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VERTEX ORDERING AND PARTITIONING PROBLEMS FOR
RANDOM SPATIAL GRAPHS

By Mathew D. Penrose

University of Durham

Given an ordering of the vertices of a finite graph, let the induced
weight for an edge be the separation of its endpoints in the ordering. Layout
problems involve choosing the ordering to minimize a cost functional such
as the sum or maximum of the edge weights. We give growth rates for the
costs of some of these problems on supercritical percolation processes and
supercritical random geometric graphs, obtained by placing vertices ran-
domly in the unit cube and joining them whenever at most some threshold
distance apart.

1. Introduction. Several important optimization problems on graphs can
be formulated as layout problems, where the aim is to order the vertices so that
adjacent vertices are close together in the ordering. A (one-dimensional) layout
of a finite input graph G is a bijection ϕ between its vertex set and a set of
integers. Given a layout, the weight σ�e� of an edge e is the difference between
the integers associated with the two endpoints. A layout problem involves
choosing ϕ so as to minimize some cost functional determined by the edge
weights. For example, for the minimum bandwidth (MBW) problem [16, 32]
the cost functional is maxe σ�e�, while for the minimum linear arrangement
(MLA) problem [18] the cost functional is

∑
e σ�e�. Moreover, the minimum

bisection (MBIS) problem [14], of partitioning the vertices into two equal-
sized sets so as to minimize the number of edges between them, can also be
formulated as a layout problem.
Such problems have many applications. For example, MBIS and related

problems are important in parallel processing [12, 13]. MBW is important
for those computations on sparse symmetric matrices which are most rapidly
carried out when all nonzero entries lie near the diagonal, and for minimizing
delay of communication between adjacent nodes for routing problems. MLA
has been used in brain cortex modeling [24], and there are applications of
these problems in genomic sequencing and archeological dating. Last but not
least, layout problems (and analogous problems for two-dimensional layouts)
are important in Very Large Scale Integration (VLSI) problems of laying out
the nodes of an integrated circuit on a board in an efficient manner [3, 30].
For the layout problems considered here, finding an optimal layout is known

to be NP-hard for general graphs; see the references in [8]. Hence, computer
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scientists have been interested in looking for heuristics which can be per-
formed rapidly and which offer good approximations in practice; a “heuristic,”
in this context, is a method for generating a layout that is hoped to be optimal
or near-optimal. One way of testing a heuristic is to evaluate its performance
on random instances, viewed as “typical” of the graphs that might arise in
practice. Two classes of random instances have been widely used in the litera-
ture to enable comparisons of algorithms for layout and partitioning problems:
independent random graphs and random geometric graphs.
In the case of independent random graphs, there are n vertices and each

possible edge is included independently with probability p. Theoretical and
empirical study of such random graphs has been extensive. For example, the
approximation properties of sparse random graphs for different layout prob-
lems are considered in [11, 32] and partitioning algorithms for random graphs
are studied in [5, 6]. However, for many problems independent random graphs
fail to differentiate good from bad heuristics, in the sense that with high
probability all orderings on such graphs have approximately the same cost
[6, 11, 32].
In this paper we are concerned with random geometric graphs in which the

n vertices correspond to points randomly distributed on the unit cube. Each
of the possible edges appears if and only if the Euclidean distance between
its two end-points is at most ρ. Graphs of this form are considered a relevant
model for graphs that occur in practice, such as finite element graphs, VLSI
circuits, and communication graphs [19, 20]. Many empirical studies of layout
and partitioning problems have used random geometric graphs [2, 19, 20, 27,
28]. Typically, these have involved the experimental comparison of different
heuristics for one or more of the layout problems under consideration, by trying
them out on repeatedly simulated random geometric graphs.
The purpose of this paper and its companions [8, 9] is to provide a theo-

retical underpinning for these empirical studies, by establishing asymptotic
growth rates for the optimal costs of layout problems on random geometric
graphs, as n becomes large and ρ becomes small in a linked manner, so that
the mean vertex degree tends to a limit (possibly infinity). It turns out that
this limiting regime exhibits a phase transition with regard to these problems.
Our results provide a benchmark by which to assess the performance on ran-
dom geometric graphs of particular heuristics for these problems, for example
those in [8, 19, 29]. There are some parallels between our results and those
in the extensive literature on optimization problems such as the Traveling
Salesman Problem (TSP) on random points [31, 34], but the methods used
here are very different.

2. The main results. The layout problems considered here are formally
defined as follows. Given a finite undirected graph � = �V	E� without self
loops, a layout or ordering ϕ on � is a one-to-one function ϕ� V→ �1	2	 � � � 	 n�
with n = �V� and � · � denoting cardinality. Given such a layout ϕ, for each edge
e = �u	 v� ∈ E the associated weight is σ�e	 ϕ� = �ϕ�u� − ϕ�v��. For v ∈ V,
define L�v	ϕ� = �u ∈ V� ϕ�u� ≤ ϕ�v�� and R�v	ϕ� = V\L�v	ϕ�. Then define
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the edge-boundary χ and interior vertex-boundary � of L�v	ϕ� by

χ�v	ϕ� = ���u	w� ∈ E� u ∈ L�v	ϕ� and w ∈ R�v	ϕ���	
��v	ϕ� = ��u ∈ L�v	ϕ�� ∃w ∈ R�v	ϕ� with �u	w� ∈ E���

For the MLA problem, the cost la�ϕ� of a layout ϕ is given by la�ϕ� =∑
e∈E σ�e	 ϕ�. An alternative formulation is la�ϕ� = ∑

v∈V χ�v	ϕ�, which is
equivalent because

∑
e∈E
σ�e	 ϕ� =

n−1∑
i=1

n∑
j=i+1

j−1∑
k=i
1��ϕ−1�i�	ϕ−1�j��∈E�

=
n−1∑
k=1

k∑
i=1

n∑
j=k+1

1��ϕ−1�i�	ϕ−1�j��∈E� = ∑
v∈V
χ�v	ϕ��

As well as MLA, MBW and MBIS, we study the problems of minimum cut
(MCUT) (also known as the isoperimetric problem [17, 18, 22]), minimum
sum cut (MSC) [7], and minimum vertex separation (MVS) [21]. In each of the
six problems, given a graph � , the object is to minimize some cost functional
over the collection ��� � of all layouts on � . The respective cost functionals
for a given layout ϕ are denoted la�ϕ�, bw�ϕ�, bis�ϕ�, cut�ϕ�, sc�ϕ�, vs�ϕ�,
respectively, defined as follows:

MLA�� � = min
ϕ∈��� �

la�ϕ� with la�ϕ� = ∑
e∈E
σ�e	 ϕ� = ∑

v∈V
χ�v	ϕ�	

MBW�� � = min
ϕ∈��� �

bw�ϕ� with bw�ϕ� = max
e∈E

σ�e	 ϕ�	

MBIS�� � = min
ϕ∈��� �

bis�ϕ� with bis�ϕ� = χ�ϕ−1��n/2��	 ϕ�	

MCUT�� � = min
ϕ∈��� �

cut�ϕ� with cut�ϕ� = max
v∈V

χ�v	ϕ�	

MSC�� � = min
ϕ∈��� �

sc�ϕ� with sc�ϕ� = ∑
v∈V
��v	ϕ�	

MVS�� � = min
ϕ∈��� �

vs�ϕ� with vs�ϕ� = max
v∈V

��v	ϕ��

Geometric graphs are defined as follows. Let d ≥ 2 be an integer and let
� · � be the Euclidean norm on Rd. Given a set � ⊂ Rd, and given ρ > 0,
let � �� �ρ� denote the graph with vertex set � and with X	Y ∈ � deemed
adjacent if and only if �X−Y� ≤ ρ and X �= Y.
Let X1	X2	 � � � be independent and uniformly distributed on �0	1�d, and

let �n be the point process �X1	X2	 � � � 	Xn�. The random geometric graphs
in this paper take the form � ��n�ρn�, with �ρn�n≥1 some chosen sequence of
positive numbers tending to zero as n→ ∞. We shall assume nρdn tends to a
limit (possibly infinite). When this limit is finite, it will be denoted λ.
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For an infinite-volume analogue, let �λ denote a homogeneous Poisson pro-
cess on Rd of intensity λ, and set �λ	0 � = �λ ∪ �0�. The continuum percola-
tion probability θ̃�λ� is the probability that the added point at the origin lies
in an infinite component of � ��λ	0�1�. Then θ̃�λ� is nondecreasing in λ. Set
λc = inf�λ > 0� θ̃�λ� > 0�. It is well known [15, 23] that λc ∈ �0	∞�.
The significance of continuum percolation in the present context is as fol-

lows. Suppose that limn→∞ nρdn = λ. Then, for n large, after appropriate scal-
ing and centering at a randomly chosen point of �n, the graph � ��n�ρn� looks
locally like � ��λ	0�1�. If λ < λc, then all components of � ��n�ρn� are likely
to have at most O�log n� points, while if λ > λc, there is likely to be a unique
“big” component containing a nonvanishing proportion of the points of �n; in
fact, the proportion of points in the big component will be approximately θ̃�λ�.
This dichotomy (phase transition) between λ < λc and λ > λc was demon-
strated in [25, 26]. As it turns out, the same dichotomy occurs in describing
the growth rates of the optimal cost functionals for layout problems.
We shall show that probabilities tend to zero rapidly. Given sequences �xn�

and �αn� of positive numbers with limn→∞ αn = ∞, we shall say the sequence
�xn� decays exponentially in αn if

lim sup
n→∞

�log�xn�/αn� < 0�

We first give upper bounds on the optimal cost, holding with high probabil-
ity, for each of the six problems. These upper bounds are rather crude in the
sense that they are established by simply looking at the lexicographic order-
ing (the “projection algorithm” or “projection heuristic” [8]) with points of �n
ordered by their first co-ordinate.

Theorem 2.1. Suppose limn→∞ nρdn = λ ∈ �0	∞�. Then there exists a con-
stant K such that, except on an event of probability decaying exponentially in
nρn,

MBW�� ��n�ρn�� ≤Knρn	(2.1)

MVS�� ��n�ρn�� ≤Knρn	(2.2)

MSC�� ��n�ρn�� ≤Kn2ρn	(2.3)

and except on an event of probability decaying exponentially in ρ
�1−d�/2
n ·

� log ρn�−2,
MLA�� ��n�ρn�� ≤Kn3ρd+1n 	(2.4)

MCUT�� ��n�ρn�� ≤Kn2ρd+1n 	(2.5)

MBIS�� ��n�ρn�� ≤Kn2ρd+1n �(2.6)

At the start of Section 3, we shall explain informally why these bounds arise
naturally from the lexicographic ordering.
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The subcritical case λ < λc, and also the case θ̃�λ� < 1
2 for MBIS, is consid-

ered in [9], a preliminary version of which is in [10]. In this case, the upper
bounds given by Theorem 2.1 grow at a different rate from the actual optimal
cost; for example, MBIS�� ��n�ρn�� = 0 with high probability if θ̃�λ� < 1

2 . In
the supercritical case λ > λc, however, they are more relevant. We now give
our main result, which establishes lower bounds on the cost functionals, of the
same order of magnitude as the upper bounds in Theorem 2.1, valid for λ > λc
(or for θ̃�λ� > 1

2 in the case of MBIS).

Theorem 2.2. Suppose limn→∞ nρdn = λ ∈ �λc	∞�. Then there exists a con-
stant η > 0 such that, except on an event of probability decaying exponentially
in ρ1−dn ,

MBW�� ��n�ρn�� ≥ ηnρn	(2.7)

MVS�� ��n�ρn�� ≥ ηnρn	(2.8)

MSC�� ��n�ρn�� ≥ ηn2ρn	(2.9)

MLA�� ��n�ρn�� ≥ ηn3ρd+1n 	(2.10)

MCUT�� ��n�ρn�� ≥ ηn2ρd+1n �(2.11)

If also θ̃�λ� > 1
2 or λ = ∞, then there exists a constant η > 0 such that, except

on an event of probability decaying exponentially in n�d−1�/d,

MBIS�� ��n�ρn�� ≥ ηn2ρd+1n �(2.12)

Theorem 2.2 shows that in the supercritical case, the projection algorithm is
a constant approximation algorithm, in the sense that with high probability,
its cost stays within a constant factor of being optimal. This property is con-
sidered important by computer scientists, even when the constant factor is
possibly large. In general, this is the case here; no attempt is made here to
give numerical values to the constants η and K, which could be far apart.
However, in cases where d = 2 and nρdn/ log n tends to infinity, it is shown (by
other means) in Theorem 6.3 of [8] that, for all six problems, one can take any
K > 1, while for MBW and MBIS one can take any η < 1, for MSC one can
take any η < 5

6 , for MCUT and MBIS one can take η = 0�264, and for MLA
one can take η = 0�175. Thus, when d = 2 and nρdn grows faster than log n,
the upper and lower bounds are reasonably close together. The results of this
paper show that the behavior of these problems on random geometric graphs
is qualitatively the same right down to the critical point.
By analogy with the Beardwood–Halton–Hammersley theorem [1] on the

cost for the TSP on random points, analogous results for other such problems
[31, 34], and also results on layout problems in the subcritical regime [9, 10],
we conjecture that in the supercritical regime, MLA�� ��n�ρn��/�n3ρd+1n � con-
verges in probability to a finite positive limit, and likewise for the other prob-
lems. Results of this type appear in [8] for MBW and MVS when d = 2 and
nρdn/ log n→ ∞, but we have no other results of this type. This contrasts, for
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example, with the case of the MLA cost of a deterministic regular square lat-
tice where the precise growth rate is known [24]. Techniques of subadditivity,
much used in [31, 34], seem not to be applicable here.
Before proving the above results in Section 7, we shall consider layout

problems on certain other graphs, first site percolation (a discrete analogue
of random geometric graphs) and then geometric graphs based on the Poisson
process (in which the number of points is randomized). The results on these
processes are of some intrinsic interest, and also lead toward our main concern
of random geometric graphs.

3. Preliminaries. To start with, we explain informally the various pow-
ers of n and ρn, arising in the upper bounds of Theorem 2.1. Note first that
for the projection ordering, the bandwidth bw and also the vertex separation
vs would be expected to behave like the number of points in a slab of width
ρn, which in turn behaves like nρn. The sum-cut sc is the sum of n expres-
sions of this form, and so behaves like n2ρn. Both cut and bis behave like the
number of edges connecting points on the “left” of a given point to points on
its “right”; this behaves like the number in a vertical slab (which behaves like
nρn as before), multiplied by the typical number of connections from a point
in the slab to points in the neighboring slab to its right (which behaves like
nρdn), giving overall behavior like n

2ρd+1n ; the linear arrangement cost, using
the alternative expression for la, is given by the sum of n expressions of this
form, giving the correct order of magnitude of n3ρd+1n for la.
One benefit of tackling several layout problems together lies in the following

inequalities relating them to one another. For any layout ϕ on a graph � with
n vertices and maximum degree D,

sc�ϕ� ≤ la�ϕ� ≤ ncut�ϕ� ≤ D× nbw�ϕ�	
and hence

MSC�� � ≤MLA�� � ≤ nMCUT�� � ≤ D× nMBW�� ��(3.1)

Similarly,

MSC�� � ≤ nMVS�� � ≤ nMBW�� ��(3.2)

Finally, there is the inequality MVS�� � ≤ MCUT�� �, but we shall not use
this.
Except for MBIS, the minimal costs are monotone in the sense that if � is a

subgraph of � ′	 then MSC�� � ≤MSC�� ′�, MLA�� � ≤MLA�� ′�, MCUT�� � ≤
MCUT�� ′�, and MBW�� � ≤ MBW�� ′�. The cost for MBIS is not monotone,
but satisfies

MBIS�� � ≤MCUT�� ��(3.3)

The natural way to find upper bounds on the cost functionals of these problems
is to exhibit some particular ordering; the cost of such an ordering is an upper
bound for the optimal cost. For lower bounds, on the other hand, it is necessary
to argue more indirectly. Our main deterministic tool for these is the following
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result, which gives lower bounds for an arbitrary graph in terms of a measure
of its level of connectivity. Recall that a path in a graph is a sequence of disjoint
vertices with each pair of successive vertices connected by an edge.

Lemma 3.1. Suppose � = �V	E� is a connected graph with n vertices.
Suppose k	 ν1	 ν2 are positive integers with k ≤ n/2, such that for any two
disjoint subsets A	B of V, with �A� ≥ k and �B� ≥ k, there exists a collection
of ν1 edge-disjoint paths in � , with each path starting in A and ending in B,
such that no vertex of � has more than ν2 of these paths passing through it.
Then

MLA�� � ≥ �n− 2k�ν1	(3.4)

MSC�� � ≥ �n− 2k�ν1/ν2�(3.5)

Furthermore, if � ′ = �V′	E′� is a graph with � as a subgraph, and n′ �= �V′�
satisfies k+ n′/2+ 1 ≤ n	 then MBIS�� ′� ≥ ν1.

Remark. An important special case of the above result occurs when ν2 = 1;
in this case, the paths in the condition for the lemma are vertex-disjoint.

Proof. Let ϕ be an arbitrary ordering on the vertices of � . Let A consist
of the first k vertices in the ordering, and let B consist of the last k vertices.
Take a collection of ν1 edge-disjoint paths in � , with each path starting in A
and ending in B, such that no vertex of � has more than ν2 of these paths
passing through it.
Pick a vertex v ∈ V\�A ∪ B�. Each of the paths has a first crossing of v,

that is, a first edge from a vertex preceding or equaling v in the ordering, to
one following v in the ordering. This implies that χ�v	ϕ� ≥ ν1; summing over
all vertices in V\�A∪B�, we obtain (3.4). Moreover, since no vertex is shared
by more than ν2 of the paths, we also have ��v	ϕ� ≥ ν1/ν2; summing over all
vertices in V\�A ∪B�, we obtain (3.5).
Suppose � ′ = �V′	E′� is a graph with � as a subgraph, and n′ �= �V′�

satisfies k + n′/2 + 1 ≤ n� Each ordering on � ′ determines a bisection, i.e.,
a partition �A0	A1� of V′ with ���A0� − �A1��� ≤ 1. For i = 0	1, we have
�Ai� ≤ �n′/2� + 1, so that

�V ∩A1−i� = �V\Ai� ≥ n− n
′

2
− 1 ≥ k�

Hence there are at least ν1 disjoint edges connecting V ∩A0 to V ∩A1, and
MBIS�� ′� ≥ ν1. ✷

Finally in this section, we include one probabilistic preliminary result on ex-
ponential decay, which will be used in Section 6. SupposeWi are independent
identically distributed Poisson variables and ε > 0. We shall be interested in
the rate of decay of P�∑n

i=1�W2
i − E�W2

i �� > εn�, which is not amenable to
standard methods because the square of a Poisson variable does not have a
well-behaved moment generating function. We give a near-optimal exponen-
tial decay result encompassing a slightly more general setting of triangular
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arrays of Poisson variables whose means can vary between rows. The proof is
deferred to the Appendix.

Lemma 3.2. Suppose �λn�n≥1 is a sequence of positive real numbers sat-
isfying lim infn→∞ λn ∈ �0	∞�. Suppose that for n = 1	2	3	 � � �, the random
variables W1	n	W2	n	 � � � 	Wn	n are independent Poisson variables with mean

λn. Let ε > 0. Then P�∑n
i=1�W2

i	n − EW2
i	n� > εnλ2n� decays exponentially in

n1/2�log n�−2.

4. Site percolation. Let d be an integer with d ≥ 2. Let �m be the usual
d-dimensional hypercubic lattice of side m, that is, the graph with vertex set
Vm = ��0	m� ∩ Z�d and with edges between nearest neighbors. We state our
result for site percolation on this graph; there is an analogous result for bond
percolation.
Given p ∈ �0	1�, site percolation with parameter p on �m is obtained by

taking a random subset (“outcome”) ω of Vm, with each vertex independently
included in ω with probability p. Sometimes we shall refer to elements of ω as
“open vertices”. The induced subgraph of �m, that is, the maximal subgraph
of �m with vertex set ω, will be denoted �m; we write Pp for probability with
respect to this process. By a cluster we mean the vertex set of a component of
�m. We write �C� (the size of C) for the number of vertices in a cluster C.
A similar site percolation process can be generated analogously on the infi-

nite lattice with vertex set Zd and edges between nearest neighbors; let θ�p�
denote the probability that the origin lies in an infinite cluster for this process,
and set pc = inf�p� θ�p� > 0�, the critical value of p. It is well known [15]
that pc ∈ �0	1�.
We start with some trivial upper bounds on the optimal costs for our six

problems, valid for any p. We shall show below that these are of the correct
order of magnitude in the supercritical case p > pc.

Proposition 4.1. Every possible outcome of �m satisfies the following up-
per bounds:

MBW��m� ≤md−1	(4.1)

MVS��m� ≤md−1	(4.2)

MSC��m� ≤m2d−1	(4.3)

MLA��m� ≤ 2dm2d−1	(4.4)

MCUT��m� ≤ 2dmd−1	(4.5)

MBIS��m� ≤ 2dmd−1�(4.6)

Proof. Bymonotonicity, to prove (4.1) it suffices to consider the case where
every vertex is open so that �m = �m. Let ϕ be the lexicographic ordering on
the vertices of �m. Then bw�ϕ� =md−1, and (4.1) follows. Then (4.2) and (4.3)
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follow by (3.2), and (4.5) and (4.4) follow by (3.1). Finally, (4.6) follows from
(4.5) and (3.3). ✷

We now prove that for p > pc (or for θ�p� > p/2 in the case of MBIS), for
each of these problems there is a lower bound within a constant of the upper
bound in Proposition 4.1, that holds with high probability.

Theorem 4.1. (a) Let p > pc. Then there exists η > 0 such that, except on
an event of probability decaying exponentially in md−1, we have

MBW��m� ≥ ηmd−1	(4.7)

MVS��m� ≥ ηmd−1	(4.8)

MSC��m� ≥ ηm2d−1	(4.9)

MLA��m� ≥ ηm2d−1	(4.10)

MCUT��m� ≥ ηmd−1�(4.11)

(b) Let p > pc with θ�p� > p/2. Then there exists η > 0 such that Pp�MBIS
��m� < ηmd−1� decays exponentially in md−1.

The key to the proof is the following lemma.

Lemma 4.1. Let p ∈ �pc	1� and ε ∈ �0	 θ�p�/5�. For δ > 0, letEε	m	δ denote
the event that for site percolation on �m, (i) there is a unique cluster C of size
exceeding �θ�p�−ε�md, and (ii) for any pair of disjoint subsets A	B of C with
�A� ≥ 2εmd and �B� ≥ 2εmd, there are at least δmd−1 vertex-disjoint paths in
C from A to B.

Then there exists δ = δ�p	 ε� > 0, such that Pp�Ecε	m	δ� decays exponentially
in md−1.

Proof. Take p̃ ∈ �0	 p� such that θ�p̃� > θ�p�− ε. Such a p̃ exists by con-
tinuity of the percolation probability above the critical point; see [15, Section
6.3]. Let Eε	m	0 denote the event that there exists a cluster of size exceeding
�θ�p� − ε�md. By [26, Theorem 4], there exists γ > 0 such that, for large
enough m,

Pp̃�Ecε	m	0� < exp�−γmd−1��
Take δ > 0 such that δ log �p/�p− p̃�� < γ� Let Fm denote the event that (i)
there is a unique cluster C of size exceeding �θ�p� − ε�md; (ii) this cluster
satisfies �C� < �θ�p� + ε�md; and (iii) there exist disjoint subsets A	B of C,
each of size at least 2εmd such that there exist at most δmd−1 vertex-disjoint
paths in C from A to B. We need to show that Pp�Fm� is small.
If Fm occurs, then by Menger’s theorem ([4, p. 52]), it is possible by remov-

ing at most δmd−1 vertices to disconnect A from B; to use Menger’s theorem
directly, add a vertex connected to each vertex of A, and likewise for B, and
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consider independent (i.e., vertex-disjoint) paths between the two added ver-
tices. This removal of vertices takes us outside the event Eε	m	0 because of the
uniqueness of C, and the fact that after removing these vertices no subcom-
ponent of C has size greater than �θ�p� + ε− 2ε�md.
Therefore, any outcome in Fm can be modified to an outcome in the com-

plement of the (increasing) event Eε	m	0 by removal of at most δmd−1 open
vertices. It follows by the site percolation version of Theorem 2.45 of [15] that,
for large enough m,

Pp�Fm� ≤
(

p

p− p̃
)δmd−1

Pp̃�Ecε	m	0�

≤ exp�md−1�δ log� p

p− p̃� − γ��	

which decays exponentially in md−1 by the choice of δ.
Finally, P�Ecε	m	δ\Fm� also decays exponentially in md−1 by Theorem 4 of

[26]. ✷

Proof of Theorem 4�1. Assume p > pc. Choose ε1 ∈ �0	 θ�p�/6�, and δ =
δ�p	 ε1� > 0 so that Pp�Ecε1	m	δ� decays exponentially inmd−1. For ω ∈ Eε1	m	δ,
with C denoting the unique cluster of size exceeding �θ�p� − ε1�md, it follows
from monotonicity and (3.5) that

MSC��m� ≥MSC�C� ≥ �θ�p� − ε1 − 5ε1�md�δmd−1�	
giving us (4.9). Then (4.10) and (4.11) follow by (3.1), and (4.8) and (4.7) follow
by (3.2). This completes the proof of part (a).
For (b), assume additionally that θ�p� > p/2. Take ε2 > 0 with 4ε2 + p/2

< θ�p�	 and take δ > 0 such that P�Ecε2	m	δ� decays exponentially in md−1. If�ω� denotes the number of open vertices in an outcome ω, then by standard
arguments applying Markov’s inequality to the moment generating function,
Pp��ω� > �p+ ε2�md� decays exponentially in md. Suppose �ω� ≤ �p+ ε2�md,
with also ω ∈ Eε2	m	δ, and let C denote the unique cluster of size exceeding
�θ�p� − ε2�md. Then

�2ε2md + �ω�
2

+ 1 ≤ �C�	

so by the last part of Lemma 3.1, MBIS��m� ≥ δmd−1. ✷

5. Poisson processes with fixed intensity. Let λ > 0, and recall that
�λ denotes a homogeneous Poisson process onRd of intensity λ. LetBm denote
the box �0	m�d. This section is concerned with lower bounds on the costs for
layout problems on � ��λ ∩Bm�1�, as m tends to infinity running through the
integers, with λ fixed satisfying λ > λc; later, in Theorem 6.1, we shall give
upper bounds of the same order of magnitude as these lower bounds.
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Theorem 5.1. Let λ ∈ �λc	∞�, and let �m = � ��λ ∩ Bm�1�. Then:
(a) there exists a constant η > 0 such that, except on an event of proba-

bility decaying exponentially in md−1,

MBW��m� ≥ ηmd−1	(5.1)

MVS��m� ≥ ηmd−1	(5.2)

MSC��m� ≥ ηm2d−1	(5.3)

MLA��m� ≥ ηm2d−1	(5.4)

MCUT��m� ≥ ηmd−1�(5.5)

(b) if also θ�λ� > 1
2 , then there exists a constant η > 0 such that, except on

an event of probability decaying exponentially in md−1,

MBIS��m� ≥ ηmd−1�(5.6)

The proof uses a continuum analogue to Lemma 4.1. By a cluster in what
follows, we mean the vertex set of a component of �m. For any cluster C, let
�C� (the size of C) denote the number of vertices it has.

Lemma 5.1. Let λ ∈ �λc	∞� and ε ∈ �0	 λθ̃�λ�/5�. For δ > 0, let Ẽε	m	δ
denote the event that (i) there is a unique cluster C on �m of size exceeding
�λθ̃�λ� − ε�md, and (ii) for any pair of disjoint subsets A	B of C with �A� ≥
2εmd and �B� ≥ 2εmd, there are at least δmd−1 vertex-disjoint paths in C from
A to B.

Then there exists δ = δ�λ	 ε� > 0, such that P�Ẽcε	m	δ� decays exponentially
in md−1.

Proof. Take λ̃ ∈ �0	 λ� such that λ̃θ̃�λ̃� > λθ̃�λ� − ε. Such a λ̃ exists by
continuity of the continuum percolation probability above the critical point;
see [23], page 78. Write Pλ̃, respectively Pλ, for probability with respect to the
Poisson process �λ̃, respectively �λ. Let Ẽε	m	0 denote the event that there
exists a cluster of �m of size exceeding �λθ̃�λ� − ε�md. By Theorem 1 of [26],
there exists γ > 0 such that, for large enough m,

Pλ̃�Ẽcε	m	0� < exp�−γmd−1��
Take δ > 0 such that δ log

(
λ/�λ− λ̃�) < γ� Let F̃m denote the event that (i)

there is a unique cluster C of size exceeding �λθ̃�λ� − ε�md; (ii) this cluster
satisfies �C� < �λθ̃�λ� + ε�md; and (iii) there exist disjoint subsets A	B of C,
each of size at least 2εmd such that there exist at most δmd−1 vertex-disjoint
paths in �m from A to B. By the same argument using Menger’s theorem
as in the proof of Lemma 4.1, any outcome of �λ in F̃m can be modified to
an outcome in the complement of the (increasing) event Ẽε	m	0 by removal of
fewer than δmd−1 vertices.
We need a continuum percolation version of Theorem 2.45 of [15]. The proof

of this is similar to the one in [15], using the fact that if the points of a Poisson



528 M. D. PENROSE

process of rate λ are each independently discarded with probability �λ− λ̃�/λ
and retained with probability λ̃/λ, then we obtain a Poisson process of rate λ̃.
This result gives us (for large enough m)

Pλ�F̃m� ≤
(
λ

λ− λ̃

)δmd−1
Pλ̃�Ẽcε	m	0�

≤ exp�md−1�δ log� λ

λ− λ̃� − γ��	

which decays exponentially in md−1 by the choice of δ.
Finally, P�Ẽcε	m	δ\F̃m� also decays exponentially in md−1 by Theorem 1 of

[26]. ✷

Proof of Theorem 5�1. Assume λ > λc. Choose ε3 ∈ �0	 λθ̃�λ�/6�, and
δ = δ�λ	 ε3� > 0, so that P�Ẽcε3	m	δ� decays exponentially in md−1. Suppose
Ẽε3	m	δ occurs, and letC be the vertex set of the unique cluster of size exceeding
�λθ̃�λ� − ε3�md. Then by Lemma 3.1,

MSC��m� ≥MSC�C� ≥ ��λθ̃�λ� − ε3� − 5ε3�mdδmd−1	
giving us (5.3). Then (5.4) and (5.5) follow by (3.1), and (5.2) and (5.1) follow
by (3.2).
For (b), assume additionally that θ̃�λ� > 1

2 . Take ε4 > 0 with 4ε4 + λ/2 <
λθ̃�λ�� Take δ > 0 such that P�Ẽcε4	m	δ� decays exponentially in md−1. By
standard arguments, P���λ ∩Bm� > �λ + ε4�md� decays exponentially in md.
Suppose Ẽε4	m	δ occurs, and also ��λ ∩Bm� ≤ �λ+ ε4�md� Let C be the vertex
set of the unique cluster of size exceeding �λθ̃�λ� − ε4�md. Then �2ε4md +
1
2 ��λ ∩Bm� + 1 ≤ �C�, so by Lemma 3.1, MBIS��m� ≥ δmd−1.

6. High intensity. In this section, we again consider Poisson processes
on the box Bm = �0	m�d. We consider the graph � ��λm ∩Bm�ρ�, with ρ fixed
but λm now allowed to vary with m. We shall be mainly concerned with the
case λm → ∞, but our first result is a set of upper bounds, holding with high
probability and valid for λm constant as well as λm → ∞.

Theorem 6.1. Suppose 0 < lim infm→∞ λm ≤ ∞, and let �m denote the
graph � ��λm ∩Bm�1�. Then there exists a constant K such that, except on an

event of probability decaying exponentially in λmm
d−1,

MBW��m� ≤Kλmmd−1	(6.1)

MVS��m� ≤Kλmmd−1	(6.2)

MSC��m� ≤Kλ2mm2d−1	(6.3)

and, except on an event of probability decaying exponentially in m�d−1�/2

�logm�−2,
MLA��m� ≤Kλ3mm2d−1	(6.4)



ORDERINGS OF RANDOM SPATIAL GRAPHS 529

MCUT��m� ≤Kλ2mmd−1	(6.5)

MBIS��m� ≤Kλ2mmd−1�(6.6)

Proof. Let ϕLEX be the lexicographic ordering on the vertices of �m with
points simply ordered by their first coordinate (the “projection heuristic” or
“projection algorithm” [8]). The result is established by showing that suitable
upper bounds hold with high probability for the cost of ϕLEX, for each of the
six problems in question.
Divide Bm into slabs S0	m	S1	m	 � � � 	 Sm−1	m defined by Sj	m = �j	 j+ 1� ×

�0	m�d−1. Then for i < j, the points in Si	m precede those in Sj	m in the
ordering ϕLEX. Also, points in Si	m and Sj	m are not connected by edges of �m
for �i− j� ≥ 2.
Let Em be the event ∩m−1

j=0 ���λm ∩ Sj	m� ≤ 2λmmd−1�, that each slab Sj	m
contains at most 2λmmd−1 points of �λm . Then P�Ecm� decays exponentially
in λmmd−1. Also, when event Em occurs, the lexicographic ordering satisfies
bw�ϕLEX� ≤ 4λmmd−1, giving us (6.1); then by (3.2) we have also (6.2) and
(6.3).
The proof for (6.4), (6.5), and (6.6) is more involved but is still based on the

projection heuristic. For i = �i1	 � � � 	 im� ∈ ��0	m� ∩Z�d, set Qi =
∏d
k=1�ik	 ik+

2�. For each edge �X	Y� of �m, there exists i ∈ Vm such that X ∈ Qi and
Y ∈ Qi. Let i ∈ �0	1	2	 � � � 	m− 1�, and define the event

Fi =

 ∑
j∈�Z∩�0	m��d−1

��λm ∩Qi	 j�2 ≤md−14d�2λ2m + λm�

 �

For j ∈ �Z∩ �0	m��d−1, setW j = ��λm ∩Qi	 j�. Observe thatW j is independent
of Wk for � j− k�∞ ≥ 2. Taking sets Umr to be intersections of various integer
translates of 2Zd−1 with �0	m�d−1, we can (and do) partition �Z∩�0	m��d−1 into
2d−1 piecesUm1 	 � � � 	U

m
2d−1 with �W j	 j ∈ Umr �mutually independent for each r,

and with �m/2�d−1 ≤ �Umr � ≤ �m/2 d−1 for each r. Since EW2
j ≤ 4d�λ2m + λm�	

we have

P�Fci� ≤ P

 ∑
j∈�Z∩�0	m��d−1

�W2
j −EW2

j� > md−14dλ2m




≤
2d−1∑
r=1
P

[ ∑
j∈Umr

�W2
j −EW2

j� > md−1λ2m
]
	

so that by Lemma 3.2, P�Fci� decays exponentially in m�d−1�/2�logm�−2, and
hence so does P�∪m−1

i=0 F
c
i�.

We claim that
m−1⋂
i=0
Fi ⊂ �MCUT��m� ≤ 22d+1�2λ2m + λm�md−1��(6.7)

To prove this, suppose X, Y, and Z are vertices such that �Y	Z� contributes
to χ�X	ϕLEX�, so that π1�Y� ≤ π1�X� < π1�Z� with π1 denoting projection
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onto the first coordinate, and also �Y − Z� ≤ 1� Then for some i = �i1	 j� ∈
�Z ∩ �0	m��d, we have Y ∈ Qi and Z ∈ Qi. Furthermore, if i is taken so that
X lies in the slab Si, we must have i = i1 or i = i1 − 1, so that

χ�X	ϕ� ≤
i∑

i1=i−1

∑
j∈�Z∩�0	m��d−1

��λm ∩Qi1	 j�2	

and (6.7) follows. This completes the proof of (6.5), and (6.4) follows by (3.1),
while (6.6) follows by (3.3). ✷

We now work toward Theorem 6.2 below, which gives lower bounds of the
same form as the upper bounds in Theorem 6.1. For convenience, in Theorem
6.2 we shall take the distance parameter ρ to be 2d, so that if �x�∞ ≤ 2, then
�x� ≤ ρ.

Lemma 6.1. Suppose λm is a sequence with λm → ∞. Let ε ∈ �0	1/21�.
Then there exists γ = γ�ε� > 0 such that, except on an event of probabil-
ity decaying exponentially in md−1, the set �λm ∩ Bm has a subset �m with

��m� > �1 − 2ε�λmmd, such that for any two disjoint sets A	B ⊂ �m with
min��A�	 �B�� ≥ λmmd/3, there exists a collection of at least γλ2mm

d−1 paths in
� ��m�2d� from A to B, such that no point of �m has more than λm of these
paths passing through it.

Proof. The proof uses an induced discrete percolation process on the
lattice �m with vertex set Vm = ��0	m� ∩ Z�d, defined as follows. For i =
�i1	 i2	 � � � 	 id� ∈ Vm, letHi denote the unit volume hypercube

∏d
r=1�ir	 ir+1�.

Let i be deemed “open” if λm�1 − ε� < ��λm ∩ Hi� < λm�1 + ε�. The set of
open vertices is a realization of site percolation on �m with parameter pm,
and pm → 1 by Chebyshev’s inequality. Hence θ�pm� → 1 by the continuity of
the percolation probability ([15, Theorem 6.35]) or more directly by a Peierls
argument.
For δ > 0, let Gε	m	δ denote the event that there is a big cluster C of open

vertices inVm, of size at least �1−ε�md, such that for any two disjoint subsets
S1	 S2 of C with �S1� ≥ εmd and �S2� ≥ εmd, there are at least δmd−1 vertex-
disjoint paths in C from S1 to S2. By Lemma 4.1, we can (and do) choose δ > 0
such that P�Gcε	m	δ� decays exponentially in md−1.
Suppose the set of open vertices i ∈ Vm induced by �λm is an outcome in

Gε	m	δ, and let C be the big cluster as described in the definition of that event.
Define the restricted point process

�m = �λm ∩ �∪i∈CHi� �

By definition, ��m� ≥ �1− ε�2λmmd > �1− 2ε�λmmd�
Let A and B be arbitrary disjoint subsets of �m of cardinality at least

λmm
d/3. Let elements of A be denoted “red,” and let points of B be denoted

“green.” Let Rm be the set of i ∈ C such that Hi contains at least ελm red
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points, and let Gm be the set of i ∈ C such thatHi contains at least ελm green
points. We claim that

card�Rm� ≥ 3εmd	 card�Gm� ≥ 3εmd�(6.8)

Obviously, it suffices to prove the claim for Rm. Suppose it were false. The
cardinality of Rm would be less than 3εmd. Since we are considering only
i ∈ C, which implies i is open and Hi contains at most �1 + ε�λm points, the
total number of red points in ∪i∈RmHi would be at most �1+ ε�3ελmmd. Also,
since �C� ≤md, the total number of red points in ∪i∈C\RmHi is at most ελmm

d.
Thus the total number of red points would be at most ��1 + ε�3ε + ε�λmmd,
and hence less than 7ελmmd, which is a contradiction by the conditions on ε
and �A�. So the claim (6.8) is true.
The sets Rm and Gm need not be disjoint. But by (6.8) we can (and do) take

R′
m and G

′
m to be disjoint with R

′
m ⊂ Rm and G′

m ⊂ Gm, with
card�R′

m� ≥ εmd	 card�G′
m� ≥ εmd�(6.9)

Let C̃ be an “expanded” version of the subgraph of �m induced by the
vertex set C, in which each vertex i of C is replaced by �λm�Hi� “offspring,”
and adjacency amongst offspring is inherited from that between parents. This
graph is isomorphic to a subgraph of � ��m�2d�, since the choice of distance
parameter 2d means that any two Poisson points in adjacent unit hypercubes
are connected by an edge of � ��m�2d�. Take such an isomorphism and let
“red” and “green” colorings in C̃ be determined by this isomorphism and the
colorings on points of �m. Note that each vertex of C has at least �ελm 
“offspring” since 1− ε > ε.
Suppose π is a path in C which starts at a point of R′

m and ends at a point
of G′

m. Then it is possible to find at least �ελm 2 edge-disjoint paths of the
expanded graph C̃ following the same route as π, which furthermore each
start at a red vertex and end at a green one, and such that each vertex of
C̃ has at most ελm of these paths passing through it. This can be proved by
induction on the length of π.
By definition of the event Gε	m	δ, we can take �δmd−1 vertex-disjoint paths

in C from points of R′
m to points of G

′
m. Each of these corresponds to at least

�ελm 2 edge-disjoint paths in C̃ following the same route, starting at red ver-
tices and ending at green ones. Using the isomorphism between C̃ and a sub-
graph of � ��m�2d�, this gives us a total of at least δε2λ2mmd−1 edge-disjoint
paths in � ��m�2d�, each starting in A and ending in B. Moreover, no vertex
in C̃ has more than λm of these paths passing through it, and taking γ = δε2
gives us the result. ✷

Theorem 6.2. Suppose �λm�m≥1 is a sequence with λm → ∞, and let �m
denote the graph � ��λm ∩ Bm�2d�. Then there exists η > 0 such that, except

on an event of probability decaying exponentially in md−1,

MBW��m� ≥ ηλmmd−1	(6.10)
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MVS��m� ≥ ηλmmd−1	(6.11)

MSC��m� ≥ ηλ2mm2d−1	(6.12)

MLA��m� ≥ ηλ3mm2d−1	(6.13)

MCUT��m� ≥ ηλ2mmd−1	(6.14)

MBIS��m� ≥ ηλ2mmd−1�(6.15)

Proof. Choose ε5 ∈ �0	1/21�, and γ = γ�ε5� as in Lemma 6.1. Assume
from now on that the outcome of �λm is such that �λm ∩Bm has a subset �m

with ��m� > �1 − 2ε5�λmmd, such that for any two disjoint sets A	B ⊂ �m

with min��A�	 �B�� ≥ λmmd/3, there exists a collection of at least γλ2mmd−1
paths in � ��m�2d� from A to B, such that no point of �m has more than
λm of these paths passing through it; by Lemma 6.1, the probability that this
fails to occur decays exponentially in md−1.
By Lemma 3.1, in these circumstances,

MLA�� ��m�2�� ≥ (
1− 2ε5 − � 23 + ε5�

)
λmm

d�γλ2mmd−1�
≥ ε5γλ3mm2d−1�

This gives us (6.13), and (6.14) follows by (3.1). By Lemma 3.1 again,

MSC�� ��m�2�� ≥ ε5γλ3mm2d−1/λm�

This gives us (6.12), and (6.11) and (6.10) follow by (3.2).
For MBIS, use the fact that as long as ��λm ∩Bm� ≤ �1 + ε5�mdλm, by the

choice of ε5 we have

�λmmd/3 + 1
2 ��λm ∩Bm� + 1 ≤ ��m�	

and therefore by the last part of Lemma 3.1, MBIS��m� ≥ γλ2mmd−1. ✷

7. Fixed numbers of points. At last we can prove the results announced
in Section 2, concerned with graphs of the form � ��n�ρn�with ρn → 0 and nρdn
tending to a possibly infinite limit λ. We obtain these from the corresponding
results on Poisson processes by coupling the process �n to a Poisson process
with a slightly higher or lower density of points.
For the case λ <∞, the coupling goes as follows. Take λ1 < λ < λ2. Setmn =

�ρ−1n  and m′
n = �ρ−1n �. LetMn andM′

n be Poisson variables with mean λ1m
d
n

and λ2�m′
n�d, respectively, independent of �X1	X2	X3	 � � ��. Then P�Mn > n�

and P�M′
n < n� decay exponentially in n.

Set mn�n = �mnXi� 1 ≤ i ≤ n�, and set
�n = �mnXi� 1 ≤ i ≤Mn�	 � ′

n = �m′
nXi� 1 ≤ i ≤M′

n�	
which are Poisson processes, on Bmn with intensity λ1 and on Bm′

n
with inten-

sity λ2, respectively.
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If Mn ≤ n, then � ��n�1� is a subgraph of � �mn�n�mnρn�, which is iso-
morphic to � ��n�ρn�. Hence by monotonicity,

P�MLA�� ��n�ρn�� <MLA�� ��n�1��� decays exponentially in n	(7.1)

and likewise for MBW, MCUT, MSC, and MVS. Similarly,

P�MLA�� ��n�ρn�� >MLA�� �� ′
n�1��� decays exponentially in n	(7.2)

and likewise for MBW, MCUT, MSC and MVS.

Proof of Theorem 2�1 when λ <∞. Suppose nρdn → λ ∈ �0	∞�. Choose
λ2 ∈ �λ	∞� and define� ′

n as above. We use the fact thatm
′
n ∼ ρ−1n . By Theorem

6.1, along with the MBW, MVS, and MSC analogues to (7.2), there exists
K1 > 0 such that, except on an event of probability decaying exponentially in
�m′

n�d−1 (i.e., exponentially in ρ1−dn ),

MBW�� ��n�ρn�� ≤MBW�� �� ′
n�1�� ≤K1ρ

1−d
n 	

MVS�� ��n�ρn�� ≤MVS�� �� ′
n�1�� ≤K1ρ

1−d
n 	

MSC�� ��n�ρn�� ≤MSC�� �� ′
n�1�� ≤K1ρ

1−2d
n �

Arguing the same way using the second half of Theorem 6.1, we have, except
on an event of probability decaying exponentially in ρ�1−d�/2n � log ρn�−2, that

MLA�� ��n�ρn�� ≤K1ρ
1−2d
n 	 MCUT�� ��n�ρn�� ≤K1ρ

1−d
n 	

and so by (3.3),

MBIS�� ��n�ρn�� ≤K1ρ
1−d
n �

These six inequalities can be converted into (2.1)–(2.6), using the assumption
that nρdn → λ ∈ �0	∞�; for example, K1ρ

1−d
n ∼ �K1/λ�nρn so (2.1) follows

from the first of the above six inequalities. ✷

Proof of Theorem 2�2 when λ ∈ �λc	∞�. Suppose nρdn → λ ∈ �0	∞�.
Choose λ1 ∈ �λc	 λ� and define �n as before in this section. Note thatmn ∼ ρ−1n .
By Theorem 5.1, along with (7.1), there exists η1 > 0 such that, except on an
event of probability decaying exponentially in ρ1−dn ,

MBW�� ��n�ρn�� ≥MBW�� ��n�1�� ≥ η1ρ1−dn 	

MVS�� ��n�ρn�� ≥MVS�� ��n�1�� ≥ η1ρ1−dn 	

MSC�� ��n�ρn�� ≥MSC�� ��n�1�� ≥ η1ρ1−2dn 	

MLA�� ��n�ρn�� ≥MLA�� ��n�1�� ≥ η1ρ1−2dn 	

MCUT�� ��n�ρn�� ≥MCUT�� ��n�1�� ≥ η1ρ1−dn �

Then (2.8)–(2.10) follow using the assumption that nρdn → λ ∈ �0	∞�.
Now assume also that θ̃�λ� > 1

2 , and consider the bisection problem. Using
the continuity of the continuum percolation probability above the critical point,
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take λ1 in the above coupling, and ε6 ∈ �0	 λ1θ̃�λ1�/5�, such that λ1θ̃�λ1�−3ε6 >
λ/2. LetMn and �n be as above. By Lemma 5.1, there exists δ > 0 such that,
except on an event of probability decaying exponentially in ρ1−dn , the graph
� ��n�1� includes a cluster C of size at least �λ1θ̃�λ1� − ε6�md, such that for
any two subsets of C of size at least 2ε6mdn, there are at least δm

d−1
n edge-

disjoint paths connecting them.
Since n ∼ λmdn, for large n we have �2ε6mdn + n

2 + 1 ≤ �λ1θ̃�λ1�− ε6�mdn, so
by the last part of Lemma 3.1, MBIS�� ��n�ρn�� ≥ δmd−1n , giving us (2.12). ✷

Proof of Theorem 2�1 when λ = ∞. In the case nρdn → ∞ (and ρn → 0),
we use a slightly different coupling which goes as follows. With m′

n = �ρ−1n � as
before, let N′

n be Poisson with mean 2n, independent of �X1	X2	 � � ��. Define
the point process

� ′
n = �m′

nXi� 1 ≤ i ≤N′
n�	

which is a Poisson process of rate 2n�m′
n�−d on Bm′

n
. Since P�N′

n < n� decays
exponentially in n, a similar argument to the proof of (7.2) gives us

P�MLA�� ��n�ρn�� >MLA�� �� ′
n�1��� decays exponentially in n	(7.3)

and likewise for MBW, MCUT, MSC and MVS.
We use the fact that m′

n ∼ ρ−1n . By Theorem 6.1, along with (7.3) and ana-
logues for the other monotone problems, there exists a constant K such that,
except on an event of probability decaying exponentially in �nρdn�ρ1−dn ,

MBW�� ��n�ρn�� ≤MBW�� �� ′
n�1�� ≤K�nρdn�ρ1−dn 	

MVS�� ��n�ρn�� ≤MVS�� �� ′
n�1�� ≤K�nρdn�ρ1−dn 	

MSC�� ��n�ρn�� ≤MSC�� �� ′
n�1�� ≤K�nρdn�2ρ1−2dn 	

and except on an event of probability decaying exponentially in ρ�1−d�/2n

� log ρn�−2,
MLA�� ��n�ρn�� ≤MLA�� �� ′

n�1�� ≤K�nρdn�3ρ1−2dn 	

MCUT�� ��n�ρn�� ≤MCUT�� �� ′
n�1�� ≤K�nρdn�2ρ1−dn �

This gives us (2.1)–(2.5), and (2.6) follows from (2.5) using (3.3). ✷

Proof of Theorem 2�2 when λ = ∞. Assume nρdn → ∞ and ρn → 0.
Changing an earlier definition slightly, let mn = �2dρ−1n  . Let ε7 = 1/22, let
Nn be Poisson with mean n�1− ε7�, independent of �X1	X2	X3	 � � ��, and let
�n = �mnXi� 1 ≤ i ≤Nn�. Then, except on an event with probability decaying
exponentially in n, we have n�1−ε7� ≤Nn ≤ n and � ��n�2d� is a subgraph of
� �mn�n�mnρn�, which is isomorphic to � ��n�ρn�. Also, �n is a Poisson pro-
cess on Bmn of rate �1 − ε7�nm−d

n , which is asymptotic to �2d�−d�1 − ε7�nρdn.
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By Theorem 6.2, there is a constant η2 > 0 such that, except on an event with
probability decaying exponentially in ρ1−dn ,

MBW�� ��n�ρn�� ≥MBW�� ��n�2d�� ≥ η2�nρdn�ρ1−dn 	

MVS�� ��n�ρn�� ≥MVS�� ��n�2d�� ≥ η2�nρdn�ρ1−dn 	

MSC�� ��n�ρn�� ≥MSC�� ��n�2d�� ≥ η2�nρdn�2ρ1−2dn 	

MLA�� ��n�ρn�� ≥MLA�� ��n�2d�� ≥ η2�nρdn�3ρ1−2dn 	

MCUT�� ��n�ρn�� ≥MCUT�� ��n�2d�� ≥ η2�nρdn�2ρ1−dn �

By Lemma 6.1, there exists γ > 0 such that, except on an event with prob-
ability decaying exponentially in ρ1−dn , there exists �n ⊂ �n with ��n� ≥
�1− 3ε7�n, such that if A and B are disjoint subsets of �n, each of cardinal-
ity at least �n�1− ε/2�/3 , then there exist at least γ�nρdn�2ρ1−dn edge-disjoint
paths in � ��n�2d� from A to B. By the choice of ε7 we have

�n�1− ε7�/3 + �n/2� + 1 ≤ 5n
6

≤ ��n�	

so that by the last part of Lemma 3.1, MBIS�� ��n�ρn�� ≥ γn2ρd+1n � ✷

APPENDIX

Proof of Lemma 3.2. Suppose �λn�n≥1 satisfies lim infn→∞ λn ∈ �0	∞�,
and W1	n	W2	n	 � � � 	Wn	n are independent Poisson variables with mean λn.
We are to prove that P�∑n

i=1�W2
i	n −EW2

i	n� > εnλ2n� decays exponentially in
n1/2�log n�−2.
We shall use Azuma’s inequality (see [31], [34], or [33]), which says that

if �M0	M1	 � � � 	Mn� is a discrete-time martingale withM0 a constant, and if
c1	 � � � 	 cn are constants with �Mj −Mj−1� ≤ cj almost surely for each j, then
for all t ≥ 0,

P��Mn −M0� ≥ t� ≤ 2 exp
(
−1
2
t2/

n∑
j=1
c2j

)
�

Choose c > 0 so that lim inf �cλn� > 1. Then for large enough n,

P�W1	n ≥ cλn log n� ≤
E�exp�W1	n��
exp�cλn log n�

= exp�λn�e− 1− c log n�� ≤ n−1�(A.1)

Define a sequence of integers �ξn�n≥2 by
P�W1	n ≥ ξn� > n−1 ≥ P�W1	n ≥ ξn + 1�	 n ≥ 2�(A.2)

Then by (A.1), ξn ≤ cλn log n for large enough n. Hence,
P�W1	n = ξn� = P�W1	n = ξn + 1��ξn + 1�/λn ≤ �2c log n�/n�
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By Azuma’s inequality applied to the martingale with successive increments
given by the independent random variables W2

i	n1�Wi	n<ξn� − EW2
i	n1�Wi	n<ξn�,

which are uniformly bounded by ξ2n, we obtain for large enough n that

P

[
n∑
i=1

�W2
i	n1�Wi	n<ξn� −EW2

i	n� ≥ εnλ2n
]

≤ 2 exp
{
−�εnλ2n�2
2nξ4n

}

≤ 2 exp
{
− ε2n

2�c log n�4
}
�

(A.3)

Next, observe that by Markov’s inequality applied to the moment generating
function of a binomial random variable,

P

[
n∑
i=1
1�Wi	n≥ξn� > n

1/2�log n�−2
]

≤ exp�−n1/2�log n�−2��1+ �e− 1�P�W1	n ≥ ξn��n(A.4)

≤ exp�−n1/2�log n�−2 + �e− 1��2c log n+ 1��	

which decays exponentially in n1/2�log n�−2.
For each n, let �Zi	n	 i ≥ 1� be independent variables with � �Zi	n� =

� �Wi	n�Wi	n ≥ ξn�� Then by (A.2),

E�exp�Zi	n�� ≤
E�exp�Wi	n��
P�Wi	n ≥ ξn�

≤ exp�λn�e− 1� + log n�	

so that

P

[
n∑
i=1
W2
i	n1�Wi	n≥ξn� > εnλ

2
n

∣∣∣∣∣
n∑
i=1
1�Wi	n≥ξn� ≤ n1/2�log n�−2

]

≤ P

n1/2�log n�−2∑

i=1
Z2i	n > εnλ

2
n




≤ P

n1/2�log n�−2∑

i=1
Zi	n > ε

1/2n1/2λn


(A.5)

≤ exp�n1/2�log n�−2�λn�e− 1� + log n� − ε1/2λnn1/2�	

which decays exponentially in λnn1/2. Combining (A.3), (A.4) and (A.5), we
obtain the desired rate of exponential decay. ✷
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