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A TRANSITION FUNCTION EXPANSION FOR A DIFFUSION
MODEL WITH SELECTION

By A. D. Barbour,1 S. N. Ethier and R. C. Griffiths

University of Zürich, University of Utah and Monash University

Using duality, an expansion is found for the transition function of
the reversible K-allele diffusion model in population genetics. In the neu-
tral case, the expansion is explicit but already known. When selection is
present, it depends on the distribution at time t of a specifiedK-type birth-
and-death process starting at “infinity.” The latter process is constructed
by means of a coupling argument and characterized as the Ray process
corresponding to the Ray–Knight compactification of the K-dimensional
nonnegative-integer lattice.

1. Introduction. Consider theK-allele diffusion model in population ge-
netics, where 2 ≤ K < ∞. It assumes values in the �K − 1�-dimensional
simplex

�K �=
{
x = �x1� � � � � xK�� x1 ≥ 0� � � � � xK ≥ 0� x1 + · · · + xK = 1

}
(1.1)

and is characterized in terms of the generator

L �= 1
2

K∑
i� j=1

xi�δij − xj�
∂2

∂xi ∂xj

+
K∑
i=1

[
K∑
j=1

γjixj + xi
(
K∑
j=1

σijxj −
K∑

k� l=1

σklxkxl

)]
∂

∂xi
�

(1.2)

where the infinitesimal matrix �γij� describes the mutation structure and the
real symmetric matrix �σij� describes the diploid selection pattern. (By “in-
finitesimal matrix” we mean a square matrix with nonnegative off-diagonal
entries and row sums equal to zero.) The domain of L is � �L� �= �f��K � f ∈
C2�RK�� and �∂/∂xi��f��K� �= �∂f/∂xi���K . This formulation of the generator
is due to Sato (1978).

Wright (1949) showed (essentially) that when

γij = 1
2θj > 0� i� j ∈ �1� � � � �K�� i �= j�(1.3)

(and hence γii = −�1/2�
∑
j� j �=i θj) the diffusion has a unique stationary dis-

tribution � in � ��K�, the set of Borel probability measures on �K, given by

��dx� = Cxθ1−1
1 · · ·xθK−1

K exp

{
K∑

i� j=1

σijxixj

}
dx1 · · ·dxK−1�(1.4)
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In the neutral case (σij = 0 for i� j = 1� � � � �K), C = ��θ1 + · · · +
θK�/���θ1� · · ·��θK�� and � is the Dirichlet distribution with parameters
θ1� � � � � θK, which we denote hereafter by Dir�θ�, where θ = �θ1� � � � � θK�.

In the neutral case more generally, it is known that the diffusion has a
unique stationary distribution � ∈ � ��K� assuming only that the infinitesi-
mal matrix �γij� is irreducible [Shiga (1981)], and in the latter case that the
diffusion is reversible with respect to � if and only if (1.3) holds [Overbeck
and Röckner (1997) and Li, Shiga and Yao (1999)].

Explicit eigenfunction expansions for the transition density were found in
the neutral case assuming (1.3) independently by Shimakura (1977) and Grif-
fiths (1979). Shimakura’s expansion was in terms of a pair of biorthogonal
systems of eigenfunctions (the Appell polynomials), whereas Griffiths’ was in
terms of a single orthonormal system of eigenfunctions (not explicitly identi-
fied). Here orthogonality is in L2�Dir�θ��.

Griffiths and Li (1983) and Tavaré (1984) later found a simpler expansion
for this transition function, which can be described as follows. Let �N�t�� t ≥
0� be the pure death process in Z+ ∪ �∞� starting at the entrance boundary
∞ with death rates

q◦�n�n− 1� �= 1
2n�n− 1+ �θ���(1.5)

where �θ� �= θ1 + · · · + θK, and define

d◦n�t� = P�N�t� = n�� n ≥ 0� t > 0�(1.6)

A complicated but explicit formula for d◦n�t� is known; see, for example, Tavaré
[(1984), equation (5.5)]. In what follows, we use the vector notation

�α� =
K∑
i=1

αi�

(�α�
α

)
= �α�!
α1! · · ·αK!

� xα =
K∏
i=1

x
αi
i �(1.7)

for α ∈ ZK+ and x ∈ �K, where 00 �= 1.

Theorem 1.1. If 2 ≤ K < ∞ and θ1 > 0� � � � � θK > 0, then the neutral
diffusion model in �K with generator L as above, in which the infinitesimal
matrix �γij� satisfies (1.3) and σij = 0 for i� j = 1� � � � �K, has transition func-
tion P�t� x� dy� given for each t > 0 and x ∈ �K by

P�t� x� ·� =
∞∑
n=0

d◦n�t�
∑

α∈ZK+ � �α�=n

(
n

α

)
xαDir�α+ θ��·��(1.8)

This expansion has several important consequences; in particular,

dTV
(
P�t� x� ·��Dir�θ��·�) ≤ 1− d◦0�t�� t > 0� x ∈ �K�(1.9)

where dTV�µ� ν� �= supA∈��E� �µ�A� − ν�A�� denotes the total variation dis-
tance between the Borel probability measures µ and ν on E. In fact, since
1 − d◦0�t� ≤ �1 + �θ��e−�θ�t/2 for every t > 0 [see Tavaré (1984), equation (5.9)],
we have an explicit estimate on the rate of convergence to equilibrium. It
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is thus of interest to extend the expansion to models of greater generality,
especially those incorporating selection.

Before turning to such models, we point out an alternative form for (1.8).
Let �α�t�� t ≥ 0� be the K-type pure death process starting at “infinity” with
death rates

q�α� α− εi� �= 1
2αi��α� − 1+ �θ��� α ∈ ZK+ � 1 ≤ i ≤K�(1.10)

where �εi�j �= δij. Given x ∈ �K, the process is uniquely determined if we
require that

�α�t�� → ∞ and α�t�/�α�t�� → x as t→ 0�(1.11)

To see this, define the one-to-one map ρ� ZK+ �→ �0� ∪ �N × �K� by

ρ�0� = 0� ρ�α� = ��α�� α/�α�� if α �= 0(1.12)

and regard ρ�α� as α in radial form. Identifying ZK+ with ρ�ZK+ �, we compactify
the former by letting F be the closure of the latter in the compact space
�0� ∪ (�N ∪ �∞�� × �K); that is,

F = �ρ�α�� α ∈ ZK+ � ∪ ��∞� × �K��(1.13)

Since the transition probabilities of the K-type pure death process are given
by

Pαβ�t� = P◦�α� �β��t�
(
α1
β1

) · · · (αK
βK

)(�α�
�β�
) � α ≥ β�(1.14)

P◦mn�t� being the transition probabilities of the one-dimensional pure death
process with death rates (1.5), it is a simple matter to show that the formula

T�t�f�ρ�α�� �= ∑
β∈ZK+

f�ρ�β��Pαβ�t��(1.15)

extended to F by continuity, defines a Feller semigroup �T�t�� on C�F�. We
can therefore define

dβ�t� x� = lim
ρ�α�→�∞� x�

Pαβ�t�(1.16)

and note by (1.14) that

dβ�t� x� = d◦�β��t�
(�β�
β

)
xβ�(1.17)

Consequently, we can rewrite the transition function (1.8) in the compact form

P�t� x� ·� = ∑
α∈ZK+

dα�t� x�Dir�α+ θ��·��(1.18)

Let us now include haploid selection in the model [and retain (1.3)]. This
amounts to assuming that there exists σ = �σ1� � � � � σK� ∈ RK such that

σij = σi + σj� i� j = 1� � � � �K�(1.19)
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By (1.4), the unique stationary distribution in this case, which we denote by
��θ�, is absolutely continuous with respect to Dir[θ] with Radon–Nikodym
derivative equal to

�d��θ�/dDir�θ���x� = c�θ�−1 e2σ ·x�(1.20)

where c�θ� is a normalizing constant depending implicitly on σ , namely,

c�θ� �=
∫
�K

e2σ ·yDir�θ��dy� ∈ �exp �2 minσi�� exp �2 max σi���(1.21)

By analogy with (1.18), we might expect a transition function expansion of the
form

P�t� x� ·� = ∑
α∈ZK+

bα�t� x���α+ θ��·��(1.22)

where the coefficients bα�t� x� remain to be determined.
In Section 3, we show that b .�t� x� is the distribution at time t of a K-type

birth-and-death process �α�t�� t ≥ 0� starting at “infinity” with death and
birth rates

q�α� α− εi� �= 1
2
αi��α� − 1+ �θ��c�α− ε

i + θ�
c�α+ θ�(1.23)

and

q�α� α+ εi� �= σ−i �α�
αi + θi
�α� + �θ�

c�α+ εi + θ�
c�α+ θ� �(1.24)

where

σ−i �= �max σj� − σi�(1.25)

The dependence on x enters by requiring that (1.11) should hold, for which
it is necessary to show that a process with this initial behavior and these
transition rates can be constructed. It appears that semigroup theory does
not easily apply (except in the neutral case). Instead, we construct the process
directly for each x ∈ �K by means of a coupling argument, given in Sections
4 and 5, and then show in Section 7 that we have found the Ray process
corresponding to the Ray–Knight compactification of ZK+ .

In the neutral model, the probabilities d◦n�t� determine the distribution of
the number of nonmutant ancestors of the current infinite population at time
t in the past [Griffiths (1980), Griffiths and Li (1983), Tavaré (1984), Donnelly
and Kurtz (1996)] and are related to the coalescent process [Kingman (1982)].
Krone and Neuhauser (1997) have obtained an analogue of the coalescent in
a large-population limit from a Moran model with selection, the same limit
that leads to a diffusion process with generator L, while Donnelly and Kurtz
(1999) have constructed an ancestral graph process for a Fleming–Viot model
with selection, the latter being a generalization of the diffusion process with
generator L; the relationship between these ancestral processes and the K-
type birth-and-death process is as yet unclear.
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A proof of Theorem 1.1 can be found in Ethier and Griffiths (1993). That
proof uses the fact that the probabilities d◦n�t� satisfy the Kolmogorov for-
ward equations for the one-dimensional pure death process with death rates
(1.5). Here we take a different approach, basing the derivation on duality
and reversibility. Duality was used in a similar context by Tavaré (1984), but
our dual process is somewhat different. In the next section, we formulate the
transition function expansion for a class of diffusions in �K with polynomial
coefficients. Section 3 then specializes these results to the K-allele diffusion
model with generator L as in (1.2) and (1.3); in particular, diploid (not just
haploid) selection is permitted.

2. Duality method. Let L [not necessarily as in (1.2)] with domain
� �L� �= C2��K� and range in B��K�, the space of bounded Borel functions on
�K, be the generator for a Markov process in �K with Feller transition function
P�t� x� dy� and stationary distribution �. Assume that � charges nonempty
open subsets of �K. Define fα ∈ � �L� for each α ∈ ZK+ by fα�x� = xα, and
assume that

Lfα =
∑
β∈ZK+

r�α�β�fβ� α ∈ ZK+ �(2.1)

where r�α�β� ≥ 0 for all α �= β and r�α� α� ≤ 0 for all α. Define

m�α� =
∫
�K

fα d�(2.2)

and note that m�α� > 0 for all α ∈ ZK+ . Moreover,

0 =
∫
�K

Lfα d� =
∑
β∈ZK+

r�α�β�m�β�� α ∈ ZK+ �(2.3)

where the interchange of sum and integral is justified by virtue of the fact
that every summand in (2.1) save one is nonnegative. If we define

q�α�β� =m�α�−1r�α�β�m�β��(2.4)

then q�α�β� ≥ 0 for all α �= β, q�α� α� ≤ 0 for all α, and, by (2.3),∑
β∈ZK+

q�α�β� = 0� α ∈ ZK+ �(2.5)

Further, defining

gα =m�α�−1fα ∈ � �L��(2.6)

(2.1) becomes

Lgα =
∑
β∈ZK+

q�α�β�gβ� α ∈ ZK+ �(2.7)

We assume that �q�α�β�� is the infinitesimal matrix for a nonexplosive pure
jump Markov process �α�t�� t ≥ 0� in ZK+ with transition probabilities Pαβ�t�,
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and we denote by �x�t�� t ≥ 0� the Markov process in �K with generator L.
Then, in principle,

Ex�gα�x�t��� = Eα�gα�t��x��� �x� α� ∈ �K × ZK+ � t ≥ 0�(2.8)

where the subscripts on the expectations denote the starting points, or

m�α�−1
∫
�K

fα�z�P�t� x� dz� =
∑
β∈ZK+

Pαβ�t�m�β�−1fβ�x��

�x� α� ∈ �K × ZK+ � t ≥ 0�

(2.9)

Since we have not assumed that gα�x� as a function of α belongs to the domain
of the generator of the jump process for arbitrary x, (2.8) requires additional
justification. By Corollary 4.4.15 of Ethier and Kurtz (1986), it suffices to
assume that there exists H� ZK+ �→ �0�∞� such that

gα�x� + ��Lgα��x�� ≤H�α�� �x� α� ∈ �K × ZK+ �(2.10)

and

�H�α�t ∧ τN��� 0 ≤ t ≤ t0� N ≥ 1� is uniformly integrable(2.11)

for each initial state α ∈ ZK+ and each t0 ≥ 0, where

τN �= inf�s ≥ 0� �α�s�� ≥N��(2.12)

To express P�t� x� ·� in terms of the transition probabilities Pαβ�t� using
(2.9) requires a method for recovering a distribution from its moments. For this
we observe that the moments can be used to define a sampling distribution,
which as the sample size tends to infinity converges weakly to the distribution
we seek. More precisely, given µ ∈ � ��K�,

4nµ �=
∑

α∈ZK+ � �α�=n

(
n

α

) ∫
�K

fα dµδα/n ⇒ µ�(2.13)

for if G ⊂ �K is open, then, by Fatou’s lemma and the weak law of large
numbers for an i.i.d. sequence of multinomial�1� y� random vectors,

lim inf
n→∞ 4nµ�G� = lim inf

n→∞

∫
�K

∑
α∈ZK+ � �α�=n

(
n

α

)
fα�y�δα/n�G�µ�dy�

≥
∫
�K

lim inf
n→∞

∑
α∈ZK+ � �α�=n

(
n

α

)
fα�y�δα/n�G�µ�dy�

≥
∫
�K

δy�G�µ�dy�

= µ�G��

(2.14)
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Incidentally, note that, since
(�β�
β

)
fβ ≤ 1 for all β ∈ ZK+ ,

gα�x� + ��Lgα��x�� ≤
∑
β∈ZK+

�δαβ + �q�α�β���gβ�x�

≤ ∑
β∈ZK+

�δαβ + �q�α�β���m�β�−1
(�β�
β

)−1

=�H�α�

(2.15)

for all x ∈ �K and α ∈ ZK+ , so we assume that (2.11) holds with H given by
(2.15) and τN by (2.12).

Lemma 2.1. Let µ�µ0 ∈ � ��K� and suppose there exists a Borel function
h� �K �→ �0�∞� such that, with ρ as in (1.12),

lim inf
ρ�α�→�∞�y�

∫
�K
fα dµ∫

�K
fα dµ0

≥ h�y�� y ∈ �K(2.16)

and
∫
�K
hdµ0 = 1. Then dµ = hdµ0.

Proof. Define hn on �K by

hn�x� =


∫
�K

fα dµ

/∫
�K

fα dµ0� if x = α/n, where α ∈ ZK+
and �α� = n,

0� otherwise.

(2.17)

Then, for each g ∈ C��K� with g ≥ 0,∫
�K

gdµ = lim
n→∞

∫
�K

gd4nµ

= lim
n→∞

∑
α∈ZK+ � �α�=n

g�α/n�
(
n

α

) ∫
�K

fα dµ

= lim
n→∞

∑
α∈ZK+ � �α�=n

g�α/n�hn�α/n�
(
n

α

) ∫
�K

fα dµ0

= lim
n→∞

∫
�K

ghn d4nµ0

≥
∫
�K

ghdµ0�

(2.18)

where the inequality uses (2.13) with µ0 in place of µ, the Skorokhod repre-
sentation theorem, Fatou’s lemma and (2.16). This implies that dµ ≥ hdµ0,
and since h is a probability density with respect to µ0, equality must hold,
thereby proving the lemma. ✷
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To apply the lemma, we will need to assume that

bβ�t� y� �= lim inf
ρ�α�→�∞� y�

Pαβ�t�� β ∈ ZK+ �(2.19)

defines a probability distribution on ZK+ for each t > 0 and y ∈ �K. We will
also assume that for each t > 0 the probability distribution (2.19) is weakly
continuous in y ∈ �K.

Fix t > 0 and x ∈ �K and let µ = P�t� x� ·� and µ0 = � in the lemma. Using
(2.2), (2.9) and Fatou’s lemma, we have, for each y ∈ �K,

lim inf
ρ�α�→�∞� y�

∫
�K
fα�z�P�t� x� dz�∫
�K
fα d�

= lim inf
ρ�α�→�∞� y�

∑
β∈ZK+

Pαβ�t�m�β�−1fβ�x�

≥ ∑
β∈ZK+

bβ�t� y�m�β�−1fβ�x�

=� φ�t� x� y��

(2.20)

We must show that
∫
�K
φ�t� x� y���dy� = 1.

Recall that t and x are fixed and define hn on �K by (2.17) with µ = P�t� x� ·�
and µ0 = �, and define φn on �K by

φn�y� =
∑

α∈ZK+ � �α�=n
hn�α/n�

(
n

α

)
fα�y� =

∫
�K

hn d4nδy�(2.21)

Then
∫
�K
φn d� = 1 for each n ≥ 1 and

lim inf
n→∞ φn�y� ≥

∫
�K

φ�t� x� ·�dδy = φ�t� x� y�� y ∈ �K�(2.22)

using (2.20) and the argument cited for (2.18), so Fatou’s lemma implies that

1 = lim inf
n→∞

∫
�K

φn d� ≥
∫
�K

lim inf
n→∞ φn d� ≥

∫
�K

φ�t� x� y���dy��(2.23)

and this holds for arbitrary t > 0 and x ∈ �K.
Keep t fixed. Then∫

�K

∫
�K

φ�t� x� y���dy���dx� =
∫
�K

∫
�K

φ�t� x� y���dx���dy�

=
∫
�K

∑
β∈ZK+

bβ�t� y���dy�

= 1

(2.24)

by our assumption that (2.19) defines a probability distribution on ZK+ . This
and (2.23) tell us that

∫
�K
φ�t� x� y���dy� = 1 for �-a.e. x ∈ �K. For such x,

Lemma 2.1 applies, and we conclude that

P�t� x� dy� = φ�t� x� y���dy�� �-a.e. x ∈ �K�(2.25)
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Now we assume reversibility with respect to �, which means that

��dx�P�t� x� dy� = ��dy�P�t� y� dx��(2.26)

This and (2.25) then imply that, for �×�-a.e. �x�y� ∈ �K × �K,

φ�t� x� y� = φ�t� y� x� = ∑
β∈ZK+

bβ�t� x�m�β�−1fβ�y��(2.27)

Defining

d�β =m�β�−1fβ d��(2.28)

we conclude from (2.25) and (2.27) that

P�t� x� dy� = ∑
β∈ZK+

bβ�t� x��β�dy�(2.29)

for �-a.e. x ∈ �K, hence for all x ∈ �K by the Feller property of P�t� x� dy� and
by the assumption that the probability distribution (2.19) is weakly continuous
in y ∈ �K. Since t was arbitrary, we have (2.29) for all t > 0 and x ∈ �K.

For the convenience of the reader, we provide a formal statement of the
result we have just proved.

Theorem 2.2. Let L with domain � �L� �= C2��K� and range in B��K�
be the generator for a Markov process in �K with Feller transition function
P�t� x� dy� and stationary distribution � with respect to which the process is
reversible. Assume that � charges nonempty open subsets of �K. Define fα ∈
� �L� for each α ∈ ZK+ by fα�x� = xα and assume that the matrix �r�α�β��
satisfies (2.1), where r�α�β� ≥ 0 for all α �= β and r�α� α� ≤ 0 for all α. Define
m�α� by (2.2), q�α�β� by (2.4) and �β by (2.28). Assume that �q�α�β�� is the
infinitesimal matrix for a nonexplosive pure jump Markov process �α�t�� t ≥ 0�
in ZK+ with transition probabilities Pαβ�t� and that the function H� ZK+ �→
�0�∞� defined by (2.15) satisfies (2.11) using (2.12) for each initial state α ∈ ZK+
and each t0 ≥ 0. Assume that (2.19) defines a probability distribution b .�t� y�
on ZK+ for each t > 0 and y ∈ �K, and that, for each t > 0, this probability
distribution is weakly continuous in y ∈ �K. Then, for each t > 0 and x ∈ �K,

P�t� x� ·� = ∑
α∈ZK+

bα�t� x��α�·��(2.30)

The following corollary is immediate; it is useful if the dual process starting
at “infinity” absorbs at 0 with probability 1.

Corollary 2.3. Under the hypotheses of Theorem 2.2,

dTV
(
P�t� x� ·����·�) ≤ 1− b0�t� x�� t > 0� x ∈ �K�(2.31)
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3. Application to the K-allele model. In this section we apply Theo-
rem 2.2 to obtain a transition function expansion for the K-allele diffusion
model discussed in Section 1. The generator L is given by (1.2) and (1.3).

Let us treat the case of haploid selection first, because some simplifications
occur in that case. Here (1.19) holds, so

Lfα = 1
2

K∑
i=1

αi�αi − 1+ θi�fα−εi −
K∑
i=1

σi�α�fα+εi

−
{

1
2 �α���α� − 1+ �θ�� −

K∑
i=1

σiαi

}
fα�

(3.1)

Using the notation (1.25) and the fact that
∑K
i=1 fα+εi = fα for each α ∈ ZK+ ,

this becomes

Lfα = 1
2

K∑
i=1

αi�αi − 1+ θi�fα−εi +
K∑
i=1

σ−i �α�fα+εi

−
{

1
2 �α���α� − 1+ �θ�� +

K∑
i=1

σ−i αi

}
fα�

(3.2)

and (2.1) holds with

r�α� α− εi� = 1
2αi�αi − 1+ θi�� r�α� α+ εi� = σ−i �α��(3.3)

Let

γ�α� θ� = ���θ��
��θ1� · · ·��θK�

��α1 + θ1� · · ·��αK + θK�
���α� + �θ�� �(3.4)

and observe that

dDir�α+ θ�/dDir�θ� = γ�α� θ�−1fα�(3.5)

Consequently, recalling (1.20) and (1.21),

m�α� =
∫
�K

fα d��θ� = c�θ�−1
∫
�K

fα�x�e2σ ·xDir�θ��dx�

= γ�α� θ�c�θ�−1
∫
�K

e2σ ·xDir�α+ θ��dx�

= γ�α� θ�c�α+ θ�
c�θ� �

(3.6)

and we conclude from (2.4) that

q�α� α− εi� = 1
2
αi��α� − 1+ �θ��c�α− ε

i + θ�
c�α+ θ�(3.7)

and

q�α� α+ εi� = σ−i �α�
αi + θi
�α� + �θ�

c�α+ εi + θ�
c�α+ θ� �(3.8)
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These are the rates for a K-type birth-and-death process. Note that deaths
occur at a quadratic rate, births at a linear rate.

We now turn to the general case (diploid selection), in which the dual pro-
cess turns out to be more complicated. By (1.2) and (1.3),

Lfα = 1
2

K∑
i=1

αi�αi − 1+ θi�fα−εi +
K∑

i� j=1

σijαifα+εj

−
K∑

i� j=1

σij�α�fα+εi+εj − 1
2 �α���α� − 1+ �θ��fα�

(3.9)

A successful reduction to a form in which (2.1) holds with the coefficients
r�α�β� having the appropriate signs can be achieved by defining

σ+ij = σij − �minσkl�� σ−ij = �max σkl� − σij�
σ = max σkl −minσkl�

(3.10)

in which case

Lfα = 1
2

K∑
i=1

αi�αi − 1+ θi�fα−εi +
K∑
j=1

(
K∑
i=1

σ+ijαi

)
fα+εj

+
K∑

i� j=1

σ−ij �α�fα+εi+εj − 1
2 �α�

{�α� − 1+ �θ� + 2σ
}
fα�

(3.11)

Arguing as in the haploid case and letting

c�θ� =
∫
�K

exp

{
K∑

i� j=1

σijxixj

}
Dir�θ��dx�

∈ [
exp �minσij�� exp �max σij�

]
�

(3.12)

we have

q�α� α− εi� = 1
2
αi��α� − 1+ �θ��c�α− ε

i + θ�
c�α+ θ� �(3.13)

q�α� α+ εj� =
K∑
i=1

σ+ijαi
αj + θj
�α� + �θ�

c�α+ εj + θ�
c�α+ θ�(3.14)

and

q
(
α� α+ εi + εj) = σ−ij �α� �αi + δij + θi��αj + θj���α� + 1+ �θ����α� + �θ��

× c�α+ ε
i + εj + θ�

c�α+ θ� �

(3.15)
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These are the rates for a K-type birth-and-death process that permits the
birth of twins. [Note that they do not reduce to (3.7) and (3.8) when (1.19)
holds.] Again, deaths occur at a quadratic rate, births at a linear rate.

We now turn to the uniform integrability condition (2.11). Note first that,
by (3.10) and (3.12)–(3.15),

1
2e
−σ �α���α� − 1+ �θ�� ≤

K∑
i=1

q�α� α− εi� ≤ 1
2e
σ �α���α� − 1+ �θ���(3.16)

0 ≤
K∑
i=1

q�α� α+ εi� ≤ σeσ �α�(3.17)

and

0 ≤
K∑

i� j=1

q�α� α+ εi + εj� ≤ σeσ �α��(3.18)

[This is, of course, still true in the haploid case (1.19), where σ = 2�max σi −
minσi�, but in that case the bound on the right side of (3.17) can be halved,
using (3.8).] The generator L# of the K-type birth-and-death process has the
form

�L#ϕ��α� =
K∑
i=1

q�α� α− εi��ϕ�α− εi� − ϕ�α��

+
K∑
i=1

q�α� α+ εi��ϕ�α+ εi� − ϕ�α��

+
K∑

i� j=1

q�α� α+ εi + εj��ϕ�α+ εi + εj� − ϕ�α���

(3.19)

so if ϕl�α� �= ��α� + 1�l for l ∈ N, then

�L#ϕl��α� ≤ 1
2e
−σn�n− 1+ �θ���nl − �n+ 1�l�

+σeσn[�n+ 2�l − �n+ 1�l + �n+ 3�l − �n+ 1�l]
≤ Cl� α ∈ ZK+ �

(3.20)

where n = �α� and the existence of Cl is due to the fact that the penultimate
expression is negative for n sufficiently large. We conclude that

Eα���α�t ∧ τN�� + 1�l� = ��α� + 1�l +Eα
{∫ t∧τN

0
�L#ϕl��α�s��ds

}
≤ ��α� + 1�l +Clt�

(3.21)
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Observe next, using (2.6), (3.6) and (3.4), that

gα�x� =m�α�−1fα�x�

≤ m�α�−1
(�α�
α

)−1

= γ�α� θ�−1 c�θ�
c�α+ θ�

(�α�
α

)−1

≤ e
σ��θ1� · · ·��θK�

���θ��
���α� + �θ��

��α1 + θ1� · · ·��αK + θK�

× ��α1 + 1� · · ·��αK + 1�
���α� + 1�

≤ B0��α� + 1�l0� �x� α� ∈ �K × ZK+ �

(3.22)

for constants B0 ≥ 0 and l0 ∈ N sufficiently large. It follows that H, defined
by (2.15), satisfies

H�α� ≤ B��α� + 1�l0+2� α ∈ ZK+ �(3.23)

for a constant B sufficiently large. We therefore obtain the required uniform
integrability from that fact that (3.21) holds for l = l0 + 3.

We postpone to Sections 4–6 the verification of the hypothesis that, for
each t > 0, b .�t� y� is a probability distribution on ZK+ for every y ∈ �K that
is weakly continuous in y. Modulo this step, we have verified the hypotheses
of Theorem 2.2. We give below a precise statement of the resulting transition
function expansion, but first we weaken our hypotheses a bit.

Just as Theorem 1.1 can be generalized to permit

γij = 1
2θj ≥ 0� i� j ∈ �1� � � � �K�� i �= j�(3.24)

in place of (1.3) [see Ethier and Griffiths (1993)], the transition function ex-
pansion for the K-allele diffusion model with selection permits a similar gen-
eralization. Let θ = �θ1� � � � � θK�, where θ1 ≥ 0� � � � � θK ≥ 0, and let �σij� be a
real symmetric K ×K matrix. Then the diffusion process with generator L
as in (1.2) and (3.24) has a unique stationary distribution, provided only that
�θ� > 0. In the neutral case it is given by

Dir�θ��·� �= P��Y1/�Y�� � � � �YK/�Y�� ∈ ·��(3.25)

where Y1� � � � �YK are independent random variables with Yi being gamma
�θi�1� distributed, Y = �Y1� � � � �YK� and �Y� = Y1 + · · · +YK. [By definition,
gamma�0�1� is the distribution of the zero random variable.] In general, the
unique stationary distribution, which we again denote by ��θ�, is absolutely
continuous with respect to Dir�θ� with

(
d��θ�/dDir�θ�)�x� = c�θ�−1 exp

{
K∑

i� j=1

σijxixj

}
�(3.26)
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where c�θ� depends implicitly on σ . The transition rates (3.13)–(3.15) [or (3.7)
and (3.8) in the haploid case (1.19)] can now be defined (even if θ = 0, because
any undefined factors are multiplied by 0), and we denote the transition prob-
abilities of the resulting birth-and-death process in ZK+ by Pαβ�t�.

Theorem 3.1. Suppose 2 ≤K <∞, θ1 ≥ 0� � � � � θK ≥ 0, and �σij� is a real
symmetric K×K matrix. With ρ as in (1.12), assume that, for each t > 0 and
y ∈ �K,

bβ�t� y� �= lim inf
ρ�α�→�∞� y�

Pαβ�t�� β ∈ ZK+(3.27)

defines a probability distribution on ZK+ and that this probability distribution
is weakly continuous in y as well as in θ. Then the diffusion model in �K with
generator L as in (1.2) and (3.24) has transition function P�t� x� dy� given for
each t > 0 and x ∈ �K by

P�t� x� ·� = ∑
α∈ZK+

bα�t� x���α+ θ��·��(3.28)

Remark. The hypotheses concerning (3.27) will be verified in Sections 4–6
and 8.

Proof. We know from Theorem 2.2 that (3.28) holds if θ1 > 0� � � � � θK >
0. The left side of (3.28) is weakly continuous in θ by Trotter’s semigroup
approximation theorem, and the right side is weakly continuous in θ by our
assumption that b .�t� x� is weakly continuous in θ and the fact that ��θ� is
weakly continuous in θ (except at θ = 0 where it is undefined). If θ = 0, the
death rates take the form

q�α� α− εi� = 1
2αi��α� − 1�c�α− ε

i�
c�α� �(3.29)

In this case the α = 0 term in (3.28) is absent, because b0�t� x� = 0. Thus,
(3.28) holds in general. ✷

The case of no mutation (θ = 0) and two alleles (K = 2) was studied by
Kimura (1955, 1957).

As in Corollary 2.3, if �θ� > 0, then

dTV
(
P�t� x� ·����θ��·�) ≤ 1− b0�t� x�� t > 0� x ∈ �K�(3.30)

thereby generalizing (1.9).

4. The entrance process: preliminaries. LetX be a (continuous time)
pure jump Markov process in ZK+ , whose transitions are specified by

α→ α− εj at rate αj�α� + f1j�α��
α→ α+ εj at rate f2j�α��
α→ α+ εi + εj at rate f3ij�α��

(4.1)
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where the f-functions are Lipschitz and satisfy

flj�0� = 0� �flj�α� − flj�α′�� ≤ clj�α− α′��
f3ij�0� = 0�

∣∣f3ij�α� − f3ij�α′�
∣∣ ≤ c3ij�α− α′��(4.2)

for all α� α′ ∈ ZK+ , l = 1�2, and i� j = 1� � � � �K, for some nonnegative c’s;
assume also that there exists C1 ≥ 0 such that

f1j�α� ≥ −C1αj(4.3)

for all α ∈ ZK+ and j = 1� � � � �K. Here and throughout, �w� �= ∑K
j=1 �wj�

for w ∈ RK. Such a process races “away from infinity” very fast, because
of the downward rates which are quadratic in the components of X. In this
section and the one that follows, given any p ∈ �K, we show that there is
a Markov process �Xp�t�� t > 0� in ZK+ with these transitions that satisfies
limt→0 �Xp�t�� = ∞ and limt→0X

p�t�/�Xp�t�� = p. We establish the existence
of Xp as the weak limit of a sequence of processes X�n�, the nth of which is
defined for t ≥ 1/n and has �X�n��1/n�� = n and p�n� �= n−1X�n��1/n� as close
as possible to the specified p. We are interested in processes of this general
form, which covers processes with rates given by (3.7) and (3.8), as well as
those with rates given by (3.13)–(3.15) (see Section 8), provided that in these
applications time is speeded up by a factor of 2; this latter modification of
course has no effect on the existence of the limit process Xp.

The argument is based on two observations. The first is that the processes
�X�n��t�� do not get too far from the curve x�t� = 1/t, which is a crude approxi-
mation to the evolution of the expectation of �X�n��t�� when the f-functions are
identically zero. The second is that if two such processes X and X′ start with
�X�1/n�� = �X′�1/n�� = n and with X�1/n� not too different from X′�1/n�,
then they can be constructed on a single probability space in such a way
that X�u� = X′�u� for all u ≥ un with probability at least 1 − qn, where
limn→∞ un = limn→∞ qn = 0.

These observations allow one to make explicit statements about the total
variation distance between the distributions of the processesX�m� andX�n� on
t ≥ t0 for any t0 > 0, as follows. Supposing that m > n, let X�m� evolve until
�X�m�� first hits n, which takes place at a time τ�m�n not very different from 1/n,
by the first observation. At this time, the proportions X�m��τ�m�n �/�X�m��τ�m�n ��
are little different from their initial values (in fact, uniformly inm > n), which
are themselves not too different from those ofX�n�, because both are close to p.
Now considerX �=X�n� andX′�·� �=X�m��·+τ�m�n −1/n� and apply the second
observation: the total variation distance between their distributions on t ≥ un
is at most qn (again, uniformly inm > n). Then it suffices to establish that the
probability thatX�n� has a transition in any interval �t0� t0+η� becomes small
with η, uniformly in n, so that, using the Markov property, the coupling of X
and X′ can be modified to one of X�n� and X�m�, without the small random
time shift. This establishes the existence of the weak limit of X�n� as n→∞
on any interval �t0�∞� for any t0 > 0 and hence of the required process Xp.
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Turning to the details of the argument, the simplest part is the last, showing
that, for any given t0 > 0, the probability thatX�n� has a transition in �t0� t0+
η� becomes small with η, uniformly in n. For this, it is enough to show that
there is a stochastic upper bound for the distribution of �X�n��t0�� which is
uniform in n ≥ n0�t0� and in X�n��1/n�, subject to �X�n��1/n�� = n. This is
because the sum of all the transition rates of X is bounded, by BM, say, in
the set �M �= �α� �α� ≤M�, for any choice of M; the chance of a transition in
a time interval of length η when starting in any state of �M is then no more
than ηBM, which can be made small by choice of η for any fixed M; and the
probability that X�n��t0� ∈ �M can be made arbitrarily close to 1, by choice
of M.

Before proceeding any further, we identify a class of martingales associated
with a countable-state pure jump Markov process that will be needed in what
follows. Let X be a nonexplosive pure jump Markov process in a countable
state space � with infinitesimal matrix �qij� and with natural filtration �t,
t ≥ 0. Let U� � ×R+ → R be such that, for each i ∈ � , U�i� ·� is absolutely
continuous and

∑
j∈� qij�U�j� t�� is bounded on bounded intervals. Define the

action of the space–time generator � on U by

��U��i� t� = ∂U
∂t
�i� t� + ∑

j� j �=i
qij�U�j� t� −U�i� t���(4.4)

Let Ei denote expectation conditional on X�0� = i.

Lemma 4.1. Suppose that, for each i ∈ � , Ei���U��X�u�� u�� is integrable
over finite intervals and that Ei�sup0≤u≤t �U�X�u�� u��� <∞ for each t. Then

M�t� �= U�X�t�� t� −
∫ t
0
��U��X�u�� u�du(4.5)

is an �t-martingale.

Proof. Let the sequence of jump times ofX be denoted by τn, n ≥ 1. Then
a simple calculation using Fubini’s theorem shows that, for each i ∈ � and
t > 0,

EiU�X�τ1 ∧ t�� τ1 ∧ t� = U�i�0� +Ei

{∫ τ1∧t
0

��U��X�u�� u�du
}
�(4.6)

the expectations existing because of the assumptions onU, from which and the
strong Markov property it follows that, for fixed t > 0� the sequenceM�τn∧ t�
is an �τn∧t-martingale and hence that

Ei
{
U�X�τn�� τn�1�τn<t�

}
+Ei

{
U�X�t�� t�1�τn≥t�

}
= U�i�0� +Ei

{∫ τn
0
��U��X�u�� u�du1�τn<t�

}
+Ei

{∫ t
0
��U��X�u�� u�du1�τn≥t�

}
�

(4.7)
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Letting n → ∞ and using the conditions of the lemma to justify application
of the dominated convergence theorem, it follows that EiM�t� =M�0� for all
i and t, and the Markov property concludes the proof. ✷

We now formalize the discussion that preceded Lemma 4.1 with the follow-
ing lemma.

Lemma 4.2. There exists a constant C such that, for each n, E�X�n��t�� ≤
C�1+ 1/t� for all t ≥ 1/n.

Proof. To establish such a bound, compare the process �X�n�� with a pro-
cess S̃�n� on Z+ ∩ �l�∞�, for suitably chosen l, which also has S̃�n��1/n� = n,
but which has transition rates given by

i→ i− 1 at rate �1− ε�i2� i ≥ l+ 1�
i→ i+ 1 at rate 1

2εi
2� i ≥ l�

i→ i+ 2 at rate 1
2εi

2� i ≥ l�
(4.8)

where ε = εl is such that

�α�2 +
K∑
j=1

f1j�α� ≥ �1− ε���α� + 1�2�
K∑
j=1

f2j�α� ≤ 1
2ε�α�2�

K∑
i� j=1

f3ij�α� ≤ 1
2ε�α�2�

(4.9)

whenever �α� ≥ l, and l is chosen large enough to ensure that εl < 1/3. This
process can be simply coupled with �X�n�� in such a way that S̃�n��t� ≥ �X�n��t��
for all t ≥ 1/n, because both are integer-valued processes that make downward
jumps only of size 1 and upward jumps of sizes only 1 and 2. So run the two
processes independently whenever S̃�n��t� > �X�n��t�� + 1; whenever S̃�n��t� ∈
��X�n��t��� �X�n��t�� + 1�, use Bernoulli thinnings of the upward jumps of S̃�n�

for the upward jumps of �X�n��, and a Bernoulli thinning of the downward
jumps of �X�n�� for those of S̃�n�, so that �X�n�� cannot jump past S̃�n�. Thus it
suffices to prove the bound in the lemma for ES̃�n��t�.

Any process S̃ with transition rates given by (4.8) has a limiting stationary
distribution µ which has all its moments, as is seen by comparison with the
process obtained by replacing the factors i2 by l2 in (4.8), which is a reflecting
random walk in continuous time with negative drift. What is more, versions of
S̃ starting in equilibrium and at l can be coupled so that the former is always
at least as large as the latter, much as in Lindvall (1992), Chapter V.4, since
the double upward jumps of the latter can be obtained as a thinning of those
of the former. Hence it follows that

ES̃�t�1�τl≤t� =
∫ t
0
fτl�u�ElS̃�t− u�du ≤ EµS̃�(4.10)
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here, τl is the time of first hitting l and fτl its probability density. Hence, to

control ES̃�t�, we merely need a bound for the transient component E�S̃�t�
1�τl>t��, for which a bound on the larger quantity

m̃l�t� �= E�S̃�t ∧ τl��(4.11)

suffices.
Using the fact that S̃∗ �= sup0≤t≤τl S̃�t� is a proper random variable with

all moments finite, again from the random walk comparison, it follows from
Lemma 4.1 that

S̃�t ∧ τl� +
∫ t∧τl
0

�1− 5
2ε�S̃2�u�du(4.12)

is a martingale, from which we deduce that

h−1�m̃l�t+ h� − m̃l�t�� = −h−1�1− 5
2ε�E

{∫ �t+h�∧τl
t∧τl

S̃2�u�du
}

= −h−1�1− 5
2ε�E

{∫ t+h
t

S̃2�u�1�u<τl�du
}
�

(4.13)

Letting h → 0 and using dominated convergence, it follows that m̃l is right-
differentiable; a similar argument shows that it is left-differentiable also, and,
furthermore, it follows that

dm̃l
dt
�t� = −

(
1− 5

2
ε

)
E�S̃2�t�1�t<τl��

≤ −
(

1− 5
2
ε

)
�E�S̃�t�1�t<τl���2 ≤ −

(
1− 5

2
ε

)
�m̃l�t� − l�2�

(4.14)

Now S̃�n� has transition rates given by (4.8), and m̃�n�l �1/n�=E�S̃�n��1/n��=
n; integrating from 1/n to t, it thus easily follows that

m̃
�n�
l �t� ≤ l+

1

t
(
1− 5

2ε
)(4.15)

for all t ≥ 1/n. Hence, using (4.10) and (4.11), we have shown that

ES̃�n��t� ≤ EµS̃+ l+
1

t
(
1− 5

2ε
)(4.16)

for all n > l and t ≥ 1/n, which is enough. ✷
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The next step is to establish that, for small values of t, �X�n��t�� remains
close to 1/t. We do this in the following form.

Lemma 4.3. Fix any 0 < ϕ < 1. Then, for any m ≥ 5 and for all 1/m ≤ T ≤
1/4,

P
[

sup
1/m≤t≤T

1
t

∣∣∣∣ 1
�X�m��t�� − t

∣∣∣∣ > ϕ] ≤ c�1+ 1/ϕ�2T�(4.17)

where cl =
∑K
j=1 clj for l = 1�2, c3 =

∑K
i�j=1 c3ij and c = 30�1+ c1 + c2 + c3�2.

Proof. The idea behind the proof is that t−1/�X�t�� is almost a martingale
and has variance O�t3�; this is combined with a stopping argument to obtain
the desired result.

Define a stopping time σ = σ�ϕ� for an X-process started at initial time v
by

σ = inf
{
u ≥ v�

∣∣∣∣ 1
�X�u�� − u

∣∣∣∣ ≥ ϕu}�(4.18)

and note that �X�t�� ≥ 2 for all t ≤ min�σ�1/4�. Let � denote the space–
time generator of X as in (4.4), and take U�α� t� = �t − 1/�α��2, for which, if
n = �α� ≥ 2,

���U��α�u�� =
∣∣∣∣2(u− 1

n

)
+
(
n2 +

K∑
j=1

f1j�α�
)

×
{

1
�n− 1�2 −

1
n2
− 2u

(
1

n− 1
− 1
n

)}

+
(
K∑
j=1

f2j�α�
){

1
�n+ 1�2 −

1
n2
− 2u

(
1

n+ 1
− 1
n

)}

+
(

K∑
i� j=1

f3ij�α�
){

1
�n+ 2�2 −

1
n2
− 2u

(
1

n+ 2
− 1
n

)}∣∣∣∣
≤ 4�1+ c1 + c2 + c3�

{
n−2 + n−1�u− n−1�}�

(4.19)

where, in obtaining the last line, cancellation between the terms not involving
f-functions is exploited. Applying Lemma 4.1, it thus follows that

U�X�t ∧ σ�� t ∧ σ� −
∫ t∧σ
v
��U��X�u�� u�du(4.20)
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is a martingale in v ≤ t ≤ 1/4. Now, if U�X�v�� v� = 0, which is the case for
X�m� if v = 1/m, it follows by the martingale property that, for any v ≤ t ≤ 1/4,

E
{��t ∧ σ� − 1/�X�t ∧ σ���2}
=
∣∣∣∣E ∫ t∧σ

v
��U��X�u�� u�du

∣∣∣∣
≤ 4�1+ c1 + c2 + c3�

×E
{∫ t∧σ
v
�1+ϕ�2u2 du+

∫ t∧σ
v
�1+ϕ�u ∣∣u−1/�X�u��∣∣du}

≤ 4�1+ c1 + c2 + c3�

×
{
�1+ϕ�2

∫ t
v
u2 du+�1+ϕ�

∫ t
v
u
√

E
[�u−1/�X�u���21�u<σ�

]
du

}
�

(4.21)

Letting

m∗t = sup
v≤s≤t

E���s ∧ σ� − 1/�X�s ∧ σ���2��(4.22)

it now follows that

m∗t ≤ 4�1+ c1 + c2 + c3�
{
�1+ ϕ�2

∫ t
v
u2 du+ �1+ ϕ�

√
m∗t

∫ t
v
udu

}
�(4.23)

and hence that, for all v ≤ t ≤ 1/4,

m∗t ≤
[
4�1+ c1 + c2 + c3��1+ ϕ�

∫ t
v
udu

]2

+ 8�1+ c1 + c2 + c3��1+ ϕ�2
∫ t
v
u2 du

≤ 64
9 �1+ c1 + c2 + c3�2�1+ ϕ�2�t3/2 − v3/2�2

+ 8
3�1+ c1 + c2 + c3��1+ ϕ�2�t3 − v3�

≤ 30�1+ c1 + c2 + c3�2�1+ ϕ�2
∫ t
v
u2 du�

(4.24)

since, if x, k1 and k2 are all nonnegative and x2 ≤ k1+k2x, then x2 ≤ 2k1+k2
2.

However, if Fσ denotes the distribution function of σ for X�m�, which has
initial time point v = 1/m, it follows from the definition of m∗t that

m∗t ≥ E
{�σ − 1/�X�m��σ���21�σ≤t�

}
≥ E

{�ϕσ�21�σ≤t�} = ∫ t
1/m
�ϕu�2Fσ�du�

(4.25)



A TRANSITION FUNCTION EXPANSION 143

for all t ≥ 1/m. However, by Fubini’s theorem,

P
[

sup
1/m≤t≤T

1
t

∣∣∣∣ 1
�X�m��t�� − t

∣∣∣∣ > ϕ] ≤ ∫ T
1/m
Fσ�du�

= T−2
∫ T
1/m
u2Fσ�du� + 2

∫ T
1/m
t−3

∫ t
1/m
u2Fσ�du�dt

(4.26)

and the lemma follows from (4.24)–(4.26). ✷

Corollary 4.4. For any m > n, let τ
�m�
n denote the time at which �X�m��

first takes the value n. Then

P
[∣∣τ�m�n − n−1

∣∣ ≤ (
ϕ

1− ϕ
)

1
n

]
≥ 1− c�1+ 1/ϕ�2 1

n�1− ϕ� �(4.27)

for all m > n, where c is as in (4.17).

Proof. Take T = �n�1 − ϕ��−1 in Lemma 4.3. If sup1/m≤t≤T t−1
∣∣t −

1/�X�m��t��∣∣ ≤ ϕ, which is the case with probability at least 1 − c�1 +
1/ϕ�2�n�1−ϕ��−1, it follows that �n�1+ϕ��−1 ≤ τ�m�n ≤ �n�1−ϕ��−1, and the
corollary is immediate. ✷

Lemma 4.5. Suppose that qj = Xj�v�/�X�v�� for 1 ≤ j ≤ K. Then, for all
v ≤ T ≤ 1/4 and for any η > 0,

P
[

sup
v≤s≤T

max
1≤j≤K

∣∣qj −Xj�s�/�X�s��∣∣ > η]
≤ �c�1+ 1/ϕ�2 + c′η−2�T�

(4.28)

where c is as in (4.17), c′ = 2k1 + k2
2, and k1 and k2 are given in (4.37) below.

Proof. Start with U�α� t� = U�α� = ∑K
j=1�qj − αj/�α��2, and observe that

now, using � in this proof to denote differences, and once again writing n = �α�,
we have

��−i U��α� �= U�α− εi� −U�α�

= −2
K∑
j=1

αj

n�n− 1�
(
qj −

αj

n
− αj

2n�n− 1�
)

+ 2
n− 1

(
qi −

αi
n
− αi

2n�n− 1�
)
+ n− αi
n�n− 1�2 �

(4.29)

so that
∑K
i=1 αin��−i U��α� =

∑K
i=1 αi�n− αi��n− 1�−2 and∣∣��−i U��α�∣∣ ≤ 2

n�n− 1�
K∑
j=1

{
αj

∣∣qj − n−1αj
∣∣+ α2

j

2n�n− 1�
}

+ 2
n− 1

�qi − n−1αi� + �n− 1�−2�
(4.30)
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similarly, it follows that∣∣��+i U��α�∣∣ �= ∣∣U�α+ εi� −U�α�∣∣
≤ 2
n�n+ 1�

K∑
j=1

{
αj

∣∣qj − n−1αj
∣∣+ α2

j

2n�n+ 1�
}

+ 2
n+ 1

∣∣qi − n−1αi
∣∣+ �n+ 1�−2

(4.31)

and that ∣∣��++ij U��α�∣∣ �= ∣∣U�α+ εi + εj� −U�α�∣∣
≤ 4
n�n+ 2�

K∑
l=1

{
αl
∣∣ql − n−1αl

∣∣+ α2
l

n�n+ 2�
}

+ 2
n+ 2

{∣∣qi − n−1αi
∣∣+ ∣∣qj − n−1αj

∣∣}
+ 2�1+ δij��n+ 2�−2�

(4.32)

Hence, in n ≥ 2, invoking (4.2), we obtain

���U��α�u�� ≤
K∑
i=1

αi�n− αi�
�n− 1�2 +

K∑
i� j=1

f3ij�α�
∣∣��++ij U��α�∣∣

+
K∑
i=1

{�f1i�α�� ���−i U��α�� + f2i�α����+i U��α��
}
�

(4.33)

with the various terms estimated in n ≥ 2 as follows: first,
∑K
i=1 αi�n−αi��n−

1�−2 ≤ 2; for the second term, we have

K∑
i� j=1

f3ij�α�
∣∣��++ij U��α�∣∣

≤ 4c3n
−1

K∑
l=1

{
αl
∣∣ql − n−1αl

∣∣+ n−2α2
l

}
+ 4

K∑
i� j=1

c3ij
∣∣qi − n−1αi

∣∣+ 4c3n
−1

≤ 8c3

{(
K∑
i=1

�qi − n−1αi�2
)1/2

+ n−1

}
�

(4.34)

where c3ij = c3ji is assumed without loss of generality; for the remainder, in
similar fashion, the bound

K∑
i=1

{�f1i�α�� ���−i U��α�� + f2i�α����+i U��α��
}

≤ 8�c1 + c2�
{(

K∑
i=1

�qi − n−1αi�2
)1/2

+ n−1

}(4.35)
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is obtained. Combining these results, it follows that

���U��α�u�� ≤ k1 + k2

(
K∑
i=1

�qi − n−1αi�2
)1/2

�(4.36)

where

k1 = 2+ 4�c1 + c2 + c3�� k2 = 8�c1 + c2 + c3��(4.37)

Now, constructing a martingale using Lemma 4.1 and noting that U�X�v�� v�
= 0, it follows much as in the proof of Lemma 4.3 that

n∗t ≤ k1�t− v� + k2

√
n∗t �t− v� ≤ k1t+ k2

√
tn∗t �(4.38)

where

n∗t �= sup
v≤s≤t

E

{
K∑
j=1

(
qj −

Xj�s ∧ σ ∧ σ∗�
�X�s ∧ σ ∧ σ∗��

)2
}

(4.39)

and

σ∗ = σ∗�η� �= inf
{
u ≥ v � max

1≤j≤K

∣∣qj −Xj�u�/�X�u��∣∣ > η}�(4.40)

from this, we find that n∗t ≤ c′t, where c′ = 2k1 + k2
2, in v ≤ t ≤ 1/4. On the

other hand,

n∗t ≥ η2P�σ∗ ≤ �σ ∧ t�� ≥ η2�P�σ∗ ≤ t� −P�σ < t���(4.41)

implying that

P�σ∗ ≤ t� ≤ P�σ ≤ t� + η−2n∗t �(4.42)

from which, using Lemma 4.3, the lemma follows. ✷

Corollary 4.6. For any 1 ≤ ψ�n� ≤ n1/2,

P

[
K∑
j=1

∣∣∣n−1X
�m�
j �τ�m�n � − p�m�j

∣∣∣ > Kn−1/2ψ�n�
]
= O�ψ−2�n���(4.43)

uniformly in m > n.

Proof. Apply Lemmas 4.3 and 4.5 with T = �n�1 − ϕ��−1, ϕ fixed and
η = n−1/2ψ�n�. Then P�σ < T� = O�n−1�, by Lemma 4.3; if σ ≥ T, then
τ
�m�
n ≤ T, and Lemma 4.5 completes the proof. ✷
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5. The entrance process: coupling construction. As a consequence
of the lemmas of the previous section, it can be seen that for each m > n
the process X�m� hits �α� = n close to the time 1/n, with X�m�/�X�m�� almost
unchanged from its initial value. The next stage involves showing that two
X-processes, both starting with the same value n of �X� and having similar
initial values of X/n, can be constructed on the same probability space in
such a way that they very soon coincide with high probability. To do this, we
construct a bivariate process �Y�Y′� such that �Y�t�� = �Y′�t�� for all t ≥ 0
and such that, usually, Y�t� = Y′�t� for all t ≥ t1, for some small t1; we then
show that, with high probability, �Y�Y′� coincides with the required pair of
X-processes.

The bivariate process �Y�Y′� is a pure jump Markov process on ZK+ × ZK+
which starts with �Y�0�� = �Y′�0��, and has transition rates given in �α� ≥ C1
by

�5�1�

�1� �α� α′� → �α� α′� − �εj� εj�
at rate �αj ∧ α′j���α� −C1� + f̃1j�α� ∧ f̃1j�α′��

1 ≤ j ≤K�
�2� �α� α′� → �α� α′� + �εj� εj� at rate f2j�α� ∧ f2j�α′�� 1 ≤ j ≤K�
�3� �α� α′� → �α� α′� + �εi + εj� εi + εj� at rate f3ij�α� ∧ f3ij�α′��

1 ≤ i� j ≤K�
�4� �α� α′� → �α� α′� − �εj� εl� at rate πjl�α� α′���α� −C1��

1 ≤ j �= l ≤K�

where f̃1j�α� �= f1j�α�+C1αj ≥ 0 from (4.3) and the πjl are chosen to satisfy
the “total variation” matching conditions

∑
l� l�=j

πjl�α� α′� = αj − �αj ∧ α′j�� 1 ≤ j ≤K�
∑
j� j �=l

πjl�α� α′� = α′l − �αl ∧ α′l�� 1 ≤ l ≤K�
(5.2)

for example, take

πjl�α� α′� = �αj − α′j�+�α′l − αl�+
/ K∑
i=1

�αi − α′i�+�(5.3)

In �α� < C1, all transition rates of �Y�Y′� are taken to be 0; that is, �Y�Y′� is
stopped once �Y�t�� < C1.
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With this construction, while �Y�t�� ≥ C1, the marginal processes Y and Y′

are arranged to have exactly the same quadratic elements in their transition
rates as doX-processes, but the additional perturbing elements, involving the
various f-functions, are a little different; nonetheless, if �Y�1/m�� = m, then
the conclusion of Lemma 4.3 still holds for the process Y.

Lemma 5.1. If �Y�Y′� satisfies �Y�1/m�� =m, then, for any m ≥ 5 and for
any 1/m ≤ T ≤ ( 1

4 ∧ �C1�1+ ϕ��−1
)
, it follows that

P
[

sup
1/m≤t≤T

1
t

∣∣∣∣ 1
�Y�t�� − t

∣∣∣∣ > ϕ] ≤ c′′�1+ 1/ϕ�2T�(5.4)

where c′′ is defined in the same way as c in (4.17), but with c′′1 = c1 ∨ C1 in
place of c1.

Proof. The proof is similar to that of Lemma 4.3. Although the process
�Y�Y′� is bivariate, taking U�α� α′� t� = �t− 1/�α��2 still yields essentially the
same bound for ���U��α� α′� u�� as previously for ���U��α�u��, because

0 ≤ f2j�α� ∧ f2j�α′� ≤ f2j�α�� 0 ≤ f3ij�α� ∧ f3ij�α′� ≤ f3ij�α�(5.5)

and totalling the rates for transitions in which α→ α− εj gives

αj��α� −C1� + f̃1j�α� ∧ f̃1j�α′�
∈ [
αj��α� −C1�� αj�α� + f1j�α�

]
�

(5.6)

so that
∑K
j=1 f1j�α� in (4.19) is replaced by a quantity F′ satisfying

−C1�α� ≤ F′ ≤
K∑
j=1

f1j�α� ≤ c1�α��(5.7)

The remainder of the proof is identical; the restriction T ≤ �C1�1 + ϕ��−1

ensures that �Y�t�� ≥ C1 for all t ≤ T such that t−1
∣∣t− 1/�Y�t�� ∣∣ ≤ ϕ. ✷

The important feature of the construction is that �Y� and �Y′� change in the
same way at each transition, and hence remain equal forever; however,

D�α� α′� �= 1
2

K∑
j=1

�αj − α′j�(5.8)

remains constant at transitions of the form �1�, �2� and �3�, but decreases by
1 at any transition of the form �4�, the total rate of such transitions being
D�α� α′���α� − C1�. Thus D�Y�Y′� evolves according to a pure death process
and is eventually absorbed in 0, after which time Y and Y′ have identical
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paths, except when

T2 �= inf�t > 0� �Y�t�� ≤ C1�(5.9)

occurs earlier.

Lemma 5.2. Define t0 = 1/n, and suppose that �Y�Y′� satisfies �Y�t0�� =
�Y′�t0�� = n and D�Y�t0��Y′�t0�� ≤ nε; then it follows that D�Y�t��Y′�t�� = 0
for all t ≥ t1 �= �log n�−1√ε with probability at least 1−O�log n

√
ε�, uniformly

in ε ≤ �log n�−2 and n ≥ exp �2�1 ∨C1��.

Proof. Consider the process �Y�Y′� evolving over �t0� t1�. The chance that
the event A = ⋃

t0≤t≤t1
{�Y�t�� < ��1 + ϕ�t�−1

}
occurs is at most O�t1ϕ−2�, by

Lemma 5.1, and we take ϕ = 1/ log n and t0 and t1 as defined above, so
that P�A� = O�log n

√
ε� and, if A does not occur, then �Y�t�� ≥ C1 for all

t0 ≤ t ≤ t1. So couple the process D�Y�Y′� with a pure death process D′

starting with D′�t0� = D�Y�t0��Y′�t0�� and having time dependent per capita
death rate ��1 + ϕ�t�−1 − C1 in the following way. If D′ > D, let both evolve
independently of one another. Whenever D′ = D, sample the jumps of D′ as
a Bernoulli thinning of those of D; the construction can break down only if
A occurs, and, if A does not occur, D′�t� ≥ D�Y�t��Y′�t�� for all t0 ≤ t ≤ t1.
Hence

P�D�Y�t1��Y′�t1�� > 0� ≤ P�A� +ED′�t1��(5.10)

However, D′ is just a deterministic time change of a linear pure death process
D̂ with unit per capita death rate, specifically,

D′�t� = D̂
(∫ t
t0

�u�1+ ϕ��−1 du−C1�t− t0�
)

= D̂(�1+ ϕ�−1 log�t/t0� −C1�t− t0�
)(5.11)

for all t0 ≤ t ≤ �C1�1+ ϕ��−1, from which it follows that

ED′�t1� = �t0/t1�1/�1+ϕ� exp�C1�t1 − t0��D′�t0�
= O(�nt1�−1nε

) = O�log n
√
ε��

(5.12)

uniformly in ε ≤ �log n�−2, completing the proof. ✷

We now consider a bivariate process �X�X′� which, for �X�t�� ≥ C1, has
the same transitions (1)–(4) of (5.1) as does �Y�Y′�, and, in addition, has the
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transitions

�5�13�

�5� �α� α′� → �α� α′� − �εj�0� at rate f̃1j�α� − �f̃1j�α� ∧ f̃1j�α′���

1 ≤ j ≤K�

�6� �α� α′� → �α� α′� − �0� εj� at rate f̃1j�α′� − �f̃1j�α� ∧ f̃1j�α′���

1 ≤ j ≤K�

�7� �α� α′� → �α� α′� + �εj�0� at rate f2j�α� − �f2j�α� ∧ f2j�α′���

1 ≤ j ≤K�

�8� �α� α′� → �α� α′� + �0� εj� at rate f2j�α′� − �f2j�α� ∧ f2j�α′���

1 ≤ j ≤K�

�9� �α� α′� → �α� α′� + �εi + εj�0�

at rate f3ij�α� − �f3ij�α� ∧ f3ij�α′��� 1 ≤ i� j ≤K�

�10� �α� α′� → �α� α′� + �0� εi + εj�

at rate f3ij�α′� − �f3ij�α� ∧ f3ij�α′��� 1 ≤ i� j ≤K�

However, if �X�t�� < C1 and X�t� = X′�t�, then X and X′ are continued
as identical X-processes, whereas if �X�t�� < C1 and X�t� �= X′�t� they are
continued as independent X-processes. Then the first coordinate of the pair
is an X-process, and they are both X-processes up to the first time at which
one of the transitions (5)–(10) takes place; at later times, it is possible that
�X′�t�� �= �X�t��, so that the second coordinate has the wrong quadratic rates
for an X-process. However, if X and X′ are equal at any time, they have
identical paths thereafter.

Lemma 5.3. Let t0 = 1/n, �Y�Y′� with D�Y�t0��Y′�t0�� ≤ nε and t1 =
�log n�−1√ε be as for Lemma 5.2, and construct a bivariate process �X�X′�
on the same probability space as �Y�Y′�, in such a way that �X�t0��X′�t0�� =
�Y�t0��Y′�t0�� and that �X�X′� shares all the jumps of �Y�Y′� up to the first
time ν at which a transition from (5)–(10) of (5.13) takes place; after that time,
they evolve independently. Then, with this construction,

P�ν ≤ t1� = O�log n
√
ε��(5.14)

uniformly in ε ≤ �log n�−2 and n ≥ exp�2�1 ∨C1��.
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Proof. From (4.2), the sum of the transition rates for jumps of types (5)–
(10) is at most 2�c1+C1+ c2+ c3�D�Y�Y′� before time ν. Hence

P�ν ≤ t1� ≤ E
{
1 ∧ 2�c1+C1+ c2+ c3�

∫ t1
t0

D�Y�u��Y′�u��du
}

≤ P�B�+E
[{

1∧2�c1+C1+ c2+ c3�

×
∫ t1
t0

D�Y�u��Y′�u��du
}
1Bc

]
�

(5.15)

where

B �= ⋃
t0≤t≤t1

{
1
t

∣∣∣∣ 1
�Y�t�� − t

∣∣∣∣ > ϕ}�(5.16)

and ϕ = 1/ log n as for Lemma 5.2. Now P�B� = O�ϕ−2t1� = O�log n
√
ε� by

Lemma 5.1, and on Bc we have D�Y�u��Y′�u�� ≤ D′�u� for all t0 ≤ u ≤ t1,
where D′ is as constructed in the proof of Lemma 5.2. Hence the second term
in (5.15) is no larger than

2�c1+C1+ c2+ c3�D
(
Y�t0��Y′�t0�

)
×
∫ t1
t0

�t0/u�1/�1+ϕ� du exp�C1�t1 − t0�� = O�ε log n��
(5.17)

This completes the proof. ✷

Corollary 5.4. If α� α′ ∈ ZK+ are such that �α� = �α′� = n and D�α� α′� ≤
nε, then X-processes X̂ and X̂′ with X̂�1/n� = α and X̂′�1/n� = α′ can be

constructed on the same probability space, in such a way that X̂�t� = X̂′�t� for
all t ≥ t1 = �log n�−1√ε, with probability at least 1 −O�log n

√
ε�, uniformly

in ε ≤ �log n�−2 and n ≥ exp�2�1 ∨C1��.

Proof. Combine Lemmas 5.2 and 5.3. Defining the event E = �ν > t1� ∩
�Y�t� = Y′�t� for all t ≥ t1�, a coupling of Y and Y′ can be achieved in such
a way that P�E� = 1−O�log n

√
ε�, and, on E, we have ν = ∞ and �X�X′� =

�Y�Y′� for all t ≥ 1/n. As soon as ν occurs, or at time t1 if Y�t1� �= Y′�t1�,
continue both components independently as X-processes. ✷

Given p ∈ �K, these results can be collected to prove the existence of anX-
process Xp which satisfies limt→0 �Xp�t�� = ∞ and limt→0X

p�t�/�Xp�t�� = p.
For each m ≥ 1, let X�m� be an X-process started with �X�m��1/m�� = m and
with �p�m� − p� ≤Km−1, where p�m� =m−1X�m��1/m�, and set ψ�n� = n1/12,

ε�n� =K�2n−1 + n−1/2ψ�n���(5.18)
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Theorem 5.5. Define t1 = �log n�−1
√
ε�n�, t2 = max�t1� n−1/6� and un =

t2 + 1/�2n�. Then
dTV�� �X�m��s�� s ≥ un�� � �X�n��s�� s ≥ un�� = O�n−1/6��(5.19)

uniformly in m ≥ n. Furthermore, as n → ∞, X�n� converges weakly in
D��0�∞��ZK+ � to a limit Xp, which satisfies limt→0 ρ�Xp�t�� = �∞� p� a.s.

Proof. From Corollary 4.6, for any m > n, it follows that∣∣∣p�m� − n−1X�m��τ�m�n �
∣∣∣ ≤Kn−1/2ψ�n��(5.20)

except on a set of probability O�ψ−2�n��. Define X̂�m� on s ≥ 1/n by X̂�m��s� =
X�m��s+τ�m�n −1/n�. Then, since also �p�m�−p�n�� ≤ 2Kn−1 uniformly inm > n,
Corollary 5.4 shows that X̂�m� andX�n� can be realized together in such a way
that X̂�m��s� =X�n��s� for all s ≥ t1, except possibly on a set having probability
O�log n

√
ε�n��, and in this case we have X�m��un� = X�n��un − τ�m�n + 1/n�,

provided that un−τ�m�n +1/n ≥ t1. Now Corollary 4.4 shows that �τ�m�n −1/n� ≤
1/�2n�, which in its turn implies that

t1 ≤ t2 ≤ un − τ�m�n + 1/n ≤ t2 + 1/n�(5.21)

except on an event having probability O�n−1�, and Lemma 4.2 applied with
t = t2 combined with the Markov inequality shows that P��X�n��t2�� > n1/3� =
O�n−1/6�; from this, it follows that

P
[
X�n� does not remain constant on �t2� t2 + 1/n�]
= O(n−1/6 + n−1n2/3) = O�n−1/6��

(5.22)

Thus, using the joint realizations above,

P
[
X�m��un� �=X�n��un�

]
= O

(
n−1/6 + ψ−2�n� + log n

√
ε�n�

)
= O�n−1/6��

(5.23)

and hence

dTV
(
� �X�m��un��� � �X�n��un��

) = O�n−1/6��(5.24)

However, for two Markov processes Z, Z′ on a Polish space which have the
same generator and satisfy dTV

(
� �Z�s���� �Z′�s��) ≤ δ, a simple coupling

argument is enough to show that dTV
(
� �Z�t�� t ≥ s��� �Z′�t�� t ≥ s�) ≤ δ

also, giving (5.19).
Now, for any 0 < t < T <∞, the space D��t�T��ZK+ � is Polish, and hence it

follows from (5.19) that �X�n��s�� t ≤ s ≤ T� converges weakly; by consistency,
we can extend the limit Xp to the whole of t > 0, and (5.19) implies that

dTV�� �Xp�s�� s ≥ un�� � �X�n��s�� s ≥ un�� = O�n−1/6��(5.25)
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Furthermore, given any ε�η > 0, it follows from Lemmas 4.3 and 4.5 that T
can be chosen small enough to ensure that, for any 0 < v < T and for all n
large enough,

P
[

sup
v≤s≤T

max
1≤j≤K

∣∣p�n�j −X�n�
j �s� /�X�n��s��∣∣ > η] < ε(5.26)

and

P
[

sup
v≤s≤T

1/�X�n��s�� > η
]
< ε�(5.27)

From this, it follows also that, for the same choice of T,

P
[

sup
0<s≤T

max
1≤j≤K

∣∣pj −Xpj �s�/�Xp�s��∣∣ > η] ≤ ε(5.28)

and

P
[

sup
0<s≤T

1/�Xp�s�� > η
]
≤ ε�(5.29)

and indeed the same choice of T can be used uniformly for all p ∈ �K. Hence,
in particular, lims→0 ρ�Xp�s�� = �∞� p� a.s. as claimed. ✷

Theorem 5.6. Suppose that a sequence of X-processes X̃�m� satisfy

�X̃�m��0�� = sm → ∞ and �p̃�m� −p�→0 as m→∞, where p̃�m� =s−1
m X̃

�m��0�.
Then, with t1=�log n�−1

√
ε�n�, t2= max�t1� n−1/6� and un= t2+1/�2n� as

before,

dTV�� �X̃�m��s�� s ≥ un�� � �X�n��s�� s ≥ un�� = O�n−1/6��(5.30)

uniformly for all m such that sm > n and �p̃�m� − p� ≤ Kn−1. In particular,

ρ�X̃�m�� converges weakly in D��0�∞��F� to Yp as m → ∞, where Yp�0� =
�∞� p� and Yp�s� = ρ�Xp�s�� for all s > 0.

Proof. The proof is much the same as for Theorem 5.5. Define X̄�m��t� =
X̃�m��t−1/sm� on t ≥ 1/sm, so that �X̄�m��1/sm�� = sm and, from Corollary 4.6,
if sm > n, then

P
[∣∣∣p̃�m� − n−1X̄�m��τ̄�m�n �

∣∣∣ ≤Kn−1/2ψ�n�
]
= 1−O�ψ−2�n���(5.31)

where τ̄�m�n denotes the time at which �X̄�m�� first takes the value n. Then,
because �p̃�m� − p� ≤ Kn−1, it follows that �p̃�m� − p�n�� ≤ 2Kn−1 also, and
Corollary 5.4 can be applied to show that X̄�m� and X�n� can be realized to-
gether in such a way that

P
[
X̄�m�(s+ τ̄�m�n − 1/n

) =X�n��s� for all s ≥ t2
]

= 1−O
(

log n
√
ε�n�

)
�

(5.32)
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However, X̄�m��s + τ̄�m�n − 1/n� = X̃�m��s + τ̄�m�n − 1/n − 1/sm�, so that, from
Corollary 4.4,

P
[
X̄�m��un� =X�n��u′n� for some u′n ∈ �t2 + 1/sm� t2 + 1/n+ 1/sm�

]
= 1−O�n−1/6�

(5.33)

and P
[
X�n� is constant on �t2� t2 + 1/n + 1/sm�

] = 1 − O�n−1/6� when sm >
n, as before. Hence (5.30) is satisfied, and X̃�m� converges to Xp weakly
in D��0�∞��ZK+ � as in Theorem 5.5. The convergence of ρ�X̃�m�� to Yp in
D��0�∞��F� now follows, in view of (5.28) and (5.29). ✷

Theorem 5.7. If p�k� → p as k → ∞, then Xp
�k�
converges weakly to Xp

in D��0�∞��ZK+ �.

Proof. We show that

dTV
{
� �Xp�k� �s�� t ≤ s ≤ T�� � �Xp�s�� t ≤ s ≤ T�}→ 0(5.34)

as k → ∞ for each 0 < t < T < ∞, which is enough, in view of (5.28) and
(5.29). For any n > 0, choose kn so large that �p�k� − p� ≤ Kn−1/2ψ�n� for all
k ≥ kn, with ψ�n� = n1/12 and ε�n� as for Theorem 5.5. Then, if τ�k�n denotes
the first time that �Xp�k� � = n and τn the first time that �Xp� = n, it follows
from Corollary 4.6 and Theorem 5.5 that, for k ≥ kn,

P
[
n−1�Xp�k� �τ�k�n � −Xp�τn�� > Kn−1/2ψ�n�] = O�n−1/6��(5.35)

Thus, from Corollary 5.4, whenever k ≥ kn, Xp�k� and Xp can be realized
together in such a way that they are identical from time max��log n�−1

√
ε�n��

n−1/6�+n−1 onward, with probability at least 1−O�n−1/6�, proving (5.34). ✷

6. The entrance process: �-continuity. Now we suppose that we have
a family of X-processes, indexed by θ ∈ RK+ , defined as in (4.1) and (4.2).
Denote their transition rates q�α�β� θ� by

q�α� α− εj� θ� = αj�α� + f�θ�1j �α��
q�α� α+ εj� θ� = f�θ�2j �α��

q�α� α+ εi + εj� θ� = f�θ�3ij�α��

(6.1)

and q�α�β� θ� = 0 for all other β �= α, and let the corresponding probabilities
be denoted by P�θ�; set

Pαβ�t� θ� = P�θ��X�t� = β �X�0� = α��
bβ�t� p� θ� = P�θ��Xp�t� = β��

(6.2)
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Fix any θ0 ∈ RK+ and assume that:

1. The functions q�α�β� ·� are continuous at θ0 for each α�β ∈ ZK+ .

2. There exists a neighborhood N0 of θ0 such that cl �= supθ∈N0
c
�θ�
l < ∞ for

l = 1�2�3 and C̄1 �= supθ∈N0
C
�θ�
1 <∞.

Lemma 6.1. Under Assumption 1, Pαβ�t� ·� is continuous at θ0 for any t > 0
and α�β ∈ ZK+ .

Proof. By Example 1.1 of Xia (1994), θ �→ P�θ��X ∈ · � X�0� = α� is
continuous at θ0 for each α ∈ ZK+ , so if we can show that

P�θ0��X�t� �=X�t−� �X�0�=α�=0� α∈ZK+ � t>0�(6.3)

then the conclusion of the lemma will follow. To see (6.3), let 0 < τ1 < τ2 < · · ·
denote the jump times of X. Then

P�θ0�[τn = t �X�0� = α]
= ∑
α1� ���� αn

P�θ0�[X�τ1� = α1� � � � �X�τn� = αn �X�0� = α
]

×P�θ0�[τn = t �X�0� = α�X�τ1� = α1� � � � �X�τn� = αn
]

= 0�

(6.4)

using the fact that the conditional distribution of τn, givenX�0� = α,X�τ1� =
α1� � � � � X�τn� = αn, is the distribution of the sum of n independent exponential
random variables. Finally, the sum of the probabilities on the left side of (6.4)
is equal to the probability on the left side of (6.3). ✷

Theorem 6.2. Under assumptions 1 and 2, bβ�t� p� ·� is continuous at θ0,

for any t > 0, p ∈ �K and β ∈ ZK+ .

Proof. Fix t > 0, p ∈ �K and β ∈ ZK+ . First note that, by assumption 2,
all the order estimates in Sections 4 and 5 are uniform in θ ∈ N0. Thus in
particular, from (5.19), given any η > 0, we can fix n = n�η� such that

dTV
(
� �θ��Xp�t��� � �θ��X�n��t��) ≤ η/3�(6.5)

uniformly in θ ∈N0, from which it follows that

�bβ�t� p� θ� −Pnp�n�� β�t− n−1� θ�� ≤ η/3 for all θ ∈N0�(6.6)

Then, by Lemma 6.1, there exists a neighborhood Nη of θ0 such that

�Pnp�n�� β�t− n−1� θ� −Pnp�n�� β�t− n−1� θ0�� ≤ η/3(6.7)
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for all θ ∈Nη. Hence, for all θ ∈N0∩Nη, we have �bβ�t� p� θ�−bβ�t� p� θ0�� ≤ η�
proving that bβ�t� p� ·� is continuous at θ0. ✷

7. Ray–Knight theory. The following sketch of Ray–Knight theory in the
context of countable-state Markov pure jump processes is based on Sections
81 and 57 of Williams (1979). Let I be a countably infinite set representing
the state space of the Markov process. Let pij�t� be the transition probabilities
and

Rλ�i� j� =
∫ ∞
0
e−λtpij�t�dt(7.1)

the resolvent. Note that R1�i� ·� belongs to l1�I� for each i ∈ I. Indeed,

#R1�i� ·�#1 =
∑
j∈I

∫ ∞
0
e−tpij�t�dt =

∫ ∞
0
e−t dt = 1�(7.2)

Let E be the closure in l1�I� of the set of functions �R1�i� ·�� i ∈ I�. Then E
is the (relevant part of the) Ray–Knight compactification of I, and the map
i �→ R1�i� ·� embeds I into E.

Now, suppose we specify a particular compactification F of I. How do we
show that F is the Ray–Knight compactification of I, in the sense of being
homeomorphic to E?

Lemma 7.1. Define E as above to be the closure in l1�I� of �R1�i� ·�� i ∈ I�.
Let F be a compact space and suppose that ρ� I �→ F is a one-to-one map with
the property that ρ�I� is dense in F and its relative topology is the discrete
topology. Assume the following conditions:

(i) For each x ∈ F − ρ�I�, there exists R�x� ·� ∈ E ⊂ l1�I� such that, if
�in� ⊂ I and ρ�in� → x in F, then R1�in� ·� → R�x� ·� in E.

(ii) x �→ R�x� ·� is a continuous map from F− ρ�I� into E.
(iii) The map 4� F �→ E defined by 4�ρ�i�� = R1�i� ·� for i ∈ I and 4�x� =

R�x� ·� for x ∈ F− ρ�I� is one-to-one.
Then 4 is a homeomorphism from F onto E.

Proof. Conditions (i) and (ii) show that 4 is continuous. It is one-to-one
by (iii) and onto by the definition of E, the compactness of F and (i). Finally,
the continuity of 4−1 is now automatic from the compactness of F, and the
conclusion follows. ✷

We wish to apply Lemma 7.1 to the case of the X-process with transition
rates satisfying (4.1)–(4.3). Denote its transition probabilities by Pαβ�t�, put
I = ZK+ and let ρ and F be as in (1.12) and (1.13).
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Lemma 7.2. Suppose that, for each p ∈ �K, there exists a Markov process
�Y�t�� t ≥ 0� in F starting at �∞� p�, and assume the following properties:

(a) P�∞� p��Y�t� ∈ ρ�ZK+ �� = 1 for all p ∈ �K and t > 0.
(b) Pαβ�t� → P�∞� p��Y�t� = ρ�β�� as ρ�α� → �∞� p� for all β ∈ ZK+ , t > 0

and p ∈ �K.
(c) P�∞� p��Y�t� = ρ�β�� is continuous in p ∈ �K for all t > 0 and β ∈ ZK+ .

Then the Ray–Knight compactification of I with respect to the X-process is
homeomorphic to F, and the process �Y�t�� t ≥ 0� above is the corresponding
Ray process.

Proof. Define

R��∞� p�� β� =
∫ ∞
0
e−tP�∞� p��Y�t� = ρ�β��dt�(7.3)

Then properties (a)–(c) imply conditions (i) and (ii) of Lemma 7.1, using the
fact that if �fn� ⊂ l1�I�, f ∈ l1�I�, #fn#1 = 1 for all n and #f#1 = 1, then
fn→ f pointwise on I implies fn→ f in l1�I�.

Condition (iii) can be seen as follows. First, let α� α′ ∈ ZK+ and suppose
R1�α� ·� = R1�α′� ·�. Then, for every bounded function g on ZK+ ,∑

β∈ZK+

∫ ∞
0
e−tg�β�Pαβ�t�dt =

∑
β∈ZK+

∫ ∞
0
e−tg�β�Pα′β�t�dt�(7.4)

or, letting �0 denote the generator of the process,

�1−�0�−1g�α� = �1−�0�−1g�α′��(7.5)

Taking g = �1−�0�f for f ∈ � ��0�, we conclude that

f�α� = f�α′�� f ∈ � ��0��(7.6)

Since the space of functions on ZK+ with finite support separates points of ZK+ ,
4 is one-to-one on ρ�ZK+ �.

Next, if α ∈ ZK+ and p ∈ �K were to satisfy R1�α� ·� = R��∞� p�� ·�, a similar
argument would show that

f�α� = lim
ρ�α′�→�∞� p�

f�α′�� f ∈ � ��0��(7.7)

which clearly fails. Finally, let p�p′ ∈ �K and suppose that R��∞� p�� ·� =
R��∞� p′�� ·�. In this case we find that

lim
ρ�α�→�∞� p�

f�α� = lim
ρ�α′�→�∞� p′�

f�α′�� f ∈ � ��0��(7.8)

Given β ∈ ZK+ , define f�α� = (
α1
β1

) · · · (αK
βK

)
/
(�α�
�β�
)

if α ≥ β and f�α� = 0 otherwise.
Noting that f ∈ � ��0�, (7.8) becomes(�β�

β

)
pβ =

(�β�
β

)
�p′�β�(7.9)
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Since monomials separate points of �K, we conclude that 4 is one-to-one
on F. ✷

Theorem 7.3. The Ray–Knight compactification of ZK+ with respect to the
X-process with transition rates given either by (3.7) and (3.8) or by (3.13)–(3.15)
is homeomorphic to F defined in (1.13), and the corresponding Ray process is,
but for a rescaling of time, the Yp of Theorem 5.6.

Proof. Theorems 5.5, 5.6 and 5.7 show that properties (a)–(c) of
Lemma 7.2 are satisfied by all X-processes with rates specified as in (4.1)
and (4.2). All that remains is to check that twice the rates specified either in
(3.7) and (3.8) or in (3.13)–(3.15) give rise to f-functions satisfying (4.2) and
(4.3). The necessary argument is given in Lemma 8.2. ✷

8. Application to the K-allele model (continued). In this section we
show that the assumptions made in Sections 4–6 are satisfied by our examples
(3.7) and (3.8) and (3.13)–(3.15). This then will finally complete the proof of
the transition function expansion, as described in Theorem 3.1.

Lemma 8.1. Let �σij� be a real symmetric K ×K matrix, and define the

function c� RK+ −�0� �→ �exp �minσkl�� exp �max σkl�� by (3.12). (In the haploid
case (1.19), this reduces to (1.21).) Then∣∣∣∣ c�w�

c�w+ εi� − 1
∣∣∣∣ = O��1+ �w��−1�(8.1)

and ∣∣∣∣c�w+ εi�c�w� − c�w+ ε
i + εj�

c�w+ εj�

∣∣∣∣ = O��1+ �w��−2�(8.2)

for i� j = 1� � � � �K, uniformly in w.

Proof. By (3.12), we have

c�w� = E exp

{
K∑

i� j=1

σij
WiWj

�W�2
}
= exp �minσkl�E�exp�A�W����(8.3)

where W1� � � � �WK are independent random variables with Wi being
gamma�wi�1� distributed, W �= �W1� � � � �WK� and A�W� �= ∑K

i�j=1 σ
+
ij

�WiWj/�W�2� [recall (3.10)]. Of course, �W� �= W1 + · · · +WK. Consider the
function ĉ�w� �= c�w� exp �−minσkl�. Letting Bi�W� =

∑K
j=1 σ

+
ij�Wj/�W��, we

can write

ĉ�w+ εi� = E exp
{
A�W� �W�2

��W� +Z�2 +Bi�W�
2�W�Z

��W� +Z�2

+ σ+ii
Z2

��W� +Z�2
}(8.4)
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and

ĉ�w+ εi + εj�

= E exp
{
A�W� �W�2

��W� +Z1 +Z2�2
+Bi�W�

2�W�Z1

��W� +Z1 +Z2�2

+Bj�W�
2�W�Z2

��W� +Z1 +Z2�2
+ σ+ii

Z2
1

��W� +Z1 +Z2�2

+σ+ij
2Z1Z2

��W� +Z1 +Z2�2
+ σ+jj

Z2
2

��W� +Z1 +Z2�2
}

(8.5)

for i� j = 1� � � � �K, where Z, Z1 and Z2 are independent of each other and
of W1� � � � �WK and have the gamma�1�1� distribution. Now we always have
0 ≤ A�W� ≤ σ and 0 ≤ Bi�W� ≤ σ , and hence, defining

ĉ1�w� i� = E exp
{
A�W�

(
1− 2Z

�W� +Z
)
+Bi�W�

2Z
�W� +Z

}
�(8.6)

it follows from the inequality �ex − 1� ≤ �x�e�x� that

∣∣ĉ�w+ εi� − ĉ1�w� i�∣∣
≤ E

{
exp

{
A�W�

(
1− 2Z

�W� +Z
)
+Bi�W�

2Z
�W� +Z

}
×
∣∣∣∣exp

{{
A�W� − 2Bi�W� + σ+ii

} Z2

��W� +Z�2
}
− 1

∣∣∣∣}
≤ e2σ2σE

{
Z2

��W� +Z�2
}
e2σ = O��1+ �w��−2��

(8.7)

in similar fashion, defining

ĉ2�w� i� = E
{
eA�W�

(
1− 2Z

�W� +Z�A�W� −Bi�W��
)}
�(8.8)

the inequality �ex − 1− x� ≤ 1
2x

2e�x� implies that

ĉ1�w� i� − ĉ2�w� i� = O��1+ �w��−2��(8.9)

of course,

ĉ2�w� i� = ĉ�w� − hi�w��(8.10)
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where

hi�w� �= 2E
{
eA�W�

Z

�W� +Z
{
A�W� −Bi�W�

}}
= O(�1+ �w��−1

)
�

(8.11)

Adding (8.7), (8.9) and (8.10) yields

ĉ�w+ εi� = ĉ�w� − hi�w� +O��1+ �w��−2��(8.12)

which, with (8.11), completes the proof of (8.1).
For (8.2), analogously to (8.6) and (8.7), we deduce that

ĉ�w+ εi + εj� = E exp
{
A�W�

(
1− 2Z1

�W� +Z1
− 2Z2

�W� +Z2

)
+Bi�W�

2Z1

�W� +Z1
+Bj�W�

2Z2

�W� +Z2

}
+O(�1+ �w��−2)

(8.13)

for i� j = 1� � � � �K, and then proceed as before to obtain

ĉ�w+ εi + εj� = ĉ�w� − hi�w� − hj�w� +O��1+ �w��−2��(8.14)

Combining (8.14) with (8.11) and (8.12) then proves (8.2). ✷

Lemma 8.2. In the haploid case (1.19), let �q�α�β�� be as in (3.7) and (3.8)

and define f1i�α� = 2q�α� α−εi�−αi�α�, f�1�2i �α� = 2q�α� α+εi� and f3ij�α� = 0
for i� j = 1� � � � �K. In general, let �q�α�β�� be as in (3.13)–(3.15) and define

f1i�α� = 2q�α� α − εi� − αi�α�, f�2�2i �α� = 2q�α� α + εi� and f3ij�α� = 2q�α� α +
εi + εj� for i� j = 1� � � � �K. Then f1i�0� = f�1�2i �0� = f�2�2i �0� = f3ij�0� = 0,∣∣f1i�α� − f1i�α′�

∣∣ ≤ c1i�1+ �θ���α− α′��(8.15) ∣∣f�l�2i �α� − f�l�2i �α′�
∣∣ ≤ c�l�2i �α− α′��(8.16) ∣∣f3ij�α� − f3ij�α′�
∣∣ ≤ c3ij�α− α′��(8.17)

for i� j = 1� � � � �K, l = 1�2, and all α ∈ ZK+ , where the constants c1i, c
�l�
2i and

c3ij, when regarded as functions of θ, are uniformly bounded in θ. Furthermore,

there exists C1 ≥ 0 such that f1i�α� ≥ −C1αi for i = 1� � � � �K and all α ∈ ZK+ .

Proof. It suffices for (8.15)–(8.17) to consider α′ = α+εj for j = 1� � � � �K.
For f�1�2i write

a1�α� = �α�/��α� + �θ��� a2�α� = αi + θi�
a3�α� = c�α+ εi + θ�/c�α+ θ��

(8.18)



160 A. D. BARBOUR, S. N. ETHIER AND R. C. GRIFFITHS

then it is immediate that, if σ−i �= 0,

�2σ−i �−1
{
f
�1�
2i �α� − f�1�2i �α+ εj�

}
= [
a1�α� − a1�α+ εj�

]
a2�α�a3�α�

+ a1�α+ εj�
[
a2�α� − a2�α+ εj�

]
a3�α�

+ a1�α+ εj�a2�α+ εj�
[
a3�α� − a3�α+ εj�

]
�

(8.19)

Noting that �a3�α�� ≤ eσ , the first term is bounded by

�θ��αi + θi�
��α� + 1+ �θ����α� + �θ�� e

σ ≤ eσ �(8.20)

the second is also bounded by eσ , and the last is

�α� + 1
�α� + 1+ �θ� �αi + δij + θi�O���α� + 1+ �θ��−2�(8.21)

by (8.2), which is bounded in α, uniformly in θ. The treatment of f�2�2i is much
the same.

In the corresponding argument for

f1i�α� = αi��θ� − 1�c�α− ε
i + θ�

c�α+ θ� + αi�α�
{
c�α− εi + θ�
c�α+ θ� − 1

}
�(8.22)

note that f1i�α� = 0 if αi = 0, in which case f1i�α� − f1i�α + εj� = 0 except
when j = i; then, from (8.1),∣∣f1i�α� − f1i�α+ εi�

∣∣
=
∣∣∣∣��θ� − 1� c�α+ θ�

c�α+ εi + θ� + ��α� + 1�
{

c�α+ θ�
c�α+ εi + θ� − 1

}∣∣∣∣
≤ ��θ� ∨ 1�eσ + ��α� + 1�O(��α� + 1+ �θ��−1)�

(8.23)

If αi ≥ 1, consider the two terms in f1i�α� separately. For the first term, take
a1�α� = αi, a2�α� = �θ�−1 and a3�α� = c�α−εi+θ�/c�α+θ� in (8.19), and argue
using (8.2) to obtain a bound O��θ� ∨ 1�; for the second term, take a1�α� = αi,
a2�α� = �α� and a3�α� = c�α − εi + θ�/c�α + θ� − 1 in (8.19), and use (8.1)
and (8.2). It also follows from (8.22) that f1i�α� ≥ −C1αi, with

C1 �=
{
�θ� − 1+ sup

w∈RK+ −�0�
max
1≤i≤K

�w�
(
1− c�w�

c�w+ εi�
)}
<∞�(8.24)

by (8.1).
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The argument for �f3ij�α� − f3ij�α′�� runs along the same lines. Define
a1�α� = αi+δij+θi, a2�α� = ��α�+1+�θ��−1, a3�α� = c�α+εi+εj+θ�/c�α+θ�,
a4�α� = �α�/��α� + �θ�� and a5�α� = αj + θj; then, for example,

a1�α+ εk�a2�α+ εk��a3�α� − a3�α+ εk��a4�α�a5�α�

= αi + δij + δik + θi�α� + 2+ �θ� O���α� + 1+ �θ��−2��αj + θj�
(8.25)

and

a1�α+ εk��a2�α� − a2�α+ εk��a3�α�a4�α�a5�α�

≤ �αi + δij + δik + θi�e
σ�αj + θj�

��α� + 2+ �θ����α� + 1+ �θ�� �
(8.26)

both terms are bounded in α, uniformly in θ. This proves the lemma. ✷
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