˜�d�µ� = �∇√p�2L2 �(A.10)

Note that, due to boundary effects, ˜�d�µ� does not necessarily coincide with
�d�µ�.

Every µ ∈ � �Rd� may be written as a convex combination µ = ∑x∈�d γxµx
with µx ∈ � �2Rx+QR�. If νx ∈ � �QR� is a suitable shift of µx and�d�µ� <∞,
then

�d�µ� =
∑
x∈�d

γx ˜�d�νx��(A.11)

This, together with the concavity and shift-invariance of J, implies that

0 = χ ≥ inf

{
κ ˜�d�ν� +J�ν�: ν ∈ � �QR�	

√
dν

dx
∈H1

}
�(A.12)

Hence, there is a sequence of measures νn ∈ � �QR� with densities pn =
dνn/dx satisfying

√
pn ∈H1 such that �∇√pn�2L2 = ˜�d�νn� → 0 and J�νn� →

0 as n → ∞. In particular, the sequence ��√pn�H1�n is bounded. Since H1

is compactly embedded in L2 = L2�QR� and the unit sphere of H1 is weakly
compact, we may assume that there exists q ∈ H1 such that

√
pn → q in L2

and weakly in H1. For all f ∈H1, we have

��∇q	∇f�L2 � = lim
n→∞ ��∇√pn	∇f�L2 � ≤ lim

n→∞�∇√pn�L2�∇f�L2 = 0�(A.13)

Therefore, q is a. e. constant on QR. In particular, �νn�n converges weakly
toward the uniform distribution ν on QR. By continuity of J, we have J�ν� =
limn→∞J�νn� = 0, and the assertion follows. ✷

Step 2. J�µ� = 0 for all µ ∈ �c�Rd� having a bounded density.

Proof. Let µ ∈ �c�Rd� have a bounded density. Choose R > 0 so large
that suppµ ⊂ QR. Then the uniform distribution onQR is a non-trivial convex
combination of µ and some other probability measure with support inQR. The
assertion now follows from the concavity and nonnegativity of J and Step 1. ✷

Step 3. Conclusion. Let µ ∈ �c�Rd� and let ϕ:Rd → �0	∞� be a smooth
probability density with compact support. Then µϕ = ϕ ∗ µ has the bounded
density pϕ�x� =

∫
ϕ�x − y�µ�dy� which has a compact support. According to

Step 2, J�µϕ� = 0. Since µϕ is a (continuous) convex combination of transla-
tions of µ, the continuity and concavity of J imply that J�µ� = 0. ✷
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