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One of the successes of the Brownian approximation approach to
dynamic control of queueing networks is the design of a control policy
for closed networks with two servers by Harrison and Wein. Adopting a
Brownian approximation with only heuristic justification, they interpret
the optimal control policy for the Brownian model as a static priority rule
and conjecture that this priority rule is asymptotically optimal as the closed
networks’s population becomes large.

This paper studies closed queueing networks with two servers that are
balanced, that is, networks that have the same relative load factor at each
server. The validity of the Brownian approximation used by Harrison and
Wein is established by showing that, under the policy they propose, the
diffusion-scaled workload imbalance process converges weakly in the infi-
nite population limit to the diffusion predicted by the Brownian approxi-
mation. This is accomplished by proving that the fluid limits of the queue
length processes undergo state space collapse in finite time under the pro-
posed policy, thereby enabling the application of a powerful new technique
developed by Williams and Bramson that allows one to establish conver-
gence of processes under diffusion scaling by studying the behavior of limits
under fluid scaling.

A natural notion of asymptotic optimality for closed queueing networks
is defined in this paper. The proposed policy is shown to satisfy this
definition of asymptotic optimality by showing that the performance under
the proposed policy approximates bounds on the performance under every
other policy arbitrarily well as the population increases without bound.

1. Introduction. Multiclass closed queueing networks are natural mod-
els of manufacturing systems in which the work in process inventory is held
constant, either by physical constraints [21] or management policy [22]. In de-
signing scheduling policies for such systems, the objective is to minimize idle-
ness of the servers in the network, or equivalently, to maximize the
throughput rate at each server in the network. That optimal control problem
is intractable, and thus it is natural to seek “good” policies using approximate
analysis.

One such approximate method is the Brownian approximation approach
pioneered by Harrison [11]. In this method, suitably scaled versions of perfor-
mance processes, like queue lengths, are studied as the population r in the
closed network is increased without bound. A limiting control problem is de-
rived in terms of the possible limits of the scaled processes. The solution to the
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limiting control problem must then be interpreted to obtain a scheduling pol-
icy for the original closed queueing network with finite population. Needless
to say, this approach is most useful when the limiting control problem is easily
solved and the solution to the limiting control problem is easily interpreted.

One of the successes of the Brownian approximation approach to dynamic
control of closed queueing networks is the design of a control policy for two-
server closed networks by Harrison and Wein [14]. They recast the limiting
control problem in terms of the “workload imbalance” process and thus render
it trivial. They interpret the optimal control policy for the limiting problem
as a static priority rule, and conjecture that this priority rule is asymptoti-
cally optimal in the infinite population limit under “balanced loading.” The
Harrison—Wein priority rule, which prioritizes customer classes according to
a certain “workload imbalance index,” is by no means obvious, and no simpler
means of deriving it have been proposed to date. Simulation studies [14] and
numerical bounds [17, 16] suggest that the performance of this priority rule
is excellent and that it could indeed be asymptotically optimal, but evaluation
of this policy remains incomplete even though it was proposed a decade ago.

This paper is devoted to the asymptotic analysis of the Harrison—Wein (HW)
policy in closed queueing networks with two servers that are “balanced,” and
it fills several gaps in the existing literature. The restriction to balanced net-
works, in which the relative load factors (or traffic intensity parameters) for
the two servers are exactly equal, is mainly for notational convenience. All the
results can be extended to the case where the relative load factors approach a
common limit as the population size approaches infinity, but the generaliza-
tion does not appear to be worth the added notational complexity. The main
results of this paper are the following.

1. The scaled workload imbalance process under the HW priority rule is shown
to converge weakly to a two-sided regulator applied to a Brownian motion
(cf. [10], Chapter 5). Since this is the diffusion obtained by Harrison and
Wein [14] as the solution to the limiting control problem, we establish the
validity of the Brownian approximation approach used by Harrison and
Wein and of their interpretation of the solution to the limiting control prob-
lem as a priority rule.

2. We show that the policy proposed by Harrison and Wein is asymptotically
optimal in the following sense. Denote the fixed population level in the
network by r, and the cumulative idleness incurred by server 1 up to time
t by U{ (t). Consider lim,_, ., E[U] (r?T)]/rT for a fixed, large T'. In a loose
sense, this quantity is a measure of the rate at which the long-run average
idleness approaches zero as the population increases without bound. We
show that this limit exists and is finite for the HW policy and that the
value of this limit is no smaller for any other nonidling policy.

The key to demonstrating these results is a powerful new technique de-
veloped in three recent papers by Williams [23, 24] and Bramson [3]. In this
technique, establishing state space collapse under fluid scaling is sufficient
to establish state space collapse under diffusion scaling, and that in turn is
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sufficient to establish convergence under diffusion scaling. Thus, the difficult
problem of proving tightness of diffusion-scaled processes is reduced to the
relatively easier task of establishing state space collapse under fluid scaling.
There are undoubtedly many other problems of asymptotic performance anal-
ysis that will be rendered tractable by the Williams—Bramson technique. In
order to enable application of this technique, we analyze the fluid limits of the
performance processes and obtain the following results about the fluid limits
that are interesting in their own right.

3a. Server idleness is never incurred in the fluid limit under the HW policy.

3b. Queue length processes undergo state space collapse in the fluid limit in
finite time under the HW policy. That is, after a finite time only two cus-
tomer classes have nonzero amounts of fluid in them.

There are very few such proofs of asymptotic optimality for scheduling
policies in network settings. One such result is provided by Martins, Shreve
and Soner [20] who revisit a simple open queueing network with two servers
and three customer classes that was first considered by Harrison and Wein
[13]. Restricting attention to a Markovian setting, [20] establishes asymptotic
optimality of a scheduling policy. Their method of proof, involving viscosity
solutions, is quite different from the Williams—Bramson technique used in
this paper and appears less amenable to application in more general network
settings.

The rest of the paper is structured as follows. In Section 2, the model of
the multiclass two-server closed queueing network is described. The notion of
asymptotic optimality is laid out in Section 3 and its connection to the notion
of asymptotic optimality proposed by Jin, Ou and Kumar [16] is described. The
HW static priority policy is described in Section 4. In Section 5, we analyze
the fluid limits of the network operated under the HW policy and we establish
state space collapse. A key result proved that is necessary for this analysis
is that there is never any idleness incurred on a fluid scale under the HW
policy. Then, using the result due to [3], we establish that there is state space
collapse under diffusion scaling as well. In Section 6, we prove the functional
limit theorem for the diffusion-scaled workload imbalance process under the
HW policy, using the state space collapse result proved in the previous section.
The methodology in Section 6 closely follows [23, 24] as well as [5]. In Section
7, we establish asymptotic optimality of the HW policy. First, we establish
that the limit in 2. above exists and is finite for the HW policy using uniform
integrability arguments. Second, we show that this limit is minimal for the
HW policy by showing that the idleness process under the HW policy achieves
the same weak limit as pathwise lower bounds on the idleness processes un-
der every other policy. Finally, in Section 8, we describe some of the possible
extensions of the results obtained in this paper.

2. The model. In this section we describe the model of the two-server
closed queueing network that will be analyzed in the rest of the paper. The
model described here can be considered as a closed network and a restricted
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version of the one considered by Williams [23]. The reader will do well to
consult the excellent exposition in Section 3 of [23]. All the random variables
defined below are defined over a probability space ((, .7, P).

2.1. Network structure. The queueing network we consider in this paper
consists of two servers, j = 1,2. At any given time, each customer in the
network belongs to one of the K customer classes, £ =1,2,..., K. Classes k =
1,2,..., ky are served by server 1 and the remaining classes £ = k;+1,..., K
are served by server 2. Let C denote the 2 x K constituency matrix given by

1, ifi=1land 1< j <k,
CZ[CLJ] WhereCijz 1, if i =2 and k1+1§_]§K,
0, otherwise.

2.2. Initialization of population. In a closed network, the population in the
system remains constant for all time ¢ > 0 and hence we need to populate the
system at time ¢ = 0. For simplicity and concreteness we will always assume
the following scheme for populating the network. At time ¢ = 0, r customers
appear instantaneously in class £ = 1 in some particular order, and the first
customer at the head of the line begins service at server j = 1 at ¢ = 0.
(Although the traditional notation for the population of a closed queueing
network is N, we will use r to be consistent with our principal references [23,
24] and [3].) Denote by Z"(0), the K x 1 initial queue length vector. Thus, we
assume that Z"(0) = (r,0,0,...,0).

2.3. Service times. For k=1,2,..., K, we denote by v,(i) the time taken
to complete service for the ith customer arriving into class & after time zero.
We denote their cumulative sums by V,(n) := Y7 ; v,(i), and the associated
vector by V(n) = (V,(n), k=1,..., K). Note that, because of our population
initialization scheme, we do not have any customers that have been partially
serviced at time zero. Hence we do not have to worry about residual service
times at time zero. Denote by S;(¢) the associate renewal process defined by
S.(t) = max{n: V,(n) < t}. Denote by M the K x K diagonal matrix whose
(%, k)th entry is m,. We make the following assumptions about the service
times {v,(i)} fori=1,2,3,...,and £ =1,2,..., K:

(1)  For each k, {v,(i), 1 =1,2,...} are i.i.d. positive random variables.

(2) E[v,(1)]=m; < o0
and
(3) Var[v,(1)] = b, < oc.

We also assume if % # [ then the sequences v,(-) and v;(-) are independent.

2.4. Routing. For k=1,2,...,K and fori =1,2,..., let ¢*(i) be a ran-
dom vector taking values in the set of Euclidean unit bases in RX, {e;, e,, ...,
ex}. On completion of the ith class %k service, the customer immediately
becomes a class I customer if ¢*(i) = e;. We denote by ®*(n) := Y7, ¢*(i)
the cumulative sum.
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We assume that {¢*(i),i = 1,2,...} are i.i.d and denote P, = P{¢*(i) =
e;}. Let P denote the K x K matrix whose (%, [)th entry is P;;. We assume
that P is stochastic; that is, leil P, =1for all £ =1,...K; and is irre-
ducible. That is, we assume there exists a unique 1 x K positive vector 7,
with Zszl 7, = 1, satisfying 7P = 7. Under the assumption of stochasticity,
the total number of customers in the system remains constant at the initial
population level r. Although the stochasticity assumption is natural and is
indeed necessary for the network to be closed, the irreduciblity assumption is
not without loss of generality. We are restricting attention to the class of closed
queueing networks commonly called single chain networks. For a discussion
of the applicability of the Harrison—Wein policy to multichain networks, in
which P is reducible, see [14]. However, we make no claim that the results of
this paper extend to multichain networks. B

We use the notation P to denote the transpose of P, P, to denote the kth

column of P and (IN’)” to denote the nth (matrix) power of P. Note that
4) E[¢*(i)]= P* and Cov[¢*(i)] = Y,
where Y* is the K x K matrix defined by

P,,(1-Py), ifil=m
Eo_ Rl kL) )
5) Yo = { —PyPy,.  ifl#m.
Let A* be the unique K x 1 positive vector satisfying

(6) PA* = )%,
(7) max(p], p3) =1 wherep* = CMA™.

The vector A* above can be interpreted as the maximum sustainable long-run
average rate of departures from each of the classes, and p* can be interpreted
as the vector of relative load factors.

ASSUMPTION 2.1. In this paper, we only consider balanced networks, in
which p] = p5 = 1.

The reader may be led to believe that we are only considering a very spe-
cial subclass of two-station closed queueing networks. However, in order to
use Brownian approximations like those used in [14], one requires that the
networks be at least asymptotically balanced. That is, one can consider a se-
quence of systems indexed by r. In the rth system, the mean service time
matrix M, and the routing matrix P, depend on r and the population in
this system is r. One obtains the corresponding sequences A* and p¥, and
one requires that r(p; ; — p; ) converge to some finite limit 6 as r — oo.
Hence, we make the balanced network assumption and only allow the pop-
ulation level r to vary in our sequence of systems. This assumption is also
justified because the asymptotic behavior of a system with just one bottleneck
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server tends to resemble that of a system with only one server, and hence is
less interesting. We will have more to say about relaxing Assumption 2.1 in
Section 8.

2.5. Admissible service disciplines or scheduling policies. In this paper,
we restrict attention to service disciplines that are nonidling. That is, the
server is busy if there is at least one customer awaiting service at that server.
Also, we only consider service disciplines that serve customers within a class
in FIFO fashion, and devote server effort only to the first customer in the
class. A customer arriving at a class (subsequent to departure from another
class) joins the end of line of customers awaiting service in that class. These
disciplines are the so-called head-of-line service disciplines.

In order to further specify the allowed service disciplines, we consider the
sequence of increasing times {0, };c;, where o, is the time at which the ¢th
change in the cumulative number of arrivals to any one of the classes (and
consequently, the ¢th change in the cumulative number of departures from
some other class) takes place. Let the r x 2 matrix &¢ denote the (class, age)
pairs of each of the r customers in the system at time o,, where “age” denotes
the time spent in the current class since arriving in that class. We require
that each of the servers devote a proportion u, of the time interval [oy, 0y, 1)
on the head of the line customer (the one with the largest age) in each class
k served by that server and that this proportion be determined completely
by #*. Equivalently, we specify an admissible scheduling policy by a map-
ping u: {1,..., K}" x R — [0, 1]X. The reader should note that our class
of admissible policies is fairly large and includes commonly used scheduling
policies like FIFO, Shortest Next Queue, Least Work Next Queue, as well as
preemptive-resume static priority rules.

2.6. Performance processes. All processes in this paper have paths in
Dga[0, o0), the space of right continuous R?-valued functions with left limits,
endowed with the usual Skorohod topology (cf. [9], Section 3.5) for some appro-
priate dimension d. Let .#; be the Borel o-algebra on Dg«[0, co). All stochas-
tic processes are measurable functions from (Q, 7, P) into (Dg«[0, 00), .#;).
From here on, let e denote a vector of all ones, whose dimension is specified
by the context.

Let A,(¢) denote the number of customers who have arrived at class %
in [0, ¢]; D;(¢), the number of customers who have departed from class % in
[0, t]; Z,(t), the number of customers in class & at time ¢; 7T;(¢), the total
time devoted to serving class k in [0, ¢] by the corresponding server and U,(¢)
the total time server j is idle in [0, ¢]. Note that specifying 7',(-) for each
k=1,..., K for each realization w € (), is equivalent to specifying the policy.
Recall that ®*(.) is the cumulative routing vector defined in Section 2.4.

Using the convention that a quantity without a subscript denotes the
vector of the corresponding subscripted quantities, we obtain the following
network equations under any nonidling, head-of-line policy. Equations (8)—
(12) follow directly from the definitions of the various quantities involved.
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Equation (13) is a convenient representation of the nonidling nature of the
policy:

(8) A(t) = Y OH(Dy (1)),
k
9) D(t) = S(T(1)),
(10) Z(t) = Z(0) + A(¢) — D(2),
(11) CT(t) + U(t) = et,
(12) é{: Zi(t)y=r forall¢=>0,
k=1
o ki 00 K
(13) /0 (k:1 Zk(t)> dU;(t) =/0 (kaZIHZk(t)) dU,(t) = 0.

These equations do not completely specify the behavior of the network op-
erated under a given policy u. We will need to add policy specific equations
in order to completely specify the behavior of the system, and we will indeed
do so later, when we consider the static priority policy proposed by Harrison
and Wein. In the sequel, when necessary, we will attach a superscipt r and
a subscript u to each of these quantities to make explicit the dependence of
these quantities on the fixed population level r and the control policy u that
is employed. For example, U, ;(¢) denotes the cumulative idleness incurred
by server j up to time ¢ when the population level is r and the control policy
employed is u. (Actually, one should index the policy u by r, since the policy
may depend on the population level. To simplify notation, we will not make
this dependence explicit.)

3. Asymptotic performance criteria. The analytical quest for an “opti-
mal” policy that either maximizes the throughput of the system or minimizes
server idleness at every population level r is hopeless. One is therefore driven
toward looking for policies that outperform other policies asymptotically as the
population increases without bound. Hence, we are led to defining asymptotic
performance criteria. In this section, we define an asymptotic performance cri-
terion that is sufficiently discriminating, and yet, for which verifying whether
a given policy optimizes this criterion is tractable. One asymptotic perfor-
mance criterion for weeding out poor policies is the notion of efficiency defined
below.

DEFINITION 3.1. An admissible policy u is said to be efficient if

E[U (T
(14) lim sup lim sup M =0

b
r—oo T—o0 T

for some j € {1, 2}.
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The j € {1, 2} that achieves the limit above identifies the bottleneck server.
Note that in the case of balanced networks, one expects (14) to hold for both
J =1 and 2 or neither.

Efficiency requires that the time averaged idleness for at least one of the
servers approach zero as the population in the closed network is increased
without bound. This is the most basic requirement on the asymptotic perfor-
mance of any “good” policy u. However, it is not a very discriminating perfor-
mance criterion in the sense that it is very likely that a whole host of policies
will be efficient for a given closed network. See [18] for the discussion of a
class of closed queueing networks called reentrant lines, in which at least two
policies are efficient. A more discriminating performance measure will be one
that not only requires the time average of the idleness to go to zero as the
population increases without bound, but also requires that is decrease to zero
sufficiently fast as r increases. The natural requirement for a policy u* to
be optimal under such a performance criterion is that it satisfy (15) below,
adapted from [16]. For every admissible policy u, we require that

(15) lim sup lim sup M < liminf liminf M

r—00 T— 00 T r—oo T—o0 T
for some i € {1,2}. Implicit in this definition is the assumption that the
average idleness approaches zero at a rate at least as fast as r—1, without
which (15) is vacuous.

This definition requires that we compare long term time-average behavior
under each of the policies and is quite hard to verify. Instead, for a fixed large ¢,
if we assume that a time horizon of 72T time units is sufficiently long (for near
steady-state behavior) in a network with population r, then we can use the
weaker, but easier to verify notion of asymptotic optimality described below.

DEFINITION 3.2. An admissible policy u* is said to be asymptotically opti-
mal if for every admissible policy u, every fixed time 7', and some i € {1, 2},

EUr*‘2T E[U” .(r2T
(16) lim sup M < liminf w

r—oo r r—oo r

Of course, Definition 3.2 only makes sense if the left-hand side above is
finite for at least one policy u*, and demonstrating this will be one of our
goals in this paper. In fact, we will show that (16) holds when u* is the HW
policy and give an expression for the left-hand side of (16) in terms of the
two-sided regulator applied to a Brownian motion (cf. [10], Chapter 5).

4. The Harrison-Wein policy. In this section we will describe the policy
designed by Harrison and Wein [14]. Our description is equivalent, but not
identical, to their original description. The treatment in this section is based
on [12].

Recall that 7 is the invariant row vector associated with the routing
matrix P. Denoting (only in the context of this section) a 1 x K vector of
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ones by e, we can define a K x K matrix @ and a 1 x K row vector M by

(17) Q=I—-P+ae)!
and
(18) M=[1 -1]CMQ.

One useful interpretation of M is the following, based on the workload imbal-
ance process

(19) A (t) = MZ'(t).

The choice of the symbol % is meant to avoid confusion with the immediate
workload process, usually denoted by W. One can write @ as

Q= I+£((P)i - w’e).

By Assumption 2.1, we have [1 —1]CM(7'e) = 0 because 7 is some constant
multiple of A*. Hence we obtain

M = lim [1 —1]H(n) where

n
H(n)=CM (1 + Z(ﬁ)l).

i=1
The (j, k)th element of the 2 x K matrix H(n), H j,(n) can be interpreted
as the expected total work required from server j in completing the first n
services for a customer that starts in class k. Thus, one can interpret M asa
measure of workload imbalance. .

Loosely speaking, customers in a class £ with a large value of M, provide

a lot more work for server 1 than for server 2. A plausible policy choice is one
in which each server tries to keep the other server as busy as possible, thus
minimizing idleness in the system. One way to achieve this is to give higher
priority to classes with smaller values of M » at server 1, and to reverse this
rule at server 2, that is, to give higher priority to classes with larger values
of M - This is the Harrison—Wein policy.

DEFINITION 4.1. The Harrison—Wein (HW) policy is a static, preemptive-
resume, priority rule that gives higher priority to classes with lower values of
Z/Vl\k (for k =1,2,..., k) at server 1 and to classes with higher values of M\k
(for k=k{+1,..., K) at server 2. Ties are broken in lexicographic order.

We should point out that Harrison and Wein arrived at this policy via rea-
soning that is far more sophisticated than the loose argument given above.
We will point out details of their reasoning later in this paper, when we an-
alyze the policy defined above in greater detail. We make the following mild
assumption that is almost without loss of generality. The only real assumption
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is the lack of ties, that is, M r 7 M, ; any two classes k and [ served at the same
server.

ASSUMPTION 4.1. Assume that the classes have been relabeled, and that the
network primitive C, M and P result in no ties, so that the following hold:

(20) ]/W\1>M2>'.'>J/M\k1’

(21) M\k1+l>ﬂk1+2>"'>ﬂ1{'

Under this relabeling of classes the lowest priority classes are class 1 at
server 1 and class K at server 2. In the discussion following equation (69)
of [12], it is established that M p for B = 1,..., K differ from the workload
imbalance indices computed in Harrison and Wein only by a fixed additive
constant. From equations (45)—(48) of [14] and the discussion following these
equations there, we have

The following lemma, due to [12] describes a very important property of the
workload imbalance indices that we will repeatedly use in the rest of the paper.
The proof is short enough to be reproduced for completeness here.

LEMMA 4.1 (Harrison and Van Mieghem).
(23) M(I — P) = GCM,
where G =[1 —-1].

PROOF.
M(I - P) = GCMQ(Q ™! — m'e)
= GCM — GCMQ'e.

Since 7 is the invariant prgbability measure associated with P, we have
me’ =1. Thus @ '7' = (I — P+ w'e)n’ = 7. So we have

M(I - P)= GCM — GCM T e.

Now 7' is a multiple of A* (from (6) and the irreducibility of P). Thus, from
(7) and Assumption 2.1, we have GCM 7’ = 0, completing the proof. O

5. Fluid limits and state space collapse under the HW policy. In this
section, we analyze the limits of the performance processes (8)—(13) under the
HW policy, scaled in a fashion indicative of a functional law of large numbers.
We will analyze these fluid limits and establish that state space collapse takes
place in finite time. Using this, and invoking Bramson’s result, we establish
that state space collapse occurs under diffusion scaling. This result will be
used in the next section to prove convergence of diffusion-scaled processes.
Results that are labeled theorems in this section represent results that are
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not only intermediate steps in the scheme of the paper, but also results that
are interesting in their own right.

The fluid scaling results in the scaled processes below are identified by a
bar over the corresponding quantities. In order to simplify notation, we will
omit the subscript z since we only will consider the Harrison—Wein policy in
this section. We define

(24) AT(t) = %A’(rt),
(25) D' (t) = %D’(rt),
(26) S7(t) = %Sr(rt),
27) T"(t) = %T’(rt),
(28) () = %U’(rt),
(29) P h(x) = %q)r’k([xr])
and

(30) Z(t) = %Z’(rt).

Note: The notation [x] denotes the greatest integer less than or equal to the
real number x.

The dynamics of these fluid-scaled processes is partially captured in
(31)—(36), the analogs of (8)—(13) [18, 7, 3]:

(31) A7(8) = YO H(Dy(1)),
k
(32) D"(t) = S(T"(¢)),
(33) Z"(t) = Z"(0) + A"(t) — D' (¢t),
(34) CT"(t)+ U’ (t) = et,
(35) i ZW(t)=1 forallt>0
k=1
and
oo/ k1 _ _ ) K _
(36) /0 (kg Zk(t)> AU (t) = /0 (k:kle Zk(t)) dT(t) = 0.

To these equations we can add another set of equations that capture the addi-
tional properties of the HW policy. These equations capture the fact that the
servers cannot be working on a lower priority class when there are higher pri-
ority customers awaiting service. Recall that T, (¢) is the cumulative amount
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of time spent on class %k by the corresponding server in [0, ¢]. At server 1, the
HW policy forbids working on a class k' < k, if there is at least one customer

in classes k through k. That is, ¢ — Zf; . T7(t) cannot be increasing at a time
instant when Z;Zk Zl’ (t) > 0. Similarly, at server 2, the HW policy forbids
working on a class k' > k, if there is at least one customer in classes %&; + 1
through k. That is, ¢ — Zf:kl +1 T7(t) cannot be increasing at a time instant

when Zf:lirl Z7(t) > 0. Thus we have

o /1 k1
37 /O <ZZ;(t))d<t—ZT;(t))=0 for k=1,2,...,k
=k

I=k
and
o/ ko Eoo
38 | (z z;(t))d(t_ 3 T;(t)>=o for k=hy+1,..., K.
0 Ni=py+1 I=ky+1

The reader should note that (36) is subsumed by (37) and (38). The following
theorem follows immediately from similar theorems due to [7], [3] and [18].
The connection between (31)—-(38) above and (39)—(46) below is evident.

THEOREM 5.1. Almost surely, every sequence r — oo contains a subsequence
{r,} such that the process (A’ﬂ, D, Z T, U’ﬂ) converges uniformly on

limit process satisfies the following equations:

(39) A(t)= PD(¢),

(40) D(t) = M~ 'T(¢),

(41) Z(t) = Z(0)+ A(t) — D(t),
(42) CT(t)+U(t) = et,

(43) T(0)=U(0) =0, T(-), U(-) are Lipschitz, increasing functions,

K
(44) > Zy(t)=1 forall t>0,
k=1

00 kl kl

(45) / <Z Zl(t)>d(t—ZTl(t)> =0 fork=1,2,...,k
0 \i—p I=k

and

o/ k k
(46) / ( 3 Zl(t)>d<t— > Tl(t)) =0 fork=Fk +1,....K.

0 N\j=p,+1 I=hy+1
In the proof of Theorem 5.4, we will show that the above result holds for the
more general notion of cluster point, as defined by [3]. The reader should not
be concerned with the lack of a proof for this result here. Only the equations
satisfied by the limits (39)—(46) are of interest to us in applying Bramson’s re-
sults. We will call the equations (39)—(46) the fluid model under the HW policy.
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Since every solution to these equations is Lipschitz continuous, we can talk of
time derivatives at almost every time instant. Let us use the notation
dD(t) dZ(t) dT(t) dU(t)

dt ~ dt ~ dt ° dt

(D(8), Z(8), T(t), U(t)) := (

at any such “regular” time ¢ where the derivatives exists. We begin our anal-
ysis of the fluid model under the HW policy by establishing a useful property
of the solutions to the fluid model.

LEMMA 5.1. For any solution to (39)—(46), at every regular time t, we have
47) MZ(t) = Uy(t) - Up(2).

PROOF. From (39) and (41), we have

Z(t) = —(I — P)D(¢).
Therefore, using (23),
MZ(t)=-MI - P)D(t) = —[1 —1]CMD(¢).

Using (40) and (42) in the equation above gives us (47). O
We now present a result that is the same as Proposition 4.2 of [8]. We choose

to reproduce it here for completeness and because we will use it repeatedly in
the sequel.

LEMMA 5.2 (Dai and Weiss). At any regular time t, the following are true
for any solution to (39)—(46):

(i) For any k € {1,2,..., K}, if Z,(t) =0, then Z,(t) = 0 and D,(t) =
15 Py Dy(t). ' _
_ (ii) At each server j, there is at most one class k’ such that Z;;(t) > 0 and
D, (¢) > 0. Furthermore k’ is the highest priority nonempty buffer at server j.
That is, if j =2, then

(48) > Zy(t) =0,

(50) 3> Dy(t)=0.

Equations corresponding to (48)—(50) can be obtained for server j =1 as well.
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We are now ready to prove our first major result concerning the behavior of
the fluid model under the HW policy. This is an important property of the HW
policy, and it shows that no other policy can have better performance than the
HW policy under fluid scaling. It also establishes that M Z is an invariant for
(39)—(46).

THEOREM 5.2. For any solution to (39)—(46),

(51) Ui(t)=Uy(t)=0 forall t>0.
Consequently,
(52) MZ(t)=MZ(0) forallt>0.

PROOF. Equation (51) is equivalent to saying that at every regular time ¢,
(53) U,(t) = Uy(t) = 0.

By (47), (53) also establishes (52). Suppose (53) is violated at some regular
time ¢. Let us assume that U;(¢) > 0 at time ¢. From (45), we must have
21;1:1 Z,(t) = 0 and consequently Zi{:k1+1 Z,(t) = 1 and so Uy(t) = 0 from
(46). Also, since t is a regular point we must have, from Lemma 5.2(3),

Zk(t)ZO fork:l,Z,...,kl.

Let k% be the highest priority nonempty class at server 2, that is, k2 =
min{k, +1 <k < K | Z,(t) > 0}. Once again, from Lemma 5.2(i), we have

Zy(t)=0 fork="Fk;+1,...,k%—1.

Thus we have
K

(54) MZ({t)= Y M,Z(t) =U(t) — Us(t) > O.
k=k?
If k2 = K, we must have Z,:(t) = —Y X! Z,(t) = 0, contradicting (54).
If k2 < K, since Z2(t) =1 — Zszk2+1 Z,(t), we have
K e . K e e .
> MyZy(t)= 3 (M) — M) Z(2).
k=k? k=k?+1

But for all & such that 2 > k2, D,(t) = 0 from (50), and hence Z,(t) > 0.
But from (21), for all k& > k2, we have (M, — M,.) < 0. Hence we have

K
> MpZy(t) <0,
e

contradicting (54). Thus U,(t) = 0 at all regular ¢. One can similarly establish
that U,(t) = 0 at all regular ¢, thus completing the proof. O
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Theorems 5.1 and 5.2 immediately yield the following result that will be
needed in the next section.

COROLLARY 5.1. Almost surely, for every fixed t > 0, under the HW policy
we have
Uj (r’t
(55) fim JLD _

r—o0 7"2

0.

ProOF. Theorems 5.1 and 5.2 yield (55) along a subsequence of {r}. Since
the right-hand side of (55) does not depend on the choice of the subsequence,
we obtain the result. O

The following corollary is immediate from Lemma 3.5.3 of [18].

COROLLARY 5.2. For every solution to (39)—(46), we have

D(t
(56) lim inf D@) > A%
t—o00 t
The next theorem, one of the central results of this paper, establishes an upper
bound on the time taken for every solution to the fluid model to undergo state
space collapse.

THEOREM 5.3. There exists a time T depending only on M, C and P, such
that for any solution to (39)—(46), we have
(57) Z(t)+Zg(t)=1 forallt>T.

Furthermore, for each Z(0), there exists a Z* € RX that depends only on Z(0),
such that Z; + Z} =1 and

(58) Z(t)=Z* forallt>T.
Finally, if Z(0) satisfies Z,(0)+ Z x(0) = 1, then
(59) Z(t)=Z(0) forallt=>0.

This means that the collapse is not just to the manifold, but to a point on
the manifold that is completely specified by the initial state.

PROOF OF THEOREM 5.3. First, given that there exists a T such that (57)
holds for any solution to (39)—(46) and given a Z(0), let us establish the exis-
tence of a unique Z* > 0 satisfying Z; + Z; = 1 and (58) above. Note that
we are studying all solutions to the fluid model (39)-(46), and hence any Z(0)
satisfying (44) is admissible. Consider any time ¢ such that Z,(¢)+ Z x(t) = 1.
By (52), we must have

M,Z,(t)+ Mg Z x(t) = M Z(0).
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Since M 1> M x from (22), for any such time ¢, we must have

Z(t) 1 17 o1 [Z;
[ZKU)} - [1\7 A?K} [ﬂm)] B [ZK]
Since M\Z(O) € [M\K, ]/\4\1], we have Z; > 0 and Z} > 0 from Cramér’s rule.
Choosing Z5 = Z} = --- = Z}_, = 0 establishes (58).

Now let us establish the existence of a T such that (57) holds for any solution
to (39)—(46). The key to proving this result is showing that Z,(t) + Z x(¢) is
always nondecreasing, and that whenever Z,(t) + Z x(t) < 1 and D;(¢) > 0,
Z(t) is sufficiently positive, that is, Z,(t) + Z x(t) grows sufficiently quickly.

From (52), we have established that, at any regular time ¢, M Z(t) = 0.
Also, from (56), for every & > 0, there exists a time T such that for all ¢+ > T,

/Ot Dy(s)ds = (A} — &) t.

Now consider a regular time ¢ such that D;(¢) > 0. It must be true from
Lemma 5.2 that, at this time ¢, for every % satisfying 2 < & < ky, Z,(t) =
Z,(t) = 0. As before let %2 be the highest priority nonempty class at server 2,
that is, 2 = min{k; + 1 < £ < K | Z,(¢) > 0}. Once again, from (48) of
Lemma 5.2, we have

Z,(t)=0 fork=Fky+1,...,k% 1.
If k2 = K, we have
(60) Zi(t)+Zg(t)=1
and from (52), we have
(M, — My)Zy(t) = 0.
From (22) and (21), we must have
(61) Zy(t)=0 forallk=1,2,...K,

thus establishing that Z;(¢) + Z (t) is nondecreasing in this situation. This,
along with the uniqueness of Z* above, leads us to conclude that if Z(0)
satisfies Z(0) + Z x(0) = 1, then (59) must hold.

Now consider the situation when k%2 < K. From (52) we must have

K
M, Z\(t)+ MpZp(t)+ Y. M,Z(t)=0.
k=k%2+1
Since Zj2(t) = 1= Yk 42,1 Z4(t) — Z,(t), we have
K

62) Y (M- Mp)Zy(t) = —(My — M) Z,(t) > —(My — Mg)Zy(t),
k=k2+1
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where the second inequality follows from (22). Therefore, from (21) and from
(50), we have

AT ar K
(Mkz B Mk2+1) Z Zk(t) > 0.

(63) Z(t) > —E——F
(My—Mg) p—pz1

Thus, once again we have established that Z;(¢)+Z g (t) is nondecreasing. Now
we have to make sure that this quantity increases sufficiently fast. We claim
that there exists a 6,2 > 0 that depends only on the routing matrix P such that

K
(64) 3" Zy(t) = 8,2 D1(2).
k=k24+1

This along with (63) would imply that there exists a §; depending only on C,
M and P such that

(65) Z(t) = 8,D1(t) for all regular ¢ > 0.

By similar arguments (interchanging the roles of server 1 and server 2) one
would also establish that there exists a §x depending only on C, M and P
such that

(66) Zk(t) > 6xgDg(t) for all regular ¢ > 0.
Now fix ¢ > 0. Suppose Z(s)+Z g(s) < 1, for all s € [0, ¢]. Then we must have
1> Z(t) + Zk(2)
> Z1(t) + Z g (t) — (Z1(0) + Z k(0))

(67) = /()t(Zl(s) + Zg(s))ds

t . t .
351/0 Dl(s)ds~|—8K/O Dx(s)ds

Thus,
— 1
D(¢ —.
1(?) < 8,
Now pick any % such that 2 < £ < K. Then, since P is irreducible, there exists
a sequence of indices i, iq, ..., i,, with i; = 2 and i,, = 1 such that
Pi i, Piyiy Pi, i, > 0.

We suppress making the dependence on % of the sequence explicit for nota-
tional convenience.
We have

— 1 —
Di(t) < 5 = D; ()<
1

{51
—+ 1.
P; i Ld:
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Repeating this procedure for one more index yields

_ 1 1 1
D. t 1 — 4+ 1.
() < Pinz,in1|: * P, i [51 - H

We continue this procedure for each term in the sequence, and for each such
sequence. Thus, we have

— 1
Dk(t)<8k|:6—l+Ak:| forallk=2,3,...,K,

where each ¢, and each A, is a constant that depends only on C and P. Using
this, (67), and (40) and (42) we have

_ a 1
Ul(t) >t — Z mksk|:8—1 +Ak:|

k=1

Since from (51), U,(t) = 0, we must have

k
! 1
t < Z mk8k|:— +Aki|

k=1 8y
Thus Z,(T)+ Z x(T) = 1 for some T > Zi‘zl mye,[1/81 4+ Ar]. Also, from (67),
since Z,(-) + Z g(-) is nondecreasing, Z,(¢) + Z x(t) = 1 for all ¢ > T. Thus, if
we prove (64), we are done.

We now provide a proof of the claim (64). Let PEJ(»I) denote the (i, j) element
of the gth matrix power of P. By Theorem (2.1) of [1], we know that there

exists a g such that P(&g > 0 because P is irreducible. Since P(ﬁ% > 0, there
are only two possibilities:

(a) A product of routing probabilities of the form
(68) Puo PP Py, >0,

for some n < g, where [y # 1,1, # 1, if p # p', [ & {k?%,..., K} for each
s=1,2,...n—1,and [, e {k>+1,..., K}, or

(b) The products P1,11P11,12"'P1n1—1,k2 > 0 and sz,ln1+lpln1+1,ln1+2"'
P, ; > 0for some ny < nandn < q, where l; # 1,1, # 1, if p # p/,
l,g{k?, ...,K}ifs#n,ors#n,andl, e {k*+1,...,K}.

If any of these products in (68) is positive, we have [from (50) and (39)
and (41), and Lemma 5.2(1)]

K

> Zyt) = Pln,l,anln,l(t) >P Pz,,,z,z,,,lDzn,2(t)a
k=k%24+1

and so on, yielding

K

Y Zyt) = P, P, P1,11D1(t),
k=k%2+1
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proving (64). If we are in case (b) above, we reason as follows. Using the fact
that
Pl,llpll,lz s Plnl—l’kz > O,

mimicking the arguments used in the previous case, and since

. . K .

Zp(t)=-2Z(t)— > Zp(t) <0

k=k2+1
[from (63)], we have
Dja(t) > Py, Py, "'Pznl,l,kle(t)-

Using this and the fact that the product sz,lnﬁlpl
arguing as following (68), we establish that

.. P, > 0,

n1+lsln1+2 n—1> ln

K
Y. Zyt) = Pio,Pr,- P 2 Pr
k=k2+1

Thus, (64) must hold, completing the proof of the theorem. O

"'Pln,l,lnD1(t)~

ni+l ln1+1) ln1+2

We now use this result, and the result of Bramson to establish state space
collapse under diffusion scaling. This will form the basis of the analysis in the
next section.

THEOREM 5.4 (Bramson). Foreach k €{2,3,..., K—1} (i.e, for every class
other than the two lowest priority classes), and for every ¢ > 0 and every fixed
T > 0, we have

r—o0 {0<t<T}| r

Z(r?t
(69) lim P{ sup IM’ > .9} =0.
[

That is, Z},(r?-)/r converges to 0 uniformly on compact time sets, in probability.

PROOF. This proof outlines how the results of [3] may be adapted to estab-
lish (69). The reader is well advised to keep a copy of [3] handy while reading
the rest of the argument. Bramson derives a version of state space collapse
that he terms “multiplicative state space collapse.” This would be equivalent
to (69) if we have, in the notation of Bramson (not that of this paper), || VT’"(') I+
is stochastically bounded for every T. This would eliminate the denominator
of equation (3.35) of Bramson, and hence we would obtain (69). But, since
there are never more than r customers at a server when the population level
is r, we have, in the notation of Bramson, |W"(.)|r is indeed stochastically
bounded for every T. Thus, if the obvious analog of Theorem 4 of Bramson
were to hold for closed networks, equation (3.35) of Bramson will hold with
the A, in (70) defined below, and (69) above would follow.

Thus, the only unresolved issue is whether an analog of Theorem 4 of Bram-
son holds for closed networks. We will not reprove Theorem 4 of Bramson,
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but we will provide sufficient detail to argue that the “proof” of Theorem 4
in Bramson will go through essentially unmodified for closed networks. The
approach we will take to establishing this is to see if making the assump-
tions that (in Bramson’s notation) E(-) = 0, and ¢*(i) # 0 for any % or i
(on page 96 of Bramson), and the consequent stochasticity of P, will result
in any of Bramson’s results being inapplicable. If we find that the results are
indeed applicable in this setting, we are done, because these assumptions de-
scribe exactly the situation in closed networks. We will systematically walk
through all the relevant sections of Bramson’s paper and verify that the results
remain applicable when modified to their obvious analogs for closed networks.

We begin by noting that equations (3.3) and (3.4) of Bramson are satisfied
for v} (-) due to the assumptions of Section 2.3 in this paper. Theorem 5.3
essentially verifies that Assumption 3.1 of [3] is satisfied. Now, because of the
way in which the population is initialized in Section 2.2, equation (3.34) of
Bramson is satisfied, with

]_/m]_ 0

0 0

(70) A= . :
0 l/mk

Equation 3.1 of Bramson holds trivially in our setting since these quantities
do not depend on r. All results in Section 4 of Bramson go through unmodified
because they are not formulated in a network setting at all. Now consider the
results in Section 5 of Bramson. Consider equations (5.10)—(5.15) and (5.18)
of Bramson. They continue to hold if (in Bramson’s notation) E™™(-) = 0 and
¢"(i) # 0 for any k or i. Since Lemma 5.1 of Bramson holds for v™>7>™2% and
since Lemma 5.2 of Bramson holds, Proposition 5.1 of Bramson continues to
hold, with Equation (5.19) being redundant now. So does Proposition 5.2 of
Bramson.

We need to show that Proposition 8.1 of Bramson continues to hold with one
minor modification. Note that Proposition 8.1 of Bramson is the generalization
of Theorem 5.1 of this paper alluded to in the discussion following Theorem 5.1.
In order that our fluid limit analysis of Theorem 5.3 constitute a verification of
Assumption 3.1 of Bramson, we need to show that Proposition 8.1 of Bramson
holds with equations (39)—(46) of this paper. From the proof of Proposition 8.1
on page 145 of [3], since his Propositions 5.1 and 5.2 continue to hold, we
obtain the analog of his Proposition 8.1 for closed networks with all of the
equations (39)—(46), except (44) satisfied. But (44) follows trivially for every
cluster point of Proposition 8.1 of Bramson because Zszl Zy(t)=r as.

Finally, we turn our attention to the proof of Theorem 4 of Bramson. In order
to establish the analog of Theorem 4 of Bramson, we will need to establish that
the steps in the proof of Theorem 1 of Bramson on pages 135-141 of [3] can be
adapted for (a) static priorities and (b) for closed networks. Bramson provides
the adaption for (a) in Section 8 of [3]. Next, we note that Proposition 6.1
of Bramson uses neither the FIFO property nor the open network property,
and hence continues to hold. A careful check of the proofs of the results on
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pages 135-141 of [3] reveals that the assumptions of equations (3.2) and (3.3)
of Bramson are used only to facilitate the application of his Proposition 6.3.
We do not need his Proposition 6.3, since we can replace it by our analog of
his Assumption 3.1, namely Theorem 5.3. Thus, we are justified in mimicking
the rest of the proof of Theorem 1 of Bramson in order to obtain the analog of
Theorem 4 of Bramson and thus obtain (69). O

6. Diffusion limits of the workload imbalance process under the
HW policy. We will now use the main output of the fluid limit analysis of
the previous section, Theorem 5.4 to analyze diffusion-scaled processes. It is
under this scaling that Harrison and Wein carried out their original, formal
analysis of limiting processes. The goal of this section is to prove Theorem 6.1
that establishes that the solution to the limiting control problem obtained
by them (cf. [14], equations (40)—(44) and Proposition 4) is indeed achieved
by every weak limit of the scaled workload imbalance process. This result
validates both their choice of the limiting control problem, as well as their
interpretation of the solution to the limiting control problem.

In this section, we will repeatedly use the notation “=”. We define this as
follows. Consider a sequence of stochastic processes {X,} taking values in
(Dge[0, 00), .#;) (cf. Section 2.6). We write X, = X if the probability mea-
sures induced by X, on (Dg«[0, 00), .#;) converge to the probability measure
induced by X. Also, since we will consider only the HW policy in this section,
we will drop the subscript u.

We begin the analysis by defining the following diffusion-scaled processes:

(71) Z7(t) = %zr(rzt),

(72) P(t) = %%/’(er) =M Z7 (),
(73) S7(t) = %(s’(r%) — Mr%te),
(74) T7(t) = %(T’(rzt) — r2tMAY),
(75) Ur(t) = %U’(r2t),

(76) P k(x) = %(@r’k([xr2]) — PFr2yp).

The main result of this section is the following. Define

77) X(t) = My + z’vi(? @ﬂ’%ﬁ;@))) — CGMS" (:?’(t)),
=1

where 5’(t) and ?r(t) are two quantities that are scaled quite differently from
either the fluid-scaled quantities of (24)—(30) or the diffusion-scaled quantities
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in (71)—(76) above, and are given by

D (r2t)
r2

T7(r2t)

(78) D' (t) = and T7(t) := o

THEOREM 6.1. Under the HW policy, for every sequence of populations r — oo,
(7", X", U, Uy) = (F*, B*, Us, Uy),
where the weak limit (77 * B*, Uy, Uy) is unique in distribution and satisfies
(79) () =B () +U() = Uy (),

with B*(-) being a one-dimensional zero-drift Brownian motion starting at M 1
with covariance I' given by

K
(80) T= M[ 3 A,ﬁ;yk]M/ + GC[diag(Afby, ..., Aibg)]C'G
k=1

and U*(+), Uy (-) satisfy

(81) Uy(t) = sup [Mg — B*(s) + U (5)]"
<s<t

(82) Uy'(8) = sup [B*(s) + Ui'(s) - M.
<s<t

We will prove this theorem through the sequence of lemmas that follow. The
first one is merely a convenient algebraic relationship between the diffusion-
scaled quantities defined in (71)-(76).

LEMMA 6.1. The scaled workload imbalance process & "(t) can be written as
(83) 7 (t) = X"(0) + Ti(0) - Uy(0).
where X’(t) is given by (77) above.

PROOF. The definitions (71)—(76), the performance process dynamics
(8)—(13), the property of A* described in (6) and simple algebraic manipu-
lations yield

K _ ~ o~ — ~ ~
Zr(t) = Z27(0)+ Y. & H(Dy(t) — (I = P)S' T (1)) - (I - PYMT" ().
k=1
Using (23) and MZ "(0) = M 1, we obtain the result. O
The reader should note that in proving Lemma 6.1, we did not use any spe-

cial property of the HW policy. Hence the lemma is applicable to all admissible
policies.
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LEMMA 6.2. As r — oo,
(84) T'()= MA*(-) and D'()= A*(-),
where A*(¢t) = A*t for all t > 0.

PROOF. The relative compactness of {T’()i follows from the fact that this
family is uniformly Lipschitz. Let T() = T(_~) along a subsequence {r,}.
The renewal theorem shows that D"«(-) = M ~'T(-). From (10), one can argue
that

(I-PYMT¢) =0,

and hence from (6), ?(t) = a(t)MA*, where 0 < a(¢) < 1. But Corollary 5.1

and Assumption 2.1 imply that CT(t) = te for all £ > 0. From (6) and (7), this
translates to a(¢) = 1 for all ¢ > 0, completing the proof since the result does
not depend on the choice of the subsequence {r,}. O

LEMMA 6.3.
(85) X'()= B0,
where B*(-) is a one-dimensional zero-drift Brownian motion starting at M "

with covariance I' given by (80).

PROOF. This follows from the functional central limit theorem for renewal
processes (cf. [15]); Lemma 6.2 and the random time change theorem (cf. [2],
(17.9)); the continuous mapping theorem (cf. [2], Theorem 5.1) and (23). The
details can be filled by mimicking the proof of Theorem 7.1 of Williams [23].

O

Define

Fr(ty:=My Y. Zy)+ Mg Y Zy().
k=1 k=k,+1

Then we have

D)= H"(t) — (),

where
Beo K-1
g(t)y=2 (M,—M)Z}(t)+ > (My—Mg)Z(2).
k=2 k=Fk;+1

By Theorem 5.4, we know that for every ¢ > 0,

(86) sup |¢"(s)| = 0 in probability.

O<s<t
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From (13) we can write 7/7’(t) as

(87) () =(X"() = () +T5() - Ts(),
where the processes ﬁi(-) and ﬁg(-) satisfy

(88) [0 1. 52,77 (£) dU(£) = 0
(89) [ sty 52077 (0) dU5(0) = 0

For a function f(-) € Dg[0, 00), and any fixed 7" > 0, define
Osc(f,T)= sup |f(s)—F(2).

0<s,t,<T

The following result is a trivial application of a more general oscillation
inequality developed by [5].

LEMMA 6.4. There exists a constant C such that for any fixed T > 0,

(90) Osc(¥",T) < COse(X" —¢", T),
(91) Osc(U’, T) < COsc(X™ — &, T),
(92) Osc(U}, T) < COse(X™ — &, T).

PROOF. This follows from Theorem 4.2 of [5]. The conditions (S.a) and (S.b)
there are trivially verlﬁed for our regulator problem defined by (87)—(89), and

we use the continuity of U’ and Ur to complete the proof. O

PROOF OF THEOREM 6.1. We are now ready to prove Theorem 6.1. We mimic
the proof of Theorem 4.1 of [24]. The tightness of X"(-) — () established in
Lemma 6.3 and (86), and the oscillation inequality Lemma 6.4, establishes the
tightness of (7/%, fr, ﬁ{, 17;) and hence the tightness of (77’", 55", ﬁ{, ﬁ;). For
details of this argument, see the proof of Theorem 4.1 of [24]. Now, we need
to show that for all possible weak limits (%//\ * B*,Uy,Uy), we have

(93) ¥*=B*+ U} - Uy,
along with

(94) [O 1. 52,7 (1) dUF () = 0
and

(95) /0 L. 7,7 (1) dU3(t) = 0

This would complete the proof of Theorem 6.1 because of the uniqueness of
the two-sided regulator defined in (79)—(82); compare [10], Proposition 2.4.6.
We will use the Skorohod representation theorem (cf. [9], Theorem 3.1.8) and
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the almost sure continuity of the limit (established by the continuity of B*
and the oscillation inequality, Lemma 6.4) to replace the sequence if processes
considered with another sequence that is term-by-term equivalent and con-
verges uniformly on compact time sets almost surely. Then, (93) follows from
(87) and (86). To show (94), it suffices to show that

T —~
(96) /Ofm(%/*(t))dUl*(t)zo as.,

for each T > 0 and m = 1,2,..., where for each m, f,,: R — [0,1] is a
continuous function with f,,(x) = 0 for x < M, + 1/m and f,(x) = 1 for

x>M x = 2/m. Let {r,} be a subsequence along which a limit is achieved.
From (88), we have

/OT Foa(P()dU(t) =0 as.,

for each T > 0 and m = 1,2, ..., for every r,. Now since f,, is continuous
and bounded, and #" — % * and U," — U;* uniformly on compact time sets
almost surely, and since U;" is increasing for each n, from Lemma 2.4 of [6],
we have

T - . T _
[ 7@ d07 0 = [ a7 @) avi)

uniformly on compact time sets almost surely. Thus, we obtain (96) and hence
(94). Similarly we can obtain (95). The uniqueness in distribution of the two-
sided regulator applied to Brownian motion allows us the ignore the choice of
the subsequence, thus completing the proof of the theorem. O

We note in passing that we could have used the continuity of the map from
X "()—¢€"(-) to Va () in the uniform topology to prove this theorem, but the
oscillation inequality will be used in the sequel for a different purpose, and
hence we chose to use this method of proof.

7. Asymptotic optimality. In this section we establish that the Harrison
and Wein policy is indeed asymptotically optimal as defined in Definition 3.2.
We will do this in several steps. First, we will establish that {ﬁ{(T)}‘,’il is
uniformly integrable. Then we will establish asymptotic optimality by showing
that the first moment of the diffusion-scaled idleness process under the HW
policy converges to that of a lower bound on the scaled idleness process under
every other admissible policy.

THEOREM 7.1. For each fixed T > 0, the family {f]\;(T)}‘;ozl is uniformly
integrable. Thus, by Theorem 6.1, for each fixed T > 0, we have
_E[U](r*T)] _ E[U(T)]
1 =
% T T T
where Uj*(-) is given by (79)—(82).

97)
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PROOF. From the oscillation inequality, Lemma 6.4, we have

U(T) < COse(X" — &', T) < 2C sup |X"(t) — & (¢)|.
0<t<T

Now [&"(t)| < 2, |Z/W\k| for all ¢. Therefore, in order to show {ﬁ{(T)}ﬁozlis

o~

uniformly integrable, it is enough to show that the family {supy_,.7 [ X" (¢)[}72;
is uniformly integrable. Recall that, from (77), we have

o~ _— _— K -~ = —~~ =
X(t) = M, + M( > q)”k([D};(t)])) — GCMS (T (1)).

k=1

Let us begin by showing that

{ sup |M §r(T’(t))|} is uniformly integrable.
0<t<T r=1

Note that, for each r, supg.7 |S"(T"(£))] < supor-r |S(1)], since 0 < T"(¢)
< t. So we only need to show that

(98) { sup |M§’(t)|} is uniformly integrable.
0<t<T r=1

To establish (98), we mimic the proof of Lemma 8.4 of [5]. Recall that V,(n) =
Y i vy(i) denotes the partial sum of the service times. So we can write

~
r

m, S5 (¢) as

mk§2(t) _ {mk[SZ(er) +1] : Vi (Sh(r%t) + 1)}
Vk(Sr(rzt)—i—l)—rzt my
| O |-

H{MG (O} + {mi(0)} - =L,

Note that S,(r?¢) + 1 is a stopping time with respect to the filtration {<,}
where

Gn = 0{vg(1), v1(2), ..., vr(n)}.
We conclude that Mj,(¢) is a square integrable martingale with

- E[S"(r?t) + 1

BIM; (7] = bym3 P O

The right-hand side above is bounded for all r by Lorden’s inequality (cf.
[19], (ITII.4.1)). Now we use Doob’s maximal inequality ([9], Corollary 2.2.17) to
conclude that E[sup,_,_ [M},(¢)|?] is bounded and hence {supg_,-, [M}(¢)[}72,
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is uniformly integrable. Since 7}(¢) is the overshoot of the renewal process,
we have

(1
nt) < max 20
1<i<Sj(r?2t)+1 r

= sup. M, (¢) — M (=) 4+ my/r
<t<

<2 sup [Mj(¢)] + my/r,
0<t<T

from which (98) follows. Now, we turn our attention to establishing, for each
k=1,2,..., K,

oo

(99) { sup i&S”k(f);(t))i} is uniformly integrable.
0<t<T

r=1

Since T7(r?t) < r?te for all ¢t > 0, we have

7 F(S5(r2t)) — Py Sy(r2t)

r

sup &7 *(Dy(1)| = sup
0<t<T 0<t<T

r, k
@ " (n) — Pyn

ne{1.2,...S}(r*T)} ‘ r

Now E[max, .12, .} |<D;~’ k(n) — Py;n|]? < KN for some constant K that does
not depend on N, for each N (using Doob’s inequality ([9], Corollary 2.2.17),
for example). Using this result, conditioning on S”(r2T'), and using the inde-
pendence of S”(r2T) and ®"*, we obtain
2 r(.2
. N /B[S, (rT)]
E| sup B *(Byo)| = k2D
0<t<T r
for some constant K'. Using Lorden’s inequality ([19], (II1.4.1)) once more, we
obtain (99) and complete the proof of the theorem. O

COROLLARY 7.1. Under the HW policy, we have
E[U] (r?T)] r

lim lim =,
T— 00 =00 rT 2AM, - Mg)

where T is given by (80).
PROOF. Theorems 7.1 and 6.1 yield (E[U] (r2T)]/r) — E[U*(T)]as r — oo
for each fixed T' > 0. But, from [10] (5.4.13) and (5.5), we know that
(100) im BT T
T T 2(M, — Mg)

Thus we obtain the result. O
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A note on this result is in order. If we had the limits above in reverse order,
that is,

r(,.2
lim lim E[U (7 T)] = —— I -
rmee e rT 2(M, — Mg)

we would have established asymptotic optimality in the stronger sense of (15)
in the case of exponentially distributed service times. This is because the right-
hand side above was shown to be a lower bound on the scaled idleness in [16].
However, we will not pursue the analysis of whether or not the limits can
be interchanged. We are now ready to prove our main result on asymptotic
optimality of the HW policy.

THEOREM 7.2. Under any policy u, for any T > 0 fixed, we have
(101) lim E[U%y 1(T)] < liminf E[T, ,(T)].
Thus, the Harrison—-Wein policy is asymptotically optimal as defined by (16).

PrROOF. The proof rests on constructing two processes R] and L] that
pathwise lower bound Ur .1 and Ur 0.2 respectlvely, under a given pohcy u at
each r. We then show that R} and L}, and U, mw,.1 and U Hw, 2 have the same
weak limit, for every policy u that can possibly be considered a candidate for
violating (101), thus establishing asymptotic optimality.

First, note that the proof of Lemma 6.1 does not depend on the choice of
policy, and hence we have

I = Xo()+ T () =T, 50).

Now fix a sample path of the process (¥, X U; 1 UZ,Q). Since 7/ (t) €
[M,, M] for all ¢t > 0, we can conclude that
(102) T, () = sup [Myg — Xi(s) + U}, 5(s)]"
0<s<t
and
(103) T, 5(t) = sup [Xi(s)+ T}, 1(s) - My]".
0<s<t

Now construct a sequence of processes, R and L/, as follows. Let R(¢) =
U, 1(¢) and Ly(¢) = U;, 4(¢), and for n =0,1,2,..., let

R, 1(¢) = SUP [MK - X u(8) + Ly, (3)]

<s<t

and
Lia(t) = sup [X7(s) + Ri(s) — My]".
<s<t

For each ¢ € [0, T], using (102) and (103) and induction on n we can es-
tablish that R; (¢) < R;(¢) and L;_,(t) < L} (¢) for each n =0,1,2,.
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Since these sequences are nonnegative, they converge for each ¢. Let R (t) =
lim, . R!(¢), and L!(t) =1lim,_, ., L’(¢t). L7 and R/, are nondecreasing and
not necessarily continuous processes. They satisfy

(104) R;(t) = sup [My — X}(s) + Li(s)]*

0<s<t
and

(105)  LI(t) = sup [X’(s)+ R.(s)— M,|" for each ¢ € [0, T].

O<s<t

It might appear that R}, and L/, above may depend on ﬁ; , and ﬁ; 5, that
is, the starting point of the recursions. This is not true. Given X”, R", and L',
are indeed unique. We can establish this using Lemma 4.3 of [5] and mimick-
ing the uniqueness proof of Proposition 2.4.6 of [10]. One needs to extend the
proof in Harrison from the space of continuous functions to Dg[0, c0). Lemma
4.5 of [5] provides the argument for the one-sided regulator and extending it
to the two-sided regulator considered is straightforward. We will not go into
the details here, as the uniqueness result is tangential to the rest of the ar-
guments below. The reader is referred to [4] for details of generalizing such
results from the space of continuous functions to the space of functions with
finitely many jumps.

Note that this does not mean that R and Lj, do not depend on the policy
employed, u. Of course, X " does depend on u for each r. In the sequel, we will
establish that the weak 11m1t of X! does not depend on the policy employed,
for all interesting policies u.

For convenience, let us define

7t = X (t) + Ri(¢) — Li(b).

By construction, for every policy u, every r, and for almost every realization
(i.e., for almost all w € Q), we have

(106) U’ 1(t) = Ri(t) for each ¢ € [0, T
and
(107) Ur, 4(t) = Li(t) for each ¢ € [0, T'.

In establishing (101) we need to consider only those policies u for which
lim,_, (E[U”(r2T)]/r?) = 0, since the result is trivially true for all other
policies. Thus, we only consider policies for which T7(¢) — M A*t almost surely,
uniformly on compact time sets. From Lemma 6.3, which did not use any
special property of the HW policy, we can conclude that, for every such pol-
icy u, X " = B*, where B* is a zero-drift Brownian motion starting at M 1
with covariance I' given by (80). Let C[0, T'] denote the space of continuous
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functions on [0, T'] endowed with sup norm. Let f, g, h: C[0, T'] — C[0, T'] be
defined by

F(x)(t) = 2(t) + g(x)() — h(x)(t),
g(x)(t) = sup [Mg — x(s) + h(x)(s)]

O<s<t

and
h(x)(t) = sup [x(s) + g(x)(s) = Ma]".

The mappings of f, g, h are continuous functions on C[0, T']. Hence, using
the continuous mapping theorem (cf. [2], Theorem 5.1), (¥, X L RI,LY) =
(7%, B*(-), U(-), U (), where (7%, B*(-), Uj(), Uy (-)) satisfies (79)—(82).
Also, (7], X T, Rl L") satisfy the oscillation inequality, Lemma 6.4. Thus,
mimiking Theorem 7.1, we have

lim E[R}(T)] = E[U}(T)].

Equation (101) follows from (97) and (106). O

A note on the processes R} and LJ constructed in the proof of the previ-
ous theorem is in order. The reader should not mistake these processes for
idleness processes under some “optimal” policy. They are not. For example,
they need not even be continuous. One should view them as ideals that are
not realizable by any policy at any population level r, but are arbitrarily well
approximated by the scaled idleness processes under the HW policy as the
population increases without bound.

8. Extensions. The results of this paper can be extended in several ways.
The reader will find the treatment here somewhat loose and speculative: this
section is meant to be an indication of possible future work. The first is the
relaxation of Assumption 2.1 of a balanced network. One can consider a se-
quence of systems indexed by r. In the rth system, the mean service time
matrix M, and the routing matrix P, depend on r and the population in this
system is r. One obtains the corresponding sequences ,, A and p and one
requires that

r(p, 1 — p, ) converges to some finite 6 as r — oo.

In this case, the workload imbalance indices are computed differently from
(17) and (18), as
Qr = (I - ﬁr + (Wr),e)_l

and

o~

Mr:[p:,2 _p;il]CMrQr'
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The HW policy remains the same static priority rule based on the indices
M , although now the indices need to be recomputed for each system. All the
limiting arguments go through, with the Brownian motion B* of Lemma 6.3
now having drift 6 (rather than zero) and consequently E[Ul*(T)] being
different.

One could also try and strengthen the notion of asymptotic optimality to
that involving long-run time averages of the idleness processes as in (15),
rather than expected values of the scaled idleness processes evaluated at a
fixed (albeit large) time. Although the interchange of limits as alluded to in
the discussion following Corollary 7.1 can be carried out in some cases (cf. [18]),
one needs to establish some structural properties of the underlying Markov
process to do so.

Finally, one could investigate when the scaled workload imbalance process
72/:[ under an admissible policy u fails to have a weak limit under diffusion
scaling. Note that (87)-(89) do not depend on the policy employed. Therefore,
if (X7, &) converge weakly, 7, does have a weak limit. Of course, we can
1gn0re policies for which X ». does not converge to B*, since these have poorer
performance than any pohcy for which X . does converge to B*. So the only
way 7// " could fail to have a weak limit even when X ’ does converge to B*
is if &), was badly behaved. In fact, since |s],(¢)| < QZk M k| the only way
7// 4 could fail to have a weak limit is if the modulus of continuity condition,
equatlon (3.7.14) of [9] is violated by &],. Translating this condition to more
easily verifiable conditions on the network primitives and the policy employed
is yet another interesting possibility for future work.
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